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Abstract
Parametric motion models are commonly used in image sequence analysis for different tasks. A robust estimation framework
is usually required to reliably compute the motion model over the estimation support in the presence of outliers, while the
choice of the right motion model is also important to properly perform the task. However, dealing with model selection within
a robust estimation setting remains an open question. We define two original propositions for robust motion-model selection.
The first one is an extension of the Takeuchi information criterion. The second one is a new paradigm built from the Fisher
statistic. We also derive an interpretation of the latter as a robust Mallows’ CP criterion. Both robust motion-model selection
criteria are straightforward to compute. We have conducted a comparative objective evaluation on computer-generated image
sequences with ground truth, along with experiments on real videos, for the parametric estimation of the 2D dominant motion
in an image due to the camera motion. They demonstrate the interest and the efficiency of the proposed robust model-selection
methods.

Keywords Robust model selection · Parametric motion estimation · Image sequence

1 Introduction

Adopting 2D parametric models is a common practice in
motion estimation, motion segmentation, image registra-
tion, and more generally in dynamic scene analysis. Video
stabilization [25], video summarization [9], image stitch-
ing [41], motion detection with a free-moving camera [47],
motion layer segmentation [8], optical flow computation
[5,10,50], tracking [39,51], time-to-collision estimation for
obstacle detection [27], action recognition and localization
[16], crowd motion analysis [30], to name a few, all may
rely on 2D polynomial motion estimation. A key issue then
arises: how to choose the right motion model when adopting
a robust estimation setting?
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This problem is most often circumvented by settling for
empirical choice. The affine motion model is for instance
claimed as a good trade-off between efficiency and represen-
tativeness without any available information on the dynamic
scene. However, a principled method is more powerful and
satisfying to properly solve themotion-model selection prob-
lem [11,13,44]

The most known statistical criteria for model selection
are without doubt Akaike information criterion (AIC) [2],
Bayesian information criterion (BIC) [38], or Takeuchi infor-
mation criterion (TIC) [7]. Broadly speaking, it starts from
the maximum likelihood and amounts to add to the model fit,
a weighted penalty term on the model complexity or dimen-
sion, e.g., given by the number of the model parameters. The
definition of the weight depends on the statistical informa-
tion criterion. The likelihood term accounts for a Gaussian
distribution of the residuals involved in the regression issue.
A comparative study of several of them is reported in [46] for
classification in pattern recognition. Let us add the Mallows’
CP criterion [23] and the minimum description length cri-
terion (MDL) [32], respectively, equivalent to AIC and BIC
under certain hypotheses. Finally, let us mention the Akaike
criterion with a correction for finite sample sizes (AICc) [7].

However, outliers are usually present whatever the motion
estimation support, the entire frame or a more local one. It
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may be due to local independent motions, occlusions, or any
local violation of the assumptions associated with motion
computation. Robust estimation [14,15] is then required in
many situations [5,26,29,39] to copewith the presence of out-
liers. Indeed, least-square estimation finds oneself biased in
these cases. As a consequence, the aforementioned informa-
tion criteria involving a quadratic (i.e., Gaussian) likelihood
term are no more exploitable as they stand. Model selection
must be revisited in the context of the robust estimation set-
ting.

So far, combining model selection and robust estimation
for parametric motion computation has rarely been investi-
gated [44]. In this paper, we propose two different statistical
criteria for robust motion-model selection. The first one is an
extension of the Takeuchi information criterion (TIC). The
second one tackles this problem from a different perspective
based on the Fisher statistic. An interpretation as a robust
version of the Mallows’ CP criterion [23] is also provided.

We need a use case to validate the proposed methods in
real situations.We want to handle a single-model fitting task,
so that we can focus on the robust model-selection prob-
lem. We take the task of estimating the global (or dominant)
motion in the image due to the camera motion for a shallow
scene, which is of primary interest for many applications,
e.g., video stabilization or action recognition. In that con-
text, the dominant motion in the image can be represented
by a 2D parametric motion model. Indeed, this task is merely
an estimation problem in the presence of outliers constituted
by the independently moving objects in the scene. It is not
interwoven with other involved issues as inmotion detection,
motion segmentation, or object tracking. On the other hand,
the multiple-model fitting issue investigated in [22,42,43] is
a different problem. The goal is to fit multiple instances of a
given type of model over (unknown) subsets of data. These
works do not address the selection of the motion model type.

We described a preliminary version of this work in the
short conference paper [6]. The present paper is a significant
extension of the latter. We have added several contribu-
tions: a new criterion -the robust TIC-, improvements in the
Fisher-based criterion, an augmented related-work section, a
revisited objective comparative evaluation, and more exper-
iments on real videos.

The remainder of the paper is organized as follows. Sec-
tion 2 is devoted to related work and positioning of our
approach. In Sect. 3, we recall a classical robust estima-
tion method of 2D motion models and formulate the model
fit. Section 4 describes our first robust motion-model selec-
tion method called robust Takeuchi information criterion
(RTIC). In Sect. 5, we present our second original method for
robust motion-model selection, called Fisher-based robust
information criterion (FRIC). Objective comparisons on
computer-generated examples with ground truth are reported
in Sect. 6, along with experiments on real videos, to assess

the performance of our two criteria. Concluding remarks are
given in Sect. 7.

2 RelatedWork and Positioning

2.1 Review of Related Research

Statistical information criteria have been exploited in com-
puter vision for years [13], sometimes with specific formula-
tions and characteristics. Geometric counterparts of AIC and
MDL, respectively, termedGAICandGMDL,were proposed
in [18] to take into account a different formulation of model
fitting along with the dimension of the manifold involved in
a 3D geometric transformation. AIC and BIC were tested
in [11] for 2D affine motion-model classification, but they
were experimentally proven less efficient than a succession
of hypothesis tests deciding in turn on the nonzero parameters
of the affine motion model. Indeed, AIC tends to overesti-
mate the complexity of the underlying model. In [49], the
most appropriate model among 2D polynomial motion mod-
els for motion estimation from normal flows was selected
with a penalization factor given by the Vapnik’s measure; the
resulting algorithmwas favorably compared toAIC,BIC, and
generalized cross-validation. In [37], a MDL-based criterion
was designed for model selection in 3Dmulti-body structure
andmotion from images. AMDL principle is also adopted in
[24] for non-rigid image registration. On the other hand, the
small-sample-size-corrected version of Akaike information
criterion (AICc) was used in [4] for a pixel-wise motion-
model selection with a view to crowd motion analysis in
video sequences.

Robust model selection on its own was explored in the
robust statistics literature along several directions [1,19,28,
31,33,36]. In [33], a robust extension of AIC (RAIC) was
defined, coming upwith substituting a general robust estima-
tor ρ of the model parameters θ for the maximum likelihood
estimator. M-estimators are incorporated in BIC, and the
asymptotic performance is studied in [21]. A special case
is the use of the Huber robust function [15], leading to the
RBIC criterion. The Mallows’ CP criterion is revisited in
[34] to yield a robust version. The generalized information
criterion (GIC), described in [19], can be applied to evalu-
ate statistical models constructed by other procedures than
maximum likelihood, such as robust estimation or maximum
penalized likelihood.

In contrast, to the best of our knowledge, very few sim-
ilar investigations have been undertaken regarding motion
analysis in image sequences. In [3], the authors designed
a global energy function for both the robust estimation of
mixture models and the validation of a MDL criterion. The
overall goal is to get a layering representation of the moving
content of an image sequence. The MDL encoding acts on
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the overall cost of the representation comprising the num-
ber of layers, residuals, and motion parameters. However,
the primary purpose was parsimonious motion segmentation
and not motion-model selection on its own. In [44], a robust
extension of the geometric information criterion (GIC) [17],
termedGRIC, is proposed in the vein of RAIC. It was applied
to the selection of the 3D geometric transformation attached
to a rigid motion and estimated through the matching of
image interest points. Geometrical and physical constraints
are also explored in [12] for image motion segmentation,
with the so-called surface selection criterion (SSC) primarily
designed by the authors for range data segmentation. Better
performance is reported than with several information crite-
ria, but the use of SSC here is comparable to a regularization
approach.

Since we start with a set of 2D parametric motion models
meant to provide us with an approximation of the unknown
optical flow,we naturally adopt a parametric approach for the
robust motion-model selection problem. We are looking for
the simplest model among the set, able to describe themotion
of the maximum amount of image points. An alternative
could be to follow a nonparametric approach by modeling
the outliers themselves. This can be done by representing the
distribution of the noise as a mixture of two distributions, the
second one having small probability and taking large values.
More specifically, in [20], robustGaussian process regression
is investigated. However, comparing mixture of distributions
seems intricate. We believe that it is much easier to com-
pare directly parametric motion models. The authors of [52]
address the related problem of image stitching when the pro-
jective assumption may be locally violated. The aim is to
estimate a globally projective warp while adjusting it on the
data to improve the fit. However, this data-driven method
leads to a different problem, that is, the adequacy of a given
model, and not the selection among several different models.

2.2 Our Approach

In computer vision and in particular in dynamic scene anal-
ysis, for instance when estimating the global image motion,
the concern is not only to choose the best model, but also to
get the largest possible inlier set. Selecting a simple global
motion model that only fits the apparent motion of a too
limited part of the static scene is not appropriate. As a conse-
quence, the size of the inlier set must be properly taken into
account in the robust model-selection criterion.

The problem of robust motion-model selection is then
threefold: (1) maximizing the motion model fit to the data,
(2) penalizing the motion-model complexity, (3) accounting
for the largest possible set of inlier points in the estimation
support. Indeed, the two latter ones must be simultaneously
satisfied, which might be contradictory. By definition, this
is an issue specific to robust model selection. It apparently

did not draw interest in the robust statistics literature, while
it is of key importance in motion analysis. In this paper, we
introduce two robust motion-model selectionmethods in that
perspective. The first one is in the vein of approaches extend-
ing the non-robustmodel-selection criteria, but here,we start,
in an originalway,with theTakeuchi criterion [7]. The second
method promotes a new paradigm based on Fisher statistic
[35].

To make the robust motion-model selection problem
concrete, we will deal with the dominant image motion esti-
mation issue. The dominant (or global) image motion is
usually due to the camera motion, and then corresponds
to the background motion, i.e., the apparent motion of the
static scene in the image sequence. Computing the dominant
motion has many important applications such as video sta-
bilization, background subtraction in case of a free-moving
camera, action recognition, image stitching, and image regis-
tration in general. Of course, the proposed framework could
be applied to other issues as well, for instance, to select the
right motion model in each image region for motion layer
segmentation.

3 Robust Motion-Model Estimation

First, we briefly recall the main principles of the robust esti-
mation of parametric motion models. The estimation process
relies on the brightness constancy assumption and is embed-
ded in a coarse-to-fine scheme to handle large displacements.
We will present it in the frame of the motion-model com-
putation over the whole image domain �, but it can be
straightforwardly adapted to the computation of the motion
model over a given area in the image. Then, we will define
themotion-model fit for the estimatedmotionmodel parame-
ters. Finally, wewill describe the set of 2D parametricmotion
models that will be considered, appertaining to the category
of polynomial models.

3.1 Computation of Motion-Model Parameters

We consider a set of 2D polynomial motion models. They
will be precisely defined in Sect. 3.3 and Table 1. Let θm
denote the parameters of model m, that is, the polynomial
coefficients for the two components of the velocity vector.
Parameters of the full model will be denoted by θM , if we
haveM models to test.wθm (p) is the velocity vector supplied
by the motion model m at point p = (x, y) of the image
domain �.

We exploit the usual brightness constancy assumption [10]
to estimate the parameters of the motion model between
two consecutive images of the video sequence. It leads to
the linear regression equation relating the motion-model
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Table 1 Set of 2D polynomial
motion models

Motion model Dimension Mathematical expression

Translation (T) 2 wθ = (a1, a4)T

Pan–tilt (PT) 2 wθ (p) = (a1 + a1x2 + a4xy, a4 + a1xy + a4y2)T

Translation + rotation (TR) 3 wθ (p) = (a1 − a3y, a4 + a3x)T

Translation + scale (TS) 3 wθ (p) = (a1 + a2x, a4 + a2y)T

Translation + rotation + scale (TRS) 4 wθ (p) = (a1 + a2x − a3y, a4 + a3x + a2y)T

Full affine (FA) 6 wθ (p) = (a1 + a2x + a3y, a4 + a5x + a6y)T

Planar surface rigid motion (PSRM) 8 wθ (p) = (a1 + a2x + a3y + a7x2 + a8xy,

a4 + a5x + a6y + a7xy + a8y2)T

Full quadratic (FQ) 12 wθ (p) = (a1 + a2x + a3y + a7x2 + a8xy + a9y2,

a4 + a5x + a6y + a10x2 + a11xy + a12y2)T

parameters, through the velocity vector, and the space–time
derivatives of the image intensity I :

∇ I (p) · wθm (p) + It (p) = 0. (1)

Let us denote rθm (p) the left member of (1). The robust esti-
mation of the motion-model parameters can be defined by:

θ̂m = argmin
θm

∑

p∈�

ρ(rθm (p)), (2)

where ρ denotes any robust penalty function. To quote a
few examples of penalty function among M-estimators, the
Lorentzian function is used in [5], whereas the Hampel esti-
mator is preferred in [39], and theTukey’s function is adopted
in [29].

Equation (1) is in fact the linearization of themore general
constraint I (p+wθm (p))− I (p, t) = 0. As a consequence, it
only holds for small displacements. A usual way to overcome
this problem is to follow a coarse-to-fine scheme based on
image multi-resolution and incremental motion estimation
[10]. More specifically, we compute two image pyramids by
applying a Gaussian filter and subsampling by two in row
and column the two consecutive images of the pair, from
level to level. The minimization of (2) is achieved by an iter-
ative algorithm, the iterated reweighting least squares (IRLS)
method [14]. The IRLS method iteratively updates weights
at every point p ∈ �. The weights express the influence of
each point p in the estimation of the motion-model parame-
ters. These weights can be further exploited to determine the
inlier set associated with the estimated motion model m.

Regarding the initialization of the IRLS algorithm, we
proceed as follows. At the very first iteration of the itera-
tive estimation, at the coarsest resolution level, we initialize
all the weights to one and perform a first estimation of the
motion parameters. This of course amounts to a classical
least mean-square estimation. However, this is a very com-
mon practice, and it works well in practice, especially since

we use it only once at the coarsest image resolution. After-
ward, since we switch to the incremental mode, we initialize
the IRLS algorithm at every step of the incremental estima-
tion, by taking zero as initial value of the motion parameter
increment. Indeed, the latter is supposed to be small. In other
words, we start by updating the weights with the current
estimate of the motion-model parameters. We usually need
only a few iterations of the IRLS algorithm to converge. For
more information on estimation issues like initialization of
IRLS, definition of the scale parameter of the penalty func-
tion, impact of the outlier rate, estimation accuracy, we refer
the reader to [29].

3.2 Motion-Model Fit

Oncewecompute an estimate θ̂m of themotion-model param-
eters, we get the residuals r

θ̂m
(p), for all p ∈ �, measuring

the discrepancy between the input data and the estimated
motion model. To evaluate how the estimated motion model
fits the input data over the associated inlier set, we consider
the residual sum of squares (RSS) obtained for the robustly
estimated parameters θ̂m of the motion model m, given by:

RSSm =
∑

p∈Im
r2
θ̂m

(p), (3)

where Im represents the set of inliers associated with the
estimatedmotionmodelm. Theway the inlier set is computed
will be further explained in Sect. 5.1. The residual is formally
defined by:

r
θ̂m

(p) = I (p + w
θ̂m

(p), t + 1) − I (p, t), (4)

knowing that the left member of (1) is a linearized version of
(4) as aforementioned.

We computeRSSm on the inlier setIm and not on the over-
all domain �, to obtain the model fit evaluation precisely on
the subset of points whose motion conforms to the estimated
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motion model. In [45], the authors designed a method for
estimating deformable registration from feature correspon-
dences between two images. The outlying correspondences
are removed once for all by first estimating a simple para-
metric model. The rationale is that the outlier deviations are
much larger than the inaccuracies of the simple model fit for
relevant correspondences. However, on our side, we need to
achieve the outlier removal for every model, since the inlier
set depends upon each motion model, and its cardinality is
one of the key ingredients of our robust motion-model selec-
tion criteria.

Furthermore, we need to introduce the expression RSS+
m ,

which represents the residual sum of squares computed for
the full model M over the inlier set Im attached to model m.
The full model, that is, the most complex one in the set of
the parametric motion models, will be specified in the next
Sect. 3.3. We have:

RSS+
m =

∑

p∈Im
r2
θ̂M

(p). (5)

As recall in Sect. 3.1, the minimization in (2) is solved by
applying the iteratively reweighted least squares algorithm
within a coarse-to-fine framework. At convergence, the final
weights αm(p), p ∈ � are given by:

αm(p) = ψ(r
θ̂m

(p))

r
θ̂m

(p)
, (6)

where the influence function ψ(.) is the derivative of the
robust function ρ(.), ψ(r) = dρ(r)

dr . In practice, we adopt
the robust estimation method defined in [29], and we use the
publicly available Motion2D1 software implementing this
method.

3.3 Set of Parametric MotionModels

We are dealing with 2D polynomial motion models ranging
from translation (polynomial of degree 0) to quadraticmodels
(polynomials of degree 2), including different affine models
(polynomials of degree 1). They are forming a set of models
which is partly nested. The model complexity ranges from
dimension 2 to dimension 12. The full set ofmotionmodels is
given in Table 1 with their main features. The explicit equiv-
alence, when available, between the 2D polynomial models
and 3D physical motions assumes a perspective projection
for the image formation and 3D rigid motion.

To make it easier to understand the relationship between
2D motion models and 3D motion, let us briefly recall the
mathematical relations which link them. The 2D velocity
vector w(p) = (u(p), v(p))T is the projection of the 3D

1 http://www.irisa.fr/vista/Motion2D/.

velocity vector of point P = (X ,Y , Z)T in the scene, whose
point p is the projection onto the image plane. We follow
the classical perspective projection assumption, and we take
a focal length of unity. We get:

⎧
⎨

⎩

u(p) = U
Z − x W

Z − Axy + B(x2 + 1) − Cy

v(p) = V
Z − y W

Z − A(y2 + 1) + Bxy + Cx,
(7)

where the instantaneous rigidmotion is specified by the trans-
lational and rotational velocities, respectively, (U , V ,W )T

and (A, B,C)T in the 3D coordinate systems, whose ori-
gin is located at the camera projection center and the Z -axis
aligned with the camera axis of view. We refer the reader,
for instance, to [48] for mathematical details. If we further
assume that the scene is planar, then any depth Z is given by
the plane equation: Z = Z0 + γ1X + γ2Y , and knowing that
x = X

Y and y = Y
Z , we come up with:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(p) = B + U
Z0

+ x
(
−γ1

U
Z0

− W
Z0

)
+ y

(
−γ2

U
Z0

− C
)

+ x2
(
γ1

W
Z0

+ B
)

+ xy
(
γ2

W
Z0

− A
)

v(p) = −A + V
Z0

+ x
(
−γ1

V
Z0

+ C
)

+ y
(
− W

Z0
+ γ2

V
Z0

)

+ xy
(
γ1

W
Z0

+ B
)

+ y2
(
γ2

W
Z0

− A
)

.

(8)

A pan–tilt–camera motion is a pure rotation of component
A around the X -axis, and component B around the Y -axis,
and then, C,U , V ,W are all equaling zero. Applying this to
equations (8) gives the expression of the 2D motion model
PT, with a1 = B and a4 = −A. A rotation in the plane, i.e.,
around the Z -axis, means that only C �= 0, which explains
the expression of motion model TR, with a3 = C . A trans-
lation along the axis of view implies that only W �= 0,
which leads to the expression of motion model TS, with
a2 = −W/Z0. Finally, we can easily infer from Eq. (8) that
the eight-parameter PSRM model precisely accounts for a
rigid motion between a planar surface and the camera. Let us
add that the constant monomial of models PT, TR, TS, and
TRS does not necessarily mean that the underlying phys-
ical motion has actually a translation component. Indeed,
the constant part is merely the velocity vector given by the
motion model at the origin of the image coordinate system.
The in-plane rotation is not necessarily centered at the origin.
The same holds for the focus of expansion in case of scal-
ing motion, knowing that the scaling motion in the image
is due to a translation of the camera along its axis of view.
Finally, let us recall that our 2Dmotion models are defined in
the velocity field space, not in the point-to-point geometrical
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transformation space. Nevertheless, parallels can be drawn.
For instance, the eight-parameter quadratic motion model is
the counterpart of the homography.

The FQ model corresponding to the full polynomial of
degree 2 has no specific physical interpretation. It will act
in the sequel as the full model M , that is, the most complex
model in the set of the tested parametric motion models.

Let us stress that this 3Dmotion interpretation is just given
to motivate the set of 2D parametric motion models, which
incidentally are of commonuse inmany applications of video
processing and dynamic scene analysis. Indeed, we are not
concerned with any 3D scene recovery goal. The latter is a
different task. The motion-model selection is still relevant,
even if no physical interpretation is sought, that is, just find-
ing the right 2D motion model to represent the (unknown)
optical flow field in the image, in other words, finding the
right polynomial to represent an unknown function. Besides,
we do not claim that there is a correct model on its own. We
just aim to select the most appropriate one among the set of
predefined motion models.

4 Robust Motion-Model Selection with RTIC

An intuitive approach for defining a robust motion-model
selection framework is to draw fromclassical statistical infor-
mation criteria. However, instead of starting from AIC or
BIC, we consider the Takeuchi information criterion (TIC)
which is a more general derivation of Akaike’s information
criterion [7].

4.1 TIC Criterion

TIC can be written as follows:

TIC(m) = 2K(θ̂m) + 2 tr(P(θm)Q(θm)−1), (9)

whereK denotes the contrast function. Equivalently, it could
be referred to as the negated logarithmof the likelihood, or the
pseudo-likelihood function. “tr” is the trace of thematrix. The
twom×m matrices P(θm) and Q(θm), respectively, involve
first and second mixed partial derivatives of the likelihood
function w.r.t. model parameters. In the regression case, the
two matrices P and Q are defined by:

P(θm) = E

[
∂

∂θi

g(rθ (p))
∂

∂θ j

g(rθ (p))
T

]

|θ=θ̂m

Q(θm) = E

[
∂2

∂θi ∂θ j

g(rθ (p))

]

|θ=θ̂m

, (10)

where {θi , i = 1,m} and {θ j , j = 1,m} denote compo-
nents of the parameter vector θm , function g(.) is defined

by K(θm) = ∑
p g(rθm (p)), rθm (p) acts as the regression

residual, and E denotes expectation.

4.2 Robust TIC

In the context of robust estimation, the g function is nowspec-
ified as a robust penalty function ρ(.), which was introduced
in Eq. (2). We come up with the following expression of
the Takeuchi information criterion, which we will call robust
Takeuchi information criterion (RTIC) to make it short:

RTIC(m) = 2
∑

p∈�

ρ(r
θ̂m

(p)) + 2qm
E[ψ(rθ (p))2]
E[ψ ′(rθ (p))] |θ=θ̂m

,

(11)

where qm is the dimension (i.e., number of parameters) of
modelm,ψ(.) is the influence function as defined inSect. 3.2,
and ψ ′ its derivative.

Wedevelop twoversions ofRTIC for theTalwar andHuber
penalty functions, which are well-known simple enough
robust functions. The Talwar function is defined by:

ρtal(r) =
{
r2/2 if |r | ≤ α

α2/2 if |r | > α
(12)

Knowing that the inlier set Im corresponds to points p such
that |rθm (p)| ≤ α, we estimate the expectation as:

E[ψ(rθ (p))
2] � 1

|�|
∑

p∈�

ψ(rθ (p))
2 = 1

|�|
∑

p∈Im
r2θ (p),

and E[ψ ′(rθ (p))] �|Im |
|�| , (13)

where |.| denotes the cardinality of the set. We get the fol-
lowing expression of RTIC for the Talwar penalty function:

RTICtal(m) = 2
∑

p∈�

ρ(r
θ̂m

(p)) + 2qm
|Im |

∑

p∈Im
r2
θ̂m

(p). (14)

We make the same development for the Huber function
defined as follows:

ρhub(r) =
{ 1

2r
2 if |r | ≤ α

α(|r | − 1
2α) if |r | > α,

(15)

and the RTIC expression turns out to write for the Huber
function:
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RTIChub(m) = 2
∑

p∈�

ρ(r
θ̂m

(p))

+ 2qm
|Im |

⎛

⎝
∑

p∈Im
r2
θ̂m

(p) +
∑

p∈�\Im
α2

⎞

⎠ . (16)

The selected model m̃ is the one minimizing RTICtal(m)

(respectively, RTIChub(m)) among the tested models. The
parameters θ̂m are obtained from (2) with the Talwar (resp.
Huber) ρ-penalty function. In contrast to RAIC and RBIC,
the size |Im | of the inlier set explicitly intervenes in the sec-
ond term of the expression of the two RTIC variants (14) and
(16). Minimizing RTIC implies to maximize the size of the
inlier set.

5 Robust Motion-Model Selection with FRIC

On the other hand, we have investigated a very different
approach than those proposed so far for robust model selec-
tion. As in [11], we adopt now a two-class hypothesis test
approach. This is first motivated by the fact that we are
dealing with a non-nested set of parametric motion mod-
els. For instance, both the rotation and the scaling models
involve three parameters as described in Sect. 3.3, but they
account for quite different motions. Moreover, we aim to
select the model m which explains the motion of the max-
imum number of points in the estimation support, that is,
with the largest possible inlier set. Let us stress that taking
the simplest motion model, while maximizing the size of the
inlier set, may be contradictory in most tasks of dynamic
scene analysis. Then, it is beneficial to explicitly tackle this
issue from the off.

5.1 Fisher Statistic

The first step is to compare any model m of the set of tested
models to the full model M . To this end, we consider the
Fisher statistic [35], which can be expressed as follows:

F(m) = (RSSm − RSS+
m)/(qM − qm)

RSS+
m/(|Im | − qM )

, (17)

where again |.| designates the set cardinality and qm repre-
sents the number of parameters of modelm. Both RSSm and
RSS+

m are evaluated on the inlier set Im attached to the tested
model m. To really deal with Fisher statistic, both model
parameters, θm and θM , must be estimated on the same set
too. Therefore, we reestimate θm and θM over Im in a least-
square setting, before evaluating F(m). By the way, it also
improves the estimated parameters of model m, and conse-
quently, the model fit.

Fig. 1 Examples of histograms of weights supplied by the IRLS pro-
cedure in the robust estimation of the image dominant motion model
for two different experiments

In addition, we must check that the estimate of |Im | has no
noticeable variability, so that it has no impact on the Fisher
statistic. An image point p belongs to the inlier set if its
attached weight at the end of the IRLS procedure is greater
than a given threshold. We can at least empirically assess the
absence of significant variability, by providing histograms of
weights computed for the estimation of the motion parame-
ters in the IRLS procedure, as explained in Sect. 3.1. Samples
are supplied in Fig. 1, with the Tukey function used in the
robust motion-model parameter estimation. Similar behavior
was observed in many experiments. The plots show that the
weight histograms are clearly bimodal, with one mode close
to 0 and the second one close to 1, after normalization of the
weights. Then, it is easy to get the inlier set Im . The threshold
used to determine the inlier set is not critical at all, and this
step does not introduce any randomness in |Im |. Indeed, the
range of values for the threshold value is large. In practice,
we will set it to 0.5. Then, we can assume that the cardi-
nality of the inlier set is as legitimate as the fit residual and
the model complexity in the definition of the robust model-
selection criterion. The configuration is even simpler in the
case of the Talwar and Tukey functions, since the weights are
null for outliers and strictly positive for inlier points.

The denominator of expression (17) can be interpreted as
a non-biased empirical estimate of the full model variance
computed on Im . It will be denoted by:

σ̂ 2
M (Im) = RSS+

m

|Im | − qM
. (18)

The statisticF(m) allows us to decide whether modelm is
a more significant representation of the unknown truemotion
than the full model M over Im which is the validity domain
of model m in �. However, it will supply all the models m
of that type. We need to take into account the dimension qm
of model m to further select the right one.

5.2 Fisher-Based Robust Information Criterion (FRIC)

Starting from (17), and penalizing the complexity of the
model expressed by the number qm of model parameters,
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Fig. 2 Plots of FRIC1(m) values corresponding to the set of tested
motionmodels for several experiments. Testedmotionmodels are those
listed in Table 1, and ordered according to the number of parameters.
The true model is FA

we define the Fisher-based robust information criterion:

FRIC1(m) = F(m)(qM − qm) + 2qm . (19)

Under the assumption of validity of model m, F(m) follows
a Fisher distribution F(qM − qm, |Im | − qM ). Then, the first
term of the right member of (19) (approximately) follows a
χ2 distribution with qM − qm degrees of freedom.

We can now write the test for selecting the best motion
model m̃ in this robust model-selection framework:

m̃ = argmin
m

FRIC1(m). (20)

The theoretical behavior of this test can be qualitatively
described as follows. FRIC1(m) is supposed to decrease
whenevaluating in turn thefirst successivemodels in decreas-
ing (or equivalently increasing) complexity order up to the
optimal model m∗, and then to increase for the subsequent
models. This is confirmed by Fig. 2 which contains plots of
FRIC1(m) values for several experiments.

We design a second version of the Fisher-based robust
model selection criterion, by incorporating the number of
inliers in the model complexity penalization as in the BIC
criterion, that is:

FRIC2(m) = F(m)(qM − qm) + 2 log(|Im |)qm . (21)

5.3 Interpretation of FRIC as Robust Cp

We now provide another interpretation of the Fisher-based
robust information criterion (FRIC) defined in (19). Let us
first make σ̂ 2

M (Im) appear in the expression of FRIC1(m) as
follows:

FRIC1(m) = (RSSm − RSS+
m)

σ̂ 2
M (Im)

+ 2qm, (22)

By exploiting (3) and (18), it can be further developed into:

FRIC1(m) = 1

σ̂ 2
M (Im)

∑

p∈Im
r2
θ̂m

(p)−|Im |+qM +2qm . (23)

If we neglect qM which is a constant term for the test (20),
expression (23) can be viewed as the Mallows’ CP criterion
[23], computed over the inlier set attached to model m with
|Im | as the number of observations. Then, our test (20) could
also be interpreted as a robust version of the Mallows’ CP

criterion.
Let us point out that (23) explicitly involves the afore-

mentioned trade-off between maximizing the size |Im | of
the inlier set andminimizing the complexity (i.e., the number
qm of parameters) of the selected motion model. In contrast,
for existing robust model-selection criteria such as RAIC or
RBIC which write

RAIC =
∑

p∈�

ρ(r
θ̂m

(p)) + qm, (24)

and

RBIC =
∑

p∈�

ρ(r
θ̂m

(p)) + log |�| qm, (25)

the model selection is only implicitly influenced by the size
of the inlier set attached to modelm through the values of the
robust function ρ(.) at the outlier points. Hence, the impact
depends on the asymptotic behavior of the robust function.
The same holds for [34] where in addition the penalty term
requires additional expensive computation to be evaluated.

6 Experimental Results

As pointed out in the introduction, we take the computa-
tion of the dominant imagemotion to experimentally validate
our robust motion selection methods. In contrast to motion
segmentation for instance, it is a pure estimation problem.
Furthermore, it must tackle the presence of outliers consist-
ing in independently moving objects in the scene, since the

Fig. 3 From left to right: the input image, the second image generated
from the first one, by applying a translation as dominant motion and a
different translation on the outlier rectangular area in the middle of the
image, as plotted in the right part
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Table 2 Range of parameter values for the different motion models

Dominant motion model a1, a4 a2, a3, a5, a6 a7, a8

T1 [−10, 10] – –

T2 [−10, −1]∪ [1, 10] – –

FA1 [−10, 10] [−0.001, 0.001] –

FA2 [−10, −1]∪ [1, 10] [−0.1, −0.001]∪ [0.001, 0.1] –

PSRM1 [−5, 5] [−0.01, 0.01] [−0.001, 0.001]

PSRM2 [−10, −1]∪ [1, 10] [−1e10−4, −1e10−2]∪ [−1e10−4, −1e10−2] [−1e10−5, −1e10−4]∪ [1e10−5, 1e10−4]

dominant motion in the image is (most generally) induced by
the camera movement. Thus, it is a robust estimation prob-
lem. Finally, choosing the right 2Dmotion model to properly
approximate the dominant imagemotion is an issue, since the
camera motion and the scene depth are most often unknown.
In addition, it is a typical and very frequently needed task
in dynamic scene analysis. However, there is no available
benchmark for this purpose, and inferring ground truth on
real videos may be not that easy. Since we focus on the
model selection issue, we will report selection results only.
The accuracy of the estimated motion model is conveyed by
the model fit term of the criterion, and it is not a concern on
its own for this work.

6.1 Objective Evaluation on Synthetic Examples

To quantitatively assess the performance of the model
selection criteria, we carried out a comparative objective
evaluation on a synthetic dataset. We generated a series of
image pairs by applying a velocity field to a real image, as
shown in Fig. 3. The velocity field involves two paramet-
ric subfields chosen from the list given in Table 1. The first
parametric motion subfield is the dominant motion, and the
outliers, forming a rectangular region in the middle of the
image, undergo the second one. We used bilinear intensity
interpolation when needed to reconstruct the second image.
We used border replication to deal with image boundaries.
We generated outlier motion in the synthetic examples with
a parametric motion model for the sake of efficiency. How-
ever, when estimating the global motion and computing the
robust selection criteria, we never model the outlier motion
nor estimate it. It could be anything, as the dust cloud in the
real example of Fig. 8, or many independently moving cars
in Fig. 9.

Three groups of 3000 synthetic image pairs were gener-
ated, each group formed by different dominant and secondary
motions. The first group involves a translation (T) motion
model as dominant motion model and a full affine (FA) as
secondary motion. The second set has a FA model as dom-
inant motion and a planar surface rigid motion (PSRM) as
secondary motion model. The last group has a PSRM model

Fig. 4 Rates of correct classification for each group of experiments
obtained with the four model-selection criteria (given in percentage of
the total number of examples in each experiment). S1 stands for FRIC1
and S2 for FRIC2

as the dominant one and a T model as the secondary one.
Each group is divided in two subgroups of 1500 image pairs
each depending on the range used for the values of the param-
eters of the dominant motion, as summarized in Table 2. For
each motion model used to create the image pairs, the value
of its parameters is randomly selected in the interval given
in Table 2.

We proceed to the selection of the dominant motionmodel
in each experiment for each compared criterion. Rates of cor-
rect selection are summarized in Fig. 4. For a fair comparison,
we decided to use the same penalty function for all the com-
pared criteria in all the experiments, that is, to estimate the
parametric motion models and to compute the four robust
motion-model selection criteria. For implementation issues,
we took the Talwar penalty function, with α set to 2.795 as
recommended in [40]. It is available in the Motion2D soft-
ware, which is not the case for the Huber function. Still, we
will refer to the compared existing method as RBIC. In addi-
tion, for the sake of notation simplicity, we will write RTIC
instead of RTICtal. Scores are given in percentage of the total
number of the images in each experiment.

Overall, the proposed criteria FRIC1, FRIC2, and RTIC
outperform the existing one RBIC. Regarding FRIC2, the
rate of successful motion-model selection is rather stable at
a high level, ranging from a minimum of 74.4% of frames to
a maximum of 83.4%. FRIC1 also provides good results, but
it has a lowest success rate with a minimum of 61.2% and a
maximum of 82.1%. In general, RBIC has a close but lower
success rate than the three new criteria, and even reaches
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Table 3 Scores obtained with criterion FRIC2 for all the tested mod-
els and for the six experiments, in percentage of the total number of
examples in each experiment

Tested models True dominant motion models

T T FA FA PSRM PSRM

T 76.9 76.4 0.1 1.5 0.1 0.1

TR 9.3 7.7 0.7 0.6 0.1 0.2

TS 1.4 11.8 0.3 1.1 0.1 0.1

TRS 0.1 0.6 2.1 0.2 0.3 0.2

FA 0.4 0.3 80.5 83.4 0.2 2.1

PT 2.1 0.7 0.1 3.9 0.9 2.4

PSRM 1.3 0.4 7.3 6.9 74.4 74.7

FQ 8.5 2.1 8.9 2.4 23.9 20.2

Best scores are given in bold

Table 4 Scores obtained with criterion RTIC for all the tested mod-
els and for the six experiments, in percentage of the total number of
examples in each experiment

Tested models True dominant motion models

T T FA FA PSRM PSRM

T 80.3 60.7 0 0 0 0

TR 11 15.9 0 0 0 0.1

TS 4 17.2 0 0 0 0

TRS 0.4 3.2 0.2 0 0 0

FA 0.6 0.5 95 87.3 0 0.2

PT 3.4 1 0 0.4 0 0

PSRM 0 0.7 1.1 9.1 87.5 94.4

FQ 0.3 0.8 3.7 3.2 12.5 5.3

Best scores are given in bold

down to a very low rate at 38.6% for the FA2 experiment.
RTIC has the lowest success rate in the T2 experiment by a
small margin, while being the best performing criterion for
all the other experiments.. Especially, when the complexity
of the dominant motion models increases, RTIC yields the
best results, even scoring over a 94% success rate in a couple
of experiments.

Tables 3 and 4 detail the scores obtained with FRIC2 and
RTIC, respectively, the two best criteria, for all the tested
models and for the six subsets of experiments. Wrong selec-
tions are spread, but mostly concern more complex models
than the true one.

We conducted complementary experiments to analyze the
behavior of the criteria in the presence of noise. We cor-
rupted the two images with independent Gaussian noise of
increasing variances (5, 10, 15, 20) for a series of 100 pairs of
images with T model as dominant motion and PSRM model
as secondary motion. When adding independent noise on the
pixel intensities, the brightness constancy assumption is no
more strictly valid. Table 5 supplies the relative performance

Table 5 Relative change in performance of selecting the true model,
with added Gaussian noise of increasing variance

Criteria Image noise variance

5 10 15 20

RBIC −42% −36% −54% −54%

RTIC −5% −8% −11% −21%

FRIC1 +21% −17% +26% −17%

FRIC2 +24% +32% +10% −16%

Numbers are averaged over a sequence of 100 image pairs with T as
dominant motion

Table 6 Comparison of FRIC criteria results for two different robust
functions, Talwar (Tw) and Tukey (Tk) functions, respectively, for the
same experiments as those of Fig. 4

Experiments FRIC criteria and robust functions

FRIC1-Tw FRIC1-Tk FRIC2-Tw FRIC2-Tk

T1 64.6 64.5 76.9 76.8

T2 61.2 60.5 76.4 75.9

FA1 73.3 68.0 80.5 76

FA2 82.1 81.6 83.4 82.9

PSRM1 72.7 64.8 74.4 68.8

PSRM2 71.7 68.9 74.7 73.6

change of the robust motion-selection criteria in the presence
of noise of varying levels. The percentage of relative variation
is givenwith respect to the selection score of the truemodel T
obtained with a reference small noise of variance 2. We can
observe that RBIC is not robust to noise. RTIC is slightly
and smoothly affected (as one could expect) by noise up to
a variance of 15. Somewhat surprisingly, the FRIC criteria
have a more irregular behavior, especially FRIC1, knowing
that the absolute performance score of FRIC1 is much lower
than those of RTIC and FRIC2.

To compare the selection criteria on the same fair basis, as
aforementioned, we used the simple Talwar robust function
to estimate the motion model, since it is implemented in the
Motion2D software. The Tukey function is also available
in the Motion2D software. Then, we rerun the experiments
on the synthetic dataset for the FRIC criteria, to know if
their performance may depend on the robust fitting stage.
From Table 6, we can observe that results are similar apart
from experiment PSRM1 where results are a bit different.
Then, there is no evidence for any dependence on the robust
function used.

6.2 Results on Real-Image Sequences

To evaluate the performance of the proposed criteria on
real cases, we carried out experiments on two sets of video
sequences. Thefirst one contains videos acquiredwith a robot
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setup in our laboratory, the second set gathers videos col-
lected on the web.

For the real experiments, we keep a subset of five motion
models of Table 1: {T, TR, TS, PSRM, FQ}. FAwas removed
since it does not precisely correspond to any given camera
motion. Clearly, inferring the ground-truth motion models in
real sequences is harder. As a consequence, we limited the set
of motion models to models representative of real physical
camera motion. In addition, FQ still serves as the full model.
PT is removed since it involves the same two parameters
as T, and the perceived motion is quite similar for the two
respective camera motions.

Let us make a cautious observation on the ground-truth
issue when dealing with real videos. In contrast to the exper-
iments with computer-generated sequences reported in the
preceding Sect. 6.1, we cannot state right awaywhichmotion
model is the true one. We can just try to infer it from the
3D motion of the camera and the 3D structure of the scene,
given the relation between the 3D (rigid) motion of the cam-
era, and the 2D image motion recalled in Sect. 3.3. For
the videos acquired with our robot setup, we control the
robot motion and the scene layout, but to a certain extent.
As a consequence, the ground truth cannot be established
with 100% confidence. For the experiments on the video
sequences downloaded on the net, reported later on in this
subsection, we deduced the ground truth only from the visual
inspection of the sequences. It is definitively subject to even
greater uncertainty on the exact 3Dmotion of the camera and
the pose of the scene.

The first set of real-image sequences were acquired with
a camera mounted on a Cartesian coordinate robot available
in our laboratory. The setup enables to apply a given motion
type to the robot. Ideally, the motion applied to the robot,
and then to the camera, induces the dominant motion of the
image sequence. Since we estimate one single motion model
to account for the dominant imagemotion,we need to assume
a planar scene so that the ground-truth motion model can
be inferred unambiguously for the dominant image motion.
Otherwise, in case of a non-shallow scene, we would need
multiple motion models and a segmentation framework to fit
a motion model to each part of the scene, since depth and
surface orientation impact on the resulting image motion.
However, this is beyond the scope of this work. For these
laboratory video sequences, a poster depicting an aerial view
of a city constitutes the scene background. In addition, we
introduce an independent motion in the scene using an addi-
tional single axis robot bearing a flat object andmoving in the
field of view of the camera. The complete setup is drawn on
Fig. 5. A sample of acquired images is given in Fig. 6 show-
ing that the outlier moving region may occupy a substantial
part of the image (on the left of the image).

We report two experiments. In the first experiment, a rota-
tion around the view axis is applied to the robot to produce

Fig. 5 Robotic setup for the acquisition of video sequences. The camera
is mounted at the robot end effector. The scene background is a planar
surface formed by a poster. The outlier object is a square flat object
translating along an axis put on the poster

Fig. 6 First and last frames of the first robot sequence, and the dominant
flow between frames 0 and 1 computed with TRmodel. The outlier area
is framed in red in the first image

an image sequence of 146 frames as illustrated in Fig. 6.
Since the rotation axis does not pass by the optical center,
the expected dominant motion model is the combination of
a translation and a in-plane rotation (TR).

Table 7 contains the model selection results provided by
our criteria FRIC1, FRIC2 and RTIC, along with RBIC.
FRIC2 and RTIC select the true motion model (TR) with
a good percentage rate of 64.8% and 76%, respectively. Let
us observe that the motion models without rotation (T and
TS) are never selected, demonstrating that the key compo-
nent of the dominant motion is consistently well identified.
FRIC1 selection is more balanced between TR and the full
model FQ. RBIC selects the full model in almost the whole
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Table 7 Selected motion models over the sequence of Fig. 6 for the
four compared criteria (in percentage of the total number of frames)

T TR TS PSRM FQ

FRIC1 0 46.4 0 7.8 45.8

FRIC2 0 64.8 0 6.7 28.5

RTIC 0 76 0 0.5 23.5

RBIC 0.6 0 0 3.9 95.5

Fig. 7 First and last frames of the second robot sequence, and the
dominant flow between frames 0 and 1 computed with TS model

sequence. For this experiment, RTIC is the best criterion by
a large margin.

For the second experiment with the robotic setup, a trans-
lation is applied along the axis of the Cartesian robot, parallel
to the camera line of sight (the Z -axis), producing a diver-
gent motion in the image, as displayed in Fig. 7. However,
the focus of expansion is not at the center of the image
plane. Then, the expected dominant motion model is TS. A
sequence of 170 frames was acquired. Results are collected
in Table 8. The most frequent choice of our three selection
criteria throughout the sequence is the PSRM model. The
TS model is the second most frequent selected model for the
two FRIC criteria, while RBIC selects the full model over
almost all the frames. The FRIC criteria yield a better perfor-
mance than RTIC. However, the real robot motion may not
be perfectly aligned with the camera axis of view, thereof the
possible occurrence of the PSRM configuration (component
U or V of the 3D translation would not be strictly equal to
0), which may explain the results. If we add the scores for TS
and PSRM, we get a cumulated score of 71.2%, 77.6%, and
58.2%, for FRIC1, FRIC2, and RTIC, respectively, whereas
RBIC stagnates at a score of 7.6%. For this experiment, we
can conclude that FRIC2 is the best criterion by a large mar-
gin.

Table 8 Motion models selected by the compared criteria over the
second robot sequence (in percentage of the total number of frames)

T TR TS PSRM FQ

FRIC1 0 0 23.5 47.7 28.8

FRIC2 0 0 28.2 49.4 22.4

RTIC 0 0.6 15.3 42.9 41.2

RBIC 0 0 4.1 3.5 92.4

Fig. 8 First and last frames of the field scene sequence, and the domi-
nant flow between frames 2 and 3 computed with PSRM model

Table 9 Selected motion models over the field sequence of Fig. 8 for
the three compared criteria

T TR TS PSRM FQ

FRIC2 9.5 0 3.6 73.8 13.1

RTIC 0 0 2.4 54.8 42.8

RBIC 0 1.2 13.1 34.5 51.2

Wenow report results on three video sequences taken from
the net. The first one depicts a field scene acquired from
an airborne camera. The sequence contains 84 frames and
the scene is almost planar. The outlier moving object is the
reaping machine with the dust cloud behind it (Fig. 8). It
is difficult to infer the precise ground truth from the video
alone, we do not know the camera orientation with respect to
the ground and its exact motion. However, it can be assumed
that the PRSMmodel should be the most relevant one. Since
in previous experiments, FRIC2 systematically outperforms
FRIC1, we only include FRIC2 in the next experiments.

Table 9 shows that both proposed criteria FRIC2 andRTIC
first select PSRM as the dominant motion of the sequence.
However, FRIC2 achieves a greater correct classification rate
of 73.8%of the imagepairs, thanRTICwhichobtains a rate of
54.8%. In contrast, RBIC selects the full model as dominant
motion, with PSRM in second place.

The second real video consists of a sequence of 54 frames
(Fig. 9). Visually, the camera moves away from the scene,
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Fig. 9 First and last frames of the roundabout sequence and the dom-
inant motion between the first and second images computed with TS
model

Table 10 Motion models selected by the three compared criteria over
the roundabout sequence of Fig. 9

T TR TS PSRM FQ

FRIC2 16.6 0 72.2 5.6 5.6

RTIC 0 5.6 0 16.6 77.8

RBIC 0 0 0 16.7 83.3

which leads to consider TS as the true dominant motion
model. As in the previous sequence, the scene is almost pla-
nar and the vehicles present in it constitute the outliers to the
dominant motion.

We report in Table 10 the selection scores of the compared
criteria for the five tested motion models in the sequence of
Fig. 9. The right motion model TS is correctly selected by
FRIC2, but not by RTIC nor RBIC, both selecting the FQ
model.

The last real video example involves a sequence where
a partly planar scene is recorded from an aerial camera
(Fig. 10). A passing train introduces outliers to the domi-
nant motion, The camera motion is apparently parallel to the
ground with a slight rotation. We can assume that the TR
motion model is the true one.

We can observe in Table 11 that FRIC2 selects TR as dom-
inant motion, both with a rate of 45.9%. They also select T
and TS in almost half of the sequence, which are still rea-
sonable choices. RTIC and RBIC incorrectly select the full
model for most of the sequence.

For these three real-image videos, FRIC2 is the one which
consistently supplies good results. Let us add that the RAIC
criterion will not give better results than RBIC which is
almost always stuck on the full model FQ when dealing with
real-image sequences. Indeed, theRAICpenalty of themodel
dimension [Eq. (24)] is far lower than the one of RBIC [Eq.
(25)].

Fig. 10 First and last frames of the train sequence and the dominant
motion between the first and second frames computed with TR model

Table 11 Motion models selected by the three compared criteria over
the train sequence of Fig. 10

T TR TS PSRM FQ

FRIC2 25 45.9 20.8 8.3 0

RTIC 0 0 0 4.2 95.8

RBIC 0 8.3 8.3 0 83.4

7 Conclusion

We have proposed two new robust motion-model selection
criteria. The first one is a robust version of the Takeuchi
information criterion called RTIC. The second one departs
from the usual approach by starting from the Fisher statistic.
We designed two variants of the latter, FRIC1 and FRIC2.
All three are easy to compute. The three criteria explicitly
tackle the trade-off between the size of the inlier set (to be
maximized) and the complexity of the motion model (to be
minimized). In addition, FRIC1 can be viewed as a proposi-
tion for a robust Mallows’ CP criterion.

Experiments on synthetic and real-image sequences, along
with comparison with RBIC, demonstrate that our criteria
achieve superior performance. RTIC supplied the best per-
formance on the synthetic dataset, whereas FRIC2 performed
the best on the tested real videos. This demonstrates that
the two proposed robust motion selection criteria, RTIC and
FRIC, are complementary and bring valuable contributions.
The proposed robust motion-selection criteria could be also
applied to other tasks involving parametric models.
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