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Abstract
Disk shape frequently appears as a reference in shape characterization applications. We propose a local measure of deviation
from a disk as the local difference between numerical solution of a PDE on the shape and an analytical expression in the form
of modified Bessel function. The deviation defined at each shape point defines a field over the shape. This field has useful
properties, which we demonstrate via illustrative applications ranging from shape decomposition to shape characterization.
Furthermore, we show that a global measure extracted from the field is capable of characterizing the body roundness and
periphery thickness uniformity.

Keywords Global shape measures · Shape entropy · Roundness · Signed distance · Modified Bessel · Screened Poisson

1 Introduction

In the field of shape characterization, in one end of the
spectrum are the structural descriptors in the form of part
hierarchy trees or skeleton graphs extracted from distance
transforms. They have been successfully employed in char-
acterizing shapes with well-defined part hierarchy with
semantically meaningful parts, e.g., a horse shape. In the
other end of the spectrum are the global descriptors such as
moments and specialized descriptors derived frommoments,
which may be better suited for shape collections that lack
certain analytical hierarchy and as well as strong semantic
meaning for either within the collection or within a particular
member of the collection.

In this paper, we propose an alternative characterization
equally suitable for shapes of both types. In the proposed
scheme, a shape is modeled via a field defined on the entire
shape domainwhere the field value is calculated locally using
a reference shape and a global parameter. Specifically, the
reference shape is a disk and the global parameter is the
radius of the disk. The intuitive idea is to measure (at each
shape location) the deviation of the local configuration from
the reference shape. We call this field as discrepancy. If the
shape is a perfect disk, discrepancy is uniformly zero.
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Disk shape frequently appears as a reference in shape
characterization applications since it has a simple form
with fundamental properties such as compactness, convex-
ity, isotropy, uniformity of distance from boundary to center,
uniformity of boundary curvature. Different from the global
shape measures that assign a single scalar value to a given
shape, discrepancy provides richer information where it
attains a value at each point of the shape domain when neces-
sary global measures can be calculated using the field values.

A novel feature of our proposed scheme is that we cal-
culate deviation from the reference disk indirectly using an
auxiliary field. This makes calculations easy and robust. The
auxiliary field is easily computable for an arbitrary shape
using numerical methods. Furthermore, for a disk shape, the
field value which depends only on the radial distance can be
expressed in analytical form via special functions. Hence, we
do not need to actually generate a digital disk.

The intuitive idea is explained in Fig. 1. Consider a disk
with a triangular protrusion on top. In Fig. 1a–c, the cyan dot
shows a domain point. In each case, an imaginary circle (red)
which is tangent to the nearest boundary point and with the
radius A equal to the radius of the maximal inscribed disk is
drawn.

The first location, cyan dot shown in (a), is away from
the triangular protrusion, and its local circle coincides with
the maximal inscribed circle. The second location, cyan dot
shown in (b), is still inside the disk, but in the upper half closer
to the protrusion. The third location, cyan dot shown in (c),
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Fig. 1 Imaginary reference disk at three distinct shape points marked
via cyan dot in (a–c) (Color figure online)

is in the protruding region. The cyan line segment measures
the distance d between the point and its nearest boundary
point. Notice that A − d is the distance from the disk center
to the cyan dot’s location. Discrepancy at each shape point is
computed as the difference between the value of the auxiliary
field and the value that the auxiliary fieldwould take on a disk
point located at the radial distance A−d. That is, discrepancy
is a local property biased by the global shape.

1.1 RelatedWork

In [13], a global measure of circularity is derived using a
geometric moment invariant of a disk shape and it is uti-
lized in image processing tasks from medical, industrial and
astronomical applications. As any ellipse can be obtained by
applying an affine transform to a disk, an ellipticity mea-
sure is presented in [9] using an affine moment invariant of a
disk shape where a highest possible ellipticity is assigned to
all the ellipses, including circles. In [1], a family of elliptic-
ity measures which distinguishes among ellipses of different
aspect ratios is defined and applied to the galaxy classifica-
tion problem. A generalization of moment-based circularity
and ellipticity measures is presented in [7] so that they
can be applied to higher-dimensional data. A probabilistic
approach is followed in [4] to obtain a circularity measure
which is not affected by discrete resolution, region overlaps
or noisy/partial boundary.

In [8], a review of several methods which measure circu-
larity and compactness of discrete shape regions is presented
where the methods are divided into three main groups one
of which is reference shape approaches. It is noted that gen-
eration of digitalized reference disks is a drawback of the
reference shape approaches. We remark that while comput-
ing discrepancy, we do not need to generate a digitalized
reference disk since we obtain the corresponding distance
function of the reference disk analytically.

The auxiliary field we use is governed by screened Pois-
son equation. This equation has been successfully employed
in shape analysis in approximating curvature dependent
shape evolution and skeleton computation. Equipped with
non-local terms, it is used to construct fluctuating dis-
tance fields that naturally split shape domain into perceptual

parts [3,10,11]. In the present work, we merely use screened
Poisson equation as an auxiliary mechanism.

2 Discrepancy

As the auxiliary field, we prefer a field that can be easily com-
putable for an arbitrary shape and analytically computable
(i.e., expressible in terms of mathematical functions) for the
reference shape so that we do not need to digitally generate
the reference shape. Thismotivated us to employ the screened
Poisson equation. Other means may also be considered. Due
to circular symmetry of the reference disk, the solution of the
screened Poisson equation is rotationally invariant and hence
characterized by only the radial distance A − d.

Let the shape S be an open connected bounded set with
boundary ∂S. Let v : S → R be a mapping governed by the
screened Poisson equation

(Δ − a2)v = 0 subject to v |∂S = 1 (1)

whereΔdenotes theLaplace operator ∂2

∂x2
+ ∂2

∂ y2
. The solution

to (1) can be easily calculated with numerical methods. A
sample v function is depicted in Fig. 2a. Due to the selected
uniform inhomogeneous boundary condition, v attains the
highest value 1 at ∂S and decays toward the interior regions.

Now let us consider the same equation onΩ , an open disk
of radius A, with boundary ∂Ω ,

(Δ − a2)v = 0 subject to v |∂Ω = 1 (2)

Due to rotational symmetry of Ω , the solution v depends
only on the radial distance. Expressing the Laplace operator
in polar coordinates yields the polar form of (2) in polar
coordinates,

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2
− a2

)
v(r , θ) = 0

subject to v |∂Ω = 1

(3)

where 0 ≤ r ≤ A and 0 ≤ θ ≤ 2π .

Fig. 2 Illustration for the disk with an appendage. a The v function
serving as the auxiliary field. b Discrepancy. c Analytical solution via
Bessel functions extended to the shape domain
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As we derive in Sect. 2.1, solution to (3) can be obtained
in analytical form as

v(r , θ) = I0(ar)

I0(aA)
(4)

where I0 denotes the zeroth-order modified Bessel function
of the first kind. Notice that v(r , θ) depends only on r , the
radial distance from the disk center. That is, the solution is
rotationally invariant. The circular symmetry and simplicity
of the form (4) follow from the choice of uniform boundary
condition, as detailed in Sect. 2.1.

Now, let S be an arbitrary shape with the maximal
inscribed circle of radius A. Let us denote the solution of
(1) for S using any numerical means as vS and vΩ to denote
the analytical solution for the disk of appropriate radius. If
the arbitrary shape S happens to be a disk, then we can speak
of vΩ − vS which is zero up to a numerical accuracy. Sup-
pose the disk is perturbed via a small triangular appendage
(previously shown in Fig. 1). Imagine the maximal inscribed
circle in S ∪ ∂S. Except for its small fragment, it will coin-
cide with ∂S. On the small fragment, the solution vS will be
smaller than 1, decaying further toward the fragment cen-
ter. Now, one can imagine a new disk with a non-uniform
boundary condition f (θ). Inside this new disk, because the
propagated values from the boundary are lower than 1 at
certain angles (direction of the triangular appendage), the
realized solution becomes lower than the analytical estimate
obtained via (4) under the assumption of uniform boundary
condition f (θ) = 1.

As S deviates more and more from disk, discrepancy will
diverge more and more from the zero. The question is how
to calculate discrepancy for points in S that do not coincide
with the points in Ω . That is, we need an ability to produce
an estimate of the analytical solution at those domain points
falling out of the imaginary inscribed circle. Toward this end,
we may utilize for each point p, its minimal distance d(p) to
∂S. Then, take r as A−d(p). This is equivalent to imagining
a local scenario where the point is at radial position A−d(p)
in polar coordinates centered at the center of a putative circle
of radius A passing through the nearest boundary point of p.
Notice that 0 ≤ d(p) ≤ A for all p ∈ S. Let vS→Ω denote
the analytical solution extended to entire S, then

vS→Ω(p) = I0(a (A − d(p)))

I0(aA)
(5)

Consequently, discrepancy is

D(p) = I0(a (A − d(p)))

I0(aA)
− vS(p) (6)

If p happens to be on an appendage considerably narrower
as compared to thickest part, such as the case in Fig. 1c, the

analytical estimate will be lower than the numerical solution.
This is because the numerical solution depends on the values
propagated from the shape boundary (mainly the boundary
of the appendage), whereas the analytical solution depends
on the values propagated from the boundary of the imaginary
circle associated with the point. As the point is closer to the
shape boundary compared to the boundary of its associated
imaginary circle, the numerical solution is higher than the
analytical estimate. In contrast, as discussed before, in the
innermost parts, analytical estimate will be higher than the
realized numerical solution.

If the shape is a diskwith an appendage or protrusion, then
it is expected that discrepancy on the appendage or protrusion
will be negative, whereas on an inscribed central disk it is
positive. An illustration on the disk with an appendage is
shown in Fig. 2.

We note that − 1 < D(p) < 1 for all p ∈ S since 0 <

vS→Ω(p) < 1 and 0 < vS(p) < 1 for all p ∈ S.

2.1 Derivation of the Analytical Solution

Using separation of variables, we can express v(r , θ) as

v(r , θ) = R(r) φ(θ), where 0 ≤ r ≤ A and 0 ≤ θ ≤ 2π

Then, the partial differential equation (3) becomes

r2
R′′

R
+ r

R′

R
+ φ′′

φ
− a2r2 = 0

�⇒ φ′′

φ
= a2r2 − r2

R′′

R
− r

R′

R
= k (7)

Pulling the first equality in (7) yields

φ′′ − kφ = 0 (8)

The boundary conditions on φ(θ), φ(θ) = φ(θ + 2π) and
φ′(θ) = φ′(θ+2π), impose periodicity ofφ; hence, k cannot
be positive. The solution to φ(θ) is complex Fourier series.
Thus, taking k = −n2 where n is an integer, unit solutions
are of the form, c1,n sin(nθ) + c2,n cos(nθ).

Pulling the second equality in (7) yields

r2R′′ + r R′ − (a2r2 + n2)R = 0 (9)

Note that (9) is the modified Bessel equation of order n. Its
general solution is of the form, c3,n In(ar) + c4,n Kn(ar)
where In is called as the nth-order modified Bessel function
of the first kind and Kn as the nth-order modified Bessel
function of the second kind. Because limr→0 Kn → ∞ even
though R(0) is finite, the second term should disappear.
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Combining the respective solutions for φ(θ) and R(r) yields

v(r , θ) =
∞∑
n=0

[dn In(ar) sin(nθ) + en In(ar) cos(nθ)] (10)

First, let us consider n = 0. (8) takes the form φ′′(θ) = 0.
Imposing the two boundary conditions, i.e., φ(θ) = φ(θ +
2π) and φ′(θ) = φ′(θ +2π), the solution for (8) is constant.
Hence, we rewrite the general solution in the following form:

v(r , θ) = e0 I0(ar) +
∞∑
n=1

[dn In(ar) sin(nθ)

+ en In(ar) cos(nθ)] (11)

Finally, we need to determine e0, dn and en . Using the con-
dition at r = A:

v(A, θ) = 1 (12)

Hence,

e0 I0(aA) +
∞∑
n=1

[dn In(aA) sin(nθ)

+ en In(aA) cos(nθ)] = 1 (13)

Integrating from 0 to 2π :

e0 I0(aA) = 1

2π

∫ 2π

0
1 dθ = 1

�⇒ e0 = 1

I0(aA)
(14)

Now, for n 
= 0,

dn In(aA) = 1

π

∫ 2π

0
1 sin(nθ) dθ

= − 1

nπ
cos(nθ)

∣∣∣2π
0

�⇒ dn = 0 (15)

en In(aA) = 1

π

∫ 2π

0
1 cos(nθ) dθ

= 1

nπ
sin(nθ)

∣∣∣2π
0

= 0

�⇒ en = 0 (16)

Based on (14)–(16) and (11),

v(r , θ) = I0(ar)

I0(aA)

��

Fig. 3 Highest positive values are attained in central regions, whereas
the lowest negative values are attained on the appendages, protrusions
and boundary detail. The bottom row depicts the first three shapes only.
As seen in the color bar, the range of discrepancy for the three disks is
quite low (Color figure online)

Fig. 4 Discrepancy for two rods of varying length

2.2 Illustrative Results

In Fig. 3, illustrative discrepancy examples for 5 shapes from
MPEG-7 dataset [5] are depicted. The highest positive values
are attained on central regions, whereas the lowest negative
values are attained on appendages, protrusions and bound-
ary detail. For the three disks, discrepancy values are very
close to zero. The case of disks is redisplayed at the bot-
tom row where the dynamic range of the display is adjusted
for improved visibility. Observe that placing regular circu-
lar bumps (middle) is less disturbing than irregular notching
(right). The anisotropy of discrepancy in the later case is a
consequence of non-uniform notching. The brighter central
region of discrepancy extends toward the twodeepest notches
at approximately 120◦ and − 30◦.

For an arbitrary shape, discrepancy takes both positive
and negative values. However, for a perfect rod obtained
by rolling a disk, all values are positive (see Fig. 4). The
maximum value of discrepancy increases as the rod length
increases.

2.3 Entropy

For a perfect disk, discrepancy is uniformly zero; hence, dis-
crepancy histogram is a scaled impulse. Consequently, the
entropy is zero. If we add some noise, the entropy increases.
Even for a noisy disk, the interior region with small positive
discrepancy is significantly larger than the exterior region
with negative discrepancy. If we add a smaller round piece
on top of the disk (e.g., the handle of a pocket watch), the
exterior region grows in size significantly contributing to an
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Fig. 5 a–c Statistics of discrepancy at 6 different choices of a: 1/(A), 1/(0.9 A), 1/(0.8 A), 1/(0.3 A), 1/(0.2 A) and 1/(0.1 A). d Input shapes
associated with x-axis

increase in the entropy. If, however, we make a hole in the
handle to change the round handle to a ring of uniform thick-
ness, two noteworthy effects are observed. First, the exterior
region gets smaller. Second, the negative discrepancy distri-
bution over the exterior region becomes more uniform. Note
that discrepancy is a function of distance to boundary. Hence,
discrepancy distribution over the ring of constant thickness
has a lower variance compared to that over a disk of the same
radius. Hence, the entropy decreases. If we consider putting
together two disks of the same size, then both the size of
exterior region and the overall entropy will decrease as com-
pared to the size of the exterior region and the overall entropy
obtained when the disks are of different size. The entropy in
the interior region, however, may increase. This is because
the interior region, depending on the neck thickness, may
become more like a dumbbell rather than a disk.

2.4 Implementation Details

Shape interior is given by the blank (zero valued) pixels,
whereas the outside set is fixed at 1 to represent the bound-
ary condition. The distance transform is computed using the
available MATLAB command, which is an implementation
of the method in [6]. A is obtained as the maximum value
of the distance transform. To compute the numerical solution
on the shape domain, we discretize the PDE (1) on a standard
grid via finite-difference method. The discretization yields a
linear system of equations with sparse and symmetric posi-
tive definite system matrix. There is a plethora of direct and
iterative alternatives to solve this system. We used a direct
solver based on Cholesky factorization.

The only parameter, a, is inversely related to the diffu-
sion (smoothing radius). Hence, we take it on the order of
the shape radius, i.e., we set it to 1/A. As the diffusion level

Fig. 6 Discrepancy for increasing values of a. From left to right, a =
1/(0.1 A), a = 1/(0.5 A), a = 1/A, and a = 1/A2

increases, the range of discrepancy decreases. Nevertheless,
after level A, the overall pattern stabilizes. Hence, increasing
diffusion level further becomesunnecessary.The illustrations
in Figs. 5 and 6 also offer an experimental justification for
fixing the value A as the diffusion level. In Fig. 5, we present
statistics of discrepancy computed at six different choices of
a for the input shapes shown in (d). Variation in the input
shapes is due to the lower disk, which gradually increases
in size and approaches to the upper disk. Notice that the
reference shape (the maximal inscribed disk) remains the
same for all input shapes. The maximum (positive) value of
discrepancy, which results from the fact that the upper disk
is a discretization of the reference shape, approaches to 0
as the diffusion level (1/a) increases. The minimum (neg-
ative) value of discrepancy, which is due to the difference
between the lower disk and the reference shape, shows a
smoother change as the diffusion level increases. Notice that
the minimum value of discrepancy first decreases and then
increases, which means that the lower disk is considered as a
noise until it becomes comparable to the reference shape.
Discrepancy entropy computed using the default bin size
0.001 shows compatible behavior for the different choices
of a except 1/(0.2A) and 1/(0.1A) corresponding to very
small diffusion levels. As evident in Fig. 6, increasing the
level from A to A2 does not bring further change to the pat-
tern.
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Fig. 7 a Discrepancy. b Signed distance with respect to maximal
inscribed circle(s)

2.5 Signed Distance with Respect to Maximal
Inscribed Circle(s) Versus Discrepancy

Discrepancy behaves quite different than a signed dis-
tance field where the distances are calculated with respect
maximal inscribed circle(s). The signed distance takes pos-
itive/negative values inside/outside maximal inscribed cir-
cle(s) where we linearly normalize the distances to have the
maximum value of 1. The most obvious deficiency of any
construction with reference to maximal inscribed circle(s)
is the lack of representational stability. For example, con-
sider a combination of two disks as shown in Fig. 7. In the
first case, the disks have the same radius hence there are two
maximal inscribed circles. In the second case, the radius of
the lower disk is reduced just by 1 pixel, which is approxi-
mately 1–2%.Wesee that the signeddistance shows an abrupt
change against a small difference, whereas the discrepancy
field exhibits a robust behavior.

3 Experiments-1: Entropy-Based Ordering

In the experiments, entropy values are calculated separately
over the positive and the negative discrepancy values, and
then, the shapes are ordered with respect to increasing mean
entropy. The probability distribution of discrepancy values is
obtained by constructing their histogram with a constant bin
size and normalizing the histogram sum to 1. We compute
discrepancy histogram by dividing the range [− 1, 1], which
contains all possible values of discrepancy, into bins of equal

size, and counting the number of shape pixels falling inside
each bin. Default bin size is set 0.001.

In Fig. 8, we present the entropy-based ordering of the
shapes from the beetle and the device-2 categories ofMPEG7
dataset [5]. Considering the beetle shapes, the entropy
decreases with respect to roundness of the body and uni-
formity of the peripheral limbs. Considering the device-2
shapes, the entropy increases as the central region shrinks
and the branch thickness becomes comparable to the cen-
tral region thickness, which means divergence from a disk.
Considering both of the orderings, we see that the shapes
in the same sub-category are in consecutive order in spite
of the variations due to rotation, scaling, antenna/leg crops,
boundary noise addition and branch bending.

In Fig. 9,we present the entropy ordering of sample shapes
using discrepancy and the signed distance (see Sect. 2.5)
where sensitivity to the bin size is illustrated by employing
a different selection (0.01). First, consider the ordering in
Fig. 9a forwhich discrepancy is usedwith the default bin size.
As expected, the entropy is smaller for the first seven shapes,
which are composed of three versions of a disk (a plain one,
one with circular bumps, and one with boundary notching)
and four pairwise combinations of disks with the same or
slightly different radius weakly connected or fused. Adding
peripheral parts to a circular shape increases the entropy as
in the case of the apple, the pocket and the octopus. The
entropy increaseswhen the octopus has an elliptic body rather
than a circular one. The half circle is far from being round,
and the entropy further increases when it is notched. The
entropy is high for the pocket and the bat shapes both of
which have details of varying thickness. We observe that the
entropy ordering is robust to the change of the bin size when
discrepancy is employed (see Fig. 9a, b). Flips occur between
consecutive shapes, but the essential ordering is preserved.
For example, the first seven shapes composed of disks keep
preceding the other shapes, the shapes formed via attaching
peripheral parts to a circular body keep succeeding the disks,
and etc. Now, consider the ordering in Fig. 9c obtained using
the signed distance. The representational instability of the
signed distance is observed in the ordering as the pairwise
combinations of disks with slightly different radius are far
from the combination with the identical disks. In Fig. 9c,

Fig. 8 Entropy order
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Fig. 9 Entropy order. a Discrepancy. b Discrepancy (bin size 0.01). c Signed distance. d Signed distance (bin size 0.01)

d, we see that there are significant differences between the
two orderings, and hence, the entropy ordering is sensitive
to the bin size when the signed distance is employed. For
example, the detailed pocket precedes the three disks in the
first ordering, whereas it succeeds them in the second one
or the octopus shapes precede one of the disks in the first
ordering, whereas they succeed all of the disks in the second
one.

4 Experiments-2: Grouping

Both the range and the distribution of discrepancy depend on
the complexway the shape deviates from a disk. In particular,
we expect that discrepancy distribution to be a good property
and the difference between a pair of distributions to be a good
measure of dissimilarity.

We perform illustrative context-dependent grouping
experiments using discrepancy histogram as the only shape
property to calculate pairwise distances. Since the purpose
of our experiments is to give a proof of concept, we employ
only a single property (histogram) and use the L1 distance
between two histograms as pairwise shape dissimilaritymea-
sure.

In order to define the pairwise histogram distance, we first
construct normalized discrepancy histograms as described in
Sect. 4 and we then compute the sum of the absolute value
of the bin-wise differences.

Fig. 10 Grouping of the device-2 shapes using discrepancy histogram.
Discrepancy is smoothed at different levels. In the last result, no smooth-
ing is applied
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Fig. 11 a–cGroupingof the beetle shapes using discrepancyhistogram.
Discrepancy is smoothed at different levels. In the last result, no smooth-
ing is applied. d Sample shapes in their true scales

Let the number of shapes in the collection be n. We rep-
resent each shape using an n-vector of which components
denote pairwise histogram distances between the respective
shape and all the n shapes in the collection. To observe group-
ing effect, we map all n n-dimensional feature vectors to
a plane. For this purpose, we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) [12]which aims tomodel each
object by a two- or three-dimensional point in such away that
similar objects are modeled by nearby points, whereas dis-
similar objects are modeled by distant points. Each of the n
shapes can then be visualized as a point in the plane.

Weconduct twodistinct groups of experiments. In thefirst,
the input set is composed of the shapes from a single cate-
gory. That is we focus on fine-grained categorization. In the
second, we explore the robustness of discrepancy histogram
with respect to visual transformations including extreme
articulations. We focus on context-dependent category char-
acterization, starting with a small number of categories and
then gradually increasing the number.

In the grouping experiments, we consider smoothed ver-
sions of discrepancy as well as its non-smoothed version.
The smoothing is performed at two different levels via diffu-
sion of discrepancy with homogeneous Neumann boundary
condition where the diffusion time is chosen as (0.5A)

and (0.5A)1/2. This is equivalent to convolving discrepancy
with the Gaussian of standard deviation σ = O(A1/2) and
σ = O(A1/4).

Shapes from a Single Category We performed two exper-
iments using, respectively, the device-2 and the beetle
categories of the MPEG-7 data set [5]. Each of the two cat-
egories contains 20 instances.

The results are presented in Figs. 10 and 11, respectively.
The device-2 category contains plain, chiral and noisy ver-
sions of the some basic shapes, naturally forming several
equivalence classes serving as fine-grained sub-categories.
Likewise, the beetle category contains instances obtained
via scaling, rotation, boundary noise addition or antenna/leg
crops. To emphasize these sub-categories, we highlight the
respective instances using the same color. Note that scale
normalization is employed for better visualization of the
grouping results. True scales of the shapes, however, are pre-
served during the experiments. In Fig. 11d, we exemplify
the transformations by presenting sample shapes in their true
scales.

Observe that discrepancy (whether it is smoothed or not) is
robust to these transformations since the shapes highlighted
with the same color are positioned very close to each other.
Considering the groupings inFig. 10,we see that the shape set
is divided into two coarse groups: the shapes with a larger
center and short protrusions are on one side, whereas the
shapes with a smaller center and long prevailing branches
are on the other. Considering the groupings in Fig. 11, we
see that the beetle shapes are grouped according to the form
of their body which is highly elongated for the shapes on
one corner, whereas it is composed of more circular regions
for the shapes on the other side. We obtain similar group-
ing results when no smoothing is applied (shown in (c)) or
discrepancy is smoothed with the Gaussian of standard devi-
ation σ = O(A1/2) (shown in (a)) or σ = O(A1/4) (shown
in (b)).

Multi-Category Context-Dependent Grouping We perform
a sequence of grouping experiments using the shapes shown
in Fig. 12. There are 7 categories each with 20 instances,
taken from the dataset in [2]. Notice that there are significant
variations between the shapes of the same category in terms
of their scale and position of their articulations.

First, we consider the first 60 shapes in the elephant, the
hand and the human categories. We obtain a grouping result
in which the three categories are clearly separated from each
other (see Fig. 13a).We observe that the distinctness between
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Fig. 12 Shapes from 7
categories each with 20
instances

Fig. 13 Groupings using discrepancy histogram. Top: Discrepancy is smoothed with the Gaussian of standard deviation σ = O(A1/2). Bottom: No
smoothing is applied. a The elephant, the hand and the human shapes. b The cat and the face shapes are added. c The ray and the chopper shapes
are added

the categories is captured by discrepancy histogram despite
the variation in the shapeswith respect to their scale and artic-
ulations. In Table 1, we present the extrema of discrepancy.
Observe that themaximum discrepancy decreases as the cen-
tral region becomes rounder. For example, among the three
categories, the maximum discrepancy is smaller for the hand
shapeswhich have a circular palm in contrast to the elongated
body of the human and the elephant shapes. Also, observe
that the absolute value of theminimumdiscrepancydecreases
as the limb to body thickness ratio becomes smaller. These
observations are consistent with our expectation since the
limiting case would be a disk shape (a perfect circle with no
limbs) for which discrepancy is 0.

Next, we add 40 more shapes from the cat and the face
categories extending the set to include 5 categories with the

Table 1 Range of discrepancy smoothed with the Gaussian of standard
deviation σ = O(A1/2) for 8 different shape categories

Max discrepancy Min discrepancy
Mean ± SD Mean ± SD

Human 0.101 ± 0.010 − 0.037 ± 0.001

Hand 0.066 ± 0.008 − 0.033 ± 0.002

Elephant 0.110 ± 0.012 − 0.033 ± 0.003

Cat 0.114 ± 0.014 − 0.032 ± 0.002

Face 0.086 ± 0.006 − 0.015 ± 0.002

Ray 0.052 ± 0.014 − 0.021 ± 0.002

Chopper 0.084 ± 0.007 − 0.030 ± 0.003

Horse 0.102 ± 0.008 − 0.035 ± 0.004
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Fig. 14 aDiscrepancy. b Thresholding at zero. c Thresholding at mean
value. d–e Dilating the respective yellow zones (Color figure online)

total of 100 shapes. Considering the body and limbs, the
cat shapes can be regarded as similar to the elephant shapes.
Considering the lack of protrusions, the face category appears
significantly separate from the remaining four. The grouping
result shown in Fig. 13b is consistent with our expectation
since the cat shapes are clustered close to the elephant shapes
and the face shapes form a new group far from the other
clusters. If we include the horse category in the shape set, we
see that the horse shapes are grouped in the vicinity of the
elephants and the cats. Accordingly, in Table 1, we observe
that discrepancy has a similar range for the cat, the elephant
and the horse categories and its extrema are closer to 0 for
the face category.

Finally, we extend the experimental set with the chopper
and the ray shapes. The result is presented in Fig. 13c. First,
observe that the chopper shapes are clustered as a separate
group in the middle of the other groupings as the chopper
category shows both similarities and differences to the other
categories. For example, considering the chopper and the face
categories, their positive sets are similar (see Table 1) but,
unlike the face shapes, the chopper shapes have several pro-
trusions. Likewise, considering the chopper and the elephant
categories, they are composed of peripheral parts connected
to a central body, but their parts are not compatible in terms
of their number, size and thickness.

5 Experiments-3: Partitioning

As discrepancy attains positive and negative valueswhere the
positives are cumulated on the central region, we may con-
sider splitting the shape domain into two subsets according
to discrepancy sign. Another alternative is to use the mean
value as a threshold. We have performed partitioning exper-
iments using both alternatives on an extensive shape set and
obtained a partitioning result equivalent to those in [3,10,11]
in a much easier and faster way since one of the functions is
calculated via table look up.

Fig. 15 Sample partitionings via discrepancy. The mean value is used
as threshold. The set composed of larger values is dilated

In Fig. 14, partitioning feature of discrepancy is illustrated
on two sample shapes. The first one is a giraffe shape with
semantically meaningful parts consisting of the body, four
legs, tail and head together with neck. The second one is
an umbrella shape which can be partitioned into the handle,
canopy and four bumps along the canopy edge. We present
discrepancy for both shapes in Fig. 14a. By thresholding
discrepancy according to its sign, we obtain the partition-
ing results shown in Fig. 14b which are consistent with our
expectation. When we choose the mean discrepancy value
as the threshold, central yellow zones shrink (see Fig. 14c).
In Fig. 14d, e, we dilate the respective yellow zones given
in Fig. 14 b, c using a circular structuring element whose
radius at each point is determined via the distance to the
nearest boundary point. In this way, the central regions touch
the shape boundary and the remaining peripheral regions are
further divided (see Fig. 14c, e).

In Fig. 15, we present sample partitionings via discrep-
ancy. We dilate the set composed of the shape points at
which discrepancy is higher than the mean value. Observe
how the central regions are captured by the yellow zones and
the peripheral parts are obtained via the green sections. Also,
we see that the partitioning results are consistent among the
shapes from the same category.

In Fig. 16a, we present partitioning of the shape boundary
for a set of shapes according to the sign of discrepancy. We
smooth discrepancy slightly (see Fig. 16b) in order to filter
the noise resulting from the discretization, especially near
the shape boundary. Observe that the parts of the shapes cor-
responding to protrusions, appendages and boundary detail
are successfully segmented by simple thresholding as dis-
crepancy does most of the tricks. Also, note that the regions
surrounded by green contours represent the shape features
which are distinctive with respect to the reference shape, a
disk with a radius equal to the maximum shape thickness
where the thickness at each shape point depends on the dis-
tance to the nearest boundary point. First consider the disk
shape with regular circular bumps. We see that the bound-
ary detail, the circular bumps, is easily differentiated from
the main disk shape. Next consider the four device-2 shapes
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Fig. 16 Partitioning of the shape boundary for a set of shapes according
to the sign of discrepancy. a No smoothing. b Smoothing with the
Gaussian of standard deviation σ = O(A1/4)

whose branches are similarly segmented in spite of their vari-
ation due to bending, boundary noise and thickness change.
Now consider the beetle shapes first of which seems to be
more elongated compared to the second one. The head, tail
and six legs are separated from the body for both shapes
as illustrated by the corresponding green contour fragments.
Finally consider the bird shapes which are segmented into
the same semantically meaningful parts despite the variation
between their bodies in terms of their elongation.

6 Summary and Conclusion

We provided a novel shape characterization tool called dis-
crepancy. It measures deviation of the local configuration of
each shape point from a reference disk indirectly using an
auxiliary field. The radius of the reference disk, A, is deter-
mined as a global shape feature, the radius of the maximal
inscribed disk of the shape. For the shape domain, the auxil-
iary field can be easily computed using numerical methods.
For the reference disk, the auxiliary field depends on the
radial distance and it is expressed in analytical form via spe-
cial functions. For each shape point p at distance d(p) to the
shape boundary, the corresponding reference point is a point
in the disk with the radial position A − d(p). As expected,
for a perfect disk, the auxiliary field is the same for the shape
and the reference disk; hence, discrepancy is uniformly zero.
Considering an arbitrary shape, discrepancy attains the high-
est positive values on central regions, whereas it attains the
lowest negative values on periphery.

We claimed that discrepancy is a powerful tool appli-
cable to all planar shapes. To give a proof of concept, we
experimented with illustrative applications. First, we demon-
strated the capability of discrepancy entropy as a global
measure of the roundness of the shape’s main body and the
uniformity of the thickness of its periphery. Next, we demon-
strated the potential of discrepancy histogram as a feature
in context-dependent categorization and sub-categorization
tasks.We experimentally observed that discrepancy is invari-
ant to translation, rotation and scaling up to discretization
differences as well as being robust to variation in articula-
tions. Finally, we showed that it provides a natural binary
partitioning of the shape domain.
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