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Abstract
We introduce a novel regulariser based on the natural vector field operations gradient, divergence, curl and shear. For suitable
choices of the weighting parameters contained in our model, it generalises well-known first- and second-order TV-type regu-
larisation methods including TV, ICTV and TGV2 and enables interpolation between them. To better understand the influence
of each parameter, we characterise the nullspaces of the respective regularisation functionals. Analysing the continuousmodel,
we conclude that it is not sufficient to combine penalisation of the divergence and the curl to achieve high-quality results,
but interestingly it seems crucial that the penalty functional includes at least one component of the shear or suitable bound-
ary conditions. We investigate which requirements regarding the choice of weighting parameters yield a rotational invariant
approach. To guarantee physically meaningful reconstructions, implying that conservation laws for vectorial differential
operators remain valid, we need a careful discretisation that we therefore discuss in detail.
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1 Introduction

In the beginning of the 1990s, Rudin, Osher and Fatemi rev-
olutionised image processing and in particular variational
methods using sparsity-enforcing terms by introducing total
variation (TV) regularisation [33]. Since then, it has been
serving as a state-of-the-art concept for various imaging tasks
including denoising, inpainting, medical image reconstruc-
tion, segmentation and motion estimation. Minimisation of
the TV functional, which for u ∈ L1(Ω) is given by

TVα(u) := sup
ϕ∈C∞

c (Ω,R2)
||ϕ||∞≤α

∫
Ω

u div(ϕ) dx, (TV*)

provides cartoon-like images with piecewise constant areas
that are separated by sharp edges. Note that here and in the
following Ω ⊆ R

2 is an open, bounded image domain with
Lipschitz boundary and α > 0.With regard to the TVmodel,
it is a well-known fact that there are two major drawbacks
inherent in this method: on the one hand solutions typically
suffer from a loss of contrast. On the other hand, they often
exhibit the so-called staircasing effect,where areas of gradual
intensity transitions are approximated by piecewise constant
regions separated by sharp edges such that the intensity func-
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tion along a line profile in 1D is reminiscent of a staircase.
To address the former deficiency, Osher et al. proposed the
use of Bregman iterations [30], a semi-convergent iterative
procedure that allows for a regain of contrast and details
in the recovered images. More recently, various debiasing
techniques [14,20,21] have been introduced to compensate
for the systematic error of the lost contrast. In this paper, we
shall however focus on the latter issue. To this end, we pro-
pose a novel regularisation functional composed of natural
vector field operators that is capable of providing solutions
with sharp edges and smooth transitions between intensity
values simultaneously. This approach certainly stands in the
tradition of several modified TV-type regularisation func-
tionals that have been contrived to cure the staircasing effect
by incorporating penalisation of second-order total variation,
which is given by (cf. for example [4,34])

TV2
α(u)

= sup
ϕ∈C∞

c (Ω,Sym2(R2))
||ϕ||∞≤α

∫
Ω

u div2(ϕ) dx . (TV2*)

Here, Sym2(R2) denotes the set of second-order symmetric
tensor fields on R2, i.e. the set of symmetric 2× 2-matrices.
Moreover, for a symmetric 2 × 2-matrix ϕ, div(ϕ) ∈
C1
0(Ω,R2) and div2(ϕ) ∈ C0(Ω) are defined by

(div(ϕ))i =
2∑
j=1

∂ϕi j

∂x j
,

div2(ϕ) =
2∑

i=1

∂2ϕi i

∂x2i
+ 2

∑
i< j

∂2ϕi j

∂xi∂x j

= ∂2ϕ11

∂x21
+ ∂2ϕ22

∂x22
+ 2

∂2ϕ12

∂x1∂x2
.

(div2)

Let us briefly recall the most popular instances of second-
order TV-type regularisers in a formal way. Note first that for
u ∈ W 1,1(Ω), the (first-order) total variation functional can
be rephrased as

TV(u) =
∫

Ω

|∇u| dx, (TV)

where here and in the following we always denote by ∇u
the gradient of u in the sense of distributions and by | · | the
Euclidean norm. Against the backdrop of (TV), Chambolle
and Lions [16] proposed to compose regularisers for image
processing tasks by coupling several convex functionals of
the gradient by means of the infimal convolution, defined for
two functionals as

J1(u)�J2(u) = inf
u2

J1(u − u2) + J2(u2). (IC)

In particular, they suggested to use a combination of first and
second derivatives

ICTV(α1,α0)(u)

= inf
u2∈W 2,1(Ω)

α1

∫
Ω

|∇u − ∇u2| dx

+ α0

∫
Ω

|∇ (∇u2) | dx,
(ICTV)

where here and in the following α1, α0 > 0 and we denote
by | · | the Frobenius norm whenever the input argument is
a matrix. Following this train of thought, Chan et al. [18]
proposed another variant of such a composed regularisation
functional, namely

CEP(α1,α0)(u)

= inf
u2∈W 2,1(Ω)

α1

∫
Ω

|∇u − ∇u2| dx

+ α0

∫
Ω

| div (∇u2)| dx .
(CEP)

More recently, Bredies et al. [11] suggested to generalise the
TV functional to the higher-order case in a different way.
In comparison with the second-order TV functional (TV2*),
they further constrained the set over which the supremum is
taken by imposing an additional requirement on the supre-
mum norm of the divergence of the symmetric tensor field.
Thus, they introduced the total generalised variation (TGV)
functional, which in the second-order case is given by

TGV2
(α1,α0)

(u) = sup
ϕ∈B0

∫
Ω

u div2(ϕ) dx,

B0 = {ϕ ∈ C∞
c (Ω,Sym2(R2)) :

‖ϕ‖∞ ≤ α0, ‖ div(ϕ)‖∞ ≤ α1}.
(TGV*)

Considering the corresponding primal definition of this func-
tional, we obtain the following unconstrained formulation:

TGV2
(α1,α0)

(u)

= inf
w∈W 1,1(Ω,R2)

α1

∫
Ω

|∇u − w| dx

+ α0

∫
Ω

|E(w)| dx .
(TGV)

In this case, one naturally obtains a minimiser for w in the
space BD(Ω) of vector fields of bounded deformation, i.e.
w ∈ L1(Ω,R2) such that the distributional symmetrised
derivative E(w) given by

E(w) = 1

2

(
∇w + ∇wT

)
(symG)
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Fig. 1 Illustration of the SVF image compression approach (SVF1) for α = 1
15

is a Sym2(R2)-valued Radon measure. Note that we will
very briefly recall the definition of Radonmeasures and some
related notions in the subsequent section. Looking closely at
the (TGV) functional, similarities and differences to the other
second-order TV-type regularisation functionals introduced
so far are revealed: all these approaches have in common
that they employ the infimal convolution to balance between
enforcing sparsity of the gradient of the function u and spar-
sity of some differential operator of a vector field resembling
the gradient of u. Thus, they locally emphasise penalisation
of either the first- or the second-order derivative informa-
tion, which will become visually apparent in Sect. 6, Figs. 6
and 7. As a consequence, in comparison with the original
TV regularisation, all the previously recalled second-order
models introduce an additional optimisation problem. On
the other hand, we can already observe a difference between
the former two models and the latter approach: while in the
ICTV and the CEP functional the gradient respectively the
divergence operator is applied to the gradient of u2, the sym-
metrised derivative in the TGV functional is applied to a
vector field w that does not necessarily have to be a gra-
dient field. We will come back to this point later on. In
the course of this paper, we will moreover show that our
novel functional, whichwill be introduced below, can be seen
as a generalisation of all aforementioned first- and second-
order TV-type models, since for suitable parameter choices
we (in the limit) obtain each of these approaches as a spe-
cial case. This way, we do not only shed a new light on
the relation of these well-established regularisation function-
als and provide a means of interpolating between them, but
we will also discuss properties of further second-order TV-
type approaches that can be obtained by different weightings
between the natural vector field operators our model builds
upon.

Let us now introduce our novel approach in more detail.
In [13], we proposed a variational model for image com-
pression that was motivated by earlier PDE-based methods
[28,29]: essentially, images are first encoded by performing
edge detection and by saving the intensity values at pixels on
both sides of the edges and these data are then decoded by
performing homogeneous diffusion inpainting. In this con-

text, our key observation was that the encoding step amounts
to the search for a suitable image representation by means
of a vector field whose nonzero entries are concentrated at
the edges of the image to be compressed. Therefore, we con-
ceived a minimisation problem that directly promotes such a
sparse vector field v and at the same time guarantees a certain
fidelity of the decoded image u to the original image f :

1

2

∫
Ω

(u − f )2 dx + α

∫
Ω

|v| dx → min
u,v

subject to div (∇u − v) = 0,

or equivalently, defining w = ∇u − v,

1

2

∫
Ω

(u − f )2 dx + α

∫
Ω

|∇u − w| dx
+ χ0 (div(w)) → min

u,w
,

(SVF1)

where χ0 denotes the characteristic function of the set of
divergence-free vector fieldsw. Figure 1 illustrates the sparse
vector fields (SVF)method for image compression in an intu-
itive way. The input image f (Fig. 1, left image) is encoded
via the two components of the vector field v (second and
third image) with the corresponding decoded image u (right
image) satisfying div(∇u−v) = 0. Looking at these results,
we concluded that the support of v (fourth image) indeed
corresponds well to an edge indicator, confirming the rela-
tion to [28,29]. Moreover, we observed that on the one hand,
our method preserves the main edges well while on the
other hand, the decoded images (cf. Fig. 1, right) exhibit
a higher spatial smoothness in comparison with the original
input images (cf. Fig. 1, left). Since this increased smooth-
ness did not come along with characteristic artefacts like
the staircasing effect in case of the TV regularisation, this
seemed attractive for further reconstruction tasks. Therefore,
we already back then considered the SVFmodel for homoge-
neous diffusion inpainting-based image denoising. In order
to obtain higher flexibility, we reformulated theminimisation
problem to
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Fig. 2 Reconstruction of piecewise affine test image using (gSVF) for different vector operators S

1

2

∫
Ω

(u − f )2 dx + α

∫
Ω

|∇u − w| dx

+ α
√

β

∫
Ω

| div(w)| dx → min
u,w

(SVF)

withβ > 0. In this form, the (SVF)model reveals strong sim-
ilarities to the (CEP) model with the only difference that w

does not necessarily have to be a gradient field. However, we
had to realise that the denoising performance of this model
was not convincing, since point artefacts were created at rea-
sonable choices of the regularisation parameter (cf. [13, Fig.
5]). In particular, these point artefacts are also apparent in the
second image of Fig. 2 in Sect. 3.1. As we will elaborate on
in greater detail in Sect. 3, these artefacts are indeed inher-
ent in this method. Against the backdrop of the Helmholtz
decomposition theorem, stating that every vector field can be
orthogonally decomposed into one divergence-free compo-
nent and a second curl-free one,we proposed in [13] to extend
the SVF model by incorporating penalisation of the curl of
w. However, as we shall dwell on in Sect. 4, such an extended
model still had not yet provided satisfactory results, since the
point artefacts could indeed be reduced, but were still visible.
Hence, we concluded that further adjustments to our model
were needed. Inspired by the idea to combine penalisations
of divergence, curl and shear to regularise motion flow fields
[35], we eventually contrived the following image denoising
model, which (dependent on the weights chosen) enforces a
joint vector operator sparsity (VOS) of divergence, curl and
the two components of the shear:

1

2

∫
Ω

(u − f )2 dx + α

∫
Ω

|∇u − w| dx

+ α

∫
Ω

∣∣∣∣∣∣∣∣

√
β1 curl(w)√
β2 div(w)√
β3 sh1(w)√
β4 sh2(w)

∣∣∣∣∣∣∣∣
dx → min

u,w
,

(VOS)

where α > 0 is a regularisation parameter in the classical
sense while the βi > 0 are determining the specific form of
the regularisation functional.

In this paper, wewill show results for image denoising, but
similar to existing TV-type regularisers our novel approach
is not limited to this field of application, but can rather be
used as a regulariser for a large variety of image reconstruc-
tion problems. To apply the (VOS) model in the context of a
different imaging task, the squared L2-norm would have to
be replaced by a suitable distance measure D(Au, f ), where
A denotes the bounded linear forward operator between two
Banach spaces corresponding to the reconstruction problem
to be solved. The fidelity term D(Au, f ) would have to
be chosen in dependence on the expected noise character-
istics and specific application as it is common practice in
variational modelling (cf. [6,15]). However, for the sake of
simplicity and to provide a good intuition for the effects of
our novel regulariser on the reconstruction result, we will
adhere to image denoising for the remainder of this paper.

To summarise our contributions,weprovide awayof look-
ing at well-established TV-type regularisation methods from
a new angle. We introduce a functional that generalises both
ourmodel presented in [13] and themethods discussed above,
formulated by applying sparsity constraints to common natu-
ral differential vector field operators. In contrast to improving
state-of-the-art imaging methods, we rather focus on a sound
mathematical analysis of our regulariser incorporating analy-
sis of the nullspaces, which allows us to draw conclusions on
optimal parameter combinations. Even more, we investigate
under which conditions imposed on the weighting parame-
ters we obtain rotational invariance. We also show that we
can yield competitive denoising results sharing the ability of
second-order models to reconstruct sharp edges and smooth
intensity transitions simultaneously. Moreover, we highlight
the fact that our model is able to interpolate between (ICTV)
and (TGV)byonlymodifyingoneparameter.Wealso include
a discussion on our discretisation, which is different from the
one for the latter models, but has its own merits with respect
to compliance with conservation laws.

Particularly, the remainder of this paper is organised as fol-
lows: In the subsequent section, we very briefly recall some
notions in the context of Radon measures relevant for the
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further course of this work. Afterwards, exact definitions of
the differential operators included in the (VOS) model will
be stated in Sect. 3.Wewill investigate both theoretically and
practically how regularisation where only one βi is nonzero
affects image reconstruction. In fact, all of the four result-
ing cases will involve certain characteristic artefacts that
can be rigorously explained by studying the corresponding
nullspaces of the regulariser. As we will show in Sect. 4, the
VOS model is indeed capable of producing denoising results
with sharp edges and smooth transitions between intensity
values simultaneously at suitable choices of the weighting
parameters. Even more, a rigorous discussion and analysis
of this model will reveal further properties and will pave the
way for the insight that our novel approach is a means of uni-
fying thewell-knownfirst- and second-order TV-typemodels
introduced above and as such it naturally offers possibilities
for interpolation between them. In Sect. 5, the discretisation
of our model is explained in detail, as it is not straightforward
to choose due to the various vector field operators involved.
We compare our specific type of discretisation with the one
in [11] and justify our choice by showing that we comply
with various conservation laws. In Sect. 6, we briefly dis-
cuss the numerical solution of our model, compare the best
result we can obtain to state-of-the-art methods illustrating
that the proposed approach can indeed compete with those
of existing second-order TV-type models. We furthermore
present statistics on how various parameter combinations
affect reconstructions with respect to different quality mea-
sures.We conclude the paper with a summary of our findings
and future perspectives in Sect. 7.

2 Preliminaries

In the previous section, we have introduced the total variation
of a function u ∈ L1(Ω) as

TV(u) = sup
ϕ∈C∞

c (Ω,R2)
||ϕ||∞≤1

∫
Ω

u div(ϕ) dx .

On this basis, one defines the space of functions of bounded
variation by

BV (Ω) = {u ∈ L1(Ω) : TV(u) < ∞},

which equipped with the norm

‖u‖BV = ‖u‖1 + TV(u)

constitutes a Banach space. It is a well-known fact (cf. e.g.
[3, Chapter II]) that for u ∈ BV (Ω) the distributional gra-
dient ∇u of u can be identified with a finite vector-valued

Radon measure, which can be characterised in the follow-
ing way (cf. e.g. [1, Chapter I]): Let B(Ω) denote the Borel
σ -algebra generated by the open sets in Ω . Then we call
a mapping μ : B(Ω) → R

d , d ≥ 1, an R
d -valued, finite

Radon measure if μ(∅) = 0 and μ is σ -additive, i.e. for any
sequence (An)n∈N of pairwise disjoint elements of B(Ω)

it holds that μ
(⋃∞

n=1 An
) = ∑∞

n=1 μ(An). Moreover, we
denote the space of Rd -valued finite Radon measures by

M(Ω,Rd) = {μ : B(Ω) → R
d : μ is Rd -valued,

finite Radon measure}.

By means of the Riesz–Markov representation theorem the
space of the Rd -valued finite Radon measures can be identi-
fied with the dual space of C0(Ω,Rd) under the pairing

(ϕ, μ) =
d∑

i=1

∫
Ω

ϕi dμi for ϕ ∈ C0(Ω,Rd).

Consequently, we equip the space of the R
d -valued finite

Radon measures with the dual norm

‖μ‖M(Ω,Rd ) = sup
ϕ∈C0(Ω,Rd )

||ϕ||∞≤1

|(ϕ, μ)|

= sup
ϕ∈C0(Ω,Rd )

||ϕ||∞≤1

d∑
i=1

∫
Ω

ϕi dμi

yielding a Banach space structure for M(Ω,Rd). Now tak-
ing into account that for u ∈ BV (Ω) the distributional
gradient is a finite R

2-valued Radon measure we can con-
sider

‖∇u‖M(Ω,R2) = sup
ϕ∈C0(Ω,R2)

||ϕ||∞≤1

|(ϕ,∇u)|.

By the density of the space of test functions C∞
c (Ω) in

C0(Ω), we moreover obtain the following identity:

‖∇u‖M(Ω,R2) = sup
ϕ∈C∞

c (Ω,R2)
||ϕ||∞≤1

|(ϕ,∇u)|

= sup
ϕ∈C∞

c (Ω,R2)
||ϕ||∞≤1

∫
Ω

u div(ϕ) dx

= TV(u),

where the second equality results from the definition of the
distributional gradient. We thus see that for u ∈ BV (Ω) its
total variation equals just the Radon norm of its distributional
gradient. For this reason, an alternative approach towards
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the definition of the space of bounded variation characterises
functions u ∈ L1(Ω) as elements of BV (Ω) if their distribu-
tional gradient is representable by a finite Rd -valued Radon
measure. However, there also exists a dissimilarity between
‖∇u‖M(Ω,R2) and TV(u): while by its characteristic as a
norm the former can only attain values in [0,∞), the latter
can not only be defined for functions in BV (Ω), but also for
any function in L1(Ω), since it can equal infinity. We will
come back to this point shortly.

In view of the previously summarised insights, it seems
natural to implement the infimal convolution to balance
between enforcing sparsity of the distributional gradient of
u and some differential operator of a finiteRd -valued Radon
measure w resembling ∇u by means of Radon norms. In the
following, we will thus pursue this approach. In doing so, we
however will slightly abuse notation by extending the Radon
norm to a broader class of generalised functions similar to
TV that is defined for a broader class of functions than the
actual Radon norm of the distributional gradient. Here, we
will adhere to the notation of the Radon norm and just set it to
infinity whenever the argument is no finiteRd -valued Radon
measure, but only an element of the more general class of
distributions.

3 Natural Differential Operators on Vector
Fields

In Sect. 1 we recalled the (SVF) model for image denois-
ing and already mentioned that due to point artefacts the
obtained denoising results were unsatisfactory. Nevertheless,
we decided to adhere to the idea of realising penalisation of
second-order derivative information by applying natural vec-
tor operators to a two-dimensional vector field w resembling
the gradient of u. Against the backdrop of the Helmholtz
respectively the Hodge decomposition theorem and inspired
by the work of Schnörr [35], the differential operators we
are going to consider besides the divergence are the curl
and the two components of the shear. In this section, we
first give precise definitions of these operators in 2D. In a
next step, we then reexamine the SVF model and moreover
consider three alternatives, where the divergence operator is
replaced by one of the aforementioned natural vector opera-
tors, namely the curl respectively one component of the shear.
We show denoising results for the respective models reveal-
ing that each regulariser leads to very distinct artefacts that
we can explain rigorously by analysing the corresponding
nullspaces.

3.1 Differential Operators on 2DVector Fields

The curl is traditionally defined for three-dimensional vector
fields and there is no unique way to define it in two dimen-

sions. We chose the following definition of the curl of a 2D
vector field z:

curl(z) = ∂z2
∂x1

− ∂z1
∂x2

. (curl)

The definition of the divergence is well-known and is given
as

div(z) = ∂z1
∂x1

+ ∂z2
∂x2

. (div)

As mentioned in Sect. 1, incorporating the shear as a com-
ponent of a sparse regulariser for vector fields has first been
introduced by Schnörr [35]. It consists of two components,
each of which we consider separately. Their definitions also
differ slightly in the literature and we decided to choose the
following two:

sh1(z) = ∂z2
∂x2

− ∂z1
∂x1

; (sh1)

sh2(z) = ∂z1
∂x2

+ ∂z2
∂x1

. (sh2)

3.2 Sparsity of Scalar-Valued Natural Differential
Operators

In Fig. 2, we can see how enforcing sparsity of one of the
four different aforementioned scalar-valued natural vector
operators applied to the vector field w in (SVF) changes the
reconstruction u. More precisely, we consider the model

1

2

∫
Ω

(u − f )2 dx

+ inf
w∈M(Ω,R2)

α‖∇u − w‖M(Ω,R2)

+ α
√

β‖S(w)‖M(Ω)

→ min
u∈L2(Ω)

,

(gSVF)

where S corresponds to one of the vector field operators
defined in (curl)–(sh2). Here and in the following we will
slightly abuse notation and write derivatives of the measure
w, which are however to be interpreted in a distributional
sense. We first identify S(w) with the linear functional

ϕ ∈ C∞
0 (Ω) �→

∫
Ω

S∗ϕ(x) · dw.

If this linear functional is bounded in the predual space of
M(Ω), the space of continuous functions with compact sup-
port, then we can identify it with a Radon measure S(w) and
define ‖S(w)‖M(Ω), otherwise we set it to infinity.
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In order to understand the appearance of artefacts as above,
it is instructive to study the nullspaces of the differential
operators, as the following lemma shows, providing a result
similar to [5]:

Lemma 1 Let R : L2(Ω) → R ∪ {+∞} be a con-
vex absolutely one-homogeneous functional, i.e. R(cu) =
|c|R(u) ∀c ∈ R. Then for each u0 ∈ L2(Ω) with R(u0) = 0
we have

R(u + u0) = R(u), ∀ u ∈ L2(Ω). (1)

Moreover, let f = f0 + g with R( f0) = 0 and
∫
Ω

f0g dx =
0. Then the minimiser û of

1

2
‖u − f ‖2 + αR(u) → min

u∈L2(Ω)
(2)

is given by û = f0 + u∗ with
∫
Ω

f0u∗ dx = 0 and

‖u∗ − g‖2 ≥ min{αλ0, ‖g‖2},
R(u∗) ≤ R(g) − 1

2α
min{αλ0, ‖g‖2}2,

where λ0 is the smallest positive eigenvalue of R.

Proof Convexity and positive homogeneity imply a triangle
inequality, hence

R(u) − R(−u0) ≤ R(u + u0) ≤ R(u) + R(u0),

and since R(u0) = R(−u0) = 0, we conclude R(u + u0) =
R(u).

Now consider the variational model (2) and write u =
c f0 + v with

∫
Ω

v f0 dx = 0. Then we have

1

2
‖u − f ‖22 + αR(u)

= 1

2
‖(c − 1) f0‖22 + 1

2
‖v − g‖22 + αR(v).

The first term is minimised for c = 1 and the second for
v = u∗ with u∗ being the solution of

1

2
‖u − g‖22 + αR(u) → min

u∈L2(Ω)
.

It remains to verify that indeed
∫
Ω
u∗ f0 dx = 0. Since the

Fréchet subdifferential of the functional to be minimised is
the sum of the Fréchet derivative of the first term and the
subdifferential of the regularisation term (cf. e.g. [32, Theo-
rem 23.8]), the solution u∗ satisfies the optimality condition
u∗ = g + α p∗ for p∗ ∈ ∂R(u∗). We refer to [22, Chapter I,

Sect. 5] for a formal definition of the subdifferential. Since
by definition of a subgradient of R

∫
Ω

p∗ f0 dx ≤ R( f0) = 0,
∫

Ω

p∗(− f0) dx ≤ R(− f0) = 0,

we obtain the orthogonality relation because
∫
Ω
g f0 dx = 0.

The lower bound on ‖u∗ − g‖2 follows from a result in [5,
Sect. 6], the upper bound on the regularisation follows from
combining this estimate with

1

2
‖u∗ − g‖22 + αR(u∗) ≤ αR(g),

which is due to the fact that u∗ is aminimiser of the functional
with data g. ��

Lemma 1 has a rather intuitive interpretation: while the
nullspace component with respect to R in the signal is
unchanged in the reconstruction, the part orthogonal to the
nullspace is changed. Indeed this part is shrunk in some sense,
u∗ has a smaller value of the regularisation functional than g.
Hence, when rescaling the resulting image for visualisation,
the nullspace component is effectively amplified. As a conse-
quence, we proceed to a study of nullspaces for the different
models with

R(u) = inf
w∈M(Ω,R2)

‖∇u−w‖M(Ω,R2) + √
β‖S(w)‖M(Ω).

– Let S = curl and choose u ∈ C2(Ω), then we can set
w = ∇u and since the curl of the gradient vanishes,
we obtain the infimum at zero. By a density argument R
vanishes on L2(Ω). Hence, Lemma 1 with g = 0 shows
that the data f are exactly reconstructed by û.

– Let S = div, which exactly resembles (SVF), and we can
observe the point artefacts described above (cf. Fig. 2,
second image). Those are more difficult to be understood
from the nullspace, which consists of harmonic functions
(w = ∇u, div(w) = 0). The latter is less relevant how-
ever for discontinuous functions,which are far away from
harmonic ones. We rather expect to have a divergence
of w being sparse, i.e. a linear combination of Dirac δ-
distributions. Hence, with this structure of �u = div(w)

the resulting u would be the sum of a harmonic function
and a linear combination of fundamental solutions of the
Poisson equation, which exhibits a singularity at its cen-
tre in two dimensions. This singularity corresponds to the
visible point artefacts.

– With S = sh1, we observe a stripe-like texture pattern in
diagonal directions. Here, w = ∇u, sh1(w) = 0 yields
a wave equation ∂2u

∂x21
= ∂2u

∂x22
. According to d’Alembert’s
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formula (cf. e.g. [23, pp. 65–68]), the latter is solved by
functions of the form u = U (x1+x2)+V (x1−x2), which
corresponds exactly to structures along the diagonal.

– The artefacts in the case S = sh2 look similar, but the
stripe artefacts are parallel to the x1- and x2-axes. Now
the nullspace is characterised by w = ∇u, sh2(w) = 0,
which is equivalent to ∂2u

∂x1∂x2
= 0. This holds indeed

for u = U1(x1) + U2(x2), i.e. structures parallel to the
coordinate axes.

As observed already in the SVF model, we see from the
above examples that the functional using any single differen-
tial operator has a huge nullspace andwill not yield a suitable
regularisation in the space of functions of bounded variation.
On the other hand, using norms of the symmetric or full gra-
dient as in TGV or ICTV is known to yield a regularisation
in this space [4,11]. Thus, one may ask which and howmany
scalar differential operators one should combine to obtain a
suitable functional. In the subsequent section, wewill deduce
an answer to this question, where in the end again a partic-
ular focus is laid on the four natural differential operators
discussed above.

4 UnifiedModel

In view of the insights described in the previous section, we
decided to consider a much more general approach, where
no longer one natural vector operator is applied to w, but
instead a general operator A is applied to the Jacobian of w

to penalise second-order derivative information. We give a
rigorous dual definition of the regularisation functional and
state the corresponding subdifferential. By rephrasing this
very general approach appropriately, we are eventually able
to show that for a suitable choice of the general operator we
can return to a formulation based on a weighted combination
of the aforementioned natural vector field operators.We anal-
yse the thus obtained model with respect to nullspaces and
prove the existence of BV solutions. In addition, we unroll
that it is indeed justified to call the proposed approach a uni-
fied model, since we show that (at least in the limit) we can
obtain the well-known second-order TV-type models ICTV,
CEP and TGV as well as variations of first-order total vari-
ation as special cases. Finally, we investigate under which
conditions the presented approach is rotationally invariant.

4.1 General Second-Order TV-Type Regularisations

In a unified way, any of the above regularisation functionals
can be written in the form

R(u)

= inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2)

+ ‖A∇w‖M(Ω,Rm )

(3)

with a pointwise linear operator A : R2×2 → R
m indepen-

dent of x such that ∇w(x) �→ A∇w(x) if w has C1 density,
where in the above context m = 1. In the general setting, we
can use the distributional gradient and identify A∇w with
the linear form

ϕ ∈ C∞
0 (Ω,Rm) �→

∫
Ω

div(A∗ϕ(x)) · dw.

We are interested in the case where this linear functional is
bounded on the predual space ofM(Ω,Rm), i.e. the space of
continuous vector fields, and thus identifyA∇w with such a
vector measure justifying the use of the norm in (3) (see also
the equivalent dual definition below). Note that for m < 4A
will have a nullspace and henceA∇w being aRadonmeasure
does not imply that ∇w is a Radon measure. The product is
hence rather to be interpreted as some differential operator
A∇ applied to the measure w than A multiplied with ∇w.

In view of (3), where as mentioned earlier m = 1, we can
derive a rigorous dual definition starting from

R(u) = inf
w∈M(Ω,R2)

sup
(ϕ,ψ)∈B1

∫
Ω

u div(ϕ) dx

+
∫

Ω

ϕ · dw

+
∫

Ω

div(A∗ψ) · dw,

B1 = {(ϕ, ψ) ∈ C∞
c (Ω,R2) × C∞

c (Ω) :
‖ϕ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1}.

(4)

Assuming that we can exchange the infimum and supremum,
i.e.

R(u) = sup
(ϕ,ψ)∈B1

inf
w∈M(Ω,R2)

∫
Ω

u div(ϕ) dx

+
∫

Ω

ϕ · dw

+
∫

Ω

div(A∗ψ) · dw,

we see that a value greater than −∞ in the infimum only
appears if ϕ + div(A∗ψ) = 0. Thus, we can restrict the
supremum to such test functions, which actually eliminates
w and ϕ, and obtain the following formula reminiscent of the
TGV functional [11]:

R(u) = sup
ψ∈B∗

1

∫
Ω

u div2(A∗ψ) dx, (5)
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B∗
1 = {ψ ∈ C∞

c (Ω) :
‖ψ‖∞ ≤ 1, ‖ div(A∗ψ)‖∞ ≤ 1}. (6)

We see that there is an immediate generalisation of the
above definition when we want to use more than one scalar
differential operator for regularising the vector-valued mea-
sure w, we simply need to introduce a pointwise linear
operator A : R

2×2 → R
m with m ≥ 1. Then the defini-

tion (5) remains unchanged if we adapt the admissible set

B∗
1 = {ψ ∈ C∞

c (Ω,Rm) :
‖ψ‖∞ ≤ 1, ‖ div(A∗ψ)‖∞ ≤ 1}. (7)

Let us provide some analysis of the above formulations.
First of all we show that the infimal convolution is exact,
i.e. for given u ∈ BV (Ω) the infimum is attained for some
w ∈ M(Ω,R2).

Lemma 2 Let u ∈ BV (Ω), then there existsw ∈ M(Ω,R2)

such that

inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm )

= ‖∇u − w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm ).

Proof We consider the convex functional

F(w) = ‖∇u − w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm ).

First of all w = 0 is admissible and yields a finite value
F(0) = ‖∇u‖M(Ω,R2) < ∞, since u ∈ BV (Ω). Thus, we
can look for a minimiser of F on the set F(w) ≤ F(0). For
such w the triangle inequality yields the bound

‖w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm )

≤ 2‖∇u‖M(Ω,R2).

In particular, w and A∇w are uniformly bounded in
M(Ω,R2), which consequently also holds for minimising
sequences wn and A∇wn . A standard argument based on
the Banach-Alaoglu theorem and the metrisability of the
weak-star topology on bounded sets (or alternatively cf. [1,
Theorem 1.59]) yields the existence of weak-star convergent
subsequences wnk and A∇wnk . Let w ∈ M(Ω,R2) denote
the limit of the first subsequence wnk . Taking into account
the continuity of the operator A∇ in the space of distribu-
tions, the limit of the second subsequence A∇wnk equals
A∇w. Then w is a minimiser due to the weak-star lower
semicontinuity of both summands of F . ��

Next, we show the equivalence of the problem formulations
in (3) and (5).

Lemma 3 The definitions (3) and (5) with a pointwise linear
operator A : R2×2 → R

m are equivalent, i.e. for all u ∈
BV (Ω) we have

inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm )

= sup
ψ∈B∗

1

∫
Ω

u div2(A∗ψ) dx .

with B∗
1 given by (7).

Proof The proof follows the line of argument in [10] (see
also [12]) and is based on a Fenchel duality argument for the
formulation, which we already sketched above. For this sake
let RP denote the primal formulation (3) and rewrite the dual
formulation RD given in (5) as

RD(u) = sup
(v1,v2)∈X

v=0

∫
Ω

u div(v1) dx − I1(v1) − I2(v2),

wherewe use the spaces X = C1
0(Ω,R2)×C2

0 (Ω,Rm),Y =
C1
0(Ω,R2), the linear operator  : X → Y , (v1, v2) =

−v1 + div(A∗v2), and the indicator functions

I j (v j ) =
{
0 if ‖v j‖∞ ≤ 1
+∞ else,

j = 1, 2.

The equivalence of the supremal formulation on these spaces
follows from the density of C∞

c (Ω) in Ck
0 (Ω) for any k.

Using the convex functionals G : Y → R ∪ {+∞} as the
indicator function of the set {0} and F : X → R ∪ {+∞}
given by

F(v) =
∫

Ω

(−u div(v1) + I1(v1) + I2(v2)) dx,

we can further write

RD(u) = sup
(v1,v2)∈X

−F(v) − G(v).

In view of [10, p. 12] it is straightforward to verify that

Y =
⋃
λ≥0

λ(dom(G) − dom(F)),

where dom(F) = {x ∈ X : F(x) < ∞} denotes the effec-
tive domain, and hence together with the convexity and lower
semicontinuity the conditions for the Fenchel duality theo-
rem [2, Corollary 2.3] are satisfied. Hence,

RD(u)

= inf
w∈Y ∗ F

∗(−∗w) + G∗(w)
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= inf
w∈Y ∗ sup

(v1,v2)∈X
{
(−∗w, v) + u div(v1)

−I1(v1) − I2(v2)}
= inf

w∈Y ∗ sup
(v1,v2)∈X‖v1‖∞≤1
‖v2‖∞≤1

{(w,−v) − (∇u, v1)}

= inf
w∈Y ∗ sup

(v1,v2)∈X‖v1‖∞≤1
‖v2‖∞≤1

{
(w, v1 − div(A∗v2)) − (∇u, v1)

}

= inf
w∈Y ∗ sup

(v1,v2)∈X‖v1‖∞≤1
‖v2‖∞≤1

{(w − ∇u, v1) + (A∇w, v2)}

= inf
w∈Y ∗ ‖∇u − w‖M(Ω,R2) + ‖A∇w‖M(Ω,Rm ),

where the last conversion results from the definition of the
Radon norm. Since u ∈ BV (Ω) the above functional only
has a finite value for w ∈ M(Ω,R2). Hence the infimum in
the larger space Y ∗ equals the infimum in M(Ω,R2). This
yields the assertion. ��

Based on the dual formulation (5), we can also understand
the subdifferential of the absolutely one-homogeneous func-
tional R. We see that p ∈ ∂R(u) if p = div2(A∗ψ) for
ψ ∈ B∗

1 and

∫
Ω

p u dx =
∫

Ω

div2(A∗ψ) u dx = R(u).

In general, subgradients will be elements of a larger set,
namely a closure of B∗

1 in L∞(Ω) with the restriction that
div(A∗ψ) can be integrated with respect to the measure ∇u.

The domain of R and the topological properties introduced
are unclear at first glance and depend on the specific choice
of A. However, we can give a general result bounding R by
the total variation.

Lemma 4 The functional R is a seminorm on BV (Ω) and
satisfies R(u) ≤ TV(u) = |u|BV for all u ∈ BV (Ω).

Proof The fact that R is a seminorm is apparent from the
dual definition (5). From the primal definition (3) we see that
the infimum over all w is less than or equal to the value at
w = 0, which is just |u|BV . ��

4.2 Combination of Natural Differential Operators

As an alternative to the above form, we can provide a matrix
formulation when writing the gradient as a vector

∇Vw :=
(

∂w1

∂x1
,
∂w1

∂x2
,
∂w2

∂x1
,
∂w2

∂x2

)T

.

Then the operator A is represented by an m × 4 matrix A,
and we have A∇w = A∇Vw. For the four scalar operators
used above, we obtain

Acurl = √
β1(0,−1, 1, 0),

Adiv = √
β2(1, 0, 0, 1),

Ash1 = √
β3(−1, 0, 0, 1),

Ash2 = √
β4(0, 1, 1, 0).

Using the vector of natural differential operators

∇Nw := (curl(w), div(w), sh1(w), sh2(w))�

we can also write

A∇Vw = B∇Nw, A = B

⎛
⎜⎜⎝

0 −1 1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ .

We mention that due to the fact that we use the Frobenius
norm, which has the property ‖z‖ = ‖Qz‖ for every orthog-
onal matrix Q, two regularisations represented by matrices
A1 and A2 will be equivalent if there exists an orthogonal
matrix Q with A2 = QA1.

The question we would like to investigate in detail in the
following paragraphs is whether enforcement of joint spar-
sity of some or all of the four natural differential operators
(curl)–(sh2) applied to the vector field w can improve the
reconstruction results.Moreover,we shall characterise a vari-
ety of models in the literature as special cases. This is not
surprising, as we can always choose a suitable matrix A for
any of those, but interestingly they can all be described by a
diagonal matrix

B = diag(
√

β1,
√

β2,
√

β3,
√

β4).

We will thus describe the regularisation functional solely in
terms of the vector

β = (
√

β1,
√

β2,
√

β3,
√

β4)

as

Rβ(u)

= sup
ϕ∈Cβ

∫
Ω

u div(ϕ) dx

= inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2)

+ ‖diag(β)∇Nw‖M(Ω,R4)

(8)

with

Cβ = {ϕ ∈ C∞
c (Ω,R2) :

ϕ = ∇∗
N (diag(β)ψ) for some

ψ ∈ C∞
c (Ω,R4), ‖ϕ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1},
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where

∇∗
N

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠

= curl∗ ψ1 + div∗ ψ2 + sh1
∗ ψ3 + sh2

∗ ψ4

and

curl∗ ψ =
(

∂ψ

∂x2
,− ∂ψ

∂x1

)T

,

div∗ ψ =
(

− ∂ψ

∂x1
,− ∂ψ

∂x2

)T

,

sh1
∗ ψ =

(
∂ψ

∂x1
,− ∂ψ

∂x2

)T

,

sh2
∗ ψ =

(
− ∂ψ

∂x2
,− ∂ψ

∂x1

)T

.

Based on this regularisation,wewill study themodel prob-
lem

1

2

∫
Ω

(u − f )2 dx + αRβ(u) → min
u∈BV (Ω)

(9)

for f ∈ L2(Ω), which of course can be extended directly to
more general inverse problems and data terms. Note that α

is a regularisation parameter in the classical sense, while the
parameters βi are rather characterising the specific form of
the regularisation functionals.

In Sect. 3, we have presented reconstruction results for the
denoising problem (gSVF) and the effect of regularisation
incorporating one of the four scalar-valued vector operations
(curl)–(sh2), i.e. for only one of theweightsβi being nonzero.
In the following, we demonstrate how our model behaves
when two, three or all βi are nonzero.

InFig. 3,we are given apiecewise affine test image and add
Gaussian noise with zero mean and variance σ 2 = 0.05. For
the task of denoising, we solve (9) and vary the weights βi .
We optimise the parameters such that the structure similarity
(SSIM) index is maximal. We can observe that setting two
weights in our novel regulariser to zero still yields some arte-
facts in the reconstruction, especially in the case of enforcing
a sparse curl in combination with one of the two components
of the shear. As soon as we only set one of the four weights
to zero, we obtain very good results, as can be seen in the
bottom row of Fig. 3. On the top right, the reconstruction
with all weights being nonzero is presented, which yields a
comparably good result.

In the following, we demonstrate that we can resem-
ble special cases of already existing TV-type reconstruction
models by modifying the weights in our regulariser (8). In

particular, we show that we are able to retrieve (TV), (CEP),
(TGV) and (ICTV). However, before we discuss the relation
of our proposed model to these existing regularisers in detail
and even demonstrate that we can interpolate between the lat-
ter two by adapting one single weight, we shall elaborate on
nullspaces and the existence of BV solutions for our unified
model given in (9).

4.3 Nullspaces and Existence of BV Solutions

Our numerical results indicate that we obtain a real denois-
ing resembling at least the regularity of a BV solution if at
least three of the βi are not vanishing. It is thus interesting
to further study the nullspace N (Rβ) of the regularisation
functional Rβ in such cases and check whether it is finite-
dimensional. Subsequently, a similar argument to [4] can be
made showing that the regularisation functional is equivalent
to the norm in BV (Ω) on a subspace that does not include
the nullspace. If the nullspace components are sufficiently
regular, Lemma 1 yields that minimisers of a variational
model for denoising are indeed in BV (Ω). In the following,
we thus aim at characterising the set of all u ∈ L2(Ω) for
which Rβ(u) = 0 holds. Note that we provide further details
on the derivation of the subsequent results in Appendix A.
First of all, we directly see that β1 plays a special role, since
curl(∇u) = 0. Thus, the case β1 = 0 will yield the same
nullspace as β1 > 0. Hence, we only distinguish cases based
on the other parameters:

– βi > 0, i = 2, 3, 4. In this case, we have ∇u = w and
∇w = 0, the nullspace simply consists of affinely linear
functions (see also [4]).

– β2 = 0, β3, β4 > 0. In this case, we can argue similarly
to Sect. 3 and see that u = U (x1 + x2) + V (x1 − x2) =
U1(x1)+U2(x2). Computation of second derivatives with
respect to x1 and x2, respectively, yields the identity
U ′′(x1 + x2) + V ′′(x1 − x2) = U ′′

1 (x1) = U ′′
2 (x2). Thus,

U ′′
1 andU ′′

2 are equal and constant. Integrating those with
the constraint that U1 and U2 can only depend on one
variable yields that the nullspace can only be a linear
combination of x21 + x22 , x1, x2, 1. One easily checks that
these functions are indeed elements of the nullspace.

– β3 = 0, β2, β4 > 0. Now we see that u is harmonic and
on the other hand u = U1(x1) + U2(x2), which yields
U ′′
1 (x1) + U ′′

2 (x2) = 0. The latter can only be true if
U ′′
1 andU ′′

2 are constant, with constants summing to zero.
Integrating those shows that the nullspace consists exactly
of linear combinations of x21 − x22 , x1, x2, 1.

– β4 = 0, β2, β3 > 0. A similar argument as above now
yields u = U (x1 + x2) + V (x1 − x2) andU ′′(x1 + x2) +
V ′′(x1 − x2) = 0. Again we obtain that U ′′ and V ′′ are
constant, after integration we see that the nullspace con-
sists exactly of linear combinations of x1x2, x1, x2, 1.
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Fig. 3 Reconstruction of a piecewise affine test image adding Gaussian noise with zero mean and variance σ 2 = 0.05 using (9) for different
parameter combinations

This leads us to the following result characterising further
the topological properties of the regularisation functionals,
based on a Sobolev–Korn-type inequality, which we state
first.

Lemma 5 Let βi ≥ 0 for i = 1, . . . , 4 and assume that at
most one of the parameters βi vanishes. Then the Korn-type
inequality

‖w − PBw‖M(Ω,R2) ≤ CB‖B∇Nw‖M(Ω,R4) (10)

holds, where PB is the projection onto the finite-dimensional
nullspaceN (B∇Nw)of the differential operator B∇Nw and
CB is a constant depending on B only.

Proof Wewill use the Korn inequality in measure spaces (cf.
[9, Corollary 4.20]), stating that for vector fields of bounded
deformation the inequality

‖w − Pw‖L2(Ω,R2) ≤ CS‖ES(w)‖M(Ω,R2×2)
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holds, where ES(w) is the symmetric gradient and P a
projector onto its nullspace. We can equivalently write the
inequality as

‖w − Pw‖L2(Ω,R2) ≤ C‖E(w)‖M(Ω,R4),

where E(w) is the vectorised symmetric gradient

E(w) =
(

∂w1

∂x1
,

∂w1
∂x2

+ ∂w2
∂x1

2
,

∂w1
∂x2

+ ∂w2
∂x1

2
,
∂w2

∂x2

)�
.

Since on a bounded domain the total variation of a measure
is a weaker norm than the L2 norm of its Lebesgue density,
we find

‖w − Pw‖M(Ω,R2) ≤ C̃‖E(w)‖M(Ω,R4).

In order to verify the Korn-type inequality it is crucial to have
three coefficients βi different from zero.

In this case, an elementary computation shows that there
exists an invertible matrix B̃ ∈ R

2×2 and an orthogonal
Matrix Q ∈ R

4×4 such that

QB∇Nw = E(B̃w).

Thus, the Korn inequality applied to w̃ = B̃w implies

‖w̃ − Pw̃‖M(Ω,R2)

≤ C̃‖E(B̃w)‖M(Ω,R4)

= C̃‖QB∇Nw‖M(Ω,R4)

= C̃‖B∇Nw‖M(Ω,R4).

Since P = B̃PN (B̃)−1 is a projector on the nullspace of E ,
we obtain

‖w − PNw‖M(Ω,R2)

≤ ‖B̃−1‖ ‖w̃ − Pw̃‖M(Ω,R2)

≤ ‖B̃−1‖ C̃‖B∇Nw‖M(Ω,R4).

If all βi are positive, we can use an analogous argument
with B∇Nw = ∇ B̃w and the Poincaré-Wirtinger inequality
in spaces of bounded variation [7]. ��
Lemma 6 Let βi ≥ 0 for i = 1, . . . , 4. Then for Rβ defined
in (8) the estimate Rβ(u) ≤ |u|BV holds for all u ∈ BV (Ω).
Moreover, assume that at most one of the parameters βi
vanishes and let U ⊂ BV (Ω) be the subspace of all BV
functions orthogonal to N (Rβ) in the L2 scalar product.
Then there exists a constant c ∈ (0, 1) depending only on β

and Ω such that Rβ(u) ≥ c|u|BV for all u ∈ U .

Proof The first estimate is a special case of Lemma 4. In
order to verify the second inequality we proceed as in [10].
The key idea is to use the Korn-type inequality defined in
Lemma 5. Given (10), we have

‖∇u − w‖M(Ω,R2) + ‖B∇Nw‖M(Ω,R4)

≥ ‖∇u − w‖M(Ω,R2) + 1

CB
‖w − PBw‖M(Ω,R2)

≥ min{1, 1

CB
}(‖∇u−w‖M(Ω,R2) + ‖w−PBw‖M(Ω,R2))

≥ min{1, 1

CB
}‖∇u − PBw‖M(Ω,R2).

Thus, taking the infimum over all w yields

Rβ(u)

≥ min{1, 1

CB
} inf

w∈M(Ω,R2)
‖∇u − PBw‖M(Ω,R2)

= min{1, 1

CB
} inf

w̃∈N (B∇Nw)
‖∇u − w̃‖M(Ω,R2),

where the last equality results from the definition of the pro-
jection PB .

It is then easy to see that for u ∈ U the optimal value is
w̃ = 0. This implies the desired estimate. ��

Remark 1 In the above analysis of the nullspaces, we figured
out that due to our choice of the first term ‖∇u−w‖M(Ω,R2)

of the regulariser Rβ , penalisation of the curl is irrelevant for
the characterisation of the nullspaces of Rβ . Accordingly,
the assertion of the above lemma can easily be extended to
the cases β1 = β2 = 0 and β3, β4 > 0, β1 = β3 = 0 and
β2, β4 > 0 aswell asβ1 = β4 = 0 andβ2, β3 > 0, where the
line of argument follows exactly the proof given above. For all
remaining cases, the above proof fails however, since in these
cases the resulting nullspaces are not finite-dimensional.

Theorem 1 Let f ∈ L2(Ω) and α > 0. Moreover, let βi ≥
0 for i = 1, . . . , 4 and let at most one of the parameters
β1, . . . , β4 vanish. Then there exists a unique solution û ∈
BV (Ω) of (9).

Proof We decompose u = u0+ (u−u0) and f = f0+ ( f −
f0), where u0 respectively f0 are the L2 projections on the
nullspace of Rβ . Then

1

2

∫
Ω

(u − f )2 dx + αRβ(u)

= 1

2

∫
Ω

(u0 − f0)
2 dx + αRβ(u − u0)

+ 1

2

∫
Ω

(u − u0 − f + f0)
2 dx .
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Since f0 ∈ BV (Ω), it is easy to see that the optimal solution
is given by u = f0 + v, where v is a minimiser of

1

2

∫
Ω

(v − f + f0)
2 dx + αRβ(v) → min

v∈U

according to Lemma 1.
Since Rβ is coercive on U and the functionals are lower

semicontinuous in the weak-star topology on bounded sets,
we conclude the existence of a minimiser by standard argu-
ments. Uniqueness follows from strict convexity of the first
term and convexity of Rβ . ��

4.4 Special Cases

In the following, we discuss several special cases of second-
order functionals in the literature, which arise either by a
special choice of the vector β or by letting elements in β, in
particular β1, tend to infinity. For the sake of readability, we
will in all cases consider all models with additional parame-
ters equal to one, the case of other values follows by simple
scaling arguments. Throughout this section, for simplicitywe
denote by E(w) and∇(w) the respective vectorised versions,
i.e.

E(w) =
(

∂w1

∂x1
,

∂w1
∂x2

+ ∂w2
∂x1

2
,

∂w1
∂x2

+ ∂w2
∂x1

2
,
∂w2

∂x2

)�

and

∇(w) =
(

∂w1

∂x1
,
∂w1

∂x2
,
∂w2

∂x1
,
∂w2

∂x2

)�
.

TGV

The second-order TGV model (TGV) in a notation corre-
sponding to our approach is given by

TGV(u) = inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2)

+ ‖E(w)‖M(Ω,R4)

with E(w) being the symmetric gradient, encoded via the
matrix

ATGV =

⎛
⎜⎜⎝
1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

⎞
⎟⎟⎠ .

Now let B = diag(0, 1√
2
, 1√

2
, 1√

2
) and

A1 = B

⎛
⎜⎜⎝

0 −1 1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ = 1√

2

⎛
⎜⎜⎝

0 0 0 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ .

We see that ATGV = QA1 with the orthogonal matrix

Q = 1√
2

⎛
⎜⎜⎝

0 1 −1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ .

Hence, the TGV functional can be considered as a special
case of (8) with β = (0, 1√

2
, 1√

2
, 1√

2
).

TGV with full gradient matrix

A variant of the second-order TGV model is given by using
the full gradient instead of the symmetric gradient, i.e.

TGVF(u)

= inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2)

+ ‖∇w‖M(Ω,R4).

This can simply be encoded via ATGVF = I being the unit
matrix in R4×4. Choosing B = 1√

2
I we immediately see the

equivalence, since

A1 = B

⎛
⎜⎜⎝

0 −1 1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ = 1√

2

⎛
⎜⎜⎝

0 −1 1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎞
⎟⎟⎠

is already an orthogonal matrix and we obtain ATGVF =
A�
1 A1. Hence, the TGV functional with full gradient matrix

can be considered as a special case of (8) with β =
( 1√

2
, 1√

2
, 1√

2
, 1√

2
).

ICTV

Let us now examine the relation to (ICTV), which rewritten
in our notation becomes

ICTV(u)

= inf
w∈M(Ω,R2)
curl(w)=0

‖∇u − w‖M(Ω,R2)

+ ‖∇w‖M(Ω,R4).

In this case, we do not need to distinguish between the gradi-
ent ofw and the symmetric gradient, since they are equal due
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to the vanishing curl. Note that we have replaced the assump-
tion of w being a gradient by the equivalent assumption of
vanishing curl, which corresponds better to our approach and
indicates that we will need to consider the limit β1 → ∞.
Not surprisingly we will choose β2 = β3 = β4 = 1

2 as in the
TGV case. Thus, we will study the limit of β1 → ∞, using
the notion of �-convergence ([8,19]):

Theorem 2 Let β2 = β3 = β4 = 1
2 . We define β t :=

(t, 1√
2
, 1√

2
, 1√

2
), t > 0. Then Rβ t �-converges to ICTV

strongly in L p(Ω) for any p < 2 as t → ∞, where we
extend both functionals by infinity on L p(Ω) \ BV (Ω).

Proof Let t > 0, ut ∈ BV (Ω) and let wt ∈ M(Ω,R2) be a
minimiser of

‖∇ut − w‖M(Ω,R2) + ‖Bt∇Nw‖M(Ω,R4)

with Bt being the diagonal matrix with diagonal β t . First,
we consider the lower bound inequality. To this end, we
assume ut → u strongly in L p(Ω). Then we either have
lim inf t Rβ t (ut ) = ∞, which makes the lower bound
inequality trivial, or Rβ t (ut ) bounded. If lim inf Rβ t (ut ) is
finite, we immediately see from the norm equivalence and
lower semicontinuity of the total variation that the limit u
has finite norm in BV (Ω). Hence, for u ∈ L p(Ω) \ BV (Ω)

the lower bound inequality holds. Thus, let us consider
the remaining case of the limit inferior being finite and
u ∈ BV (Ω). Then we see that

t‖ curl(wt )‖M(Ω) ≤ ‖Bt∇Nw‖M(Ω,R4) ≤ Rβ t (ut ),

which implies that curl(wt ) strongly converges to zero in
M(Ω). Since

‖Bt∇Nw‖M(Ω,R4) ≥ ‖B0∇Nw‖M(Ω,R4)

for all w, we have

Rβ t (ut )

= ‖∇ut − wt‖M(Ω,R2) + ‖Bt∇Nwt‖M(Ω,R4)

≥ ‖∇ut − wt‖M(Ω,R2) + ‖B0∇Nwt‖M(Ω,R4).

Due to the lower semicontinuity of the last term we see

lim inf
t
Rβ t (ut )

≥ lim inf
t

‖∇ut − wt‖M(Ω,R2) + ‖B0∇Nwt‖M(Ω,R4)

≥ ‖∇u − w‖M(Ω,R2) + ‖B0∇Nw‖M(Ω,R4),

where w is a weak-star limit of an appropriate subsequence
of wt . The latter exists due to the boundedness of wt and

satisfies curl(w) = 0. Since the infimum over all curl-free w

is at most as large, we obtain the lower bound inequality

lim inf
t
Rβ t (ut ) ≥ ICTV(u).

Next, we consider the upper bound inequality. For u ∈
L p(Ω) \ BV (Ω) the upper bound inequality follows triv-
ially with the sequence ut = u for all t . The upper bound
inequality for u ∈ BV (Ω) is also easy to verify since for
such u we have Rβ t (u) ≤ ICTV(u) due to the fact that we
obtain exactly ICTV(u) when we restrict the infimum in the
definition of Rβ t (u) to the subset of curl-free w. ��

An interesting observation is that we interpolate the two
TGVmodels as well as the ICTVmodel solely by the param-
eter β1, from the TGV model with the symmetric gradient
(β1 = 0) over the one with the full gradient (β1 = 1

2 ) to the
ICTV model in the limit β1 → ∞.

Interpolation between TGV and ICTV

In this paragraph, we illustrate the previously described abil-
ity of our approach to interpolate between the ICTVandTGV
model by means of a numerical test case. To this end, we
corrupted an image section of the parrot test image from the
Kodak image database1 by Gaussian noise with zero mean
and a variance of 0.05. Next, we applied the proposed denois-
ingmodel (9) to the noisy image data, wherewe always chose
α = 1

4 and β2 = β3 = β4 = 1
2 and varied β1 as follows:

In order to obtain a second-order “TGV-type” reconstruc-
tion, we set β1 equal to zero. For the “ICTV-type” model
recovery that we obtain if β1 tends to infinity, we chose
β1 = 1010. The corresponding denoising results are depicted
in the left and right column of the first row of Fig. 4. Addi-
tionally, we calculated the respective interpolated denoising
result for β1 ∈ {10−4, 10−3, 10−2, 10−1, 0.25, 1, 2, 4, 25,
100, 2500, 104, 106}, where β1 = 25 yielded the best result
with respect to the qualitymeasure SSIM. The corresponding
denoised image is shown in themiddle of the top rowofFig. 4.
It is a well-known fact that the TGV and the ICTV model
yield results of comparable quality and thus it is not surprising
that all three denoising results as well as the error images in
the second row of Fig. 4 look very similar. This visual inspec-
tion is further confirmed by the quality measure SSIM, since
the differences are only in the range of 10−3. To point out
that there are indeed slight differences between these denois-
ing results, we also provide difference images between the
result for β1 = 25 and the TGV respectively the ICTV result
in the third row of Fig. 4. While in the first rows of Fig. 4
we can hardly recognise any visual difference between the
results of the three methods under consideration, the lower

1 http://r0k.us/graphics/kodak/.
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Fig. 4 Reconstruction of parrot
test image adding Gaussian
noise with zero mean and
variance σ 2 = 0.05 using (9)
demonstrating the ability to
interpolate between (TGV) and
(ICTV). Top three rows:
denoised images u, error image
showing the difference to the
ground truth, difference image
to the interpolated result. Lower
four rows: different differential
operators applied to vector field
w

123



Journal of Mathematical Imaging and Vision (2019) 61:571–601 587

four rows of Fig. 4 reveal that in some sense the interpo-
lated model is indeed in between the TGV and the ICTV
model. In these rows, we plot the four different operators
(curl)–(sh2) applied to the vector fieldw corresponding to the
“TGV-type”, “interpolated” and “ICTV-type” reconstruction
in the top row, respectively. Looking at these results, we can
observe that the plots of the divergence and the two compo-
nents of the shear apparently are rather similar and exhibit the
same structures. On the other hand, the plot of the curl of the
ICTV-type model seems to be very close to zero in the whole
image domain, while in the curl of the interpolated model
slight structures become visible, which are evenmore evident
in the respective plot of the TGVmodel, exactly as expected.

CEP

The CEP model (CEP) can be rewritten in our notation as

CEP(u)

= inf
w∈M(Ω,R2)
curl(w)=0

‖∇u − w‖M(Ω,R2)

+ ‖ div(w)‖M(Ω).

It is apparent in this case to choose β t := (t, 1,
0, 0) and to again consider the limit t → ∞ to recover the
CEP functional as a limit of Rβ t . However, here we are in a
situation where more than one of the parameters βi vanishes,
thus we cannot guarantee the existence of a minimiser for
such amodel and consequently we cannot perform a rigorous
analysis of the limit in BV (Ω). In the denoising case (9) one
could still perform a convergence analysis for the functional
including the data termwith respect to weak L2 convergence,
which is however not in the scope of our approach.

From the issues in the analysis and our previous discussion
of artefacts when only using div and curl in the regularisa-
tion functional it is also to be expected that the CEP model
produces some kind of point artefacts. Indeed those can be
seen by close inspection of the results in [18], in particular
Figure 4.

TV and Variants

Wefinally verify the relation of ourmodel to the original total
variation, which is of course to be expected as the parameters
βi converge to infinity. This is made precise by the following
theorem, from which we see the �-convergence except on
the finite-dimensional nullspace. The proof is analogous to
Theorem 2 and omitted here.

Theorem 3 Let βi ≥ 0 for i = 1, . . . , 4 and let at most one
of them vanish. Set B = diag(

√
β1, . . . ,

√
β4) and β t = tβ,

Bt = tB. Then Rβ t �-converges to TVB strongly in L p(Ω)

for any p < 2 as t → ∞, where

TVB = inf
w,B∇Nw=0

‖∇u − w‖M(Ω,R2)

and we extend both functionals by infinity on
L p(Ω) \ BV (Ω).

4.5 Rotational Invariance

At the end of this section, we show that by imposing a sim-
ple condition on the choice of the weighting parameters
β1, . . . , β4 we can control the rotational invariance of the
regulariser Rβ(u).

Theorem 4 Let βi ≥ 0 for i = 1, . . . , 4 and let β3 = β4.
Then the regulariser Rβ(u) is rotationally invariant, i.e. for
an orthonormal rotation matrix Q ∈ R

2×2 with

Q(θ) =
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
for θ ∈ [0, 2π)

and for u ∈ BV (Ω) it holds that ǔ ∈ BV (Ω), where ǔ =
u ◦ Q, i.e. ǔ(x) = u(Qx) for a.e. x ∈ Ω , and

Rβ(ǔ) = Rβ(u).

Proof See Appendix B. ��

5 Discretisation

We devote a separate section of this paper to the discretisa-
tion of our novel approach and the contained natural vector
operators as a basis for any numerical implementation. This
seemed necessary, since we aim at complying not only with
the standard requirement that it should hold that

∇∗(u) = −div(u), (adjG)

but also with natural conservation laws such as

curl (∇u) = 0 and

div
(
curl∗ (u)

) = 0
(conservLaws)

imposing additional constraints upon the choice of discreti-
sation. We will use the finite differences-based discretisation
proposed in the context of the congeneric second-order TGV
model [11] as a starting point for our considerations in this
section. However, as we shall see, the approach taken there
fails to fulfil the aforementioned conservation laws (con-
servLaws). As a consequence, we suggest a similar, yet
in several places adjusted and thus different discretisation,
which all numerical results of our unified model (VOS)
presented in this paper are based upon. We will compare
solutions of the TGV model (TGV) obtained by means of
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the discretisation we suggest with images resulting from the
discretisation proposed in [11]. Eventually, wewill comment
on chances and challenges of other discretisation strategies
using staggered grids or finite elementmethods in the context
of our unified model.

Abusing notation, we denote the involved functions and
operators in the sameway as in the continuous setting before,
but from now on, we are thereby referring to their discre-
tised versions. For the sake of simplicity, we assume the
normalised images to be quadratic, i.e. f , u ∈ [0, 1]N×N .
Then we discretise the image domain by a two-dimensional
regularCartesian grid of size N×N , i.e.Ω = {(ih, jh) : 1 ≤
i, j ≤ N }, where h denotes the spacing size and (i, j) denote
the discrete pixels at location (ih, jh) in the image domain.
Similarly as in [11] and as it is fairly customary in image pro-
cessing, we use forward differences withNeumann boundary
conditions to discretise the gradient (∇)i, j : R → R

2 of a
scalar-valued function u, i.e.

(∇u)i, j =
(

(∇u)1i, j
(∇u)2i, j

)
=

(
(δx+u)i, j
(δy+u)i, j

)
, (discreteG)

where

(δx+u)i, j = ui+1, j − ui, j ,

(δy+u)i, j = ui, j+1 − ui, j ,
(forwDiff)

and where we extend the definition by zero if i = N respec-
tively j = N . To avoid asymmetries and to preserve the
adjoint structure (adjG), we discretise the first-order diver-
gence operator (div)i, j : R2 → R of a two-dimensional vec-
tor field wi, j = (w1

i, j , w
2
i, j )

T using backward finite differ-
ences with homogeneous Dirichlet boundary conditions, i.e.

(div(w))i, j = (δx−w1)i, j + (δy−w2)i, j , (discreteDiv)

where

(δx−w1)i, j =

⎧⎪⎨
⎪⎩

w1
i, j − w1

i−1, j , if 1 < i < N ,

w1
i, j , if i = 1,

−w1
i−1, j , if i = N ,

(δy−w2)i, j =

⎧⎪⎨
⎪⎩

w2
i, j − w2

i, j−1, if 1 < j < N ,

w2
i, j , if j = 1,

−w2
i, j−1, if j = N .

(backwDiff)

In [11] the authorsmoreover proposed to recursively apply
forward and backward differences to the divergence operator
of higher order such that the outermost divergence operator is
based on backward differences with homogeneous Dirichlet
boundary conditions. For the second-order divergence opera-
tor (div2)i, j : R2×2 → R of a symmetric 2×2-matrix (g)i, j
at every pixel location (i, j) (cf. (div2)) this means:

(div2(g))i, j

= (δx−δx+g11)i, j + (δy−δy+g22)i, j
+ (δx−δy+g12)i, j + (δy−δx+g21)i, j

= (δx−δx+g11)i, j + (δy−δy+g22)i, j
+ ((δx−δy+ + δy−δx+)g12)i, j .

Further following the reasoning in [11], the discrete
second-order derivative and discrete second-order diver-
gence should also satisfy an adjointness condition. Conse-
quently, we calculate the adjoint of div2 in order to obtain the
Hessianmatrix of a scalar-valued function u. Symmetrisation
of the Hessian then yields the following discretisation of the
symmetrised second-order derivative (E2)i, j : R → R

2×2:

(E2(u))i, j = (E(∇u))i, j

=
⎛
⎝ (δx−δx+u)i, j

((δy−δx++δx−δy+)u)i, j
2

((δx−δy++δy−δx+)u)i, j
2 (δy−δy+u)i, j

⎞
⎠ ,

where for the first equality we used that since (∇u)i, j is
a (1,0)-tensor, or in other words a vector, the symmetrised
gradient E of u is just equal to the gradient. To stay consistent,
the symmetrised derivative (E)i, j : R2 → R

2×2 of a two-
dimensional vector fieldwi, j = (w1

i, j , w
2
i, j )

T should thus be
discretised in the following way:

(E(w))i, j =
⎛
⎝ (δx−w1)i, j

(
δy−w1+δx−w2

)
i, j

2(
δx−w1+δy−w2

)
i, j

2 (δy−w2)i, j

⎞
⎠ ,

where (δx−w2)i, j and (δy−w1)i, j are defined analogously to
(backwDiff) with w1 and w2 being interchanged. We have
thus recalled the choice of discretisation of the second-order
divergence and hence of the symmetrised derivative as sug-
gested in [11].

With regard to Sect. 4.4, we conclude that in this set-
ting the most natural discretisations of the curl operator
(curl)i, j : R2 → R of a two-dimensional vector fieldwi, j =
(w1

i, j , w
2
i, j )

T as well as of the two components of the shear

(sh1)i, j : R2 → R and (sh2)i, j : R2 → Rwould all be based
on backward finite differences with homogeneous Dirichlet
boundary conditions, i.e.

(curl(w))i, j = (δx−w2)i, j − (δy−w1)i, j ,

(sh1(w))i, j = (δy−w2)i, j − (δx−w1)i, j ,

(sh2(w))i, j = (δy−w1)i, j + (δx−w2)i, j .

However, this discretisation of the curl operator fails to com-
ply with the conservation laws given in (conservLaws), since

(curl(∇u))i, j = (δx−δy+u)i, j − (δy−δx+u)i, j ,

(div(curl∗(u)))i, j = (δx−δy+u)i, j − (δy−δx+u)i, j
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can in general each be nonzero. To resolve this issue, we
decided to instead discretise the curl operator (curl)i, j :
R
2 → R of a two-dimensional vector field wi, j =

(w1
i, j , w

2
i, j )

T with forward finite differences, i.e.

(curl(w))i, j = (δx+w2)i, j − (δy+w1)i, j . (discreteCurl)

In order to meet the theory derived for the continuous setting
in Sect. 4.4, the discretisation of the curl operator by forward
finite differences in combinationwith the discretisation of the
divergence operator by backward finite differences requires
that the first component of the shear (sh1)i, j : R2 → R shall
be discretised using backward finite differences while the
second component (sh2)i, j : R2 → R shall be discretised
by means of forward finite differences, i.e.

(sh1(w))i, j = (δy−w2)i, j − (δx−w1)i, j , (discreteSh1)

(sh2(w))i, j = (δy+w1)i, j + (δx+w2)i, j . (discreteSh2)

As a side benefit of this choice of discretisation, we addition-
ally obtain the identities

sh1
(
sh∗

2 (u)
) = 0 and

sh2
(
sh∗

1 (u)
) = 0.

(conservLaws2)

Vice versa, this approach leads to the following discretisation
of the symmetrised derivative (E)i, j : R

2 → R
2×2 of a

vector field wi, j = (w1
i, j , w

2
i, j )

T:

(E(w))i, j =⎛
⎝ (δx−w1)i, j

(
δy+w1+δx+w2

)
i, j

2(
δx+w1+δy+w2

)
i, j

2 (δy−w2)i, j

⎞
⎠ ,

(discreteSymG)

that is we discretise the mixed derivatives differently than
proposed in [11]. Further following the line of argument
brought forward in this section, the corresponding discrete
second-order divergence operator (div2)i, j : R2×2 → R of
a symmetric 2×2-matrix (g)i, j at every pixel location (i, j)
(cf. (div2)) would be given by:

(div2(g))i, j

= (δx−δx+g11)i, j + (δy−δy+g22)i, j
+ ((δx+δy+ + δy+δx+)g12)i, j .

Paraphrasing this discretisation, one could say that with
respect to the pure second partial derivatives, i.e. the diago-
nal entries of the Hessian, we stick to the idea of recursively
applying forward and backward differences as proposed by
Bredies et al. [11], while in regard to themixed partial deriva-
tives we repeatedly use forward differences. Being aware

that this discretisation of the second-order divergence might
seem a little less intuitive than the one proposed in [11], we
nevertheless decided to adhere to the discretisation that we
introduced in this section. This is because in the context of our
unifiedmodel it seems crucial to find a discretisation that pre-
serves the nullspaces of the continuous model and complies
with natural conservation laws such that for example choos-
ing β1 > 0 and β2 = β3 = β4 = 0 indeed returns the noisy
image f as predicted by the theory for the continuous model.

To compare the effect of the two different discretisation
schemes on the reconstructed images, we corrupted a test
image from the Mc Master Dataset [37] by Gaussian noise
of mean 0 and variance 0.05 and calculated the denoising
results obtained by means of the TGV2 model (TGV) with
both discretisation approaches discussed in this section so
far, the one proposed by Bredies et al. [11] as well as our
alternative satisfying the natural conservation laws. The out-
come of this comparison is shown in Fig. 5. Looking at the
denoised images, we can conclude that both discretisation
approaches provide very similar results, since visually there
is hardly any difference between the corresponding images
detectable. Thus, we included the difference images in the
figure to illustrate that the reconstructions based on the two
different discretisations are not identical, but indeed differ
slightly especially close to some of the edges and near the
boundary of the image domain.Also,with respect to the qual-
ity measure SSIM the results for both discretisations are in a
similar range; however, the differences seem to becomemore
significant with decreasing image resolution. This makes
sense since the proportion of pixels depicting an edge in rela-
tion to the overall number of pixels of the image increases
with decreasing resolution and this is where most of the dif-
ferences due to the different discretisation schemes occur.
In light of the bottom row of Fig. 5, we can conclude that
at a relatively low image resolution our proposed discretisa-
tion apparently performs slightly inferior to the one proposed
by Bredies et al. [11], however, we decided to nevertheless
adhere to the proposed discretisation scheme since this way
we can guarantee that the conservation laws valid in the con-
tinuous setting also apply for the discretised model.

At the end of this section, we shall also briefly comment
on alternative discretisation schemes in the context of our
unified model (VOS) that do not rely on finite differences.
One option for such a discretisation would be based on stag-
gered grids, i.e. on two grids, often referred to as primal and
dual grid, that are shifted with respect to each other by half
a pixel. Following for example [25], one could define a dis-
crete gradient operator of a scalar function mapping from the
cell centres of the primal grid to the vertical and horizontal
faces (normal to the sides) of the primal grid, which can be
identifiedwith the vertical and horizontal edges (tangential to
the sides) of the dual grid. In this setting, one could then also
define discrete versions of the natural vector field operators
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Fig. 5 Comparison of our proposed discretisation (reconstructions in the left column) with the one in [11] (reconstructions in the middle column)
and absolute difference of the two reconstructions (right column) for two different image sizes

contained in our model: the curl would map from a vector
field defined on the edges of the dual grid to a scalar function
defined on the cell centres of the dual grid, which can be
identified with the nodes of the primal grid. The same would
apply to the second component of the shear. The divergence
operator and the first component of the shear on the contrary
would map from a vector field defined on the faces of the
primal grid to a scalar function defined on the cell centres of
the primal grid. However, now one had to face the question
of how to add up the values of these different natural vector
operators of a given vector field, since their codomains do
not coincide. Of course, one may consider introducing aver-
aging operators such that in the end one obtains values of the
respective operators at the same locations [25] or one might
try to resolve this issue by defining inner products and norms
in a suitable way (cf. e.g. [26,27,36]), however again it seems
less obvious which is the best way to go. Another alterna-
tive would be Raviart–Thomas-based finite element methods
[31], where it would be quite straightforward to define the
gradient and the divergence operator, however here, too, it
would be less clear how to define the curl operator and the
two components of the shear in the most natural way.

Summing up, there seems to be no straightforward solu-
tion to the discretisation of our unified model (VOS) that
meets all our demands andwe thus, despite the known demer-
its, decided to stick to the simple discretisation based on
forward finite differences introduced earlier in this section.
An extensive investigation of the most natural discretisation
in the context of higher-order TV methods and the Hessian

taking into account the connection to the natural vector field
operators and the related conservation laws is beyond the
scope of this paper and left to future research.

6 Results

In this section, we report on numerical denoising results
obtained for two different greyscale test images: Trui (257×
257pixels), cf. Fig. 1, and the piecewise affine test image con-
sidered in Figs. 2 and 3 (256 × 256 pixels). We choose the
denoising framework because of its straightforward imple-
mentation and simple interpretability but would like to stress
that our novel joint regulariser could be employed in any vari-
ational imaging model. First, we compare the best denoising
result with respect to the structure similarity (SSIM) index
obtained by using our unified model (VOS) with denoising
models using TV, ICTV and second-order TGV regularis-
ers and the same standard L2 data term. In addition, we
present results of a large-scale parameter test solving our
model (VOS) and examining how various parameter combi-
nations lead to reconstructions of different quality.

In all experiments, we use the first-order primal-dual
algorithm by Chambolle and Pock [17] for the convex opti-
misation. Moreover, we make use of both the step size
adaptation and the stopping criterion presented in [24]. In
order to solve our model (VOS), analogous to the implemen-
tation described in detail in [13], we define
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x =
(
u
w

)
, y =

(
y1
y2

)
, K =

⎛
⎜⎜⎜⎜⎝

∇ −I
0 curl
0 div
0 sh1
0 sh2

⎞
⎟⎟⎟⎟⎠ ,

where the image u and the vector fieldw are defined as above,
y1 has the same size asw, y2 is a vectorwith four components,
each of which has the same size as u, and I denotes the
identity matrix. Using this notation we can now write our
energy functional as a sum G(x)+ F(Kx) according to [17]
by defining

G(x) = 1

2
‖u − f ‖22, F(Kx) = αRβ(u),

and apply the modified primal-dual algorithm in [24]. For
the implementation of the TV, ICTV and TGV models, we
employ the corresponding standard primal-dual implemen-
tations, using the discretisation proposed in the respective
papers if applicable.

6.1 Comparison of Best VOS Result to
State-Of-The-Art Methods

In the following, we compare the best result of our (VOS)
model employing the discretisation described in Sect. 5
with denoising results obtained by using TV, ICTV and
second-order TGV regularisation. We measure optimality
with respect to SSIM.

In Fig. 6, we demonstrate that by using our unified model
(VOS)we are able to obtain a reconstruction of the noisy Trui
image superior to TV and comparable to ICTV and second-
order TGV with respect to the quality measure SSIM. The
task is to reconstruct the image on the top left, which has
been corrupted by additive Gaussian noise with zero mean
and variance σ 2 = 0.05 (top centre). We would like to stress
that this noise level is relatively high compared with most
publications on denoising but we chose it in order to bet-
ter highlight the visual differences in the reconstructions.
In the TV-regularised reconstruction (top right), we choose
α = 1

4 and obtain an SSIM value of 0.7995. In the ICTV
case (bottom left), we select α1 = 1

2 and α0 = 1
4 , where

SSIM = 0.8121. For the second-order TGV-type reconstruc-
tion, we set α1 = α0 = 1

4 . Here, we obtain an SSIM
value of 0.8141. For better comparison with the ICTV result
and the result of our unified model, we mention that the
corresponding TGV-result with our discretisation on this
image resolution yields an SSIM of 0.8131. The best result
using our model is shown on the bottom right, choosing
α = 1

4.5 , β1 = 0, β2 = 1
8 , β3 = 1 and β4 = 1

2 and achieving
an SSIM value of 0.8136. We would like to especially draw
attention to the enhanced reconstruction of the chessboard-

like pattern in the scarf as well as the regions around the eyes
and the mouth by using our model.

Now we present similar results obtained by solving the
denoising problem for the piecewise affine square test image
in Fig. 7, again considering a noise variance of σ 2 = 0.05.
In the case of TV denoising (top right), we choose α = 1

2 ,
yielding SSIM = 0.9153. On the bottom left, ICTV regulari-
sation selecting α1 = 1 and α0 = 1

2 leads to an SSIM value
of 0.9509. The parameters for the second-order TGV recon-
struction (bottom centre) are α1 = 1

2 and α0 = 2. Here, we
obtain an SSIM value of 0.9775. The best result using our
model is obtained by setting α = 1

3 , β1 = 4.5, β2 = 90 and
β3 = β4 = 9. We achieve the best SSIM index of 0.9844.

6.2 Practical Study of Parameter Combinations

In order to get a better understanding of our novel regulariser
and how zero and nonzero values of the different parameters
in our model affect the denoising reconstructions, we set up
large-scale parameter tests for both the Trui and the piece-
wise affine test image. We use the discretisation described
in Sect. 5 for all experiments, solving (VOS) numerically as
described at the beginning of this section. For the Trui image,
we select α ∈ { 15 , 1

4.5 ,
1
4 } and βi ∈ {0, 1

8 ,
1
4 ,

1
2 , 1, 2, 5, 20},

i = 1, . . . , 4, which leads to 12288 different combina-
tions, and for the piecewise affine test image we choose
α ∈ { 1

4.5 ,
1
4 ,

1
3.5 ,

1
3 } and βi = b

α2 , b ∈ {0, 1
8 ,

1
4 ,

1
2 , 1, 10},

i = 1, . . . , 4, which leads to 5184 different combinations.
We use different parameter sets, as our images differ quite
significantly in structure and we naturally need a stronger
overall regularisation for the less textured and more homo-
geneous piecewise affine test image. Again, we consider the
denoising problem explained above and corrupt the original
image by additive Gaussian noise with zero mean and vari-
ance σ 2 = 0.05.

Trui Test Image

Figure 8 shows histograms for three quality measures we
calculated for all obtained reconstructions of Trui in our
parameter test: SSIM, PSNR and relative error. It can be
immediately observed that in the majority of cases, we get
competitive values.

In Fig. 9, we examine the occurrences of various quality
measure values for different parameter combinations inmore
depth. More specifically, we subdivide the results into four
classes, dependent on how many βi are nonzero. From this
analysis, we can already conclude that scenarios where only
oneβi is positive and hence only a single differential operator
acts on the vector field w in the joint vector operator sparsity
regularisation term yield the worst results with respect to our
selected measures. Setting two of the βi to zero seems to
be the second-worst case. On the other hand, having all βi
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Fig. 6 Best results with respect to SSIM for Trui test image

activated yields the best performing results, which confirms
the usefulness and added value of our model and justifies the
comparably large number of parameters.

Note at this point that for the multi-colour histograms
throughout this section, we manually selected the very dif-
ferently sized intervals for the bars and heavily customised
them such that the different classes become well-separated.
Consequently, if a bar still contains a variety of colours, they
could not be separated further in a reasonable or meaningful
manner.

In Fig. 10, we only consider a subset of our results and
look at the case where one of the βi is set to zero, i.e. where
three differential operators are active in our joint regulariser.
Also in this scenario we recognise a certain trend. Consider-
ing the curl in the regularisation does not seem to be essential,
since the best results are achieved in the case when it is set to
zero. In contrast, the divergence appears to be of more cru-
cial importance, as setting it to zero produces worse results in
general. Of course, this is however strongly dependent on the
combination of all five parameters including the overall reg-
ularisation weight α, and in some cases zero divergence even
yields very good results, especially with respect to the SSIM.

The histograms shown in Fig. 11 correspond to the case
where two of the βi are positive and the other two are set to
zero. This yields six different combinations to consider. Inter-

estingly, we again recognise some general trends throughout
our data set. In a relatively consistentmanner, setting bothβ2,
i.e. the divergence term, and β3 or β4, i.e. one component of
the shear, to zero seems to be a bad idea, as this produces the
worst results. This exactly coincides with our observations
in Sect. 4 and more specifically in Fig. 3, where the sparse
curl/sh1 and sparse curl/sh2 reconstruction of the piecewise
affine square test image contains diagonal and straight line
artefacts, respectively. The third worst performing scenario
in general is the combination of sparse curl and divergence.
Setting β1 and either component of the shear to zero results
in the second-best reconstructions. In our test, we obtain the
best performance by only enforcing sparsity in the shear.

Piecewise Affine Test Image

For the piecewise affine image in Fig. 7, we generally
obtain similar results. In Fig. 12, we can see that again, the
histograms for the SSIM, PSNR and relative error are con-
centrated around desirable values, even better ones than for
the Trui image. This is probably due to the simpler structure
of the piecewise affine test image.

Figure 13 confirms that themore βi are nonzero, the better
the denoising reconstructions are in general. The worst and
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Fig. 7 Best results with respect to SSIM for piecewise affine test image

Fig. 8 Histograms for Trui considering all tested parameter combinations

Fig. 9 Histograms for Trui considering all tested parameter combinations, sub-divided into four cases: (1) all βi are nonzero (blue), (2) one βi is
equal to zero (orange), (3) two βi are equal to zero (yellow), (4) three βi are equal to zero (purple). Note that the bars do not have equal width
(Color figure online)
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Fig. 10 Histograms for Trui in the scenario that one βi is equal to zero: (1) β1 = 0 (blue), (2) β2 = 0 (orange), (3) β3 = 0 (yellow), (4) β4 = 0
(purple). Note that the bars do not have equal width (Color figure online)

Fig. 11 Histograms for Trui in the scenario that two βi are equal to zero: (1) β1 = β2 = 0 (blue), (2) β1 = β3 = 0 (orange), (3) β1 = β4 = 0
(yellow), (4) β2 = β3 = 0 (purple), (5) β2 = β4 = 0 (green), (6) β3 = β4 = 0 (cyan). Note that the bars do not have equal width (Color figure
online)

Fig. 12 Histograms for piecewise affine image for all tested parameter combinations

Fig. 13 Histograms for piecewise affine image considering all tested
parameter combinations, sub-divided into four cases: (1) all βi are
nonzero (blue), (2) one βi is equal to zero (orange), (3) two βi are

equal to zero (yellow), (4) three βi are equal to zero (purple). Note that
the bars do not have equal width (Color figure online)

second-worst results are obtained when three or two βi are
set to zero, respectively.

Furthermore, the results in Fig. 14 reflect the ones in
Fig. 10. Setting the curl term to zero has a less negative
effect compared to omitting the divergence term. However,
we cannot make more general statements or draw conclu-
sions regarding the shear terms, as the histograms are rather

equally distributed with respect to the four parameter com-
bination scenarios.

Figure 15 seems to reinforce the statements for Fig. 11. It
can be clearly observed that the case where the divergence
and the second component of the shear are equal to zero
leads to the worst reconstructions with respect to the three
quality measures. Also, similar to before, the combinations
β2 = β3 = 0 and β3 = β4 = 0 perform rather poorly.
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Fig. 14 Histograms for piecewise affine image in the scenario that one βi is equal to zero: (1) β1 = 0 (blue), (2) β2 = 0 (orange), (3) β3 = 0
(yellow), (4) β4 = 0 (purple). Note that the bars do not have equal width (Color figure online)

Fig. 15 Histograms for piecewise affine image in the scenario that two βi are equal to zero: (1) β1 = β2 = 0 (blue), (2) β1 = β3 = 0 (orange), (3)
β1 = β4 = 0 (yellow), (4) β2 = β3 = 0 (purple), (5) β2 = β4 = 0 (green), (6) β3 = β4 = 0 (cyan). Note that the bars do not have equal width
(Color figure online)

7 Conclusion

Starting from our SVF model presented in [13], where we
motivated sparsity enforcement of a vector field related to the
gradient of the underlying image by an image compression
framework using PDE-based diffusion inpainting methods,
we extended (SVF) further by introducing a novel regulariser
penalising a joint L1 norm incorporating differential vector
field operators. More specifically, we promote sparsity in the
curl, divergence and both components of the shear of the
vector field at hand. We could dispose of the point artefacts
observed in the denoising model in [13]. Moreover, similar
to well-established higher-order TV models, we avoid the
staircasing effect while at the same time enabling piecewise
affine reconstructions.

We showed that our unified regulariser can be viewed as a
generalisation of a number of already existing frameworks:
We can recover TV, our previously presented SVF model,
CEP, second-order TGV and ICTV. Furthermore, we showed
the capability of our model to interpolate between the latter
two methods by changing the value of only one weighting
parameter. We also saw that a wide range of parameters βi
yields very similar results, confirming the robustness of the
approach. In particular, this holds true if three of the βi are
chosen to be nonzero (while not approaching infinity all at
the same time) or if we pick two out of β2, β3 and β4 to
be positive weights, as we concluded that the curl has only
marginal influence. Our results also lead to the conjecture
that visually more pleasing reconstructions are obtained if
we indeed arrive at singularities along edges rather than in
points, since the latter are visible as artefacts in the images. In

viewof this paper, it is hence recommended to either combine
at least three natural vector field operators or the divergence
and one component of the shear for the regularisation.

There are various interestingdirections for future research.
As we mentioned earlier, the denoising case was just an
academic testbed for studying the regularisations; its use
might become much more relevant in other inverse prob-
lems and image reconstruction frameworks. Moreover, our
results could naturally be reconsidered in the regularisationof
problems for vector fields such as motion estimation, where
divergence, curl, and shear even have physical interpreta-
tions. In this context, it is an often heard conjecture that in
light of the Helmholtz decomposition divergence and curl
are sufficient for regularisation. However, the combination
of the two operators only yields satisfactory regularisation
properties if their joint penalisation is combined with suit-
able boundary conditions as, for instance, accomplished in
[36]. Since the results presented in this paper indicate that
a functional combining at least three suitably chosen differ-
ential operators is also capable of providing an equivalent
regularisation in the space of bounded variation without the
need to guarantee any boundary conditions, this might be
an interesting alternative approach for the regularisation of
vector fields that might require a less cumbersome numeri-
cal implementation. Furthermore, it would be interesting to
reconsider higher-order regularisation on graphs, in partic-
ular to study variants of TGV on such structures. Since the
divergence is the only natural differential operator for vec-
tor fields (edge functions) on graphs, our approach might be
even more relevant in such a setting.
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Finally, we come to the issue of optimal parameter choice,
since our approach yields quite some freedom in this respect.
To overcome this, parameter learning using bi-level optimi-
sation techniques might be particularly suited.

Data Statement The corresponding MATLAB® code
(implemented and tested with R2018a) is publicly available
on GitHub2.
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Appendix A: Derivation of Nullspaces

In the following, we aim at characterising the set of all u ∈
L2(Ω) for which Rβ(u) = 0 holds.

At first we consider the case β2 = 0 and β3, β4 > 0.
Following the line of argument for the derivation of the
nullspaces in Sect. 3, it is clear that in order to be in the
nullspace u has to satisfy

u(x) = U (x1 + x2) + V (x1 − x2) = U1(x1) +U2(x2).

Calculation of first- and second-order derivatives of u then
yields the following identities for the gradient and theHessian
of u:

∇u(x) =
(

∂
∂x1

U (x1 + x2) + ∂
∂x1

V (x1 − x2)
∂

∂x2
U (x1 + x2) − ∂

∂x2
V (x1 − x2)

)

=
(

∂
∂x1

U1(x1) + ∂
∂x1

U2(x2)
∂

∂x2
U1(x1) + ∂

∂x2
U2(x2)

)

=
(

∂
∂x1

U1(x1)
∂

∂x2
U2(x2)

)

and

Hu =
(

(Hu)11 (Hu)12
(Hu)21 (Hu)22

)
,

where

(Hu)11(x) = ∂2

∂x21
U (x1 + x2) + ∂2

∂x21
V (x1 − x2)

= ∂2

∂x21
U1(x1)

2 Image denoising using the unified model in this work: https://github.
com/JoanaGrah/VectorOperatorSparsity; image compression using the
sparse vector fields model in [13]: https://github.com/JoanaGrah/
SparseVectorFields.

(Hu)12(x) = ∂2

∂x1∂x2
U (x1 + x2) − ∂2

∂x1∂x2
V (x1 − x2)

= ∂2

∂x1∂x2
U1(x1) + ∂2

∂x1∂x2
U2(x2) = 0

(Hu)21(x) = ∂2

∂x1∂x2
U (x1 + x2) − ∂2

∂x1∂x2
V (x1 − x2)

= ∂2

∂x1∂x2
U1(x1) + ∂2

∂x1∂x2
U2(x2) = 0

(Hu)22(x) = ∂2

∂x22
U (x1 + x2) + ∂2

∂x22
V (x1 − x2)

= ∂2

∂x22
U2(x2).

In particular, we observe:

∂2

∂x21
U1(x1) = ∂2

∂x22
U2(x2) for all x1, x2,

which can only be true if ∂2

∂x21
U1(x1) and ∂2

∂x22
U2(x2) are equal

and constant, i.e. ∂2

∂x21
U1(x1) = ∂2

∂x22
U2(x2) = c.

Twofold integration of ∂2

∂x21
U1 respectively ∂2

∂x22
U2 on con-

dition that the former only depends on x1 while the latter
only depends on x2 yields:

∂

∂x1
U1(x1) =

∫
c dx1 = cx1 + d1,

∂

∂x2
U2(x2) =

∫
c dx2 = cx2 + e1

and thus

U1(x1) =
∫

cx1 + d1 dx1 = cx21 + d1x1 + d0

U2(x2) =
∫

cx2 + e1 dx1 = cx22 + e1x2 + e0

�⇒ u = c(x21 + x22 ) + d1x1 + e1x2 + (d0 + e0).

Consequently the nullspace only consists of functions that
are linear combinations of x21 + x22 , x1, x2 and 1.

We continue with the case β3 = 0 and β2, β4 > 0. By the
discussion of the nullspaces in Sect. 3 u has to be harmonic,
i.e.

∂2

∂x21
u(x) + ∂2

∂x22
u(x) = 0,

and moreover it has to be of the form u(x) = U1(x1) +
U2(x2). Taking into account the calculations of the first- and
second-order partial derivatives in the previous case, we eas-
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ily see that the above equality is equivalent to

∂2

∂x21
U1(x1) + ∂2

∂x22
U2(x2) = 0 for all x1, x2,

whichobviously canonly be true if ∂2

∂x21
U1(x1) and ∂2

∂x22
U2(x2)

are constant with constants summing to zero. On this basis,
we analogously to the previous case integrate ∂2

∂x21
U1 and

∂2

∂x22
U2 twice on condition that the former only depends on

x1 and the latter only depends on x2

∂

∂x1
U1(x1) =

∫
c dx1 = cx1 + d1,

∂

∂x2
U2(x2) =

∫
−c dx2 = −cx2 + e1

and hence

U1(x1) =
∫

cx1 + d1 dx1 = cx21 + d1x1 + d0

U2(x2) =
∫

−cx2 + e1 dx1 = −cx22 + e1x2 + e0

�⇒ u = c(x21 − x22 ) + d1x1 + e1x2 + (d0 + e0).

The nullspace thus only consists of functions that are linear
combinations of x21 − x22 , x1, x2 and 1.

Finally, we study the case β4 = 0 and β2, β3 > 0.
Analogous to the previous case we argue that by the char-
acterisation of the nullspaces in Sect. 3 u is of the form
u(x) = U (x1 + x2) + V (x1 − x2) and again has to be har-
monic, i.e.

∂2

∂x21
u(x) + ∂2

∂x22
u(x) = 0.

Again, we reconsider the first- and second-order partial
derivatives from the first case and obtain for all x1, x2

2

(
∂2

∂x21
U (x1 + x2) + ∂2

∂x22
V (x1 − x2)

)
= 0

which implies that ∂2

∂x21
U and ∂2

∂x22
V are constant with con-

stants summing to zero. By twofold integration of ∂2

∂x21
U and

∂2

∂x22
V on condition that the former depends on x1 + x2 and

the latter depends on x1 − x2 we thus obtain:

∂

∂x1
U (x1 + x2) =

∫
c d(x1 + x2) = c(x1 + x2) + d1,

∂

∂x2
V (x1 − x2) =

∫
−c d(x1 − x2) = −c(x1 − x2) + e1

and hence

U (x1 + x2) =
∫

c(x1 + x2) + d1 d(x1 + x2)

= c(x1 + x2)
2 + d1(x1 + x2) + d0

V (x1 − x2) =
∫

−c(x1 − x2) + e1 d(x1 − x2)

= −c(x1 − x2)
2 + e1(x1 − x2) + e0

�⇒ u = 4cx1x2 + (d1+e1)x1 + (d1−e1)x2 + (d0 + e0).

As a result, the nullspace contains all functions that are linear
combinations of x1x2, x1, x2 and 1.

Appendix B: Proof of Theorem 4

Theorem 4 Let βi ≥ 0 for i = 1, . . . , 4 and let β3 = β4.
Then the regulariser Rβ(u) is rotationally invariant, i.e. for
an orthonormal rotation matrix Q ∈ R

2×2 with

Q(θ) =
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
for θ ∈ [0, 2π)

and for u ∈ BV (Ω) it holds that ǔ ∈ BV (Ω), where ǔ =
u ◦ Q, i.e. ǔ(x) = u(Qx) for a.e. x ∈ Ω , and

Rβ(ǔ) = Rβ(u).

Proof In order to prove the assertion, we consider ǔ = u ◦ Q
and show that we obtain Rβ(ǔ) = Rβ(u), where as before

Rβ(u)

= inf
w∈M(Ω,R2)

‖∇u − w‖M(Ω,R2)

+ ‖diag(β)∇Nw‖M(Ω,R4).

Inserting ǔ in the first term of the regulariser, we realise
that we obtain the equivalence to the first term of Rβ(u)

by choosing w̌ = Q�w ◦ Q, i.e.
∫

Ω

ϕ(x) dw̌ =
∫

Ω

Qϕ(QT x) dw, ∀ϕ ∈ C0(Ω;R2),

since

‖∇ǔ − w̌‖M(Ω,R2)

= ‖Q�∇u ◦ Q − Q�w ◦ Q‖M(Ω,R2)

= ‖Q� (∇u ◦ Q − w ◦ Q) ‖M(Ω,R2)

= ‖∇(u ◦ Q) − w ◦ Q‖M(Ω,R2)

Thus, if we can show that for w̌ = Q�w ◦ Q we also
obtain the equivalence of the second term of the regulariser
to the second term of Rβ(u), we have proven the assertion.
To this end we set v = Q�w and compute
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v =
(

cos(θ)w1 + sin(θ)w2

− sin(θ)w1 + cos(θ)w2

)
.

In addition we need the Jacobian matrix ∇v of v, where

(∇v)11 = cos(θ)
∂w1

∂x1
+ sin(θ)

∂w2

∂x1
,

(∇v)12 = cos(θ)
∂w1

∂x2
+ sin(θ)

∂w2

∂x2
,

(∇v)21 = − sin(θ)
∂w1

∂x1
+ cos(θ)

∂w2

∂x1
,

(∇v)22 = − sin(θ)
∂w1

∂x2
+ cos(θ)

∂w2

∂x2
.

We can hence obtain the Jacobian matrix ∇w̌ of w̌ by com-
puting ∇w̌ = Q�∇v yielding

(∇w̌)11

= cos2(θ)
∂w1

∂x1
+ cos(θ) sin(θ)

∂w2

∂x1

+ cos(θ) sin(θ)
∂w1

∂x2
+ sin2(θ)

∂w2

∂x2
,

(∇w̌)12

= − cos(θ) sin(θ)
∂w1

∂x1
− sin2(θ)

∂w2

∂x1

+ cos2(θ)
∂w1

∂x2
+ cos(θ) sin(θ)

∂w2

∂x2
,

(∇w̌)21

= cos2(θ)
∂w2

∂x1
− cos(θ) sin(θ)

∂w1

∂x1

+ cos(θ) sin(θ)
∂x2
∂x2

− sin2(θ)
∂w1

∂x2
,

(∇w̌)22

= − cos(θ) sin(θ)
∂w2

∂x1
+ sin2(θ)

∂w1

∂x1

+ cos2(θ)
∂w2

∂x2
− cos(θ) sin(θ)

∂w1

∂x2
.

Based on the Jacobian ∇w̌, we can calculate the curl, the
divergence and the two components of the shear for w̌:

curl(w̌) = (∇w̌)21 − (∇w̌)12

= (cos2(θ) + sin2(θ))

(
∂w2

∂x1
− ∂w1

∂x2

)

= curl(w),

div(w̌) = (∇w̌)11 − (∇w̌)22

= (cos2(θ) + sin2(θ))

(
∂w1

∂x1
+ ∂w2

∂x2

)

= div(w),

sh1(w̌) = (∇w̌)22 − (∇w̌)11

= (cos2(θ) − sin2(θ))

(
∂w2

∂x2
− ∂w1

∂x1

)

− 2 cos(θ) sin(θ)

(
∂w1

∂x2
+ ∂w2

∂x1

)

= (cos2(θ) − sin2(θ)) sh1(w)

− 2 cos(θ) sin(θ) sh2(w),

sh2(w̌) = (∇w̌)12 + (∇w̌)21

= (cos2(θ) − sin2(θ))

(
∂w1

∂x2
+ ∂w2

∂x1

)

− 2 cos(θ) sin(θ)

(
∂w2

∂x2
+ ∂w1

∂x1

)

= (cos2(θ) − sin2(θ)) sh2(w)

+ 2 cos(θ) sin(θ) sh1(w),

Next, we consider |diag(β)∇N w̌|, where for the sake of read-
ability, we define

a :=(cos2(θ) − sin2(θ))

b := cos(θ) sin(θ).

Then we obtain:

|diag(β)∇N w̌|
= β1(curl(w̌))2 + β2(div(w̌))2

+ β3(sh1(w̌))2 + β4(sh2(w̌))2

= β1(curl(w))2 + β2(div(w))2

+ β3a
2(sh1(w))2 − β3ab sh1(w) sh2(w)

+ β34b
2(sh2(w))2

+ β4a
2(sh2(w))2 + β4ab sh1(w) sh2(w)

+ β44b
2(sh1(w))2

We conclude the proof by setting β3 = β4 yielding the equiv-
alence of |diag(β)∇N w̌| and |diag(β)∇Nw|, which then in
turn implies Rβ(ǔ) = Rβ(u).

|diag(β)∇N w̌|
= β1(curl(w))2 + β2(div(w))2

+ β3a
2(sh1(w))2 + β34b

2(sh1(w))2

+ β4a
2(sh2(w))2 + β44b

2(sh2(w))2

= β1(curl(w))2 + β2(div(w))2

+ β3(cos
2(θ) + sin2(θ))2(sh1(w))2

+ β4(cos
2(θ) + sin2(θ))2(sh2(w))2

= β1(curl(w))2 + β2(div(w))2

+ β3(sh1(w))2 + β4(sh2(w))2

= |diag(β)∇Nw|.
��
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Appendix C: Alternative Visualisations of
Parts of Figs. 1, 4 and 5
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