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Abstract
The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous
(CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is
defined. DTV has favorable properties, compared to the original TV-seminorm for finite element functions. These include a
convenient dual representation in terms of the supremum over the space of Raviart–Thomas finite element functions, subject to
a set of simple constraints. It can therefore be shown that a variety of algorithms for classical image reconstruction problems,
including TV-L2 denoising and inpainting, can be implemented in low- and higher-order finite element spaces with the same
efficiency as their counterparts originally developed for images on Cartesian grids.
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1 Introduction

The total variation (TV)-seminorm | · |TV is ubiquitous as a
regularizing functional in image analysis and related appli-
cations; see for instance [12,15,26,46]. When Ω ⊂ R

2 is a
bounded domain, this seminorm is defined as
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|u|TV(Ω)

:= sup

{∫
Ω

u div p dx : p ∈ C∞
c (Ω; R

2), | p|s∗ ≤ 1

}
,

(1)

where s ∈ [1,∞], s∗ = s
s−1 denotes the conjugate of s and

| · |s∗ is the usual s∗-norm of vectors inR
2. Frequent choices

include s = 2 (the isotropic case) and s = 1, see Fig. 1.
It has been observed in [19] that “the rigorous definition

of the TV for discrete images has received little attention.”
In this paper we propose and analyze a discrete analogue of
(1) for functions u belonging to a space DGr (Ω) or CGr (Ω)

of globally discontinuous or continuous finite element func-
tions of polynomial degree1 0 ≤ r ≤ 4 on a geometrically
conforming, simplicial triangulation of Ω , consisting of tri-
angles T and interior edges E .

In this case, it is not hard to see that TV-seminorm (1) can
be evaluated as

|u|TV(Ω) =
∑
T

∫
T

|∇u|s dx +
∑
E

∫
E

∣∣[�u�]∣∣s dS, (2)

1 It will become clear in Sect. 3 why the discussion is restricted to
polynomial degrees at most 4. Although this should be sufficient for
most practical purposes, we briefly discuss extensions in Sect. 8.
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Fig. 1 A DG0(Ω) function u with values 0 and 1 on two triangles forming the unit square Ω (left), and the value of the associated TV-seminorm
|u|TV(Ω) = |u|DTV(Ω) as a function of the rotation angle of the mesh

where [�u�] denotes the vector-valued jump of a function in
normal direction across an interior edge of the triangulation.

It is intuitively clear that when u is confined to a finite
element space such as DGr (Ω) or CGr (Ω), then it ought to
be sufficient to consider the supremum in (1) over all vec-
tor fields p from an appropriate finite-dimensional space as
well. Indeed, we show that this is the case, provided that
TV-seminorm (2) is replaced by its discrete analogue

|u|DTV(Ω)

:=
∑
T

∫
T
IT

{|∇u|s
}
dx +

∑
E

∫
E
IE

{∣∣[�u�]∣∣s} dS, (3)

which we term the discrete TV-seminorm. Here IT and IE
are local interpolation operators into the polynomial spaces
Pr−1(T ) and Pr (E), respectively. Therefore, (3) amounts to
the application of a nodal quadrature formula for the inte-
grals appearing in (2). We emphasize that both (2) and (3)
are isotropic when s = 2, i.e., invariant w.r.t. rotations of the
coordinate system. In the lowest order case (r = 0) of piece-
wise constant functions, the first sum in (3) is zero and only
edge contributions appear. Moreover, in this case (2) and (3)
coincide since [�u�] is constant on edges. In general, we will
show that the difference between (2) and (3) is of the order
of the mesh size, see proposition 3.1.

Using (3) in place of (2) in optimization problems in imag-
ing offers a number of significant advantages. Specifically,
we will show in Theorem 3.1 that (3) has a discrete dual
representation

|u|DTV(Ω) = max

{ ∫
Ω

u div p dx : p ∈ RT 0
r+1(Ω)

s.t. a number of simple constraints

}
(4)

for u ∈ DGr (Ω), where RTr+1(Ω) denotes the space of
Raviart–Thomas finite element functions of order r + 1, and
RT 0

r+1(Ω) is the subspace defined by p · n = 0 (where n is
the outer normal of unit Euclidean length) on the boundary
ofΩ . In the lowest order case r = 0 in particular, one obtains

|u|DTV(Ω) = max

{ ∫
Ω

u div p dx : p ∈ RT 0
1 (Ω),

∫
E

| p · nE | dS ≤ |E | |nE |s on interior edges

}
. (5)

Here nE denotes a normal vector of arbitrary orientation
and unit Euclidean length, i.e., |nE |2 = 1, on an interior
edge E , and |E | denotes the (Euclidean) edge length. Since
the expressions

∫
E | p · nE | dS are exactly the degrees of

freedom typically used to define the basis in RT1(Ω), the
constraints in (5) are in fact simple bound constraints on
the coefficient vector of p. For comparison, the pointwise
restrictions | p|s∗ ≤ 1 appearing in (1) are nonlinear unless
s∗ ∈ {1,∞}. For the case of higher-order finite elements,
i.e., 1 ≤ r ≤ 4, further constraints in (4) impose an upper
bound on the | · |s∗ -norm of pairs of coefficients of p, see
Theorem 3.1. Consequently, these constraints are likewise
linear in the important special case s = 1. In any case, each
coefficient of p is constrained only once.
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As a consequence of (4), we establish that optimization
problems utilizing discrete TV-seminorm (3) as a regularizer
possess a discrete dual problemwith very simple constraints.
This applies, in particular, to the famous TV-L2 and TV-L1

models; see [46] and [15,26,41], respectively. The structure
of the primal and dual problems is in turn essential for the
efficient implementation of appropriate solution algorithms.
As one of the main contributions of this paper, we are able
to show that a variety of popular algorithms for TV-L2,
originally developed in the context of finite difference dis-
cretizations onCartesian grids, applywith little or no changes
to discretizations with low- or higher-order finite elements.
Specifically, we consider the split Bregman algorithm [30]
and the primal–dual method of Chambolle and Pock [13] for
TV-L2 denoising and inpainting problems. We mention that
Chambolle’s projectionmethod [11] and a primal–dual active
set method similar to [34] can also be considered, as well as
algorithms for TV-L1 and a ‘Huberized’ version of (3); we
refer the reader to the extended preprint [33] for details.

There are multiple motivations to study finite element dis-
cretizations of the TV-seminorm, in imaging and beyond.
First, finite element discretizations lend themselves in appli-
cations whenever the data are not represented on a Cartesian
grid. While we focus in this paper mainly on the mathe-
matical theory on triangular grids, we mention, for instance,
that honeycombed octagonal CCD sensor layouts are in
use in consumer cameras, e.g., the Fujifilm SuperCCD sen-
sor. Furthermore, nonrectangular sub-pixel configurations
appear to be promising for spatially varying exposure (SVE)
sensors for high-dynamic-range (HDR) imaging, see [38],
and super-resolution applications, see [8,47,54]. Image pro-
cessing problems on nonregular pixel layouts have been
previously considered in [18,35,36,50]. Further applications
of higher-order discretizations in imaging arise when the
image data to be reconstructed are not a priori quantized
into piecewise constant pixel values.

Second, (1) is popular as a regularizer in inverse coefficient
problems for partial differential equations; see for instance
[4,16,17]. In this situation, a discretization by finite elements
of both the state and the unknown coefficient is often the
natural choice, in particular on nontrivial geometries. Third,
finite element discretizations generalize easily to higher order
simply by increasing the polynomial degree. It is well known
that higher-order discretizations can outperformmesh refine-
ment approaches when the function to be approximated is
sufficiently smooth. Finally, we anticipate that our approach
can be extended to total generalized variation (TGV) intro-
duced in [10] as well and imaging problems on surfaces as in
[32,40], although this is not the subject of the present paper.

The vast majority of all publications to date dealing
with the TV-seminorm use a (lowest order) finite differ-
ence approximation of (1) on Cartesian grids, where the
divergence is approximated by one-sided differences.We are

aware of only a few contributions including [1,5,6,9,17,24,
27,53] using lowest order (r = 1) continuous finite elements,
i.e., u ∈ CG1(Ω). In this case the edge-jump contributions in
(2) and (3) vanish, and since ∇u ∈ DG0(Ω) holds, formulas
(2) and (3) coincide. Moreover, the case u ∈ DG0(Ω) on
uniform, rectangular grids, i.e., pixel images, is discussed in
[37,49]. Recently, [14] proposed a different discrete approxi-
mation of the total variation over the Crouzeix–Raviart finite
element space for the image data u, which lies in between
DG1(Ω) and CG1(Ω).

To the best of our knowledge, the definition of discrete
TV-seminorm (3) as well as the role of the Raviart–Thomas
finite element space to establish dual representation (4) are
novel contributions of the present work.

This paper is structured as follows.We collect some back-
ground material on finite elements in Sect. 2. In Sect. 3 we
establish dual representation (3) of discrete TV-seminorm
(4). We also derive an estimate of the error between (3) and
(2). We present the discrete TV-L2 model along with its dual
in Sect. 4. In Sect. 5we show that twowell-known algorithms
for TV-L2 image denoising and inpainting can be applied in
our (possibly higher-order) finite element setting with little
or no changes compared to their classical counterparts in the
Cartesian finite difference domain. Further implementation
details in the finite element framework FEniCS are given
in Sect. 6, and numerical results for TV-L2 denoising and
inpainting are presented in Sect. 7. We conclude with an out-
look in Sect. 8.

Notation

Let Ω ⊂ R
2 be a bounded domain with polygonal bound-

ary. We denote by L2(Ω) and H1(Ω) the usual Lebesgue
and Sobolev spaces. H1

0 (Ω) is the subspace of H1(Ω)

of functions having zero trace on the boundary ∂Ω . The
vector-valued counterparts of these spaces as well as all
vector-valued functions will be written in bold-face notation.
Moreover, we define

H(div;Ω) := {
p ∈ L2(Ω) : div p ∈ L2(Ω)

}

and H0(div;Ω) is the subspace of functions having zero
normal trace on the boundary, i.e., p · n = 0.

2 Finite Element Spaces

Suppose that Ω is triangulated by a geometrically conform-
ing mesh (no hanging nodes) consisting of nondegenerate
triangular cells T and interior edges E . Recall that on each
interior edge, nE denotes the unit normal vector (of arbitrary
but fixed orientation). Throughout, r ≥ 0 denotes the degree
of certain polynomials.
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Lagrangian Finite Elements

Let Pr (T ) denote the space of scalar, bivariate polynomials
on T with total maximal degree r . The dimension of Pr (T )

is (r + 1) (r + 2)/2. Let {�T ,k} denote the standard nodal
basis of Pr (T ) with associated Lagrange nodes {XT ,k}, k =
1, . . . , (r + 1) (r + 2)/2. In other words, each �T ,k is a
function in Pr (T ) satisfying �T ,k(XT ,k′) = δkk′ . We denote
by

DGr (Ω) := {
u ∈ L2(Ω) : u|T ∈ Pr (T )

}
, r ≥ 0, (6)

CGr (Ω) := {
u ∈ C(Ω) : u|T ∈ Pr (T )

}
, r ≥ 1, (7)

the standard finite element spaces of globally discontinuous
(L2-conforming) or continuous (H1-conforming) piecewise
polynomials of degree r . A finite element function u ∈
DGr (Ω) or CGr (Ω), restricted to T , is represented by its
coefficient vector w.r.t. the basis {�T ,k}, which is simply
given by point evaluations. We use the notation

uT ,k = u|T (XT ,k)

to denote the elements of the coefficient vector of a function
u ∈ DGr (Ω) or CGr (Ω).

Frequently we will also work with the space Pr−1(T ),
whose standard nodal basis and Lagrange nodes we denote
by {ϕT ,i } and {xT ,i }, i = 1, . . . , r (r+1)/2.The interpolation
operator into this space (used in definition (3) of |u|DTV(Ω))
is defined by

IT {v} :=
r (r+1)/2∑
i=1

v(xT ,i ) ϕT ,i .

Similarly,Pr (E) denotes the space of univariate scalar poly-
nomials on E of maximal degree r , which has dimension
r + 1. Let {ϕE, j } denote the standard nodal basis of Pr (E)

with associated Lagrange nodes {xE, j }, j = 1, . . . , r + 1.
The associated interpolation operator becomes

IE {v} :=
r+1∑
j=1

v(xE, j ) ϕE, j .

Finally, we address the definition of the jump of aDGr (Ω)

function across an interior edge E connecting two cells T1
and T2 with their respective outer normals n1 and n2 = −n1
of unit length. We recall that the edge normal nE coincides
with either n1 or n2, and we distinguish between the

vector-valued jump [�u�] = u|T1n1 + u|T2n2 (8a)

and scalar jump �u� = [�u�] · nE . (8b)

Notice that the sign of �u� depends on the orientation of
nE , while [�u�] does not. For instance when nE = n1, then
�u� := u|T1 −u|T2 holds. Moreover, we point out that [�u�] =
�u� nE holds.

Raviart–Thomas Finite Elements

For r ≥ 0, we denote by

RTr+1(Ω)

:= {
p ∈ H(div;Ω) : p|T ∈ Pr (T )2 + x Pr (T )

}
(9)

the (H(div;Ω)-conforming) Raviart–Thomas finite element
space of order r + 1.2 Moreover,RT 0

r+1(Ω) is the subspace
of functions satisfying p · n = 0 along the boundary of
Ω . The dimension of the polynomial space on each cell is
(r + 1) (r + 3). Notice that several choices of local bases
forRTr+1(T ) are described in the literature, based on either
point evaluations or integral moments as degrees of freedom
(dofs). Clearly, a change of the basis does not alter the finite
element space but only the representation of its members,
which can be identified with their coefficient vectors w.r.t. a
particular basis. For the purpose of this paper, it is convenient
to work with the following global degrees of freedom of
integral type for p ∈ RTr+1(Ω); see [39, Ch. 3.4.1]:

σ T ,i ( p) :=
∫
T

ϕT ,i p dx, i = 1, . . . , r (r + 1)/2, (10a)

σE, j ( p) :=
∫
E

ϕE, j ( p · nE ) dS, j = 1, . . . , r + 1.

(10b)

We will refer to (10a) as triangle-based, or interior, dofs and
to (10b) as edge-based dofs. Notice that while the edge-based
dofs are scalar, the triangle-based dofs have values in R

2 for
notational convenience. The global basis functions for the
space RTr+1(Ω) are denoted by ψT

i and ψ E
j , respectively.

Notice that ψT
i is R

2×2-valued. As is the case for all finite
element spaces, any dof applied to any of the basis functions
evaluates to zero except

σ T ,i (ψ
T
i ′ ) = (

1 0
0 1

)
δi i ′ and σE, j (ψ

E
j ′) = δ j j ′ . (11)

Let us emphasize that for any function p ∈ RT 0
r+1(Ω), dof

values (10) are precisely the coefficients of p w.r.t. the basis,
i.e.,

p =
∑
T

r (r+1)/2∑
i=1

σ T ,i ( p)ψT
i +

∑
E

r+1∑
j=1

σE, j ( p)ψ E
j . (12)

2 Notice that while we are denoting the lowest orderRT space byRT1,
some authors use RT0 for this purpose.
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Table 1 Finite element spaces,
their degrees of freedom and
corresponding bases. Here NT ,
NE and NV denote the number
of triangles, interior edges and
vertices in the triangular mesh.
A term like (r − a)+ should be
understood as max{r − a, 0}

FE space Local dimension Dofs Basis functions Global dimension

CGr (Ω) (r + 1)(r + 2)/2 eval. in XT ,k {�T ,k} NT (r − 2)+(r − 1)/2

(r ≥ 1) + NE (r − 1)+ + NV

DGr (Ω) (r + 1)(r + 2)/2 eval. in XT ,k {�T ,k} NT (r + 1)(r + 2)/2

DGr−1(Ω) r (r + 1)/2 eval. in xT ,i {ϕT ,i } NT r (r + 1)/2

DGr (∪E) r + 1 eval. in xE, j {ϕE, j } NE (r + 1)

RT 0
r+1(Ω) (r + 1)(r + 3) σ T ,i , see (10a) {ψT

i } NT r (r + 1)

σE, j , see (10b) {ψ E
j } + NE (r + 1)

Index Conventions

In order to reduce the notational overhead, we are going to
associate specific ranges for any occurrence of the indices i ,
j and k in the sequel:

i ∈ {1, . . . , r (r + 1)/2} as in the basis functions
ϕT ,i of Pr−1(T ) and dofs σ T ,i inRTr+1(Ω),

j ∈ {1, . . . , r + 1} as in the basis functions
ϕE, j of Pr (E) and dofs of σE, j inRTr+1(Ω),

k ∈ {1, . . . , (r + 1)(r + 2)/2} as in the basis functions
�T ,k of Pr (T ).

For instance, (12) will simply be written as

p =
∑
T ,i

σ T ,i ( p)ψT
i +

∑
E, j

σE, j ( p)ψ E
j

in what follows. For convenience, we summarize the nota-
tion for the degrees of freedom and basis functions needed
throughout the paper in Table 1.

3 Properties of the Discrete Total Variation

In this section we investigate the properties of the discrete
total variation-seminorm

|u|DTV(Ω)

:=
∑
T

∫
T
IT

{|∇u|s
}
dx +

∑
E

∫
E
IE

{∣∣[�u�]∣∣s} dS

for functions u ∈ DGr (Ω). Recall that IT and IE are local
interpolation operators into the polynomial spaces Pr−1(T )

and Pr (E), respectively. In terms of the Lagrangian bases
{ϕT ,i } and {ϕE, j } of these spaces, we have
∫
T
IT

{|∇u|s
}
dx =

r (r+1)/2∑
i=1

∣∣∇u(xT ,i )
∣∣
s cT ,i , (13a)

∫
E
IE

{∣∣[�u�]∣∣s} dS =
r+1∑
j=1

∣∣�u�(xE, j )
∣∣ |nE |s cE, j , (13b)

where the weights are given by

cT ,i :=
∫
T

ϕT ,i dx and cE, j :=
∫
E

ϕE, j dS. (14)

Figure 2 provides an illustration of the difference between
the contributions

∫
E

∣∣[�u�]∣∣s dS and
∫
E
IE

{∣∣[�u�]∣∣s} dS

to |u|TV(Ω) and |u|DTV(Ω).
In virtue of the fact that ∇u|T ∈ Pr−1(T )2 and �u� ∈

Pr (E), it is clear that | · |DTV(Ω) is indeed a seminorm on
DGr (Ω), provided that all weights cT ,i and cE, j are nonneg-
ative. The following lemma shows that this is the case for
polynomial degrees 0 ≤ r ≤ 4.

Lemma 3.1 (Lagrange basis functions with positive inte-
grals)

(a) Let T ⊂ R
2 be a triangle and 1 ≤ r ≤ 4. Then cT ,i ≥ 0

holds for all i = 1, . . . , r (r + 1)/2. When r �= 3, then
all cT ,i > 0.

(b) Let E ⊂ R
2 be an edge and 0 ≤ r ≤ 7. Then cE, j > 0

holds for all j = 1, . . . , r + 1.

Proof Given that the Lagrange points form a uniform lattice
on either T or E , the values of cT ,i and cE, j are precisely
the integration weights of the closed Newton–Cotes formu-
las. For triangles, these weights are tabulated, e.g., in [48,
Tab. I] for orders 0 ≤ r ≤ 8, and they confirm (a). For edges
(intervals), we refer the reader to, e.g., [21, Ch. 2.5] or [20,
Ch. 5.1.5], which confirms (b). �


We can now prove the precise form of dual representation
(4) of discrete TV-seminorm (3).
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Fig. 2 Illustration of typical edge-jump contributions to |u|TV(Ω) and
to |u|DTV(Ω). The green and red curves show �u� and |�u�|, respectively,
and the blue curve shows IE

{|�u�|} for polynomial degrees r = 1 (left)

and r = 2 (right). The left picture also confirms |u|TV(Ω) ≤ |u|DTV(Ω)

when r = 1, see corollary 3.1, while |u|TV(Ω) may be larger or smaller
than |u|DTV(Ω) when r ∈ {2, 3, 4}

Theorem 3.1 (Dual Representation of |u|DTV(Ω)) Suppose
0 ≤ r ≤ 4. Then for any u ∈ DGr (Ω), discrete TV-seminorm
(3) satisfies

|u|DTV(Ω) = sup

{∫
Ω

u div p dx : p ∈ RT 0
r+1(Ω),

|σ T ,i ( p)|s∗ ≤ cT ,i for all T , i = 1, . . . , r (r + 1)/2,

|σE, j ( p)| ≤ |nE |s cE, j for all E, j = 1, . . . , r + 1

}
.

(15)

Proof Webeginwith the observation that integration by parts
yields

−
∫

Ω

u div p dx = −
∑
T

∫
T
u div p dx

=
∑
T

∫
T

∇u · p dx +
∑
E

∫
E
�u� ( p · nE ) dS (16)

for any u ∈ DGr (Ω) and p ∈ RT 0
r+1(Ω), i.e., p · n = 0 on

the boundary ∂Ω .
Let us consider one of the edge integrals first. Notice that

�u� ∈ Pr (E) holds and thus �u� = ∑
j v j ϕE, j with coeffi-

cients v j = �u�(xE, j ). By duality property (11) of the basis
of RTr+1(Ω), we obtain

∫
E
�u� ( p · nE ) dS

=
∑
j

v j

∫
E

ϕE, j ( p · nE ) dS =
∑
j

v j σE, j ( p).

The maximum of this expression w.r.t. p verifying the con-
straints in (15) is attained when

σE, j ( p) = sgn(v j ) |nE |s cE, j

holds. Here we are using the fact that cE, j > 0 holds; see
Lemma 3.1. Choosing p as the maximizer yields

∫
E
�u� ( p · nE ) dS =

∑
j

|v j | |nE |s cE, j

=
∑
j

∫
E

|v j | ϕE, j |nE |s dS =
∫
E
IE

{∣∣[�u�]∣∣s} dS,

where we used |v j | = ∣∣�u�(xE, j )
∣∣ = ∣∣�u�

∣∣(xE, j ) and thus
|v j | |nE |s = ∣∣[�u�]∣∣s(xE, j ) in the last step.

Next we consider an integral over a triangle, which is rel-
evant only when r ≥ 1. Since u ∈ Pr (T ) holds, we have
∇u ∈ Pr−1(T )2 and thus ∇u = ∑

i ϕT ,i wi with vector-
valued coefficients wi = ∇u(xT ,i ). Using again duality
property (11) of the basis of RTr+1(Ω), we obtain

∫
T

∇u · p dx =
∑
i

wi ·
∫
T

ϕT ,i p dx =
∑
i

wi · σ T ,i ( p).

By virtue of Hölder’s inequality, the maximum of this
expression w.r.t. p verifying the constraints in (15) can be
characterized explicitly. Whenwi �= 0 and 1 ≤ s < ∞, then
the maximum is attained when

σ T ,i ( p) =
(

(sgnwi,1) |wi,1|s−1

(sgnwi,2) |wi,2|s−1

)
cT ,i

|wi |s−1
s

.

Similarly, in case wi �= 0 and s = ∞, we choose

σ T ,i ( p) =

⎧⎪⎨
⎪⎩
cT ,i (sgnwi,�) for exactly one component

� ∈ {1, 2} s.t. |wi,�| = |wi |∞,

0 otherwise.
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When wi = 0 holds, σ T ,i ( p) can be chosen arbitrarily but
subject to |σ T ,i ( p)|s∗ ≤ cT ,i . In any case, we arrive at the
optimal value wi · σ T ,i ( p) = cT ,i |wi |s . As before, we are
using here the fact that cT ,i ≥ 0 holds; see again Lemma 3.1.
For an optimal p, we thus have

∫
T

∇u · p dx =
∑
i

|wi |s cT ,i

=
∑
i

∫
T

|wi |s ϕT ,i dx =
∫
T
IT

{|∇u|s
}
dx,

where we used |wi |s = |∇u(xT ,i )|s = |∇u|s(xT ,i ) in the
last step.

Finally, we point out that each summand in (16) depends
on p only through the dof values σ T ,i ( p) or σE, j ( p) associ-
ated with one particular triangle or edge. Consequently, the
maximum of (16) is attained if and only if each summand
attains its maximum subject to the constraints on the dof val-
ues set forth in (15). Since − p verifies the same constraints
as p, the maxima over ± ∫

Ω
u div p dx coincide and (15) is

proved. �


Remark 3.1 (The lowest order case r = 0) In the lowest order
case r = 0, the only basis function on any interior edge E
is ϕE,1 ≡ 1 so that cE,1 = |E | holds. Consequently, (15)
reduces to (5).

It may appear peculiar that the constraints for the edge
dofs in (15) are scalar and linear, while the constraints for
the pairwise triangle dofs σ T ,i ( p) ∈ R

2 are generally non-
linear. Notice, however, that it becomes evident in the proof
of Theorem 3.1 that the edge dofs are utilized to measure the
contributions in |u|DTV(Ω) associated with the edge jumps
of u, while the triangle dofs account for the contributions
attributed to the gradient ∇u. Since the edge jumps are
maximal in the direction normal to the edge, scalar dofs
suffice in order to determine the unknown jump height. On
the other hand, both the norm and direction of the gradi-
ent are unknown and must be recovered from integration
against suitable functions p. To this end, a variation of
σ T ,i ( p) within a two-dimensional ball (w.r.t. the | · |s∗ -
norm) is required, leading to constraints |σ T ,i ( p)|s∗ ≤ cT ,i

on pairs of coefficients of p. Notice that those constraints
appear for polynomial degrees r ≥ 1 and they are nonlin-
ear unless s∗ ∈ {1,∞}, which correspond to variants of the
TV-seminorm with maximal anisotropy; compare Fig. 1.

We conclude this section by comparing TV-seminorm (2)
with our discrete variant (3) for DGr (Ω) functions. For the
purpose of the following result, let us denote by �u�′ the
tangential derivative (in arbitrary direction of traversal) of
the scalar jump of u along an edge E . The symbol

|u|W 2,∞(T ) = max
{
max
x∈T

{|ux1x1(x)|} ,

max
x∈T

{|ux1x2(x)|} , max
x∈T

{|ux2x2(x)|}
}

is the W 2,∞-seminorm of u on T . Moreover, we recall that
the aspect ratio γT = hT /
T of a triangle T is the ratio
between its diameter (longest edge) hT and the diameter 
T

of the maximal inscribed circle; see for instance [25, Defini-
tion 1.107].

Proposition 3.1 There is a constant C > 0 such that

∣∣|u|TV(Ω) − |u|DTV(Ω)

∣∣
≤ C h

(
max
T

|u|W 2,∞(T ) +
∑
E

∥∥�u�′∥∥
L1(E)

)
(17)

holds for all u ∈ DGr (Ω), 0 ≤ r ≤ 4, where h := maxT hT
is the mesh size. The constant C depends only on r, s, the
maximal aspect ratio maxT γT and the area |Ω|.
Proof We use (13) to interpret the discrete TV-seminorm as
a quadrature rule applied to TV-seminorm (2). Note that no
volume terms appear in the piecewise constant case r = 0.
In case r ≥ 1, we use [25, Lem. 8.4] with d = 2, p = ∞,
kq = 0, and s = 1 therein, for the volume terms in (13a).
This result yields the existence of a constant C > 0 such that

∣∣∣∣
∫
T

v dx −
∑
i

v(xT ,i ) cT ,i

∣∣∣∣ ≤ C h3T |v|W 1,∞(T )

holds for all v ∈ W 1,∞(T ). Using this estimate for v = |∇u|s
shows
∣∣∣∣
∫
T

|∇u|s dx −
∑
i

∣∣∇u(xT ,i )
∣∣
s cT ,i

∣∣∣∣
≤ C h3T

∣∣|∇u|s
∣∣
W 1,∞(T )

.

(During the proof, C denotes a generic constant which may
change from instance to instance.) Summing over T and
using

∑
T h2T ≤ C (depending on |Ω| and the maximal

aspect ratio maxT γT ), we find

∑
T

∣∣∣∣
∫
T

(
|∇u|s − IT

{|∇u|s
})

dx

∣∣∣∣
=

∑
T

∣∣∣∣
∫
T

|∇u|s dx −
∑
i

∣∣∇u(xT ,i )
∣∣
s cT ,i

∣∣∣∣
≤ C h max

T

∣∣|∇u|s
∣∣
W 1,∞(T )

.

Since v �→ |v|s is globally Lipschitz continuous, we find that

max
T

∣∣|∇u|s
∣∣
W 1,∞(T )

≤ C max
T

|u|W 2,∞(T ).
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Similarly, for each edge E , we will apply [25, Lem. 8.4]
in (13b) (using d = 1, p = 1, kq = 0, and s = 1 therein);
note that the proof carries over to this limit case with p = 1
and d = s. This implies the existence of C > 0 such that

∣∣∣∣
∫
E

v dS −
∑
j

v(xE, j ) cE, j

∣∣∣∣ ≤ C h ‖v′‖L1(E)

holds for all v ∈ W 1,1(E), where v′ denotes the tangential
derivative of v. Using v = ∣∣�u�

∣∣ yields the estimate

∣∣∣∣
∫
E

∣∣�u�
∣∣ dS −

∑
j

∣∣�u�(xE, j )
∣∣ cE, j

∣∣∣∣ ≤ C h
∥∥|�u�|′∥∥L1(E)

.

Here, |�u�|′ is the tangential derivative of the absolute value of
the jump of u on E . Notice that

∥∥|�u�|′∥∥L1(E)
= ∥∥�u�′∥∥

L1(E)

holds. Summing over E yields

∑
E

∣∣∣∣
∫
E

∣∣�u�
∣∣ − IE

{∣∣�u�
∣∣} dS

∣∣∣∣
=

∑
E

∣∣∣∣
∫
E

∣∣�u�
∣∣ dS −

∑
j

∣∣�u�(xE, j )
∣∣ cE, j

∣∣∣∣
≤ C h

∑
E

∥∥�u�′∥∥
L1(E)

.

By using
∣∣[�u�]∣∣s = |�u�| |nE |s on each edge, and combining

the above estimates, we obtain the announced error bound.
�


Corollary 3.1 (Low-Order Polynomial Degrees)

(a) When r = 0, we have |u|TV(Ω) = |u|DTV(Ω) for all
u ∈ DGr (Ω).

(b) When r = 1, then |u|TV(Ω) ≤ |u|DTV(Ω) for all u ∈
DGr (Ω).

Proof In case r = 0, the right-hand side of the estimate in
proposition 3.1 vanishes. In case r = 1, ∇u is piecewise
constant and the corresponding terms in (2) and (3) coincide.
Moreover, for affine functions v : E → R it is easy to check
that
∫
E

|v| dS ≤ 1

2

(∣∣v(xE,1)
∣∣ + ∣∣v(xE,2)

∣∣) ∫
E
1 dS,

where xE,1 and xE,2 are the two end points of E . This yields
the claim in case r = 1. �


We also mention that the boundary perimeter formula

Per(E) := |χE |TV(Ω) = |χE |DTV(Ω) = length(E)

holds when E is a union of triangles and thus the character-
istic function χE belongs to DG0(Ω).

4 Discrete Dual Problem

In this section we revisit the classical image denoising and
inpainting problem,

Minimize
1

2
‖u − f ‖2L2(Ω0)

+ β |u|TV(Ω), (TV-L2)

see [12,26,46]. We introduce its discrete counterpart and
establish its Fenchel dual. HereΩ0 ⊂ Ω is the domainwhere
data are available, and β is a positive parameter. For simplic-
ity, we assume that the inpainting region Ω\Ω0 is the union
of a number of triangles in the discrete problems.

The discrete counterpart of (TV-L2) we consider is

Minimize
1

2
‖u − f ‖2L2(Ω0)

+ β |u|DTV(Ω). (DTV-L2)

The reconstructed image u is sought in DGr (Ω) for some
0 ≤ r ≤ 4. We can assume that the given data f belong
to DGr (Ω0) as well, possibly after applying interpolation
or quasi-interpolation. Notice that we use the discrete TV-
seminorm as regularizer.

Themajority of algorithms considered in the literature uti-
lize either the primal or the dual formulations of the problems
at hand. The continuous (pre-)dual problem for (TV-L2) is
well known, see for instance [34]:

Minimize
1

2
‖ div p + f ‖2L2(Ω0)

s.t. | p|s∗ ≤ β,

(TV-L2-D)

with p ∈ H0(div;Ω). Our first result in this section shows
that the dual of discrete problem (DTV-L2) has a very similar
structure as (TV-L2-D), but with the pointwise constraints
replaced by coefficient-wise constraints as in (15). For future
reference, we denote the associated admissible set by

P :=
{
p ∈ RT 0

r+1(Ω) :
|σ T ,i ( p)|s∗ ≤ cT ,i for all T and all i,

|σE, j ( p)| ≤ |nE |s cE, j for all E and all j
}
. (18)

Theorem 4.1 (Discrete dual problem for (DTV-L2)) Let 0 ≤
r ≤ 4. Then the dual problem of (DTV-L2) is

Minimize
1

2
‖ div p + f ‖2L2(Ω0)

s.t. p ∈ β P . (DTV-L2-D)

Here p ∈ β P means that p satisfies constraints as in (18) but
with cT ,i and cE, j replaced byβ cT ,i andβ cE, j , respectively.

Proof We cast (DTV-L2) in the common form F(u) +
β G(Λu). Let us define U := DGr (Ω) and F(u) :=
1
2‖u − f ‖2

L2(Ω0)
. The operator Λ represents the gradient
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of u, which consists of the triangle-wise contributions plus
measure-valued contributions due to (normal) edge jumps.
We therefore define

Λ : U → Y :=
∏
T

Pr−1(T )2 ×
∏
E

Pr (E). (19a)

The components of Λu will be addressed by (Λu)T and
(Λu)E , respectively, and they are defined by

(Λu)T := ∇u|T and (Λu)E := �u�E . (19b)

Finally, the function G : Y → R is defined by

G(d) :=
∑
T

∫
T
IT

{|dT |s
}
dx

+
∑
E

|nE |s
∫
E
IE

{|dE |} dS. (20)

A crucial observation now is that the dual space Y ∗ of Y
can be identified with RT 0

r+1(Ω) when the duality product
is defined as

〈 p, d〉 :=
∑
T

∫
T
p · dT dx +

∑
E

∫
E
( p · nE ) dE dS. (21)

In fact, RT 0
r+1(Ω) has the same dimension as Y and, for

any p ∈ RT 0
r+1(Ω), (21) clearly defines a linear func-

tional on Y . Moreover, the mapping p �→ 〈 p, ·〉 is injective
since 〈 p, d〉 = 0 for all d ∈ Y implies p = 0; see (10).
With this representation of Y ∗ available, we can evaluate
Λ∗ : RT 0

r+1(Ω) → U , where we identify U with its dual
space using the Riesz isomorphism induced by the L2(Ω)

inner product. Consequently, Λ∗ is defined by the condition
〈 p, Λu〉 = (u,Λ∗ p)L2(Ω) for all p ∈ RT 0

r+1(Ω) and all
u ∈ DGr (Ω). The left-hand side is

〈 p, Λu〉 =
∑
T

∫
T
p · ∇u dx +

∑
E

∫
E
( p · nE ) �u� dS

=
∑
T

−
∫
T
(div p) u dx +

∑
T

∫
∂T

( p · nT ) u dS

+
∑
E

∫
E
( p · nE ) �u� dS = −

∫
Ω

(div p) u dx,

(22)

hence Λ∗ = − div holds. Here nT denotes the outward unit
normal along the triangle boundary ∂T .

The dual problem can be cast as

Minimize F∗(−Λ∗ p) + β G∗( p/β). (23)

It is well known that the convex conjugate of F(u) = 1
2‖u−

f ‖2
L2(Ω0)

is F∗(u) = 1
2‖u + f ‖2

L2(Ω0)
− 1

2‖ f ‖2
L2(Ω0)

. It
remains to evaluate

G∗( p) = sup
d∈Y

〈 p, d〉 − G(d)

= sup
d∈Y

∑
T

∫
T

[
p · dT − IT

{|dT |s
}]

dx

+
∑
E

∫
E

[
( p · nE ) dE − IE

{|dE |}|nE |s
]
dS.

Let us consider the contribution from dE = α ϕE, j for some
α ∈ R on a single interior edge E , and d ≡ 0 otherwise. By
(10b) and (14), this contribution isα σE, j ( p)−|α| |nE |s cE, j ,
which is bounded above if and only if |σE, j ( p)| ≤
|nE |s cE, j . In this case, the maximum is zero. Similarly, it
can be shown that the contribution from dT = (

α1
α2

)
ϕT ,i

remains bounded above if and only if |σ T ,i ( p)|s∗ ≤ cT ,i ,
in which case the maximum is zero as well. This shows that
G∗ = IP is the indicator function of the constraint set P
defined in (18), which concludes the proof. �


Notice that discrete dual problem (DTV-L2-D) features
the same, very simple set of constraints which already
appeared in (15). As is the case for (TV-L2-D), the solu-
tion of discrete dual problem (DTV-L2-D) is not necessarily
unique. However, its divergence is unique on Ω0 due to the
strong convexity of the objective in terms of div p.

Although not needed for Algorithms 1 and 2, we state the
following relation between the primal and the dual solutions
for completeness.

Lemma 4.1 (Recovery of the Primal Solution in (DTV-L2))
Suppose that p ∈ RT 0

r+1(Ω) is a solution of (DTV-L2-D) in
caseΩ0 = Ω . Then the unique solution of (DTV-L2) is given
by

u = div p + f ∈ DGr (Ω). (24)

Proof From (23), the pair of optimality conditions to analyze
is

−Λ∗ p ∈ ∂F(u) and p ∈ ∂(β G)(Λu), (25)

see [23, Ch. III, Sect. 4]. Here it suffices to consider the
first condition, which by [23, Prop. I.5.1] is equivalent to
F(u) + F∗(−Λ∗ p) − (u, −Λ∗ p)L2(Ω) = 0. This equality
can be rewritten as

‖u − f ‖2L2(Ω)
+ ‖ div p + f ‖2L2(Ω)

− ‖ f ‖2L2(Ω)

− 2 (u, div p)L2(Ω) = 0.
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Developing each summand in terms of the inner product
(·, ·)L2(Ω) and rearranging appropriately, we obtain

(u − f − div p, u)L2(Ω) + (−u + f + div p, f )L2(Ω)

+ (div p + f − u, div p)L2(Ω) = 0,

which amounts to ‖u − f − div p‖2
L2(Ω)

= 0, and (24) is
proved. �

Remark 4.1 In caseΩ0 � Ω , the solution of the primal prob-
lem will not be unique in general. An inspection of the proof
of Lemma 4.1 shows that in this case, one can derive the
relation

‖u − f − div p‖2L2(Ω0)
= 2

∫
Ω\Ω0

u div p dx .

5 Algorithms for (DTV-L2)

Our goal in this section is to show that two standard algo-
rithms developed for images on Cartesian grids, with finite
difference approximations of gradient and divergence oper-
ations, are implementable with the same efficiency in our
framework of higher-order finite elements on triangular
meshes. Specifically, we consider in the following the split
Bregman iteration [30] and the primal–dualmethod ofCham-
bolle and Pock [13]. We refer the reader to the extended
preprint [33] for a additional discussion of Chambolle’s pro-
jection method [11] and a primal–dual active set method
similar to [34]. Since these algorithms are well known, we
only focus on themain steps in each case. Let us recall thatwe
are seeking a solution u ∈ DGr . For simplicity, we exclude
the case r = 3, i.e., we restrict the discussion to the polyno-
mial degrees r ∈ {0, 1, 2, 4} so that all weights cT ,i and cE, j

are strictly positive.

5.1 Split BregmanMethod

The split Bregman method (also known as alternating direc-
tion method of multipliers (ADMM)) considers primal prob-
lem (DTV-L2). It introduces an additional variable d so that
(DTV-L2) becomes

Minimize
1

2
‖u − f ‖2L2(Ω0)

+ β
∑
T ,i

cT ,i
∣∣dT ,i

∣∣
s

+β
∑
E, j

|nE |s cE, j |dE, j | s.t. d = Λu (26)

and enforces the constraint d = Λu = ∇u by an augmented
Lagrangian approach.As detailed in (19), d has contributions
∇u|T per triangle, as well as contributions �u�E per interior
edge. We can thus express d through its coefficients {dT ,i }

and {dE, j } w.r.t. the standard Lagrangian bases of Pr−1(T )2

and Pr (E),

d =
∑
i

dT ,i ϕT ,i +
∑
j

dE, j ϕE, j . (27)

Using (13) and (14), we rewrite discrete total variation (3) in
terms of d and adjoin the constraint d = ∇u by way of an
augmented Lagrangian functional,

1

2
‖u − f ‖2L2(Ω0)

+ β
∑
T ,i

cT ,i
∣∣dT ,i

∣∣
s

+β
∑
E, j

|nE |s cE, j |dE, j | + λ

2
‖d − Λu − b‖2Y . (28)

Here b is an estimate of the Lagrange multiplier associated
with the constraint d = ∇u ∈ Y , and b is naturally dis-
cretized in the same way as d.

Remark 5.1 (Inner product on Y ) So farwe have not endowed
the space

Y =
∏
T

Pr−1(T )2 ×
∏
E

Pr (E)

with an inner product. Since elements of Y represent
(measure-valued) gradients of DGr (Ω) functions, the nat-
ural choice would be to endow Y with a total variation norm
of vector measures, which would amount to

∑
T

∫
T

|dT |s dx +
∑
E

|nE |s
∫
E

|dE | dS

for d ∈ Y . Clearly, this L1-type norm is not induced by an
inner product. Therefore we are using the L2 inner product
instead. For computational efficiency, it is crucial to consider
its lumped version, which amounts to

(d, e)Y := S
∑
T ,i

cT ,i dT ,i eT ,i +
∑
E, j

cE, j dE, j eE, j (29)

for d, e ∈ Y . The associated norm is denoted as ‖d‖2Y =
(d, d)Y . Notice that S > 0 is a scaling parameter which can
be used to improve the convergence of the split Bregman and
other iterative methods.

The efficiency of the split Bregman iteration depends on
the ability to efficiently minimize (28) independently for u,
d and b, respectively. Let us show that this is the case.

The Gradient Operator3

The gradient operator Λ evaluates the cell-wise gradient of
u ∈ DGr (Ω) aswell as the edge-jumpcontributions, see (19).
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These are standard operations in any finite element toolbox.
For computational efficiency, thematrix realizingu(xT ,i ) and
u(xE, j ) in terms of the coefficients of u can be stored once
and for all.

Solving the u-problem

We consider the minimization of (28), or equivalently, of

1

2
‖u − f ‖2L2(Ω0)

+ λS

2

∑
T ,i

cT ,i
∣∣dT ,i − ∇u(xT ,i ) − bT ,i

∣∣2
2

+ λ

2

∑
E, j

cE, j
∣∣dE, j − �u�(xE, j ) − bE, j

∣∣2 (30)

w.r.t. u ∈ DGr (Ω). This problem can be interpreted as a
DG finite element formulation of the elliptic partial differ-
ential equation −λ �u + χΩ0u = χΩ0 f + λ div(b − d) in
Ω . More precisely, it constitutes a nonsymmetric interior
penalty Galerkin (NIPG) method; compare for instance [44]
or [43, Ch. 2.4, 2.6]. Specialized preconditioned solvers for
such systems are available, see for instance [3]. However,
as proposed in [30], a (block) Gauss–Seidel method may
be sufficient. It is convenient to group the unknowns of the
same triangle together, which leads to local systems of size
(r + 1)(r + 2)/2.

Solving the d-problem

The minimization of (28), or equivalently, of

β
∑
T ,i

cT ,i
∣∣dT ,i

∣∣
s + β

∑
E, j

|nE |s cE, j |dE, j |

+ λS

2

∑
T ,i

cT ,i
∣∣dT ,i − ∇u(xT ,i ) − bT ,i

∣∣2
2

+ λ

2

∑
E, j

cE, j
∣∣dE, j − �u�(xE, j ) − bE, j

∣∣2 (31)

decouples into the minimization of

β
∣∣dT ,i

∣∣
s + λS

2

∣∣dT ,i − ∇u(xT ,i ) − bT ,i
∣∣2
2 (32a)

and β |nE |s |dE, j | + λ

2

∣∣dE, j − �u�(xE, j ) − bE, j
∣∣2 (32b)

w.r.t. dT ,i ∈ R
2 and dE, j ∈ R, respectively.

It is well known that scalar problem (32b) is solved via

dE, j = shrink

(
�u�(xE, j ) + bE, j ,

β |nE |s
λ

)
,

where shrink(ξ, γ ) := max {|ξ | − γ, 0} sgn ξ , while the
minimization of (32a) defines the (Euclidean) prox mapping

of | · |s and thus we have

dT ,i = proxβ/(λS)| · |s
(∇u(xT ,i ) + bT ,i

)
,

where

proxβ/(λS)| · |s (ξ) = ξ − β

λS
projB| · |s∗

(
λS

β
ξ

)
.

Here projB| · |s∗
is the Euclidean orthogonal projection onto

the closed | · |s∗ -norm unit ball; see for instance [7, Ex. 6.47].
When s ∈ {1, 2}, then we have closed-form solutions of
(32a):

[dT ,i ]� = shrink

([∇u(xT ,i ) + bT ,i
]
�
,

β

λS

)
for � = 1, 2

when s = 1 and

dT ,i = max

{∣∣∇u(xT ,i ) + bT ,i
∣∣
2 − β

λS
, 0

}

· ∇u(xT ,i ) + bT ,i∣∣∇u(xT ,i ) + bT ,i
∣∣
2

when s = 2.When∇u(xT ,i )+ bT ,i = 0, the second formula
is understood as dT ,i = 0. Efficient approaches for s = ∞
are also available; see [22].

Updating b

This is simply achieved by replacing the current values
for bT ,i and bE, j by bT ,i + ∇u(xT ,i ) − dT ,i and bE, j +
�u�(xE, j ) − dE, j , respectively.

The quantities bT ,i and bE, j represent discrete multipliers
associated with the components of the constraint d = Λu.
Here we clarify how these multipliers relate to the dual vari-
able p ∈ RT 0

r+1(Ω) in (DTV-L2-D). In fact, let us interpret
bT ,i as the coefficients of a function bT ∈ Pr−1(T ) and
bE, j as the coefficients of a function bE ∈ Pr (E) w.r.t. the
standard nodal bases, just as in (27). Moreover, let us define
a function p̄ ∈ RT 0

r+1(Ω) by specifying its coefficients as
follows,

σ T ,i ( p̄) := λS bT ,i cT ,i and σE, j ( p̄) := λ bE, j cE, j .

(33)

123



422 Journal of Mathematical Imaging and Vision (2019) 61:411–431

Then

∫
T
p̄ · (∇u − dT ) dx

=
∑
i

∫
T
p̄ ϕT ,i · (∇u(xT ,i ) − dT ,i

)
dx

= λS
∑
i

cT ,i bT ,i · (∇u(xT ,i ) − dT ,i
)

and

∫
E
p̄ (�u� − dE ) nE dS

=
∑
j

∫
E
p̄ ϕE, j

(
�u�(xE, j ) − dE, j

)
dS

= λ
∑
j

cE, j bE, j (�u�(xE, j ) − dE, j ),

and these are precisely the terms appearing in discrete aug-
mented Lagrangian functional (28). Consequently, p̄ can be
interpreted as the Lagrange multiplier associated with the
components of the constraint d = Λu, when the latter are
adjoined using the lumped L2(T ) and L2(E) inner prod-
ucts. It can be shown using the KKT conditions for (26)
and optimality conditions (25) that p̄ defined by (33) solves
dual problem (DTV-L2-D). To prove this assertion, suppose
that (u, d) is optimal for (26). We will show that (u, p̄) sat-
isfy necessary and sufficient optimality conditions (25). The
Lagrangian for (26) can be written as F(u) + β G(d) +
〈 p̄, Λu − d〉 and the optimality of (u, d) implies p̄ ∈
∂(β G)(d) = ∂(β G)(Λu). On the other hand, u is optimal
for (DTV-L2), which implies 0 ∈ ∂F(u) + Λ∗∂(β G)(Λu)

and thus −Λ∗ p̄ ∈ ∂F(u). Altogether, we have verified (25),
which is necessary and sufficient for p̄ to be optimal for
(DTV-L2-D).

For convenience, we specify the split Bregman iteration
in Algorithm 1.

Algorithm 1 Split Bregman algorithm for (DTV-L2) with
s ∈ [1,∞]
1: Set u(0) := f ∈ DGr (Ω), b(0) := 0 ∈ Y and d(0) := 0 ∈ Y
2: Set n := 0
3: while not converged do
4: Minimize (30) for u(n+1) with data b(n) and d(n)

5: Minimize (32) for d(n+1) with data u(n+1) and b(n)

6: Set b(n+1)
T ,i := b(n)

T ,i + ∇u(n+1)(xT ,i ) − d(n+1)
T ,i

7: Set b(n+1)
E, j := b(n)

E, j + �u(n+1)�(xE, j ) − d(n+1)
E, j

8: Set n := n + 1
9: end while
10: Set p(n) by (33) with data b(n)

5.2 Chambolle–PockMethod

Themethod by [13], also knownas primal–dual extragradient
method, see [31], is basedona reformulationof theoptimality
conditions in terms of the prox operators pertaining to F and
G∗.We recall that F is defined by F(u) = 1

2‖u− f ‖2
L2(Ω0)

on

U = DGr (Ω). Moreover, G∗ is defined on Y ∗ ∼= RT 0
r+1(Ω)

by G∗ = IP , the indicator function of P , see (18).
Notice that prox operators depend on the inner product

in the respective space. We recall that U has been endowed
with the (regular, nonlumped) L2(Ω) inner product, see the
proof of Theorem 4.1. For the space Y we are using again
the inner product defined in (29). Exploiting duality product
(21) between Y and Y ∗ ∼= RT 0

r+1(Ω) is then straightforward
to derive the Riesz map R : Y � d �→ p ∈ Y ∗. In terms of
the coefficients of p, we have

σ T ,i ( p) = cT ,i S dT ,i and σE, j ( p) = cE, j dE, j . (34)

Consequently, the induced inner product in RT 0
r+1(Ω)

becomes

( p, q)Y ∗ :=
∑
T ,i

1

cT ,i S
σ T ,i ( p) · σ T ,i (q)

+
∑
E, j

1

cE, j
σE, j ( p) σE, j (q). (35)

To summarize, the inner products inY ,Y ∗ aswell as theRiesz
map are realized efficiently by simple, diagonal operations
on the coefficients.

Solving the F-prox

Let σ > 0. The prox-operator of σ F , denoted by

proxσ F (ū) : U → U ,

is defined as u = proxσ F (ū) if and only if

u = argmin
v∈DGr (Ω)

1

2
‖v − ū‖2L2(Ω)

+ σ

2
‖v − f ‖2L2(Ω0)

.

For given data ū ∈ DGr (Ω) and f ∈ DGr (Ω0), it is easy to
see that a necessary and sufficient condition is u− ū+σ (u−
f ) = 0, which amounts to the coefficient-wise formula

uT ,k = 1

1 + σT ,k

(
ūT ,k + σT ,k fT ,k

)
, (36)

where σT ,k = σ if T ⊂ Ω0 and σT ,k = 0 otherwise.
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Solving the G∗-prox

Let τ > 0. The prox-operator

proxτG∗ : Y ∗ ∼= RT 0
r+1(Ω) → Y ∗

is defined as p = proxτG∗( p̄) if and only if

p = argmin
q∈RT 0

r+1(Ω)

1

2
‖q − p̄‖2Y ∗ s.t. q ∈ P . (37)

Similarly, the prox operator for (β G)∗ is obtained by replac-
ing P by β P , for any τ > 0. Due to the diagonal structure
of the inner product in Y ∗, this is efficiently implementable.
When p̄ ∈ RT 0

r+1(Ω), then we obtain the solution in terms
of the coefficients, similar to (32), as

σ T ,i ( p) = projβ cT ,i B| · |s∗
(
σ T ,i ( p̄)

)

σE, j ( p) = min
{|σE, j ( p̄)|, β |nE |s cE, j

} σE, j ( p̄)
|σE, j ( p̄)| .

(38)

In particular we have

[
σ T ,i ( p)

]
�

= min
{∣∣[σ T ,i ( p̄)]�

∣∣, β cT ,i
}
sgn[σ T ,i ( p̄)]�

for � = 1, 2 when s = 1 and

σ T ,i ( p) = min
{|σ T ,i ( p̄)|2, β cT ,i

} σ T ,i ( p̄)
|σ T ,i ( p̄)|2

when s = 2. The second formula is understood as

σ T ,i ( p) = 0

when |σ T ,i ( p̄)|2 = 0.An implementation of theChambolle–
Pockmethod is given in Algorithm 2. Notice that the solution
of the proxτG∗ problem is independent of the scaling param-
eter S > 0. However, S enters through Riesz isomorphism
(34).

6 Implementation Details

Our implementation was carried out in the finite element
framework FEniCS (version 2017.2). We refer the reader to
[2,39] for background reading. FEniCS supports finite ele-
ments of various types on simplicial meshes, including CGr ,
DGr and RTr+1 elements of arbitrary order. Although we
focus on this piece of software, the content of this section
will apply to other finite element frameworks as well.

While the bases for the spaces CGr and DGr in FEniCS
are given by the standard nodal basis functions as described
in Sect. 2, the implementation ofRTr+1 elements in FEniCS

Algorithm 2Chambolle–Pock algorithm for (DTV-L2) with
s ∈ [1,∞]
1: Set u(0) := f ∈ DGr (Ω), p(0) := 0 ∈ RT 0

r+1(Ω) and p̄(0) := 0 ∈
RT 0

r+1(Ω)

2: Set n := 0
3: while not converged do
4: Set v(n+1) := div p̄(n) ∈ DGr (Ω) // v(n+1) = −Λ∗ p̄(n)

5: Set u(n+1) := proxσ F (u(n) + σ v(n+1)), see (36) // u(n+1) =
proxσ F (u(n) − σ Λ∗ p̄(n))

6: Set d(n+1) := Λu(n+1) ∈ Y
7: Set q(n+1) := R d(n+1) ∈ RT 0

r+1(Ω), where R is Riesz map (34)

8: Set p(n+1) := proxτ(βG)∗ ( p
(n) + τ q(n+1)), see (38)

// p(n+1) = proxτ(βG)∗ ( p
(n) + τ R Λu(n+1))

9: Set p̄(n+1) := p(n+1) + θ ( p(n+1) − p(n))

10: Set n := n + 1
11: end while

uses degrees of freedom based on point evaluations of p and
p·nE , rather than the integral-typedofs in (10). Sincewewish
to take advantage of the simple structure of the constraints
in dual representation (15) of |u|DTV(Ω) however, we rely on
the choice of dofs described in (10). In order to avoid a global
basis transformation, we implemented our own version of the
RTr+1 finite element in FEniCS.

Our implementation uses the dofs in (10) on the reference
cell T̂ . As usual in finite element methods, an arbitrary cell T
is then obtained via an affine geometry transformation, i.e.,

GT : T̂ → T , GT (̂x) = BT x̂ + bT ,

where BT ∈ R
2×2 is a nonsingular matrix and bT ∈ R

2.
We mention that BT need not necessarily have a positive
determinant, i.e., the transformation GT may not necessarily
be orientation preserving. In contrast to CG andDG elements,
a second transformation is required to define the dofs and
basis functions on the world cell T from the dofs and basis
functions on T̂ . For the (H(div;Ω)-conforming)RT spaces,
this is achieved via the (contravariant) Piola transform; see
for instance [25, Ch. 1.4.7] or [45]. In terms of functions p̂
from the local polynomial space, we have

PT : Pr (T̂ )2 + x̂ Pr (T̂ ) → Pr (T )2 + x Pr (T ),

PT ( p̂) = (det B−1
T ) BT [ p̂ ◦ G−1

T ].

The Piola transform preserves tangent directions on edges,
as well as normal traces of vector fields, up to edge lengths.
It satisfies

|Ê | p̂ · n̂Ê = ±|E | p · nE and |T̂ | BT p̂ = ±|T | p, (39)

where Ê is an edge of T̂ , n̂Ê is the corresponding unit outer
normal, E = GT (Ê), nE is a unit normal vector on E with
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arbitrary orientation, p = PT ( p̂), and |T | is the area of T ;
see for instance [25, Lem. 1.84].

We denote by σ̂ T̂ ,i and σ̂Ê, j the degrees of freedom as
in (10), defined in terms of the nodal basis functions ϕ̂T̂ ,i ∈
Pr−1(T̂ ) and ϕ̂Ê, j ∈ Pr (Ê) on the reference cell. Let us
consider how these degrees of freedom act on the world cell.
Indeed, the relations above imply

σ̂ T̂ ,i ( p̂) :=
∫
T̂

ϕ̂T̂ ,i p̂ dx̂

= ±
∫
T

ϕT ,i B
−1
T p dx =: ±σ̃ T ,i ( p), (40a)

σ̂Ê, j ( p̂) :=
∫
Ê

ϕ̂Ê, j ( p̂ · n̂Ê ) d̂s

= ±
∫
E

ϕE, j ( p · nE ) dS = ±σE, j ( p), (40b)

where we used that Lagrangian basis functions are trans-
formed according to ϕT ,i = ϕ̂T̂ ,i ◦ G−1

T , and similarly for
the edge-based quantities. The correct choice of the sign in
(39) and (40) depends on the sign of det BT and on the rel-
ative orientations of PT (̂nÊ ) and nE . However the sign is
not important since all operations depending on the dofs or
coefficients, such as σ T ,i ( p), are sign invariant, notably the
constraint set in (18).

Notice that while (40b) agrees (possibly up to the sign)
with our preferred set of edge-based dofs (10b), the interior
dofs σ̃ T ,i available through transformation (40a) are related
to the desired dofs σ T ,i from (10a) via

σ T ,i ( p) = sgn(det BT ) B�
T σ̃ T ,i ( p). (41)

Notice that this transformation is impossible to avoid since
dofs (10a) are not invariant under the Piola transform. How-
ever, (41) is completely local to the triangle and inexpensive
to evaluate. Although not required for our numerical compu-
tations, we mention for completeness that the corresponding
dual basis functions are related via

ψT
i = sgn(det BT ) ψ̃

T
i B

−�
T . (42)

To summarize this discussion, functions p ∈ RTr+1(Ω)will
be represented in terms of coefficients w.r.t. the dofs {σE, j }
and {σ̃ T ,i } in our FEniCS implementation of the RT space.
Transformations to and from the desired dofs {σ T ,i } will be
performed for all operations manipulating directly the coef-
ficients of an RTr+1 function. For instance, the projection
operation in (38) (for Chambolle–Pock Algorithm 2) in the
case s = 2 would be implemented as

Fig. 3 Left: cameraman pixel test image. Middle: nondiscrete test
image. Right: mesh used to represent the image in the middle

σ̃ T ,i ( p) = B−�
T min

{
|B�

T σ̃ T ,i ( p̄)|2, β cT ,i

}

· B�
T σ̃ T ,i ( p̄)

|B�
T σ̃ T ,i ( p̄)|2

.

7 Numerical Results for (DTV-L2)

In this section we present some numerical results for
(DTV-L2) in the isotropic case (s = 2). Our goals are to com-
pare the convergence behavior and computational efficiency
for Algorithms 1 and 2 w.r.t. varying polynomial degree
r ∈ {0, 1, 2}, and to exhibit the benefits of polynomial orders
r ≥ 1 for image quality, for both denoising and inpainting
applications.

In our tests, we use the two images displayed in Fig. 3.
Both have data in the range [0, 1]. The discrete cameraman
image has a resolution of 256 × 256 square pixels and will
be interpolated onto a DGr (Ω) space on a triangular grid
with crossed diagonals, so the mesh has 262,144 cells and
131,585 vertices. We are also using a low-resolution version
of the cameraman image on a 64×64 square grid in Sect. 7.3.
The second is a nondiscrete image on a circle of radius 0.5.
The corresponding discrete problems are set up on a mesh
consisting of 5460 cells and 2811 vertices. For each problem,
the dimension of the finite element space for the image u is
given in Table 2. In all of the following tests, noise is added to
each degree of freedom in the form of a normally distributed
random variable with standard deviation σ = 10−1 and zero
mean.Our implementation uses the finite element framework
FEniCS (version 2017.2). All experiments were conducted
on a standard desktop PC with an Intel i5-4690 CPU running
at 3.50 Ghz, 16 GB RAM and Linux openSUSE Leap 42.1.
Visualization was achieved in ParaView.

A stopping criterion for Algorithms 1 and 2 can be based
on the primal–dual gap

F(u) + β G(Λu) + F∗(Λ∗ p) + β G∗( p/β). (43)

Notice that since G∗ = IP is the indicator function of the
constraint set P , the last term is either 0 or ∞, and (43)
can therefore not directly serve as a meaningful stopping
criterion. Instead, we omit the last term in (43) and intro-

123



Journal of Mathematical Imaging and Vision (2019) 61:411–431 425

Table 2 Dimensions of the DGr
spaces for our test images
depending on the polynomial
degree r ∈ {0, 1, 2}

Image # of cells NT # of vertices NV dimDG0(Ω) dimDG1(Ω) dimDG2(Ω)

Cameraman 262,144 131,585 262,144 786,432 1,572,864

Cameraman64 16,384 8321 16,384 49,152 98,304

Ball 5460 2811 5460 16,380 32,760

duce a distance-to-feasibility measure for p as a second
criterion. For the latter, we utilize the difference of p and
its Y ∗-orthogonal projection onto β P , measured in the Y ∗-
norm squared. This expression can be easily evaluated when
s ∈ {1, 2}. Straightforward calculations then show that we
obtain the following specific expressions:

GAP(u, p) := 1

2
‖u − f ‖2L2(Ω0)

+ 1

2
‖ div p + f ‖2L2(Ω0)

−1

2
‖ f ‖2L2(Ω0)

+ β
∑
T

∫
T
IT

{|∇u|s
}
dx

+β
∑
E

∫
E
IE

{∣∣[�u�]∣∣s} dS (44a)

and

INFEAS2( p) :=
∑
T ,i

1

cT ,i S
max

{|σ T ,i ( p)|2 − β cT ,i , 0
}2

+
∑
E, j

1

cE, j
max

{|σE, j ( p)| − β cE, j , 0
}2 (44b)

when s = 2, as well as

INFEAS1( p)

:=
∑
T ,i

1

cT ,i S

2∑
�=1

max
{∣∣[σ T ,i ( p)]�

∣∣ − β cT ,i , 0
}2

+
∑
E, j

1

cE, j
max

{|σE, j ( p)| − β |nE |s cE, j , 0
}2 (44c)

when s = 1. In our numerical experiments, we focus on the
case s = 2 andwe stop either algorithm as soon as the iterates
(u, p) satisfy the following conditions:

|GAP(u, p)| ≤ εrel GAP( f , 0)

INFEAS2( p) ≤ 10−11
(45)

with εrel = 10−3. As a measurement for the quality of our
resultswe use the commonpeak signal-to-noise ratio, defined
by

PSNR(u, uref) = 10 log10

(
M2 |Ω|

‖u − uref‖2L2(Ω)

)
, (46)

Fig. 4 Original, noisy anddenoised images (top to bottom) forDG0 (left
column), DG1 (middle column) and DG2 (right column) for (DTV-L2)
with parameter β = 10−3 in the isotropic setting (s = 2). Results
obtained using Algorithm 1 (split Bregman), see Table 3. The results
obtained by the Chambolle–Pock method are similar and not shown

where u is the recovered image, uref is the reference image,
and |Ω| is the area of the image. Moreover, M = 1 is the
maximum possible image value.

7.1 Denoising ofDGr-Images

This section addresses the denoising of DGr images, and it
also serves as a comparative study of Algorithms 1 and 2.
We represent (interpolate) the nondiscrete image displayed
in Fig. 3 (middle) in the space DGr (Ω) for r = 0, 1, 2.
Noise is added to each degree of freedom as described above.
We show the denoising results for the split Bregman method
(Algorithm 1) in Fig. 4. The results for the Chambolle–Pock
approach (Algorithm 2) are very similar and are therefore
not shown. In either case, the noise is removed successfully.
Infeasibility criterion (44b) in the final iteration was smaller
than 10−37 for Algorithm 1 and smaller than 10−11 for Algo-
rithm 2 in all cases r ∈ {0, 1, 2}. Table 3 summarizes the
convergence behavior of both methods. Since the split Breg-
man method performed slightly better w.r.t. iteration count
and run time in our implementation, we will use only Algo-
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Table 3 Comparison of the performance of Algorithms 1 and 2 for the denoising problem shown in Fig. 4 in various discretizations

Space Algorithm Iterations Time (s) PSNR Objective

DG0 Split Bregman (λ = 10−3) 37 1.6 32.031 5.51 × 10−3

Chambolle–Pock (σ = 0.016, τ = 10−1) 128 3.4 31.987 5.51 × 10−3

DG1 Split Bregman (λ = 10−3, S = 10−2) 57 5.8 36.092 3.46 × 10−3

Chambolle–Pock (σ = 0.025, τ = 10−2, θ = 1, S = 10−2) 91 6.7 33.480 3.66 × 10−3

DG2 Split Bregman (λ = 10−3, S = 10−2) 41 9.3 31.896 4.14 × 10−3

Chambolle–Pock (σ = 0.030, τ = 10−3, θ = 1, S = 10−2) 223 35.1 31.066 4.32 × 10−3

rithm 1 for the subsequent denoising examples (Sect. 7.2 and
7.3).

Figure 4 visualizes the benefits of higher-order finite ele-
ments in particular in the case where the discontinuities in
the image are not resolved by the computational mesh. In
addition, theDG1 andDG2 solutions exhibit less staircasing.
Further evidence for the benefits of higher-order polynomial
spaces for the cameraman test image is given in Sect. 7.3.

Before continuing, we mention that all results in DG1
were interpolated onto DG0 on a twice refined mesh merely
for visualization since DG1 functions cannot directly be
displayed in ParaView. Likewise, results in DG2 were
interpolated ontoDG0 on a three times refinedmesh for visu-
alization.

7.2 Comparison toDG0 Image Denoising on Pixel
Grids

In this section we provide a comparison of our approach,
using DGr representations of an image for r ∈ {0, 1, 2} and
discrete problem (DTV-L2), with the classical representation
by constant pixels. We refer to the latter asDG0 on pixels. In
this example, we use the discrete cameraman test image on
a 256 × 256 pixel grid. For the finite element spaces, each
pixel is refined into four triangles with crossed diagonals.

For this problemwe do not expect higher-order discretiza-
tion to be particularly beneficial since the ‘original’ image
data are only piecewise constant itself. In addition, we can-
not directly compare run times since the DG0 pixel problem
was solved with an implementation of the split Bregman
method inMatlab, since FEniCS does not support all func-
tion spaces on quadrilateral meshes. In any case, the same
starting guess and stopping criterion (45) was used in each
case.

The denoising results are shown in Fig. 5, and the conver-
gence behavior of the split Bregman method is displayed in
Table 4.

Fig. 5 Noisy (left) and denoised (right) images for classical DG0 on
pixels (top row), and finite element solutions in DG0 (second row),
DG1 (third row) and DG2 (bottom row) for (DTV-L2) with parameter
β = 3 × 10−4 in the isotropic setting (s = 2). Results obtained using
Algorithm 1 (split Bregman), see Table 4
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Table 4 Comparison of the performance of Algorithm 1 (split Bregman) for the denoising problem shown in Fig. 5 in various discretizations

Space Algorithm Iterations Time (s) PSNR Objective

DG0 on pixels Split Bregman (λ = 10−2) 24 2.8 26.236 8.58 × 10−3

DG0 Split Bregman (λ = 10−2) 32 49.1 26.641 8.75 × 10−3

DG1 Split Bregman (λ = 10−2, S = 10−2) 63 516.6 26.882 6.30 × 10−3

DG2 Split Bregman (λ = 10−2, S = 10−2) 138 3610.1 26.911 6.94 × 10−3

Fig. 6 Original (interpolated), noisy and denoised images (top to bot-
tom) forDG0 (left column) andDG2 (right column) for (DTV-L2) with
parameter β = 4 × 10−4 for the isotropic setting (s = 2) on a coarse
grid. Results obtained using Algorithm 1 (split Bregman), see Table 5

7.3 Denoising of Low-Resolution Images

In this sectionwe consider a low resolution of the cameraman
image, which was obtained by interpolating the 256 × 256
pixel image onto a 64 × 64 square pixel grid with crossed
diagonals. Again, noise is added per coefficient in the respec-
tive space. Subsequently, the denoising problem is solved in
the DGr (Ω) spaces for r ∈ {0, 1, 2} on the coarse grid. The

Fig. 7 Inpainting with 66.6% of the cells erased (shown in black in
the upper left image). The noisy images are not shown. Inpainting and
denoising results forDG0 (upper right),DG1 (lower left) andDG2(lower
right) for (DTV-L2) with parameter β = 10−3 for the isotropic setting
(s = 2). Results obtained using Algorithm 2 (Chambolle–Pock), see
Table 6

goal is to demonstrate that the use of higher-order polyno-
mial functions can partially compensate the loss of geometric
resolution. In Fig. 6 we show the results obtained using the
split Bregman method, whose performance was similar as in
Sect. 7.1, as can be seen in Table 5. The PSNR values were
evaluated using the full-resolution image as uref.

As can be seen from the results in Fig. 6 and Table 5,
the recovered image in DG2(Ω), see Fig. 6 (bottom right),
exceeds the DG0 image both in visual quality and in PSNR
value.

Table 5 Performance of
Algorithm 1 (split Bregman) for
the low-resolution denoising
problem shown in Fig. 6 in
various discretizations

Space Algorithm Iterations Time (s) PSNR Objective

DG0 Split Bregman (λ = 10−2) 20 6.3 19.333 8.97 × 10−3

DG2 Split Bregman (λ = 10−2, S = 10−2) 101 84.3 20.855 7.18 × 10−3
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Table 6 Performance of Algorithm 2 (Chambolle–Pock) for (DTV-L2) inpainting problem shown in Fig. 7 in various discretizations

Space Algorithm Iterations Time (s) PSNR Objective

DG0 Chambolle–Pock (σ = 0.70, τ = 1.25 × 10−4, θ = 1, S = 10−2) 2031 47.7 23.617 2.80 × 10−3

DG1 Chambolle–Pock (σ = 0.50, τ = 5.00 × 10−4, θ = 1, S = 10−2) 697 49.0 26.788 2.23 × 10−3

DG2 Chambolle–Pock (σ = 0.07, τ = 1.50 × 10−4, θ = 1, S = 10−2) 2286 354.0 26.385 2.47 × 10−3

7.4 Inpainting ofDGr-Images

In this and the following section we demonstrate the utility
of higher-order polynomial function spaces for the purpose
of denoising and inpainting. To this end, we consider the
nondiscrete ‘ball’ image and randomly delete two-thirds of
all cells, which subsequently serve as the inpainting region
Ω\Ω0. Noise is added to the remaining data and problem
(DTV-L2) solved in DGr (Ω) for r ∈ {0, 1, 2}; see Fig. 7.
For this test, we found the Chambolle–Pock method (Algo-
rithm 2) to perform better than split Bregman; see Table 6.

The results for this combined inpainting and denoising
problem are similar to those for the pure denoising case
(Sect. 7.1). Clearly, the higher-order results produce images
closer to the original than the recovery inDG0, which is also
reflected in the PSNR values.

8 Conclusion and Outlook

In this paper we have introduced a discrete version (DTV)
of the TV-seminorm for globally discontinuous (DGr )
Lagrangian finite element functions on simplicial grids in
R
2. We have shown that | · |DTV(Ω) has a convenient dual

representation in terms of the supremum over the space of
Raviart–Thomas finite element functions, subject to a set of
simple constraints. This allows for the efficient realization
of a variety of algorithms for (DTV-L2-D) for image denois-
ing and inpainting, with both low- and higher-order finite
element functions available in finite element libraries.

An extension to 3D applications is readily obtained by
replacing triangles by tetrahedra and edges by facets. In
this case the analogue of Lemma 3.1 limits the polyno-
mial degrees with positive weights to r ∈ {0, 1, 2}; see
[48, Tab. II]. Further extensions to TV-L1 problems and a
‘Huberized’ version of the discrete TV-seminorm, we refer
the reader to the extended preprint [33].

As we admit higher-order polynomial functions, it would
be natural to extend our analysis to a discrete version of the
total generalized variation (TGV) functional introduced in
[10]. Another generalization that could be of interest is to
consider finite element functions defined on more general
cells than the simplices considered here. Clearly rectangles
are of particular interest in imaging applications, but also

hexagons; see [18,36], as mentioned in introduction. We
remark thatRT finite element spaces on parallelograms were
already discussed in the original contribution [42], and we
refer to [37] for an application to imaging, but only for the
lowest order case. The generalization to higher-order finite
elements, as well as to more general element geometries, is
left for future research.

The polynomial degree in our 2D study was limited
to r ∈ {0, 1, 2, 4}, which should be sufficient for most
applications. The limitation in the degree arises due to the
requirement that the quadrature weights, i.e., the integrals
over the standard Lagrangian basis functions, have to be pos-
itive; see Lemma 3.1. This brings up the question whether
a Lagrangian basis for higher-order polynomial functions
on triangles or tetrahedra exists, such that the integrals of
the basis functions are (strictly) positive. This is answered
in the affirmative by results in [51,52] for the triangle and
[28,55] for tetrahedra,where interpolatory quadrature formu-
laswith positiveweights are constructed.However, it remains
to be investigated whether a Lagrangian finite element with a
modified basis admits an appropriate Raviart–Thomas-type
counterpart such that a dual representation of | · |DTV(Ω)

parallel to Theorem 3.1 continues to hold. Moreover, such
nonstandard finite element spaces certainly incur an over-
head in implementation.

One may also envision applications where it would be
beneficial to allow for locally varying polynomial degrees
and mesh sizes in imaging applications, so that the resolu-
tion can be chosen adaptively. Finally, we mention possible
extensions to vectorial TV-seminorms, see for instance [29].
These topics remain for future research.
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