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Abstract
We review the broad variety of methods that have been proposed for anomaly detection in images. Most methods found in
the literature have in mind a particular application. Yet we focus on a classification of the methods based on the structural
assumption they make on the “normal” image, assumed to obey a “background model.” Five different structural assumptions
emerge for the background model. Our analysis leads us to reformulate the best representative algorithms in each class by
attaching to them an a-contrario detection that controls the number of false positives and thus deriving a uniform detection
scheme for all. By combining themost general structural assumptions expressing the background’s normalitywith the proposed
generic statistical detection tool, we end up proposing several generic algorithms that seem to generalize or reconcile most
methods. We compare the six best representatives of our proposed classes of algorithms on anomalous images taken from
classic papers on the subject, and on a synthetic database. Our conclusion hints that it is possible to perform automatic anomaly
detection on a single image.

Keywords Anomaly detection · Multi-scale · Background modeling · Background subtraction · Self-similarity · Sparsity ·
Center-surround · Hypothesis testing · p value · A-contrario assumption · Number of false alarms

1 Introduction

The automatic detection of anomalous structure in arbitrary
images is concerned with the problem of finding non-
confirming patterns with respect to the image normality. This
is a challenging problem in computer vision, since there is
no clear and straightforward definition of what is (ab)normal
for a given arbitrary image. Automatic anomaly detection has
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high stakes in industry, remote sensing andmedicine (Fig. 1).
It is crucial to be able to handle automatically massive data
to detect, for example, anomalous masses in mammograms
[56,130], chemical targets in multi-spectral and hyperspec-
tral satellite images [5,40,124,129], sea mines in side-scan
sonar images [95], or defects in industrial monitoring appli-
cations [138,149,153]. This detection may be done using any
imaging device from cameras to scanning electron micro-
scopes [20].

Our goal here is to review the broad variety ofmethods that
have been proposed for this problem in the realm of image
processing. We would like to classify the methods, but also
to decide whether some arguably general anomaly detection
framework emerges from the analysis. This is not obvious:
Most reviewed methods were designed for a particular appli-
cation, even if most claim some degree of generality.

Yet, all anomaly detection methods make a general struc-
tural assumption on the “normal” background that actually
characterizes the method. By combining the most general
structural assumptions with statistical detection tools con-
trolling the number of false alarms, we shall converge to a
few generic algorithms that seem to generalize or reconcile
most methods.
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Fig. 1 Examples of industrial images with anomalies to detect. From left to right: a suspicious mammogram [56], an undersea mine [96], a defective
textile pattern [139] and a defective wheel [136]

To evaluate our conclusions, we shall compare representa-
tives of themain algorithmic classes on classic anddiversified
examples. A fair comparison will require completing them
whennecessarywith a common statistical decision threshold.
Plan of the Paper In the next Sect. 1.1, we make a first sketch
of definition of the problem, define themain terminology and
give the notation for the statistical framework used through-
out the paper. Section 1.2 reviews four anterior reviews and
discusses their methodology. Section 1.3 circumscribes our
field of interest by excluding several related but different
questions. In the central Sect. 2, we propose a classifica-
tion of the anomaly detectors into five classes depending
on the main structural assumption made on the background
model. This section contains the description and analysis of
about 50 different methods. This analysis raises the question
of defining a uniform detection scheme for all background
structures. Hence, in Sect. 3 we incorporate a uniform prob-
abilistic detection threshold to the most relevant methods
spotted in Sect. 2. This enables us in Sect. 4 to build three
comparison protocols for six methods representative of each
class. We finally conclude in Sect. 5.

1.1 Is There a Formal Generic Framework for the
Problem?

Because of the variety of methods proposed, it is virtually
impossible to start with a formal definition of the problem.
Nevertheless, this subsection circumscribes it and lists the
most important terms and concepts recurring in most papers.
Each new term will be indicated in italic.

Our study is limited to image anomalies for obvious exper-
imental reasons: We need a common playground to compare
methods. Images have a specific geometric structure and
homogeneity which is different from (say) audio or text. For
example, causal anomaly detectors based on predictivemeth-
ods such as autoregressive conditional heteroskedasticity
(ARCH) models fall out of our field. (We shall neverthe-
less study an adaptation of ARCH to anomaly detection in
sonar images.)

Like in the overwhelming majority of reviewed papers,
we assume that anomalies can be detected in and from a
single image, or from an image dataset, even if they do con-
tain anomalies. Learning the background or “normal” model
from images containing anomalies nevertheless implies that
anomalies are small, in both size and proportion to the pro-
cessed images, as stated, for example, in [106]:

We consider the problem of detecting points that are
rare within a dataset dominated by the presence of ordi-
nary background points.

Without loss of generality, we shall evaluate the meth-
ods on single images. It appears that for the overwhelming
majority of considered methods, a single image has enough
samples to learn a background model. As a matter of fact,
many methods are proceeded locally in the image or in a
feature space, which implies that the background model for
each detection test is learned only on a well-chosen portion
of the image or of the samples. Nevertheless for indus-
trial applications, using a fixed database representative of
anomaly-free images can help reduce false alarms and com-
putation time, and studied methods can generally be adapted
to this scenario. All methods extract vector samples from
the images, either hyperspectral pixels generally denoted by
xi , x j , xr · · · , or image patches, namely subimages of the
image u with moderate size, typically from 2× 2 to 16× 16,
generally denoted by pi , p j , qr , qs, · · · . The vector sam-
ples may be also obtained as a feature vector obtained by
a linear transform (e.g., wavelet coefficients) or by a lin-
ear or nonlinear coordinate transform such as PCA, kernel
PCA or diffusion maps, or as coordinates in a sparse dictio-
nary. We denote the resulting vector representing a sample
by x̃i , ỹi , · · · or p̃i , q̃i , · · · .

From these samples taken from an image (or from a col-
lection of images), all considered anomaly detectionmethods
estimate (implicitly or explicitly) a background model, also
known as model of normal samples. The goal of the back-
ground model is to provide for each sample a measure of its
rareness. This rarity measure is generally called a saliency
map. It requires an empirical threshold to decide which pix-
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els or patches are salient enough to be called anomalies. If
the background model is stochastic, a probability of false
alarm or p value can be associated with each sample, under
the assumption that it obeys the background model.

The methods will be mainly characterized by the structure
of their background model. This model may be global in
the image, which means common to all the image samples,
but also local in the image (for center-surround anomaly
detectors) or global in the sample space (when a globalmodel
is given for all samples regardless of their position in the
image). The model may remain local in the sample space
when the sample’s anomaly is evaluated by comparing it to its
neighbors in the patch space or in the space of hyperspectral
pixels. When samples are compared locally in the sample
space but can be taken from all over the image, the method
is often called non-local, though it can actually be local in
the sample space.

Many methods proceed to a background subtraction. This
operation, which can be performed in many different ways
that we will explore, aims at removing from the data all “nor-
mal” variations, attributable to the background model, thus
enhancing the abnormal ones, that is, the anomalies.

At the end of the game, all methods compute for each
sample its distance to the background or saliency. This dis-
tance must be larger than a given value (threshold) to decide
whether the sample is anomalous. The detection threshold
may be empirical, but is preferably obtained through a sta-
tistical argument. To explicit the formalism, we shall now
detail a classic method.

Du and Zhang [39] proposed to learn a Gaussian back-
ground model from randomly picked k-dimensional image
patches in a hyperspectral image. Once this background
model p ∼ N (μ,Σ)with meanμ and covariance matrixΣ

is obtained, the anomalous (2×2) patches are detected using
a threshold on theirMahalanobis distance to the background

dM(pi ) :=
√

(pi − μ)Σ−1(pi − μ).

Thresholding the Mahanalobis distance boils down to a sim-
ple χ2 test. Indeed, one has d2M(p) ∼ χ2

k , meaning that
the square of the Mahalanobis distance between p and its
expectation obeys a χ2 law with k degrees of freedom. Let
us denote by χ2

k;1−α
the quantile 1 − α, then

P

[
d2M(p) ≤ χ2

k;1−α

]
= 1 − α = P [p ∈ ZTα] ,

where ZTα :=
{
p ∈ R

k | d2M(p) ≤ χ2
k;1−α

}
is the α-

tolerance zone. Thus, α is the p value or probability of false
alarm for an anomaly under the Gaussian background prob-
lem: If indeed d2M(p) > χ2

k;1−α
, then the probability that p

belongs the background is lower than α.

Yet, thresholding the p valuemay lead tomany false detec-
tions. Indeed, anomaly detectors performavery large number
of tests, as they typically test each pixel. For that reason,
Desolneux et al. [34,35] pointed out that in image analysis
computing a number of false alarms (NFA), also commonly
called per family error rate (PFER), is preferable. Assume
that the above anomaly test is performed for all N pixels pi
of an image. Instead of fixing a p value for each pixel, it is
sound to fix a tolerable number α of false alarms per image.
Then, the “Bonferroni correction” requires our test on p to
be d2M(p) > χ2

k;1− α
N
. We then have

P

(
N⋃
i=1

[d2M(pi ) > χ2
k;1− α

N
]
)

≤
N∑
i=1

P

(
[d2M(pi ) > χ2

k;1− α
N
]
)

= N
α

N
= α,

which means that the probability of detecting at least one
“false anomaly” in the background is equal to α. It is con-
venient to reformulate this Bonferroni estimate in terms of
expectation of the number of false alarms:

E

[
ΣN

i=11[d2M(pi )>χ2
k;1− α

N
]
]

=
N∑
i=1

E1[d2M(pi )>χ2
k;1− α

N
] = N

α

N
= α

where 1 denotes the characteristic function equal to 1 if and
only if its argument is positive. This means that by fixing a
lower threshold equal to χ2

k;1− α
N
for the distance d2M(p), we

secure on average α false alarms per image.
We can compare this unilateral test to standard statistical

decision terms. The final step of an anomaly detector would
be to decide between two assumptions:

– H0: The sample p belongs to the background;
– H1: The sample p is too exceptional under H0 and is

therefore an anomaly.

Because no model is at hand for anomalies, H1 boils down
to a mere negation ofH0.H1 is chosen with a probability of
false alarm α

N and therefore with a number of false alarms
(NFA) per image equal to α. We shall give more examples
of NFA computations in Sect. 3.

1.2 A Quick Review of Reviews

More than 1000 papers in Google scholar contain the key
words “anomaly detection” and “image.”The existing review
papers proposed a useful classification, but leave open the
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question of the existence of generic algorithms performing
unsupervised anomaly detection on any image. The 2009
review paper by Chandola et al. [23] on anomaly detec-
tion is arguably the most complete review. It considered
allegedly all existing techniques and all application fields
and reviewed 361 papers. The review establishes a distinc-
tion between point anomaly, contextual anomaly, collective
anomalies, depending on whether the background is steady
or evolving and the anomaly has a larger scale than the ini-
tial samples. It also distinguishes between supervised, mildly
supervised and unsupervised anomalies. It revises the main
objects where anomalies are sought for (images, text, mate-
rial, machines, networks, health, trading, banking operations,
etc.) and lists the preferred techniques in each domain. Then,
it finally proposes the following classification of all involved
techniques.

1. Classification-based anomaly detection, e.g., SVM,
neural networks. These techniques train a classifier to
distinguish between normal and anomalous data in the
given feature space. Classification is either multi-class
(normal versus abnormal) or one class (only trains to
detect normality, that is, learns a discriminative bound-
ary around normal data). Among the one-class detec-
tion methods, we have the replicator neural networks
(autoencoders).

2. Nearest neighbor-based anomaly detection. The basic
assumption of thesemethods is that normal data instances
occur in dense neighborhoods, while anomalies occur far
from their closest neighbors. This can bemeasured by the
distance to the kth nearest neighbor or as relative density.

3. Clustering-based anomaly detection. Normal data
instances are assumed to belong to a cluster in the data,
while anomalies are defined as those standing far from
the centroid of their closest cluster.

4. Statistical anomaly detection. Anomalies are defined
as observations unlikely to be generated by the “back-
ground” stochastic model. Thus, anomalies occur in
the low probability regions of the background model.
Here the background models can be: parametric (Gaus-
sian,Gaussianmixture, regression) ornonparametric and
built, e.g., by a kernel method.

5. Spectral anomaly detection. The main tool here is prin-
cipal component analysis (PCA) and its generalizations.
Its principle is that an anomaly has deviant coordinates
with respect to normal PCA coordinates.

6. Information-theoretic anomaly detection. These tech-
niques analyze the information content of a dataset
using information-theoretic measures, such as the Kolo-
mogorov complexity, the entropy and the relative entropy.

This excellent review is perhaps nevertheless biting off more
than it could possibly chew. Indeed, digital materials like

sound, text, networks, banking operations, etc., are so dif-
ferent that it was impossible to examine in depth the role of
their specific structures for anomaly detection. By focusing
on images, we shall have a much focused discussion involv-
ing their specific structure yielding natural vector samples
(color or hyperspectral, pixels, patches) and specific struc-
tures for these samples, such as self-similarity and sparsity.

The above review by Chandola et al. [23] is fairly well
completed by themore recent review by Pimentel et al. [114].
This paper presents a complete survey of novelty detection
methods and introduces a classification into five groups.

1. Probabilistic novelty detection. These methods are
based on estimating a generative probabilistic model of
the data (either parametric or nonparametric).

2. Distance-based methods. These methods rely on a dis-
tance metric to define similarity among data points
(clustering, nearest neighbor and self-similarmethods are
included here).

3. Reconstruction-basedmethods. These methods seek to
model the normal component of the data (background),
and the reconstruction error or residual is used to produce
an anomaly score.

4. Domain-based methods. They determine the location
of the normal data boundary using only the data that lie
closest to it, and do not make any assumption about data
distribution.

5. Information-theoreticmethods.Thesemethods require
a measure (information content) that is sensitive enough
to detect the effects of anomalous points in the dataset.
Anomalous samples, for example, are detected by a local
Gaussian model, which starts this list.

Our third reviewed review was devoted to anomaly
detection in hyperspectral imagery [93]. It completes three
previous comparative studies, namely [65,92,129]. Matteoli
et al. [93] conclude that most of the techniques try to cope
with background non-homogeneity, and attempt to remove it
by de-emphasizing the main structures in the image, which
we can interpret as background subtraction.

For the same authors, an anomaly can be defined as an
observation that deviates in some way from the background
clutter. The background itself can be identified from a local
neighborhood surrounding the observed pixel, or from a
larger portion of the image. They also suggest that the anoma-
lies must be sparse and small to make sense as anomalies.
Also, no a priori knowledge about the target’s spectral sig-
nature should be required. The question in hyperspectral
imagery therefore is to “find those pixels whose spectrum
significantly differs from the background.” We can summa-
rize thefindings of this reviewbyexamining thefivedetection
techniques that are singled out:
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1. Modeling the background as a locallyGaussianmodel
[117] and detecting anomalous pixels by theirMahanalo-
bis distance to the local Gaussian model learned from its
surrounding at some distance. This famous method is
called the RX (Reed-Xiaoli) algorithm.

2. Gaussian-mixturemodel-basedanomalydetectors [5,
18,59,129]. Theoptimization is doneby stochastic expec-
tation minimization [91]. The detection methodology is
similar to the locallyGaussianmodel, but themain differ-
ence is that backgroundmodeling becomes global instead
of local.

The technical difficulty raised by this more complex
model is the variety of clustering algorithms that can be
used [41,42], and the thorny question of finding the ade-
quate number of clusters as addressed in [43,111].

3. TheOrthogonal SubspaceProjectionapproach. It per-
forms a background estimation via a projection of pixel
samples on their main components after an SVDhas been
applied to all samples. Subtracting the resulting image
amounts to a background subtraction and therefore deliv-
ers an image where noise and the anomalies dominate.

4. The kernel RX algorithm [73] which proceeds by defin-
ing a (Gaussian) kernel distance between pixel samples
and considering that it represents a Euclidean distance
in a higher-dimensional feature space. (This technique is
also proposed in [94] for oil slick detection.) A local vari-
ant of this method [116] performs an OSP suppression
of the background, defined as one of the four subspaces
spanned by the pixels within four neighboring subwin-
dows surrounding the pixel at some distance.

5. Background support region estimation by support
vector machine [6]. Here the idea is that it is not neces-
sary to model the background, but that the main question
is to model its support and to define anomalies as obser-
vations away from this support.

Our last reviewed review, by Olson et al. [106], compares
“manifold learning techniques for unsupervised anomaly
detection” on simulated and real images. Manifold methods
assume that the background samples span a manifold rather
than a linear space. Hence, PCA might be suboptimal and
must be replaced by a nonlinear change of coordinates. The
authors of the review consider three kinds for this change of
coordinates:

1. Kernel PCA, introduced by Schölkopf et al. [122] and
adapted to the anomaly detection problem by Hoffmann
[62].

2. The Parzen density estimator, which is actually inter-
preted as the simplest instance of kernel PCA [62,108].

3. The diffusion map [29,74], which in this framework
appears as a variant of kernel PCA.

We shall review these techniques in more detail in Sect. 2.
In these methods, the sample manifoldM is structured by a
Gaussian “distance”

k(x j , x j ) = e
− 1

h2
||xi−x j ||2 .

The methods roughly represent the samples by coordinates
computed from the eigenvectors and eigenvalues of the
matrix K = (k(xi , x j ))i j . This amounts in all cases to a non-
linear change of coordinates. Then, anomalous samples are
detected as falling apart from the manifold. The key param-
eter h is chosen in the examples so that the isolevel surface
of the distance function wraps tightly the inliers.

The review compares the ROC curves of the different
methods (PCA, kernel PCA, Parzen, diffusionmap) and con-
cludes that small ships on a sea landscape are better detected
by kernel PCA. Since the review only compares ROC curves
between the differentmethods, it avoids addressing the detec-
tion threshold issue.
Discussion The above four highly cited reviews made an
excellent job of considering countless papers and proposing
a categorization of methods. Nevertheless, their final map
of the methods is an exhaustive inventory where methods
are distributed according to what they do, rather than to
what they assume on background and anomaly. Nevertheless,
Pimentel et al. [114] review is actually close to classifymeth-
ods by structural assumptions on the background, and we
shall follow this lead. The above reviews do not conclude on
a unified statistical decision framework. Thus, while reusing
most of their categories, we shall attempt at reorganizing the
panorama according to three main questions:

– What is the structural assumption made on the back-
ground: In other terms, what is “normal”?

– How is the decision measurement computed?
– How is the anomaly detection threshold defined and com-
puted, and what guarantees are met?

Our ideal goal would be to find out the weakest (and there-
fore most general) structural assumption on normal data,
and to apply to it the most rigorous statistical test. In other
words, the weaker the assumptions of normality, the more
generic the detector will be. Before proceeding to a clas-
sification of anomaly detection methods, we shall examine
several related questions which share some of their tools with
anomaly detection.

1.3 What Anomaly Detection Is not

1.3.1 Not a Classification Problem

Most papers and reviews on anomaly detection agree that
multi-class classification techniques like SVM can be dis-
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carded, because anomalies are generally not observed in
sufficient number and lack statistical coherence. There are
exceptions like the recent method introduced by Ding et al.
[37]. This paper assumes the disposition of enough anoma-
lous samples to learn classification parameters from the data
themselves. Given several datasetswith dimensions from8 to
50withmoderate size (a fewhundreds to a few thousand sam-
ples), this paper applies classic density estimators to sizable
extracts of the normal set (k-means, SVM, Gaussian mix-
ture), then learns the optimal thresholds for each classifier
and finally compares the performance of these classifiers.

While in many surface defect detection problems, the
defect can be of any shape or color, in some industrial appli-
cations known recurrent anomalies are the target of defect
detectors. In this case, a training database can be produced
and the detection algorithm is tuned for the detection of
the known defects [69,146,148]. For example, Huber-Mörk
[128] proposed to detect rail defects in a completely super-
vised manner by training a classical convolutional neural
networks on a dataset of photometric stereo images of metal
surface defects. Another neural network-based method was
proposed by Kumar [72]. This paper on the detection of local
fabric defects first performs a PCA dimension reduction on
7 × 7 windows followed by the training of a neural network
on a base of detects / non-detects, thus again performing
two-class classification.

To detect changes on optical or SAR satellite images,
many methods compare a pair of temporally close images,
or more precisely the subtraction between them in the case
of optical images [13,15,81,82,134,150,151], or the log ratio
forSAR images [12,22,70,79].However, thesemethodsoften
work on a pair of images where a change is known to have
occurred (such as a forest fire [15,22], an earthquake [46,144]
or a flood [27,79]), and thus have an a priori for a two-class
distribution, which leads to classification techniques.

Conclusions

1.3.2 More Than a Saliency Measure

A broad related literature exists on saliency measures. They
associate with each image a saliency map, which is a scalar
positive function that can be visualized as an image where
the brighter the pixel, the more salient it is. The goal of auto-
matic saliency measures is to emulate the human perception.
Hence, saliency measures are often learned from a large set
of examples associating with images their average fixation
maps by humans. For example, Tavakoli et al. [131] designed
an anomaly detector trained on average human fixation maps
learning both the salient parts and their surround vectors as
Gaussian vectors. This reduced the problem to a two-class
Bayesian classification problem.

The main difference with anomaly detectors is that many
saliency measures try to mimic the human visual perception
and therefore are allowed to introduce semantic prior knowl-
edge related to the perceptual system (e.g., face detectors).
This approach works particularly well with deep neural net-
works because attention maps obtained by gaze trackers can
be used as a ground truth for the training step. SALICON
by Huang et al. [64] is one of these deep neural networks
architecture achieving state-of-the-art performance.

Saliency measures deliver saliency maps, in contrast to
anomaly detectors that are requested to give a binary map
of the anomalous regions. We can exclude from our review
supervised saliencymethods based on learning fromhumans.
Yet we cannot exclude the unsupervised methods that are
based, like anomaly detectors, on a structural model of
the background. The only difference of such saliency maps
with anomaly detectors is that that anomaly detectors would
require to add a last thresholding step after the saliency map
is computed, to transform it into a binary detection map.

Interesting methods, for example, assign a saliency score
to each tested pixel feature based on the inverse of the his-
togram bin value towhich it belongs. In [118], a saliencymap
is obtained by combining 32 multi-scale-oriented features
obtained by filtering the image with oriented Gabor kernels.
A weighted combination of the most contrasted channels for
each orientation yields a uniquemulti-scale orientation chan-
nel co(i) for each orientation. Then, the histograms ho of
these channels co are computed and each pixel i with value
co(i) is given a weight which is roughly inversely propor-
tional to its value ho(co(i)) in the histogram. The same rarity
measurement is applied to the colors after PCA. Summing
all of these saliency maps one obtains something similar to
what is observed with gaze trackers: The salient regions are
the most visited.

Similarly, image patches are represented by Borji and Itti
[11] using their coefficients on a patch dictionary learned
on natural images. Local and global image patch rarities are
considered as two “complementary processes.” Each patch
is first represented by a vector of coefficients that linearly
reconstruct it from a learned dictionary of patches from nat-
ural scenes (“normal” data). Two saliency measures (one
local and one global) are calculated and fused to indicate
the saliency of each patch. The local saliency is computed as
the distinctiveness of a patch from its surrounding patches,
while the global saliency is the inverse of a patch’s probabil-
ity of happening over the entire image. The final saliencymap
is built by normalizing and fusing local and global saliency
maps of all channels from both color systems. (Patch rarity
is measured in both RGB and Lab color spaces.)

One can consider the work by Murray et al. [101], as
a faithful representative of the multi-scale center-surround
saliency methods. Its main idea is to:
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• apply a multi-scale multi-orientation wavelet pyramid to
the image;

• measure the local wavelet energy for each wavelet chan-
nel at each scale and orientation;

• compute a center-surround ratio for this energy;
• obtain in that way wavelet contrast coefficients that have
the same spatialmulti-scale sampling as thewavelet pyra-
mid itself;

• apply the reverse wavelet pyramid to the contrast coeffi-
cients to obtain a saliency map.

This is a typical saliency-only model, for which an adequate
detection threshold is again missing.
ConclusionsSaliencydetectionmethods learned fromhuman
gaze tracking are semantic methods that fall off our inquiry.
But unsupervised saliency measures deliver a map that only
needs to be adequately thresholded to get an anomaly map.
They therefore propose mechanisms and background struc-
ture assumptions that are relevant for anomaly detection.
Conversely, most anomaly detectors also deliver a saliency
map before thresholding. The last three generic saliency
measures listed are tantalizing. Indeed, they seem to do a
very good job of enhancing anomalies by measuring rar-
ity. Notwithstanding, they come with no clear mechanism
to transform the saliency map into a probabilistic one that
might allow hypothesis testing and eventually statistically
motivated detection thresholds.

1.3.3 A Sketch of Our Proposed Classification

The anomaly detection problem has been generally han-
dled as a “one-class” classification problem. The 2003 very
complete review by Markou and Singh [90] concluded that
most research on anomaly detection was driven by model-
ing background data distributions, to estimate the probability
that test data do not belong to such distributions. Hence,
the mainstream methods can be classified by their approach
to background modeling. Every detection method has to do
three things:

(a) to model the anomaly-free “background.” This back-
ground model may be constructed from samples of
various sizes extracted from the given image (or an image
database): pixels (e.g., in hyperspectral images), patches,
local features (e.g., wavelet coefficients).

(b) to define a measure on the observed data evaluating how
far its samples are from their background model. Gener-
ally, this measure is a probability of false alarm (or even
better, as we shall see, an expectation of the number of
false alarms) associated with each sample.

(c) to define the adequate (empirically or statistically moti-
vated) threshold value on the measure obtained in b).

The structure chosen for the background model appears to us
as the most important difference between methods. Hence,
we shall primarily classify themethods by the assumed struc-
ture of their background model, and the way a distance of
samples to the backgroundmodel is computed. Section 3will
then be devoted to the computation of the detection thresh-
olds.

We shall examine in detail five generic structures for the
background:

1. the background can be modeled by a probability den-
sity function (pdf), which is either parametric, such as
a Gaussian, or a Gaussian mixture, or is obtained by
interpolation from samples by a kernel density estima-
tion method; this structure leads to detect anomalies by
hypothesis testing on the pdf;

2. the background is globally homogeneous (allowing for a
fixed reference image, a global Fourier or a convolutional
neural network model generally followed by background
subtraction);

3. the background is locally spatially homogeneous (leading
to center-surround methods);

4. the background is sparse on a given dictionary or base
(leading to variational decomposition models).

5. the background is self-similar (in the non-local sense that
for each sample there are other similar samples in the
image).

2 Detailed Analysis of theMain Anomaly
Detection Families

The main anomaly detection families can be analyzed from
their structural assumptions on the background model. In
what follows, we present and discuss the five different fam-
ilies that we announced.

2.1 Stochastic BackgroundModels

The principle of these anomaly detection methods is that
anomalies occur in the low probability regions of the back-
ground model. The stochastic model can be parametric
(Gaussian, Gaussian mixture, regression) or nonparametric.
For example, in “spectral anomaly detection” as presented
by Chandola et al. [23], an anomaly is defined by having
deviant coordinates with respect to normal PCA coordinates.
This actually assumes a Gaussian model for the background.
Gaussian background model The Gaussian background
assumptionmay expand to image patches.Du andZhang [39]
proposed to build a Gaussian background model from ran-
dom 2×2 image patches in a hyperspectral image. Once this
backgroundmodel (μ,Σ) is obtained, the anomalous (2×2)
patches are detected using a threshold on their Mahalanobis
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distance to the background Gaussian model. The selection of
the image blocks permitting to estimate the Gaussian patch
model (μ,Σ) is performed by a RANSAC procedure [47],
picking random patches in the image and excluding progres-
sively the anomalous ones.

Goldman and Cohen [54], aiming at sea-mine detection,
propose a detection scheme that does not rely on a statistical
model of the targets. It performs a background estimation
in a local feature space of principal components (this again
amounts to building a Gaussian model). Then, hypothesis
testing is used for the detection of anomalous pixels, namely
those with an exceedingly high Mahalanobis distance to the
Gaussian distribution (Sect. 1.1). This detects potentially
anomalous pixels, which are thereafter grouped and filtered
by morphological operators. This ulterior filter suggests that
the first stage may yield many false alarms.
Pdf estimation Sonar images have a somewhat specific
anisotropic structure that leads to model the background
using signal processing methods. For example, in [100] the
authors proposed to adapt an ARCH model, thus obtaining
a statistical detection model for anomalies not explained by
the non-causal model. This method is similar to the detection
of scratches in musical records [107].

Cohen et al. [28] detect fabric defects using a Gaussian
Markov randomfieldsmodel. Themethod computes the like-
lihood of patches of size 32 × 32 or 64 × 64 according to
the model learned on a database free of defects. The patches
are then classified as anomalous or defect-free thanks to a
likelihood ratio test.

Tarassenko et al. [130] identify abnormal masses in mam-
mograms by assuming that abnormalities are uniformly
distributed outside the boundaries of normality (defined
using an estimation of the probability density function from
training data). If a feature vector falls in a low probability
region (using a predetermined threshold), then this feature
vector is considered to be novel. The process to build the
background model is complex and involves selecting five
local features, equalizing their means and variances to give
them the same importance, clustering the data set into four
classes and estimating for each cluster its pdf by a nonpara-
metric method (i.e., Parzen window interpolation). Finally, a
feature vector is considered anomalous if it has low probabil-
ity for each estimated pdf. Such a nonparametric pdf estimate
has of course an over-fitting or under-fitting risk, due to the
fact that training data are limited.
Gaussian Mixture The idea introduced by Xie and Mirme-
hdi [147] is to learn a texture model based on Julezs’ texton
theory [71]. The textons are interpreted as image patches
following a Gaussian model. Thus a random image patch
is assumed to follow a Gaussian mixture model (GMM),
which is therefore estimated from exemplar images by
the expectation–maximization algorithm (EM). The method
works at several scales in a Gaussian pyramid with fixed size

patches (actually 5 × 5). The threshold values for detecting
anomalies are learned on a few images without defects in the
followingway: At each scale, theminimumprobability in the
GMMover all patches is computed. These probabilities serve
as detection thresholds. A patch is then considered anoma-
lous if its probability is lower than the minimum learned on
the faultless textures on two consecutive dyadic scales in the
Gaussian pyramid. A saliency map is obtained by summing
up these consecutive probability excesses.Clearly, thismodel
can be transformed from a saliencymap to an anomaly detec-
tor by using hypothesis testing on the background Gaussian
mixture model. Gaussian mixture modeling has been long
classical in hyperspectral imagery [5] to detect anomalies. In
that case, patches are not needed as each hyperspectral pixel
already contains rich multi-dimensional information.
Gaussian Stationary ProcessGrosjean and Moisan [56] pro-
pose a method that models the background image as a
Gaussian stationary process, which can also be modeled as
a result of the convolution of a white Gaussian noise model
with an arbitrary kernel, in other terms a colored noise. This
background model is rather restrictive, but it is precise and
simple to estimate. The Gaussian model is first estimated.
Then the image is filtered with either low-pass filters (to
detect global peaks in the texture) or center-surround fil-
ters (to detect locally contrasted peaks in the texture). The
Gaussian probability density function of each of these filtered
images is easily computed. Finally, a probabilistic detection
threshold for the filtered images is determined by bounding
the NFA as sketched in Sect. 1.1 (we shall give more details
on this computation in Sect. 3.1.)
Conclusions To summarize, in the above methods relying
on probabilistic background models, outliers are detected as
incoherentwith respect to a probability distribution estimated
from the input image(s). The anomaly detection threshold is a
statistical likelihood test on the learned backgroundmodel. In
all cases, it gives (or could give) a p value for each detection.
So, by tightening the detection thresholds, one can easily
control the number of false alarms, as done by Grosjean and
Moisan [56] (see Sect. 1.1).

2.2 Homogeneous BackgroundModel

These methods estimate and (generally) subtract the back-
ground from the image to get a residual image representation
on which detection is eventually performed. We shall exam-
ine different ways to do so: by using Fourier modeling,
autoencoder networks, or by subtraction of a smooth or fixed
background.
Fourier background model Perhaps the most successful
background-based method is the detection of anomalies
in periodic patterns of textile [113,139,140]. This can be
done naturally by cutting specific frequencies in the Fourier
domain and thresholding the residual to find the defects. For
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example, Tsai and Hsieh [139] remove the background by a
frequency cutoff. Then a detection threshold using a combi-
nation of the mean and the variance of the residual yields a
detection map.

Similarly, Tsai and Huang [140] propose an automatic
inspection of defects in randomly textured surfaces which
arise in sandpaper, castings, leather and other industrialmate-
rials. The proposed method does not rely on local texture
features, but on a background subtraction scheme in Fourier
domain. It assumes that the spread of frequency components
in the power spectrum space is isotropic, andwith a shape that
is close to a circle. By finding an adequate radius in the spec-
trum space, and setting to zero the frequency components
outside the selected circle, the periodic, repetitive patterns
of statistical textures are removed. In the restored image,
the homogeneous regions in the original image get approxi-
mately flat, but the defective region is preserved. According
to the authors, this leads to convert the defect detection in
textures into a simple thresholding problem in non-textured
images. This thresholding is done using a statistical process
control (SPC) binarization method,

fb(x, y) =
{
255 if μ − kσ � f (x, y) � μ + kσ

0 otherwise,

where k is a control parameter,μ is the residual image average
and σ 2 its variance. Regions set to zero are then detected.

Perng et al. [113] focus on anomaly detection during the
production of bolts and nuts. The method starts by creating
normalized unwrapped images of the pattern on which the
detection is performed. The first step consists in removing the
“background” by setting to zero some Fourier coefficients.
Indeed, the background pattern being extremely periodic is
almost entirely removed by canceling large Fourier coeffi-
cients. The mean μ and the variance σ 2 of the residual are
then computed. This residual is then thresholded using the
SPC binarization method of Tsai and Huang [140].

Aiger and Talbot [3] propose to learn a Gaussian back-
ground Fourier model of the image Fourier phase directly
from the input image. The method assumes that only a few
sparse defaults are present in the provided image. First a
“phase only transform (PHOT)” is applied to the image. The
Fourier transform of an image contains all the information of
its source inside the modulus of the Fourier coefficients and
their phase. The phase is known to contain key positional
elements of the image, while the modulus relates more to
the image texture and therefore to its background. To illus-
trate this fact, RPNs are well-known models for a wide class
of “microtextures” as explained in Galerne et al. [50]. A
RPN is a random image where the Fourier coefficients have
deterministic moduli (identical to the reference texture), but
random, uniform, independent phases. Another illustration
of the role of phase and modulus is obtained noticing that

a Gaussian noise has uniform random phase. The PHOT
amounts to invert the Fourier transform of an image after
normalizing the Fourier coefficients modulus, thus keeping
only the structural information contained in the phase. A
local anomaly is expected to have a value in excess com-
pared to the PHOT. Anomalous pixels are therefore detected
as peaks of the Mahalanobis distance of their values to the
background modeled as Gaussian distributed. Hence, a prob-
ability of false alarm can be directly computed in this ideal
case. The detectionmethod can be also applied after convolv-
ing the PHOT transformed image with a Gaussian, to detect
blobs instead of single pixels.

Xie and Guan [145] introduced a method to detect defects
in periodic wafer images. By estimating the periods of the
repeating pattern, the method obtains a “golden template” of
the patterned wafer image under inspection. No other prior
knowledge is required.The estimateddefect-free background
pattern image is then subtracted to find out possible defects.
Neural network-based background model The general idea
is to learn the background model by using a neural network
trained on normal data. Under the assumption that the back-
ground is homogeneous, the “replicator” neural networks
proposed by Hawkins et al. [58] can be used to learn this
model. These networks are introduced in Sect. 1.2.

Perhaps the most important application of anomaly detec-
tion in industry is surface defect detection. Iivarinen [66]
proposes an efficient technique to detect defects in sur-
face patterns. A statistical self-organizing map (SOM) is
trained on defect-free data, using handpicked features from
co-occurrence matrices and texture unit elements. The SOM
is then able to separate the anomalies, which are supposed
to have a different feature distribution. As can be seen in
Xie [146] which reviews surface defect detection techniques,
many surface defect detection methods work similarly. Tex-
ture features are selected, and defects are detected as being
not well explained by the feature model.

Similarly, Chang et al. [24] presented an unsupervised
clustering-based automatic wafer inspection system using
self-organizing neural networks. An [4] proposed to train
a variational autoencoder (VAE), and to compute from it an
average reconstruction probability, which is a different mea-
sure than just looking at the difference between the input
and output. Given a new data point, a number of samples are
drawn from the trained probabilistic encoder. For each code
sample, the probabilistic decoder outputs the corresponding
mean and variance parameters. Then, the probability of the
original data being generated from a Gaussian distribution
having these parameters is calculated. The average proba-
bility, named reconstruction probability, among all drawn
samples is used as an anomaly score.

Mishne et al. [97] presented an encoder–decoder deep
learning framework for manifold learning. The encoder is
constrained to preserve the locality of the points, which
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improves the approximation power of the embedding. Out-
liers are detected based on the autoencoder reconstruction
error. The work of Schlegl et al. [121] is in the same direc-
tion as using an autoencoder and looking at the normbetween
the original and the output. A generative adversarial network
(GAN) [55] is trained (generator + discriminator) by using
anomalous-free data. Then, given a new test image a repre-
sentation in latent space is computed (by backpropagation),
and the GAN reconstruction is compared to the input. The
discriminator cost is then used alongside the representation
of the input by the network to find the anomalies. There is,
however, no guarantee that the latent representation found
would do good for anomaly-free examples. Hence, it is not
clear why the discriminator cost would detect anomalies.
Smooth or fixed background model Many surface defect
detectors fall into that category. For example, a common pro-
cedure to detect defects in semiconductors is to use a fixed
reference clean image and apply some detection procedure
to the difference of the observed image and the reference
pattern [38,60,126,141,142]. Since for different chips, the
probability of defects existing at the same position is very
low, one can extract a standard reference image by com-
bining at least three images (by replacing pixels located in
defects by the pixels located in the corresponding location of
another image) [80]. Similar ideas have been exploited for
the detection of defects in patterned fabrics [104]. In [105],
nonconforming regions are detected by subtracting a golden
reference image and processed in the Wavelet domain.

A very recent and exemplary method to detect anoma-
lies in smooth materials is the one proposed by Tout et al.
[137]. In this paper, the authors develop a method for the
fully automatic detection of anomalies on wheels surface.
First, the wheel image are registered to a fixed position. For
each wheel patch in a given position, a linear deterministic
background model is designed. Its basis is made of a few low
degree polynomials combined with a small number of basis
functions learned as the first basis vectors of a PCA applied
to exemplar data. The acquisition noise is accurately mod-
eled by a two-parameter Poisson noise. The parameters are
easily estimated from the data. The background estimation
is a mere projection of each observed patch on the back-
ground subspace. The residual, computed as the difference
between the input and the projection, can contain only noise
and anomalies. Thus, classic hypothesis testing on the norm
of the residual of each patchwill yield an automatic detection
threshold. This method is clearly adapted to defect detection
on smooth surfaces.
Conclusions Homogeneous background model-based
anomaly detection methods are compelling detectors used
in a wide variety of applications. They avoid proposing a
stochastic model for an often complex background by com-
puting the distance to the background or doing background
subtraction. However, this simplification comes at a cost:

Some algorithms are hard to generalize to new applications,
and the detection decision mechanism is generally not sta-
tistically justified, with the exception of some methods, like
Tout et al. [137].

2.3 Local Homogeneity Models: Center-Surround
Detection

These methods are often used for creating saliency maps.
Their rationale is that anomalies (or saliency) occur as local
events contrasting with their surroundings.

In one of the early papers on this topic, Itti et al. [68] pro-
pose to compute a set of center-surround linear filters based
on color, orientation and intensity. The filters are chosen to
only have positive output values. The resultant maps are nor-
malized by stretching their response so that the max is at
a prespecified value. These positive feature maps are then
summed up to produce a final saliency map. Detection is
then done on a simple winner-takes-all scheme on the max-
imum of the response maps. This method is applied in Itti
and Koch [67] to detect vehicles via their saliency in huge
natural or urban images. It has also been generalized to video
in Mahadevan et al. [85].

Themethod was expanded by Gao et al. [51]. The features
in this paper are basically the same as those proposed by Itti
and Koch [67], that is, color features, intensity features and
a few orientation filters (Gabor functions, wavelets). This
last paper does detection on image and video with center-
surround saliency detector. It directly compares its results
to those of Itti and Koch [67] and takes similar features, but
works differentlywith them. In particular, it computes center-
surround discrimination scores for the features and puts in
doubt the linearity of center-surround filters and the need
for computing a (necessarily nonlinear) probability of false
alarm in the background model. In fact, they claim [51]:

In particular, it is hypothesized that, in the absence of
high-level goals, themost salient locations of the visual
field are those that enable the discrimination between
center and surround with smallest expected probability
of error.

The difficulty of center-surround anomaly detection is
faced by Honda and Nayar [63], who introduced a generic
method which tentatively works on all types of images. The
main idea is to estimate a probability density for subre-
gions in an image, conditioned upon the areas surrounding
these subregions. The estimation method employs indepen-
dent component analysis and the Karhunen–Loève transform
(KLT) to reduce dimensionality and find a compact represen-
tation of the region space and its surroundings, with elements
as independent as possible. Anomaly is again defined as a
subregion with low conditional probability with respect to
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its surrounding. This is both a coarse-grained and complex
method.

Schölkopf et al. [123] and Tax and Duin [133] extended
SVM to the problem of one-class detection (support estima-
tion). The general idea is that by assuming that only a small
fraction of the training data consist of anomalies, we can opti-
mize the decision function of a classifier to predict whether
a point belongs or not to the normal class. The goal is to find
the simplest or smallest region that is compatible to observ-
ing a given fraction of anomalies in the training set. In [57],
the authors presented an ensemble-learning anomaly detec-
tion approach by optimizing an ensemble of kernel-based
one-class classifiers.

Very recently, Ruff et al. [120] introduced a novel
approach to detect anomalies using deep learning that is
inspired in the same ideas. The method, named Deep Sup-
port Vector Data Description (Deep SVDD), trains a deep
neural network by minimizing the volume of a hypersphere
that encloses the network representations of the data.

In the famous Reed–Xiaoli (RX) algorithm [117], the pix-
els of a hyperspectral optical image are assumed to follow
a Gaussian non-stationary multivariate random process with
a rapidly fluctuating space-varying mean vector and a more
slowly space-varying covariance matrix. This “local normal
model” for the background pixels is learned from an outer
window from which a guard window has been subtracted, as
itmight contain the anomaly. Then, detection is performed by
thresholding the Mahanalobis distance of the pixel of inter-
est to the local Gaussian model, as described in Sect. 1.1. It
may be noticed that a previous rough background subtraction
is performed by a local demeaning using a sliding window
[25,88]. Matteoli et al. [93] point out two main limitations
of the RX method: first, the difficulty of estimating locally
a high-dimensional covariance matrix, and second the fact
that a local anomaly is not necessarily a global anomaly:An
isolated tree in a meadow would be viewed as an anomaly,
even if its stands close to a wood of the same trees. Nev-
ertheless, RX remains a leading algorithm and it has even
online versions: See, e.g., [48] for the successful application
of RX after a dimensional reduction by random projections,
inspired from compressed sensing.
ConclusionsMost presented center-surround anomaly detec-
tors produce a saliency map, but as previously mentioned
in Sect. 1.3.2, while saliency detectors are tantalizing since
they propose simple and efficient rarity measurements, they
provide no detection mechanism (threshold value). Several
above reviewed center-surround methods attempt to rem-
edy that. But then, the method becomes quite heavy as it
requires estimating a local stochastic model for both the cen-
ter and surround. Hence, we are forced back to two-class
classification with fewer samples and a far more complex
methodology.

2.4 Sparsity-Based BackgroundModels and Its
Variational Implementations

One recent nonparametric trend is to learn a sparse dictionary
representing the background (i.e., normality) and to charac-
terize outliers by their non-sparsity.

Margolin et al. [89] propose a method for building salient
maps by a conjunction of pattern distinctness and color
distinctness. They claim that for pattern distinctness, patch
sparsity is enough to characterize visual saliency. They pro-
ceed by:

(a) Computing the PCA of all patches (of fixed size—
typically 8 × 8) in the image;

(b) Computing the pattern saliency of a patch p as P(p) :=
‖p‖1 where the l1 norm is computed on the PCA coor-
dinates.

(c) The pattern saliency measure is combined (by mul-
tiplication) with a color distinctness measure, which
measures the distance of each color superpixel to its
closest color cluster. The finalmap therefore is D(p) :=
P(p)C(p) where C(p) is the color distinctness.

(d) The final result is a product of this saliency map with
(roughly) a Gaussian centered in the center of mass of
the previous saliency map.

We now look at sparsity models that learn the background
model as a dictionary onwhich “normal” patches would have
to be represented by a sparse linear combination of the ele-
ments of the dictionary (and anomalous patches tentatively
would not). Sparse dictionary learning, popularized by the
K-SVD algorithm [2] and [119] and online learning meth-
ods [86], has been successful for many signal representation
applications and in particular for image representation and
denoising [87].

Cong et al. [31] and Zhao et al. [152] proposed a com-
pletely unsupervised sparse coding approach for detecting
abnormal events in videos based on online sparse recon-
structibility of query signals using a learned event dictionary.
These methods are based on the principle that normal video
events are more likely to be reconstructible from an event
dictionary, whereas unusual events are not.

Li et al. [78] introduced a low-rank and sparse tensor rep-
resentation of hyperspectral imaginary (HSI) data based on
the observation that the HSI data volume often displays a
low-rank structure due to significant correlations in the spec-
tra of neighboring pixels.

The anomaly detector in hyperspectral images proposed
by Li et al. [77] soundly considers learning a background
model and not an anomaly model. Its main contribution is
perhaps to justify the use of sparsity to estimate a background
model even in the presence of a minority of outliers. This
detector belongs to the class of center-surround detectors
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considered in the previous section. In a neighbor of each
pixel deprived of a “guard” central square, a sparse model of
the background is learned by orthogonal matching pursuit.
It is expected that the vectors of the sparse basis will not
contain any anomaly. Thus, the projection of the central pixel
on the orthogonal space to this basis should have a norm
much higher than the average norm observed in the surround
if it is anomalous. The detection threshold is based on the
ratio between these two numbers and is not further specified.
It might nevertheless use a χ2 model, as the background
residual could be modeled as white Gaussian noise.

For Boracchi et al. [9], the background model is a learned
patch dictionary from a database of anomaly-free data. The
abnormality of a patch is measured as the Mahalanobis
distance to a 2D Gaussian learned on the parameter pairs
composed by the �1 norm of the coefficients and of their
reconstruction error. In what follows, we detail this method.

Although the method looks general, the initial question
addressed by Boracchi et al. [9] is how to detect anomalies
in complex homogeneous textures like microfibers. A model
is built as a dictionary D̂ learned from all patches pi by
minimizing

Jλ(X , D) = ‖DX − P‖2F + λ‖X‖1,

where P is the matrix whose columns are the reference
patches, the dictionary D is represented as a matrix where
the columns are the elements of the dictionary, X is a matrix
where the i th column represents the coefficients of patch pi
on D, and the data-fitting error is measured by the Frobenius
norm of the first term. The �1 norm on X must be understood
as the sum of the absolute values of all of its coefficients.
Once a minimizer D̂ is obtained, the same functional can be
used to find a sparse representation x for each patch p by
minimizing

Jλ(x) = ‖D̂x − p‖2 + λ‖x‖1.

The question then arises: How to decide from this mini-
mization that a patch p is anomalous? The authors propose
to associate with each patch the pair of values φ(p) :=
(‖D̂x − p‖, ‖x‖1). The first component is a data-fidelity
term measuring how well the patch is represented in D̂. The
second component measures the sparsity (and therefore the
adequacy) of this representation. An empirical 2D Gaussian
model (μ,Σ) is then estimated for these pairs calculated
for all patches in the reference anomalous-free dataset.
Under this Gaussian assumption, the normality region can be
defined for the patch model by fixing an adequate threshold
γ on the Mahanalobis distance of samples to this Gaussian
model (see Sect. 1.1). According to the authors, fixing γ is a
“suitable question” that we shall address in Sect. 3.5.

Boracchi et al. [9] method is directly related to the sparse
texture modeling previously introduced by Elhamifar et al.
[45], where a “row sparsity index” is defined to distinguish
outliers in a dataset. The outliers are added to the dictionary.
Hence, in any variational sparse decomposition of them-
selves, they will be used primarily as they cannot be sparsely
decomposed over the inlier dictionary. In the words of the
authors [45],

We use the fact that outliers are often incoherent with
respect to the collection of the true data. Hence, an
outlier prefers to write itself as an affine combination
of itself, while true data points choose points among
themselves as representatives as they aremore coherent
with each other.

As we saw, the Boracchi et al. [9] method is extremely well
formalized. It was completed in Carrera et al. [20] by adding
a multi-scale detection framework measuring the anomaly’s
non-sparsity at several scales. The 2015 variant by Carrera
et al. [19] of the above models introduces the tempting idea
of building a convolutional sparse dictionary. This is done by
minimizing

L(xm, dm)

=
∑
p∈P

⎛
⎝

∥∥∥∥∥
M∑

m=1

dm ∗ xm − p

∥∥∥∥∥
2

+ λ

M∑
m=1

‖xm‖1
⎞
⎠ ,

subject to ‖dm‖2 = 1, m = 1, · · · , M , where (dm)m and
(xm)m denote a collection of M filters and M coefficient vec-
tors, respectively. As usual in such sparse dictionary models,
the minimization can be done on both the filters (dm) and
coordinates xm and summing for a learning set of patches.
Deprived of the sum over p, the same functional can be min-
imized for a given input patch p0 to compute its coordinates
xm and evaluate its sparsity.

Defining anomaly detection as a variational problem,
where anomalies are detected as non-sparse, is also the core
of themethod proposed byAdler et al. [1]. In a nutshell, the �1
norm of the coefficients on a learned background dictionary
is used as an anomaly measure. More precisely, assuming
a dictionary D on which normal data would be sparse, the
method performs the minimization

min
X ,E

‖Y − DX − E‖2F + α‖X‖1,q + β‖E‖2,1,

where q = 1 for if sparsity is enforced separately on each
sample and q = 2 for enforcing joint sparsity of all sam-
ples and ‖E‖2,1 = ∑

i ‖E(:, i)‖2 is the l2,1 norm. Here Y is
the data matrix where each column is a distinct data vector.
Similarly, D is a matrix whose columns are the dictionary’s
components. X is the matrix of coefficients of these data vec-
tors on D which is forced by the ‖X‖1,q term to become
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sparse. Yet anomalies, which are not sparse on D, make
a residual whose norm is measured as ‖E‖2,1; therefore,
their number should be moderated. Of course this functional
depending on two parameters (α, β) raises the question of
their adequate values. The final result is a decomposition
Y � DX + E where the difference between Y and DX + E
should be mainly noise, and therefore, we can write this

Y = DX + E + N

where N is the noisy residual, DX the sparse part of Y and
E its anomalies.

In Appendix A, we prove that the dual variational method
amounts to finding directly the anomalies. Furthermore, we
have seen that these methods cleverly solve the decision
problem by applying very simple hypothesis testing to the
low-dimensional variables formed by the values of the terms
of the functional. Hence, the method is generic, applicable to
all images and can be completed by computing a number of
false alarms, as we shall see. Indeed, we interpret the appar-
ent over-detection by a neglect of the multiple testing. This
can be fixed by the a-contrario method, and we shall do it in
Sect. 3.5.
Dual interpretation of sparsity models Sparsity-based vari-
ational methods lack the direct interpretation enjoyed by
other methods as to the proper definition of an anomaly. By
reviewing the first simplest method of this kind proposed
by Boracchi et al. [9], we shall see that its dual interpretation
points to the detection of the most deviant anomaly. Let D a
dictionary representing “normal” patches. Given a new patch
p, we compute the representation using the dictionary,

x̂ = argmin
x

{
1

2
‖p − Dx‖22 + λ‖x‖1

}
,

and then build the “normal” component of the patch as Dx̂ .
One can derive the following Lagrangian dual formulation

(see Appendix A),

η̂ = argmin
η

{
1

2
‖p − η‖22 + λ′‖DT η‖∞

}
, (1)

where the vector η is the Lagrangian multipliers.
While Dx̂ represents the “normal” part of the patch p, η̂

represents the anomaly. Indeed, the condition ‖DT η‖∞ ≤ λ

imposes to η to be far from the patches represented by D.
Moreover, for a solution η∗ of the dual to exist (and so that
the duality gap does not exist), it requires that η∗ = p−Dx∗
i.e., p = Dx∗ +η∗ which confirms the previous observation.
Notice that the solution of (1) exists by an obvious compact-
ness argument and is unique by the strict convexity of the
dual functional.

Conclusions The great advantage of the background models
assuming sparsity is that they make a very general struc-
tural assumption on the background and derive a variational
model that depends on one or two parameters only, namely
the relative weights given to the terms of the energy to be
minimized.

2.5 Non-local Self-Similar BackgroundModels

The non-local self-similarity principle is invoked as a qualita-
tive regularity prior in many image restoration methods, and
particularly for image denoisingmethods such as the bilateral
filter [135] or non-localmeans [16]. It was first introduced for
texture synthesis in the pioneering work of Efros and Leung
[44].

The basic assumption of this generic background model,
applicable to most images, is that in normal data, each image
patch belongs to a dense cluster in the image’s patch space.
Anomalies instead occur far from their closest neighbors.
This definition of an anomaly can be implemented by clus-
tering the image patches (anomalies being detected as far
away from the centroid of their own cluster), or by a nearest
neighbor search (NNS) leading to a direct rarity measure-
ment.

As several anomaly detectors derive fromNL-means [16],
we shall here give a short overview of this image denoising
algorithm. For each patch p in the input image u, the n most
similar patches denoted by pi are searched and averaged to
produce a self-similar estimate,

p̂ = 1

Z

n∑
i=1

exp

(
−‖p − pi‖22

h2

)
pi (2)

where Z = ∑n
i=1 exp

(
−‖p−pi‖22

h2

)
is a normalizing con-

stant, h is a parameter (which should be set according to the
noise estimation) and p̂ is the denoised patch.
NL-means inspired model An example of anomaly detec-
tor with non-local self-similar background model is [125];
Seo and Milanfar propose to directly measure rarity as an
inverse function of resemblance. At each pixel i , a descrip-
tor Fi measures the likeness of a pixel (or voxel) to its
surroundings. Then, this descriptor Fi is compared to the
corresponding descriptors of the pixels in a wider neighbor-
hood. The saliency at a pixel i is measured by

Si = 1
∑N

j=1 exp
(

ρ(Fi ,Fj )−1
h2

) , (3)

where ρ(·, ·) is the cosine distance between two descriptors,
Fi is the local feature, and Fj for j = 1, . . . , N , the N
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closest features to Fi in the surrounding, and 0 < h < 1 is a
parameter.

The formula reads as follows: If all Fj are not aligned to
Fi , the exponentials in (3) will be all small, and therefore, the
saliency will be high. If instead only one Fj correlates well
with Fi , the saliency will be close to one, and if k different
Fj s correlate well with Fi , Si will be approximately equal to
1
k . This method cannot yield better than a saliency measure,
as no clear way of having a detection mechanism emerges:
How do we set a detection threshold?

The algorithm in Zontak and Cohen [153] is closely
inspired from NL-means: For a reference patch p, a simi-
larity parameter h2 and a set of n neighboring patches (pi ),
an anomaly is detected when

n∑
j=1

e
−‖p−p j ‖22

h2 � τ

where τ is an empirical parameter. The anomaly detection is
applied to strongly self-similar wafers, and the authors also
display the difference between their actual denoised source
image by the NL-means denoising algorithm, and an equally
denoised reference image. We can interpret the displayed
experiments, if not the method, as a form of background
subtraction followed by a detection threshold on the residual.
In Sect. 3.4, we shall propose a statistical method for fixing
τ .

A similar idea was proposed by Tax and Duin [132]:

The distance of the new object and its nearest neighbor
in the training set is found and the distance of this near-
est neighbor and its nearest neighbor in the training set
is also found. The quotient between the first and the
second distance is taken as indication of the novelty of
the object.

As demonstrated more recently by the SIFT method [83],
this ratio is a powerful tool. In SIFT, a descriptor in a first
image is compared to all other descriptors in a target image. If
the ratio of distances between the closest descriptor and the
second closest one is below a certain threshold, the match
between both descriptors is considered meaningful. Other-
wise, it is considered casual.

In Davy et al. [33], the authors of the present review
addressed this last step. They proposed to perform back-
ground modeling on the residual image obtained by back-
ground subtraction.As for the above-mentioned self-similarity
based methods, the background is assumed self-similar.
Thus, to remove it, a variant of the NL-means algorithm
is applied. The background modeling consists in replacing
each image patch by an average of the most similar ones.
These similar patches are found outside a “guard region”
centered at the query patch. This precaution is taken to pre-

vent anomalies with some self-similar structure to be kept in
the background.

Equation (2) used to reconstruct the background is the
same as for NL-means. Since each pixel belongs to several
different patches, it receives several distinct estimates that
can be averaged to give the final background image û. Finally,
the residual image is built as r(u) = û − u. Anomalies, hav-
ing no similarities in the image, should remain in the residual
r(u). In the absence of the anomalies, the residual should
instead be unstructured and therefore akin to a noise. Then,
the method uses the Grosjean and Moisan [56] a-contrario
method to detect fine scale anomalies on the residual. A pyra-
mid of images is used to detect anomalies at all scales. The
method is shown to deliver similar results when producing
the residual from features obtained from convolutional neu-
ral networks instead of the rawRGB features (see [33]). Still,
there is something unsatisfactory in the method: It assumes
like Grosjean andMoisan [56] that the background is an uni-
form Gaussian random field, but no evidence is given that
the residual would obey such a model.

Boracchi and Roveri [10] proposed to detect structural
changes in time series by exploiting the self-similarity. Their
general idea is that a normal patch should have at least one
very similar patch along the sequence.Given a temporal patch
(a small temporal window), the residual with respect to the
most similar patch in the sequence is computed. This leads
to a new residual sequence (i.e., change indicator sequence).
The final step is to apply a traditional change detector test
(CDT) on the residual sequence. CDTs are statistical tests
to detect structural changes in sequences, that is, when the
monitored data no longer conform to the independent and
identical distributed initial model. CDTs run in an online and
sequential fashion. The very recentmethod [102] is similar to
the above commented [10]. Its main difference is the usage
of convolutional neural network features instead of image
patches.
Kernel PCA background model Manifold and PCA kernel
methods reduce the computational expense by a uniform
random sampling of a small fraction of the data, which
has high chance of being uncontaminated by anomalies.
The kernel PCA method for anomaly detection introduced
by Hoffmann [62] defines a Gaussian kernel on the dataset

xi , i = 1, . . . , M by setting k(xi , x j ) = e
− 1

h2
||xi−x j ||2 ,

i, j = 1, . . . , M . This “kernel” is actually assumed to rep-
resent the actual scalar product between feature vectors of
the samples Φ(xi ) and Φ(x j ) in a high-dimensional feature
space (Φ being implicitly defined). The trick of kernel PCA
consists in performing implicitly a PCA in this feature space
with computations only involving k. It is possible to compute
the distance betweenΦ(z) andΦ0 = ∑M

i=1 Φ(xi ) using only
k:
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p(z) = k(z, z) − 2

M

M∑
i=1

k(z, xi ) + 1

M2

M∑
i, j=1

k(xi , x j ).

Since the first term is 1 and the last term constant, it follows
that

p(z) = C − 2

M

M∑
i=1

k(z, xi ),

which is opposite to the Parzen density estimation of the
sample set using a Gaussian kernel with standard deviation
h. Thus, anomalies will be detected by setting a threshold
on this density computed from the background samples. A
more complete background subtraction can be performed by
subtracting its q first PCA components.
Diffusion map background model [106] The diffusion map
construction [29] views the data as a graph where a kernel
function k(xi , x j ) measures vertex similarity. Like in kernel

PCA, consider the matrix Ki j = e
− 1

h2
||xi−x j ||2 associated

with a Gaussian kernel, and transform it into a probability
matrix by setting pi j = Ki j∑

j Ki j
. This matrix is interpreted

as the probability that a random walker will jump from xi to
x j . The probability for a random walk in the graph moving
from xi to x j in t time steps is given by (Pt )i j , where P =
(pi j )i j . The eigenvalues λk , and eigenvectors αk of the t th
transition matrix provide diffusion map coordinates. Using
these coordinates, one can easily compute the distance (called
diffusion distance) between two graph nodes. A background
manifold is learned from these samples. Unsampled data are
the projected on a local plane tangent to the manifold. The
projection error can be then used as an anomaly detection
statistic. The distance of a new sample θ ′ from the manifold
is approximated by selecting a subset of k nearest neighbors
on the manifold, finding the best least-squares plane through
those points and approximating the distance of the new point
from the plane. An adequately threshold on this distance is
all that is needed to detect anomalies. We refer to [84] for an
actually very complex anomaly detector based on a diffusion
map of an image’s hyperspectral pixels.

More recently, the self-similarity measurement proposed
by Goferman et al. [53] finds for each 7 × 7 patch pi its
K = 64 most similar patches qk in a spatial neighborhood,
and computes its saliency as

Si = 1 − exp

(
− 1

K

K∑
k=1

d(pi , qk)

)
. (4)

The distance between patches is a combination of Euclidean
distance of color maps in LAB coordinates and of the
Euclidean distances of patch positions,

d(pi , p j ) = ‖pi − p j‖
1 + 3‖i − j‖ , (5)

where the norm is theEuclidean distance between patch color
vectors or between patch positions pi , p j .

The algorithm computes saliency measures at four differ-
ent scales and then averages them to produce the final patch
saliency. This is a rough measure: All the images are scaled
to the same size of 250 pixels (largest dimension) and take
patches of size 7 × 7. The four scales are 100%, 80%, 50%
and 30%. A pixel is considered salient if its saliency value
exceeds a certain threshold (S = 0.8 in the examples shown
in the paper).

The patch distance (5) used in Goferman et al. [53]
is almost identical to the descriptor distance proposed by
Mishne and Cohen [96]. Like in their previous paper Mishne
and Cohen [95], the authors perform first a dimension reduc-
tion of the patches. To that aim a nearest neighbor graph on
the set of patches is built, where the weights on the edges
between patches are decreasing functions of their Euclidean

distances, w(pi , p j ) = exp
(
−‖pi−p j‖2

h2

)
. These positive

weights allow to define a graph Laplacian. Then the basis
of eigenvectors of the Laplacian is computed. The first coor-
dinates of each patch on this basis yield a low-dimensional
embedding of the patch space. (There is an equivalence
between this representation of patches and the application
to the patches of the NL-means algorithm, as pointed out in
[127].)

The anomaly score involves the distance of each patch to
the first K nearest neighbors, using the newpatch coordinates
p̃i . This yields the following anomaly score for a given patch
pi with coordinates p̃i :

Si = 1 − exp

(
− 1

K

K∑
k=1

‖pi − p j‖/2h
1 + c‖ p̃i − p̃ j‖

)
.

Note the intentional similarity of this formula with (4) and
(5). Mishne and Cohen indeed state that they are adapting the
Goferman score to the embedding space. Similar methods
have been developed for video Boiman and Irani [8].

All of the mentioned methods so far have no clear specifi-
cation of their anomaly threshold. This comes from the fact
that the self-similarity principle is merely qualitative. It does
not fix a rule to decide whether two patches are alike or not.
Conclusions on self-similarity Like sparsity, self-similarity
is a powerful qualitative model, but we have pointed out
that in all of its applications except one, it lacks a rigorous
mechanism to fix an anomaly detection threshold. The only
exception is [33], extending the Grosjean and Moisan [56]
method and therefore obtaining a rigorous detection thresh-
old under the assumption that the residual image is aGaussian
random field. The fact that the residual is more akin to a ran-
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Table 1 Synopsis of the
examined anomaly detectors

Background category Background subcategory Reviewed methods

Stochastic Gaussian [39,54]

Nonparametric pdf [28,100,130]

Gaussian mixture [5,147]

Gaussian stationary process [56]

Homogeneous Fourier [3,113,139,140,145]

Neural network [4,24,58,66,97,121]

Smooth/fixed [38,60,80,105,126,137,141,142]

Locally Homogeneous [25,48,51,57,63,67,68,85,88,117,120]

Sparsity based [1,9,19,20,31,45,77,78,89,152]

Non-local self-similar NL-means inspired [10,33,102,125,132,153]

Kernel PCA [62]

Diffusion maps [8,29,53,84,95,96,106]

dom noise than the background image is believable, but not
formalized.

2.6 Conclusions, Selection of the Methods, and Their
Synthesis

Table 1 recapitulates the analyzed papers in Sect. 2. We
observed that the methods giving a stochastic background
model are powerful when the images belong to a restricted
class of homogeneous objects, like textiles or smooth painted
surfaces. Indeed, the method furnishes rigorous detection
thresholds based on the estimated probability density func-
tion. But, regrettably, stochastic background modeling is not
applicable on generic images. For the same reason, homoge-
neous background models are restrictive and do not rely on
provable detection thresholds. We saw that center-surround
methods are successful for saliency enhancement, but gen-
erally again lack a detection mechanism. We also saw that
the center-surround methods proposing a detection threshold
have to estimate two stochastic models, one for the center
and one for the surround, being therefore quite complex and
coarse grained. The last two categories, namely the spar-
sity and the self-similaritymodels, are tempting and thriving.
Their big advantage is their universality: They can be applied
to all background images, homogeneous or not, stochastic
or not. But again, the self-similarity model lacks a rigorous
detectionmechanism, because itworks on a feature space that
is not easily modeled. Nevertheless, several sparsity models
that we examined do propose a hypothesis testing method
based on a pair of parameters derived from the variational
method. But these parameters have no justifiable model and
anyway do not take into account the multiple testing. This
last objection can be fixed though, by computing a number
of false alarms as proposed in [56], and we shall do it in the
next section.

As pointed out in Davy et al. [33], abandoning the goal of
building a stochastic backgroundmodel does not imply aban-
doning the idea of a well-founded probabilistic threshold.
Their work hints that background subtraction is a powerful
way to get rid of the hard constraint tomodel background and
to work only on the residual. But in [33] no final argument
is given demonstrating that the residual can be modeled as
a simple noise. Nevertheless, this paper shows that the para-
metric Grosjean and Moisan [56] detection works better on
the residual than on the original image (see Sect. 3.2).

We noticed that at least one paper (Aiger and Talbot [3])
has proposed a formof backgroundwhitening. It seems there-
fore advisable to improve background subtracting methods
by applying the PHOT to the residual. This post-processing
step will remove the potential background leftovers of the
NL-means inspired background subtractingmethod, and thus
slightly enhance the detection results.

Our conclusion is that wemight be closer to a fully generic
anomaly detection by combining the best advances that we
have listed. To summarize,we see twodifferent combinations
of these advances that might give a competitive result:

1. The sparsity method joined by an a-contrario decision:

– model the background by a sparse dictionary [20];
– estimate aGaussian on the distance parameters (these
are actually statistics on the residual) [19];

– apply the a-contrario detection framework on this
estimated Gaussian to control the NFA [35].

2. Background subtraction by self-similarity and residual
whitening

– apply a variant of NL-means (using patches from
the whole image) excluding a local search region to
define the background;

– obtain the residual by subtracting the background
[33];
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– whiten the residual by the phase only transform
(PHOT) [3];

– apply the Grosjean and Moisan [56] center-surround
detection criteria to the whitened residual.

These two proposals have the advantage of taking into
account all the advances in anomaly detection thatwe pointed
out. They cannot be united; sparsity and self-similarity are
akin but different regularity models. We notice that both
methods actually work on a residual. In the second proposed
method, the residual is computed explicitly. In the first one,
the decisionmethod is taken on aGaussianmodel for a pair of
parameters where one is actually the norm of the residual and
the other one a sparsity measure. In Sect. 3, we develop the
tools necessary to compare the selected methods. We need a
unified anomaly detection criterion, and we shall see that the
a-contrario framework, introduced in Sect. 3.1, gives one.

3 Estimating a Number of False Alarms for
All ComparedMethods

In Sect. 2, we classified anomaly detection methods into sev-
eral families based on their background models: stochastic,
homogeneous, local homogeneous, sparsity-based and non-
local self-similar models. Our final goal is to compare the
results of these families by selecting state-of-the-art repre-
sentatives for each family.

Allmethods presented inSect. 2 require a detection thresh-
old. These thresholds are not always explicit and remain
empirical in many papers: Instead of a universal threshold,
most methods propose a range fromwhich to choose depend-
ing on the application or even on the image.

To perform a fair comparison of the selected methods, we
must automatically set their detection threshold, based on
an uniform criterion. This will done by computing for each
method a number of false alarms, using the a-contrario frame-
work introduced by Desolneux et al. [34,35]. This detection
criterion is already used in two of the examined papers, [56]
and [33]. We give in the next section a general framework to
the explanations given in Sect. 1.1 on the particular example
of the Mahanalobis distance.

3.1 Computing a Number of False Alarms in the
A-Contrario Framework

The a-contrario framework is classical in many detection
or estimation computer vision tasks, such as line segment
detection [52,143], ellipse detection [110], spot detection
[56], vanishing points detection [75,76], fundamental matrix
estimation [99], image registration [98], mirror-symmetry
detection [109] and cloud detection [32].

The a-contrario framework is a general methodology to
automatically fix a detection threshold in terms of hypothe-
sis testing. This is done by linking the number of false alarms
(NFA) and the probability of false alarm, typically used in
hypothesis testing. It relies on the following simple defini-
tion.

Definition 1 [56]Given a set of randomvariables (Xi )i∈[1,N ]
with known distribution under a null hypothesis (H0), a test
function f is called an NFA if it guarantees a bound on the
expectation of its number of false alarms under (H0), namely:

∀ε > 0,E[#{i, f (i, Xi ) ≤ ε}] ≤ ε.

To put it in words, raising a detection every time the test
function is below ε should give under (H0) an expectation
of less than ε false alarms. An observation xi is said to be
“ε-meaningful” if it satisfies f (i, xi) ≤ ε, where ε is the
predefined target for the expected number of false alarms.
The lower f (i, x), the “stronger” the detection.

Notice that the function f (i, Xi ) is called an NFA func-
tion, but we call also its value for a given sample an NFA.
Thus, we can use expressions like “the NFA of Xi is lower
than ε.”

While the definition of the background model (H0) does
not contain any a priori information on what should be
detected, the design of the test function f reflects expec-
tations on what is an anomaly. A common way to build an
NFA is to take

f (i, xi) = NPH0(Xi ≥ xi ) (6)

or

f (i, xi) = NPH0(|Xi | ≥ |xi |), (7)

where N is the number of tests, i goes over all tests and xi are
the observations which excess should raise an alarm. These
test functions are typically usedwhen anomalies are expected
to have higher values than the background in the first case, or
when anomalies are expected to have highermodulus than the
background. If, for example, the (Xi ) represents the pixels of
an image, there would be one test per pixel and per channel.
Hence, N would be the product of the image dimension by
the number of image channels.

Grosjean andMoisan [56] proved that the test function (6)
satisfies Definition 1. Since the only requirement of their
proof is that Xi has to be a real-valued random variable, a
more general result can be derived for any function g and
multi-dimensional Xi if g(Xi ) is a real-valued random vari-
able. Under these conditions, the following function

f (i, x) = NPH0(g(Xi ) ≥ g(xi )) (8)
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also is a NFA.
In short, applying the a-contrario framework just requires

a stochastic background model (H0) giving the laws of the
random variables Xi , and a test function f .

In Davy et al. [33] for example, Xi denotes the pixels of
the residual image r(u), which presumably follow aGaussian
colored noise model. This Gaussian model defines the null
hypothesis (H0), and N is the total number of tested pixels
(considering all the scales and channels), and the test function
is given by (7).

Proposition 1 Consider the simplest case where all tested
variables are equally distributed under (H0), and assume
that their cumulative distribution function is invertible.
Assume that the test function is given by (7). Then testing
whether |xi | is above γε defined by

P(|X | ≥ γε) = ε

N
(9)

ensures a number of false alarms lower that ε.

In the particular a-contrario setting given by Eq. (9), the num-
ber of false alarms gives a result similar to the Bonferroni
correction [7], used to compensate for multiple testing. It
is also interpretable as a per family error rate [61]. Deeper
results can be found in [35].

In the next sections, we specify the a-contrario framework
for the methods that we will be comparing.

3.2 The Grosjean andMoisan [56] Stochastic
Parametric BackgroundModel and the Davy et
al. [33] Self-Similarity Model

Grosjean andMoisan [56] proposed tomodel the input image
as a colored Gaussian stationary process. The method is
designed to detect bright local spots in textured images, for
example, mammograms. Three different ways to compute a
NFA are proposed by locally assuming (i) no context, (ii)
contrast related to the context and (iii) a conditional context.
Method (i) comes down to convolving the image with disk
kernels, and testing the tails of the obtained Gaussian distri-
butions, while method (ii) comes down to convolving with
center-surround kernels. Their second method is preferred
since with strong noise correlation the local average in their
background model can be far from 0.

InDavy et al. [33], a residual image is producedwith a self-
similarity removal step, which contains a normalization step
to make the noise more Gaussian. The residual is then sup-
posed to behave as colored Gaussian noise. Then the method
comes down to convolving the residual with disk kernels, and
testing the tails of the obtained Gaussian distributions.

Bothmethods do combine the detection at several scales of
the input image. Thus, bothmethods share a similar detection
mechanism and can be expressed in the same terms. Under

their (H0), the result of the convolutions of the image for
the former, and of the residual for the latter, with the testing
kernels are colored Gaussian noise which mean and variance
can be estimated accurately from the filtered image itself.
Hence, the NFA test function applied on all the residual val-
ues (pixel/channel/residual) is exactly the function (7). Both
methods assume the anomaly impact on the variance estima-
tion is negligible (small anomaly).

3.3 The Fourier Homogeneous BackgroundModel
of Aiger and Talbot [3]

In the Aiger and Talbot [3] method, a residual is obtained by
setting the value of the modulus of the Fourier coefficients
of the image (PHOT) to 1. The residual is then modeled a-
contrario as a simple Gaussian white noise whose mean and
variance are estimated from the image. Anomalous pixels are
therefore detected by using a threshold on the Mahalanobis
distance between the pixel value and the background Gaus-
sian model. Let (H0) be the null hypothesis under which
the residual values (Xi ) follow a Gaussian distribution with
mean μ and variance σ 2. Then we have

P

(∣∣∣∣
Xi − μ

σ

∣∣∣∣ � γε

)
= 2

∫ ∞

γε

e− u2
2√

2π
du (10)

= erfc

(
γε√
2

)
. (11)

Thus, the associated function

f (i, xi ) = NP

(∣∣∣∣
Xi − μ

σ

∣∣∣∣ �
∣∣∣∣
xi − μ

σ

∣∣∣∣
)

is an NFA of the form (8), where the number of tests N
corresponds to the number of pixels in the image. This NFA
leads to detect an anomalous pixel when

∣∣ xi−μ
σ

∣∣ is above γε

verifying

γε := √
2erfc−1

( ε

N

)
.

The impact of anomalies impact on the PHOT is assumed to
benegligible,which implicitly assumes small or low intensity
anomalies with respect to the background.

3.4 The Zontak and Cohen [153] Non-local
Self-Similar Model

In this method, the detection test is based on the NL-means
weights. If the sum of these weights is smaller than a thresh-
old τ (before normalization of these weights), then it is
considered an anomaly. In what follows, we discuss how
to choose this threshold τ by computing a NFA. We restrict
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ourselves to the case where the distance between patches is
the �2 distance.

Let us recall that for a reference patch p, a similarity
parameter h2 and a set of n neighboring patches (pi ), an
anomaly is detected when

n∑
j=1

e
−‖p−p j ‖22

h2 � τ. (12)

Under (H0), every patch Xi of the image is associatedwith
n spatially close patches Pi, j . At least one of these patches
is similar and only differs by the realization of the noise,
the noise-free content assumed to be identical. The noise
is supposed to be for each pixel an independent centered
Gaussian noise of variance σ 2. We know that

f (i, x) = NP

⎛
⎝

n∑
j=1

e
−‖Xi−Pi, j ‖22

h2 �
n∑
j=1

e
−‖xi−pi, j ‖22

h2

⎞
⎠ , (13)

verifies the NFA property (this is just equation (8) with a
well-chosen g).

By hypothesis, at least one of the Pi, j—we shall name
P∗
i one of these patches—is a realization of the same content

than Xi but with different noise (that we suppose to be of
standard deviation σ ).

By event inclusion,

P

⎛
⎝

n∑
j=1

e
−‖Xi−Pi, j ‖22

h2 � τ

⎞
⎠ � P

(
e

−‖Xi−P∗
i ‖22

h2 � τ

)
.

Moreover

P

(
e

−‖Xi−P∗
i ‖22

h2 � τ

)
= P

(
‖Xi − P∗

i ‖22
h2

� − log(τ )

)

= 1 − P

(
‖Xi − P∗

i ‖22
2σ 2 � − h2

2σ 2 log(τ )

)
.

Here we suppose that the candidate is indeed the same as the
patch modulo the noise. Therefore the distance follows a χ2

law of degree the size of the patch.
That is,

P

(
e

−‖Xi−P∗
i ‖22

h2 � τ

)
= 1 − chi2

(
− h2

2σ 2 log(τ )

)

where chi2 is the cumulative density function of the χ2 dis-
tribution of the degree the size of the patch.

Thus, by bounding (13) from above, and using the fact
that a function whose value is always above a NFA is also a

NFA (there will be fewer or an equal number of detections),
the following test function also is a NFA:

f (i, x) = N

⎛
⎝1 − chi2

⎛
⎝− h2

2σ 2 log

⎛
⎝

n∑
j=1

e
−‖xi−pi, j ‖22

h2

⎞
⎠

⎞
⎠

⎞
⎠

Thus, by definition of a NFA, a detection is raised if

f (i, x) � ε,

which leads to a threshold τε on
∑n

j=1 e
−‖xi−pi, j ‖22

h2 satisfying

τε := exp

(
−2σ 2

h2
chi2inv

(
1 − ε

N

))
.

In order to fit the (H0) hypothesis we can estimate σ 2

using Ponomarenko et al. [115] noise level estimation, in the
implementation proposed by Colom and Buades [30].

3.5 The Boracchi et al. [9] Sparsity-Based
BackgroundModel

In this method the detection is done using a threshold on the
Mahalanobis distance. Chen [26] has shown, as a generaliza-
tion of Chebyshev’s inequality, that for a random vector X
of dimension d with covariance matrix C we have

P((X − E(X))TC−1(X − E(X)) � γ ) � d

γ
,

Moreover, it has been shown in [103] that this inequality is
sharp if no other assumptions are made on X . Therefore, in
the case of this method, for a candidate Xi and a reference
set P ,

P(dM(Xi ) � γ ) � 2

γ 2 , (14)

where the Mahalanobis distance dM(·) is computed with
respect to the empirical mean and covariance of the set P .
Hence, the function

f (i, x) = NP(dM(Xi ) � dM(xi ))

is clearly an NFA associated to the method. Using (14) and
the obvious fact that a function whose value is always above
an NFA also is an NFA, we deduce that the test function

f (i, x) = 2N

dM(xi )2
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also is a NFA. Thus, a detection is made if

2N

dM(xi )2
� ε,

which leads to a threshold γε, such that

dM(xi ) � γε :=
√
2N

ε
.

While the method was originally presented as using an exter-
nal database of anomaly-free detections, we use it on the
image itself, i.e., the dictionary is learned on the image, under
the assumption that it presents too few anomalies to disturb
the dictionary.

3.6 TheMishne and Cohen [96] Non-local
Self-Similar Model

There is no obvious way to formalize this method under the
a-contrario framework. For the experiments that we present
in Sect. 4, we use the detection threshold suggested in the
original paper even though there is no actual theoretical jus-
tification.

4 Experiments

In this section we shall compare the six methods analyzed in
Sect. 3. In what follows, we detail the different variants that
we finally compare:

– The Grosjean and Moisan [56] stochastic parametric
background model as explained in Sect. 3.2. The NFA
computation has been adapted to take into account both
tails of a pixel’s distribution, with tests performed on all
pixels. We denote this method by Grosjean.

– The Aiger and Talbot [3] Fourier homogeneous model
using the a-contrario detection threshold as specified in
Sect. 3.3. We denote this method by Aiger.

– The Zontak and Cohen [153] non-local self-similar
model using the a-contrario detection threshold as spec-
ified in Sect. 3.4. We denote this method by Zontak.

– The sparsity-based background model of Boracchi et al.
[9] using the a-contrario detection threshold as specified
in Sect. 3.5. We denote this method by Boracchi.

– The non-local self-similar model of Mishne and Cohen
[96] with the detection threshold as detailed in the origi-
nal publication. We denote this method by Mishne.

– The non-local self-similar model of Davy et al. [33]
where the phase only transform (PHOT) is applied before
the distribution normalization. The NFA is computed as
explained in Sect. 3.2. We denote this method by Davy.

We propose two types of experimental comparison.

– The first comparison is a qualitative sanity check. For
this qualitative analysis, we tested on synthetic exam-
ples having obvious anomalies of different types (color,
shape, cluster) or inexistent (white noise). These toy
examples provide a sanity check since one would expect
all algorithms to perform perfectly on them.We will also
examine the results of the competitors on challenging
examples taken from anomaly detection articles.

– The second protocol is a quantitative evaluation. We
generated anomaly-free images as samples of colored
random Gaussian noise. Being a spatially homogeneous
random process, such images should remain neutral for
an anomaly detector. We then introduced small anoma-
lies to these images and evaluatedwhether these synthetic
anomalies were detected by the competitors. This leads
to evaluate a true-positive detection rate (TP) for each
method on these images. We also evaluated how much
of the anomaly-free background was wrongly detected,
namely the false-positive detection rate (FP). Disposing
of TP-FP pairs yields ROC curves that will be oppor-
tunely discussed. Undoubtedly, the colored Gaussian
noise used in this experiment could be replaced by any
other spatially homogeneous random process. We varied
the background texture by varying strongly the process’s
power spectrum.

4.1 Qualitative Evaluation

The toy examples are probably the easiest to analyze. We
show the results in Fig. 2. We generated images in the classic
form used in anomaly detection benchmarks like in [118],
where the anomaly is the shape or the color that is unique in
the figure. In the third toy example, most rectangles are well
spaced except in a small region. The anomaly therefore is
a change in spatial density. Even though these examples are
extremely simple to analyze, they appear to challenge several
methods, as can be seen in Fig. 2. Only Davy et al. [33] are
able to detect accurately the anomaly in all three examples.
This is explained in the second row where the residual after
background subtraction is shown. In the residual, details of
the anomalies stand out on a noise-like background. While
Aiger and Talbot [3] works well with the color and the
shape, it fails to detect the spatial density anomaly. Zontak
and Cohen [153] detect well but also lots of false detection.
The other methods Grosjean and Moisan [153], Mishne and
Cohen [96], Zontak and Cohen [56] and Boracchi et al. [9]
over-detect the contours of the non-anomalous shapes, thus
leading to many false positives. We also tried a sanity check
with a pure white Gaussian noise image. This is done in the
last two examples of Fig. 2. Davy et al. [33], and Grosjean
and Moisan [56] soundly detect no anomaly in white noise,
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Fig. 2 From left to right: image presenting an anomaly in colors, in
shape and in density, image of pure noise, and image of noise with an
anomaly in the middle (from [56]). From top to bottom: The original
image, the image residual of one of the scales computed in [33] (the scale
shown is the one where the anomaly is the most salient, and the contrast
has been adjusted for visualization purpose), algorithm detections for:
[3,9,33,56,96,153]. Detections are shown using the following color cod-

ing: White is a weak detection—threshold with NFA ∈ [10−3, 10−2],
cyan is a mild detection—threshold with NFA ∈ [10−8, 10−3], green is
a strong detection—threshold with NFA ∈ [10−21, 10−8], and orange
is very strong—threshold with NFA ≤ 10−21. When available, red is
the detection with the threshold corresponding to the lowest NFA. For
[96], we adopted a similar color coding: white between 0 and 0.5, cyan
between 0.5 and 0.7, green between 0.7 and 0.9 and orange above 0.9
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as expected. However, a few detections are made by Borac-
chi et al. [9] and almost everything is detected by Mishne
and Cohen [96]. It can be noted that the background model
of the first three papers is directly respected in the case of
white Gaussian noise, which explains the perfect result. (In
the case of themodel ofDavy et al. [33], it has to be noted that
non-local means asymptotically transforms white Gaussian
noise into white Gaussian noise [17].) The over-detection in
Mishne and Cohen [96] can be explained by the lack of an
automatic statistical threshold. The few spurious detections
in Boracchi et al. [9] show that the feature used for the detec-
tion does not follow a Gaussian distribution, contrarily to the
method’s testing assumption. It is also clear that one cannot
build a sound sparse dictionary for white noise.

The same test was done after adding a small anomalous
spot to the noise, and the conclusion is similar: [33,56] per-
form well, and [9] has a couple of false detections and does
not detect the anomaly. One method, Zontak and Cohen
[153], does not detect anything. Finally, Mishne and Cohen
[96] over-detect. Both noise images were taken from Gros-
jean and Moisan [56].

We then analyze three examples coming from previous
papers. The first one (first column in Fig. 3) is a radar image
of an undersea mine borrowed fromMishne and Cohen [96].
The mine is detected by Davy et al. [33], Grosjean and
Moisan [56] without any false detections. Both Mishne and
Cohen [96], Boracchi et al. [9] have false detections; Zontak
and Cohen [153] over-detect, and Aiger and Talbot [3] miss
the mine. The second example (second column in Fig. 2)
shows an example of near-periodic texture. This is one of
the examples where Fourier based methods are ideally well
suited. It was therefore important to check whether more
generic methods were still able to detect the anomaly. Two
methods Aiger and Talbot [3] and Grosjean and Moisan [56]
fail to detect the anomaly, the other three methods perform-
ing really well. This makes the case for self-similarity and
sparsity-based methods, which generalize nicely the back-
ground’s periodicity assumption. The final example (third
column from Fig. 3) is a real example of medical imaging
borrowed from Grosjean and Moisan [56] where the goal is
to detect the tumor (the large white region). Aiger and Tal-
bot [3], Boracchi et al. [9] fail to detect the tumor. A strong
detection is given by Mishne and Cohen [96], Zontak and
Cohen [153], but the false alarms are also strong and numer-
ous. Finally, Davy et al. [33] have stronger tumor detections
than Grosjean and Moisan [56]) (a NFA of 10−6.6 against
10−2.8), but it has several false alarms as well.

Finally, we tested the methods on real photographs taken
from the Toronto dataset [14]. This clearly takes several of
the methods out of their specific context and type of images
(tumors in X-ray images, mine detection in sonar scans, clot
detection in microfibers, wafer defects, etc.) On the other
hand, the principles of the algorithms are general. So by test-

ing on these examples, our goal is to explore the limits of
several detection principles, not to compare these specific
algorithms. Clearly, some of the methods are more adapted
for spatially homogeneous background than to an outdoor
cluttered scene.

Another issue when using real photographs is that anoma-
lies detected by humans may be semantic. None of the
methodswe considerwasmade to detect semantic anomalies,
which can only be learned on human annotated images. Nev-
ertheless, the tests’ results are still enlightening. Detections
are very different from one method to the other. The fourth
example in Fig. 3 shows a man walking in front of some
trees. Aiger and Talbot [3], Grosjean and Moisan [56] and
Mishne and Cohen [96] do not detect anything. Both Borac-
chi et al. [9], Zontak and Cohen [153] detect mostly the trees
and the transition between the road and the sidewalk. Sur-
prisingly, Davy et al. [33] only detect the man. Indeed in the
noise-like residual, one can check that the man stands out.
The second example shows a garage door as well as a brick
wall. This time the algorithms tend to agree more. The con-
spicuous sign on the door is well detected by all methods as
well the lens flare. A gap at the bottom between the brick
wall and the door is detected by Boracchi et al. [9], Davy et
al. [33], Grosjean and Moisan [56], Mishne and Cohen [96].
The methods Mishne and Cohen [96] and Boracchi et al. [9]
also detect the transition between the wall and the brick wall.
Finally, some detections on the brick wall are made by Davy
et al. [33] and Boracchi et al. [9]. The residuals of Davy
et al. [33] on the second row are much closer to noise than
the background, which amply justify the interest of detecting
on the residual rather than on the background. Nevertheless,
the residual has no reason to be uniform, as is apparent in the
garage’s residual. Even if the detections look anyway accept-
able, this non-uniformity of the residual noise suggests that
center-surround detectors based on a local variance (as done
in [56]) might eventually be preferable.

Fixing a target number of 10−2 for the NFA means that
under the (H0)model, only 10−2 false positives should occur
per image. Yet, many of them shown examples show several
false positives. Given the mathematical justification of these
thresholds, false positives come from discrepancies between
the hypothetical (H0) model and the image. In the case of
Zontak and Cohen [153], the over-detection in the trees of
the picture with a man can be explained by the limited self-
similarity of the trees: For this region, the nearest patches
won’t be close enough to the patch to reconstruct to fit the
model, which requires at least one would be identical except
for the noise patch in the neighborhood. The over-detection in
the case of the underseamine is likely amismatch of the noise
model with the picture noise. The many false alarms of this
method for the other examples make us wonder if the model
hypothesis is not too strong. The Boracchi et al. [9] method
triggers many false detections in almost all examples tested.
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Fig. 3 From left to right: image of an undersea mine from [96], image
of a periodic textile from [139], image of a tumor from [56], image
of a man from the Toronto dataset [14], image of a garage door from
[14]. From top to bottom: The original image, the image residual of
one of the scales computed in [33] (the scale shown is the one where
the anomaly is the most salient, and the contrast has been adjusted
for visualization purpose), algorithm detections for: [3,9,33,56,96,153].
Detections are shown using the following color coding: White is a

weak detection—threshold with NFA ∈ [10−3, 10−2], cyan is a mild
detection—threshold with NFA ∈ [10−8, 10−3], green is a strong
detection—threshold with NFA ∈ [10−21, 10−8], and orange is very
strong—threshold with NFA ≤ 10−21. When available red is the detec-
tion with the threshold corresponding to the lowest NFA. For [96], we
adopted a similar color coding: white between 0 and 0.5, cyan between
0.5 and 0.7, green between 0.7 and 0.9 and orange above 0.9

123



Journal of Mathematical Imaging and Vision (2019) 61:710–743 733

Fig. 4 A ground truth (on the right) for anomaly detection has been
generated by introducing an anomaly in a RPN [50] texture (on the
left), which is anomaly free. The detection is then done on the result (in
the middle)

As we mentioned, this suggests that the Gaussian model for
the detection pairs is inaccurate. This is not necessarily a
problem for specific fault detection applications where the
false alarm curves can be learned.

4.2 Quantitative Evaluation

Estimating howwell an anomaly detector works “in general”
is a challenging evaluation task.Qualitative experiments such
as the ones presented in Sect. 4.1 give no final decision. Our
goal now is to address the performance evaluation in terms
of true-positive rate (TP) and false-positive rate (FP). To that
aim, we generated a set of ten RPN textures [49] which are
deprived of any statistical anomalies.We then introduced one
artificial anomaly per rpn bymerging a small piece of another
image inside each of them.Thiswasmade by simple blending
or by Poisson editing [112] using the implementation of [36].
This method provides a set of images where a ground truth is
known. Hence, the detection quality measure can be clearly
defined. Figure 4 shows one of the generated RPN images
with an anomaly added and the anomaly’s ground truth locus.
Table 2 shows the result for our six methods on this dataset.

Table 2 demonstrates that for all methods, the predicted
number of false positives (namely the theoretical NFA) is not
always achieved. Indeed, the threshold forTable 2was chosen
so that the theoretical number of false detections per image
should be 10−2. When taking into account the total num-
ber of pixels, this means that only around 4 × 10−6% false
detections should be made by any method in this table. Only
two methods are close to this number: [3] and [33], while the
other compared methods make too many false detections.
Such a false-positive target might seem too strict. Yet, it is an
important requirement of anomaly detectors in fault detec-
tion to minimize the false alarm rate. Indeed, excessive false
alarms may put a production chain in jeopardy. Images are
generally of the order of 107 pixels. Therefore, if one wants
to limit the false detection rate in a series of tested images,
the false-positive rate needs to be really small. The meth-
ods compared—except Mishne and Cohen [96]—used the
NFA framework as seen in Sect. 3. Therefore, the discrep-
ancy between the theoretical target and the obtained number
of false alarms is explained by an inadequate (H0) for the

images. In fact, only the background model of Aiger and Tal-
bot [3] matches completely these really specific textures that
are RPNs.

To better compare the methods, we also computed ROC
curves for all methods, Figs. 5 and 6, as well as the table of
true-positive areas and false-positive areas for a fixed positive
rate of 1% (Table 3). The ROC curve is not impacted by the
choice of thresholds. Figure 5 is shownwith a log scale for the
number of false positives because its low or very low false-
positive section is much more relevant for anomaly detection
than the rest. From these ROC curves and tables, we can
conclude, for this specific example, that [3] (area under the
curve (AUC) 7.52) (which theoretically should be optimal
for this problem) performs the best followed closely by [33]
(AUC 7.03). It is worth noting that [33] is performing better
than [3] for very low false-positive region. We then have [9]
(AUC 5.79). The trailingmethods are [56] (AUC 3.30), [153]
(AUC 2.92) and finally [96] (AUC 1.98). Nevertheless, if a
moderate number of false positives can be tolerated, then
[9] becomes really attractive because of its high detection
precision. Figure 6 illustrates the problem of false detections.
Most methods require many false detections to achieve a
reasonable detection rate. Only Aiger and Talbot [3] (AUC
0.82) and Davy et al. [33] (AUC 0.87) detect well while still
keeping a zero false detection rate. This confirms the results
from Table 2. Table 3 also shows that having a 1% detection
is useful to obtain a good precision but leads to almost all
images getting false positives. In practice, 1% is too large
a tolerance for images. In Fig. 7, we show the result of the
detections on 4 corresponding to Table 2 for the different
methods.

4.3 Impact of the Parameters

Until now, we considered the parameters suggested in the
corresponding papers.While it can be interesting to fine-tune
parameters depending on the application, we wanted to stay
as generic as possible which led us to fix the same parame-
ters for all the experiments, whatever the type of images, for
a given method. In this section, we show qualitatively that
the parameters impact little on the detection results: Playing
with the parameters neither adds new interesting detections,
nor reduces the quantity of false detections. To evaluate that,
we selected a few images from our qualitative testing set
and computed the results with different sets of parameters.
The different experiments are presented in Figs. 8, 9, 10 and
11. There is actually a non-negligible difference for Zon-
tak and Cohen [153], and the reason is probably that the
model assumed during the derivation of the NFA is not com-
pletely valid. It is also interesting to see that using not too
big patches allows to keep a good precision of the detected
region. Nevertheless, this experiment validates the choice of
parameters for the different models, as the detections are not
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Table 2 Quantitative comparative results for anomaly detection

TP pixels (in %) FP pixels (in %) TP anomalies (in %) FP anomalies (in %)

Aiger and Talbot [3] 56.2 7.60 × 10−4 90 40

Zontak and Cohen [153] 0 0 0 0

Mishne and Cohen [96] 23.4 8.52 90 90

Boracchi et al. [9] 78.2 0.87 100 100

Grosjean and Moisan [56] 11.6 0.16 30 20

Davy et al. [33] 33.1 1.79 × 10−5 80 10

The number of true positive (TP) and false positive (FP) for different metrics is shown. TP pixels and FP pixels correspond to detections at a pixel
level. A true positive is when an anomalous pixel is detected, and a false positive when a normal pixel is detected as anomalous. TP anomalies and
FP anomalies evaluate if anomalies have been detected at all. A true positive is counted when there is at least one detected pixel in an anomalous
region, and a false positive when there is at least one detection completely outside an anomalous region (with a maximum of 1 FP per image).
These results were computed on a dataset of random uniform textures with a single anomaly added to each image. The thresholds were set for a
target number of false alarms (NFA) of 10−2 per image (theoretical FP pixels of 4 × 10−6%). An example of an image from the dataset is shown
in Fig. 4. A method works correctly if it detects a high percentage of anomalies (third column) while having a good pixel coverage (first column),
and a minimal false-positive rate (second and fourth columns). Having a very low false-positive rate is crucial for massive fault detection. In that
sense, the best methods are [3] and [33]

Fig. 5 ROC curve computed on the dataset of synthetic images. A true
positive corresponds to an anomalous pixel detected. A false positive
corresponds to a normal pixel that has been detected as anomalous. In
deep blue Aiger and Talbot [3] (Area Under the Curve (AUC) 7.52),
in red Boracchi et al. [9] (AUC 5.79), in yellow Davy et al. [33] (AUC
7.03), in purple Grosjean andMoisan [56] (AUC 3.30), in greenMishne
and Cohen [96] (AUC 1.98) and in light blue Zontak and Cohen [153]
(AUC 2.92)

too drastically different for most methods. We specify here
the different parameters used for the different methods:

1. Boracchi et al. [9]: 15×15 patches with a redundancy of
1.5;

2. Davy et al. [33]: 8×8 patches with 16 nearest neighbors;
3. Mishne et al. [97]: 8 × 8 patches with 16 nearest neigh-

bors;
4. Zontak and Cohen [153]: 8 × 8 patches with a region of

size 160 × 160, we also set h the similarity parameter

Fig. 6 ROC curve computed on the dataset of synthetic images. A true
positive is when an anomaly is detected (in the sense that at least one
detection has been made inside the anomalous region). A false positive
is when there is a detection outside the anomalous region. In deep blue
Aiger and Talbot [3] (area under the curve (AUC) 0.82), in red Boracchi
et al. [9] (AUC 0.585), in yellow Davy et al. [33] (AUC 0.87), in purple
Grosjean andMoisan [56] (AUC 0.52), in greenMishne and Cohen [96]
(AUC 0.28) and in light blue Zontak and Cohen [153] (AUC 0.625)

to the known noise level σ as it seems to work best in
practice.

4.4 Computation Time Analysis

In this section, we do a brief computation time analysis.
All algorithms have wildly different computation times. For
example, Aiger and Talbot [3] method is really fast as no
really complex computations are needed. On the contrary, the
Mishne and Cohen [96] method is really slow. Table 4 sum-
marizes the computation time for the different algorithms for
the parameter used for the experiment. It is worth noting that
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Table 3 This table is similar to Table 2, but in this case each method detection threshold is set so as there are 1% false positives

TP pixels (in %) FP pixels (in %) TP anomalies (in %) FP anomalies (in %)

Aiger and Talbot [3] 79.1 1.0 100 100

Zontak and Cohen [153] 27.2 1.0 60 60

Mishne and Cohen [96] 12.5 1.0 50 90

Boracchi et al. [9] 80.1 1.0 100 100

Grosjean and Moisan [56] 24.2 1.0 70 100

Davy et al. [33] 65.0 1.0 100 100

Hence, the criterion is to detect as many anomalies as possible (third column) while having a high true-positive rate. The winners are clearly [9]
and [3]

Fig. 7 Example of detections for all the different methods on 4. It corresponds to the one showed in Table 2. From left to right: Aiger and Talbot
[3], Boracchi and Roveri [10], Davy et al. [33], Grosjean and Moisan [56], Mishne et al. [97] and Zontak and Cohen [153]
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Fig. 8 Impact of parameters for the detection using Davy et al. [33]. The two parameters studied are the size of the patch and the number of patches
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Fig. 9 Impact of parameters for the detection using Zontak and Cohen [153]. The two parameters studied are the size of the patch and the size of
the region used for the computation

Fig. 10 Impact of parameters
for the detection using Mishne
and Cohen [96]. The two
parameters studied are the size
of the patch and the number of
patches
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Fig. 11 Impact of parameters for the detection using Boracchi et al. [9]. The two parameters studied are the size of the patch and the redundancy
of the dictionary

Table 4 Computation time (in seconds) for the different methods reviewed in details with the parameter chosen for the experiments for the door
image (size: 600 × 450

Aiger and Talbot [3] Boracchi et al.
[9]

Davy et al.
[33]

Grosjean and
Moisan [56]

Mishne and
Cohen [96]

Zontak and
Cohen [153]

0.09 1375 57 1.4 749 394

for the larger parameters the Mishne and Cohen [96] method
requires many hours to compute a single result. It is also
worth noting that even though theBoracchi et al. [9] andDavy
et al. [33] algorithms are not the fastest ones, the dictionaries
of patches and indexes for the searches can be precomputed
and therefore accelerated for fast industrial applications. For
example, the processing of Boracchi et al. [9] only takes
12s when the dictionary is prelearned. The computation time
estimation was done on a core i7-7820HQ 2.90GHz using
authors’ code whenever it was available ([9,33] and [96] are
multithreaded so actual computation times are reported. We
report 1/8 of the actual computation time for [3,56] and [153]
for a fair comparison).

5 Discussion and Conclusions

Our analysis and experiments seem to confirm the view that
generic anomaly detection methods can be built on purely
qualitative assumptions. Suchmethods do not require a learn-
ing database for the background or the anomalies, but can
learn directly normality from a single image inwhich anoma-
lies may be present. Why not using more images? Certainly
disposing of a “golden reference” or even of a database of
“golden references” may seem to be ideal situation. But the
majority and the best methods succeed to work with a single
image. For some methods though, or applications, disposing
of a database can help enhance the results and the computa-
tion time (by precomputing a dictionary for example). This
success of detecting on a single image is of course possi-
ble only under the assumption that anomalies are a minor
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part of the image. Some of the most performing methods use
anyway only a small part of the image samples, processing
locally in the image domain on in the sample domain. Using
the present image also has the advantage of providing an
updated background.

Since anomalies cannot bemodeled, the focus of attention
of all methods is the background model. Methods giving a
stochastic model to the background, parametric or not, could
only be applied to restricted classes of background. For this
reason, our attention has been drawn to the thriving quali-
tative background models. Any assumption about a kind of
global or local background homogeneity is a priori accept-
able. Themost restrictivemodels assume that the background
is periodic, or smooth or even low-dimensional. This kind of
strong regularity assumption is not extensible to any image.

Another common sense principle is put forward by local
contrast center-surround detectors, which anomalies gener-
ate local anomalous contrast. Yet center-surround methods
suffer from the difficulty of defining a universal detection
rule.

A more clever idea has emerged with the Aiger and Tal-
bot [3] method, which is to transform the background into a
homogeneous texture, while the anomalies would still stand
out.

Meanwhile, the old idea of performing a background sub-
traction remains quite valid. Indeed, as pointed out still very
recently in [137], background subtraction may be used to
return to an elementary background model for the residual
that might contain only noise.

The most general background models are merely qual-
itative. We singled out two of them as the most recent and
powerful ones: the sparsity assumption and the self-similarity
assumption. We found that two recent exponents use these
assumptions to perform a sort of background subtraction:
Carrera et al. [21] for sparsity and Davy et al. [33] for self-
similarity.

We compared methods on various examples in Sect. 4 and
found some methods tend to work better on these various
inputs than others, but no method stands out as the best on
all images. For applications of anomaly detection, we advise
using methods which background model describes the best
the expected anomaly-free background, as it will generally
lead to the best performance. In our quantitative experiments,
Sect. 4.2, Aiger and Talbot [3]’s backgroundmodel was clos-
est to the background of our synthetic examples and got the
best AUC.

Furthermore, we found that all methods required a strict
control of the number of false alarms to become universal.
Indeed, most methods were originally presented with at best
an empirical threshold and at worst a comment saying that
the threshold depends on the application. The first method
proposing this is the one by Grosjean andMoisan [56], and it
was recently extended in Davy et al. [33]. Since [56] requires

a background stochastic model, we concluded that a good
universal model should:

– subtract a background model that is merely qualitative
(self-similar, sparse);

– handle the residual as a stochastic process to detect
anomalies as anomalies in a colored noise;

– possibly also whiten the residual before detecting the
anomaly.

This way, most methods are generalized in a common
framework.We tested three such syncreticmethods and com-
pared them favorably with the three other most relevant
methods taken from the main classes of background models.
Our comparative tests were made on very diverse images.
Our quantitative comparison tests were made on simulated
ground truths with stochastic background.

Both tests seem to validate the possibility of detecting
anomalies with very few false alarms using a merely qual-
itative background model. This fact is both surprising and
exciting. It confirms that there has been significant progress
in the past decade. We hope that this study, at the very least,
provides users with useful generic tools that can be combined
for any detection task.

A Appendix: Dual Formulation of Sparsity
Models

Sparsity-based variational methods lack the direct interpre-
tation enjoyed by other methods as to the proper definition
of an anomaly. By reviewing the first simplest method of this
kind proposed in [9], we shall see that its dual interpretation
points to the detection of the worst anomaly. Let D a dictio-
nary representing “normal” image patches. For a given patch
p, the normal patch corresponding to p is p̂ = Dx̂ where

x̂ = argmin
x

{
1

2
‖p − Dx‖22 + λ‖x‖1

}
.

One can derive the following dual optimization problem: Let
z = p − Dx ,

min
x

{
1

2
‖z‖22 + λ‖x‖1

}
s.t z = p − Dx .

The Lagrangian is in this case

L(x, z, η) = 1

2
‖z‖22 + λ‖x‖1 + ηT (p − Dx − z)

= ηT p +
(
1

2
‖z‖22 − ηT z

)
+ (λ‖x‖1 − ηT Dx).
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The dual problem is then

G(η) = inf
x,z

L(x, z, η)

= ηT p + inf
z

(
1

2
‖z‖22 − ηT z

)
+ inf

x
(λ‖x‖1 − ηT Dx).

Consider first inf z
( 1
2‖z‖22 − ηT z

)
: This part is differen-

tiable in z so that

∂z

(
1

2
‖z‖22 − ηT z

)
= z − η;

therefore, the inf is achieved for z = η. The inf is in this case

inf
z

(
1

2
‖z‖22 − ηT z

)
= −1

2
‖η‖22

As for inf x (λ‖x‖1−ηT Dx): This part is not differentiable
(because not smooth); nevertheless, the subgradient exists.
Let v such that ‖x‖1 = vT x (for all i vi ∈ −1, 1). The
subgradient of ‖.‖1 gives v.

∂x

(
λ‖x‖1 − ηT Dx

)
= ∂x

(
λvT x − ηT Dx

)

= λv − DT η

A necessary condition to attain the infimum is then 0 ∈
{λv − DT η}. This leads to v = DT η

λ
with the condition that

‖DT η‖∞ ≤ λ (because ‖v‖∞ ≤ 1) which can be injected
into the previous equation which gives

inf
x

(λ‖x‖1 − ηT Dx) = inf
x

(λvT x − ηT Dx)

= λ

(
DT η

λ

)T

x − ηT Dx

= ηT Dx − ηT Dx

= 0

Finally,

G(η) = ηT p − 1

2
‖η‖22.

Therefore, the dual problem is

sup
η

{
ηT p − 1

2
‖η‖22

}
s.t. ‖Dtη‖∞ ≤ λ

which is equivalent to

sup
η

{
−1

2
‖p − η‖22

}
s.t. ‖Dtη‖∞ ≤ λ.

It can be reformulated in a penalized version as

η̂ = argmin
η

{
1

2
‖p − η‖22 + λ′‖DT η‖∞

}
. (15)

While Dx̂ represents the “normal” part of the patch p, η̂
represents the anomaly. Indeed, the condition ‖DT η‖∞ ≤
λ imposes to η to be far from the patches represented by
D. Moreover, for a solution η∗ of the dual to exist (and so
that the duality gap does not exist) it requires that η∗ =
p − Dx∗, i.e., p = Dx∗ + η∗ which confirms the previous
observation. Notice that the solution of (15) exists by an
obvious compactness argument and is unique by the strict
convexity of the dual functional.
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