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Abstract
Mathematical morphology is a framework composed by a set of well-known image processing techniques, widely used for
binary and grayscale images, but less commonly used to process color or multivariate images. In this paper, we generalize
fuzzy mathematical morphology to process multivariate images in such a way that overcomes the problem of defining an
appropriate order among colors. We introduce the soft color erosion and the soft color dilation, which are the foundations
of the rest of operators. Besides studying their theoretical properties, we analyze their behavior and compare them with
the corresponding morphological operators from other frameworks that deal with color images. The soft color morphology
outstands when handling images in the CIEL∗a∗b∗ color space, where it guarantees that no colors with different chromatic
values to the original ones are created. The soft color morphological operators prove to be easily customizable but also
highly interpretable. Besides, they are fast operators and provide smooth outputs, more visually appealing than the crisp color
transitions provided by other approaches.

Keywords Mathematical morphology · Color image processing · Fuzzy mathematical morphology · CIEL∗a∗b∗

1 Introduction

Mathematical morphology was introduced for binary images
by Serra and Matheron [18]. It is based on two inexpen-
sive operators, the erosion and the dilation, that offer a very
interesting trade-off regarding their computational complex-
ity and their expressive power.Morphological dilationmakes
objects biggerwhilemorphological erosion shrinks them, but
they are not each other’s inverse. They can be combined to
design a myriad of image processing operators. The clos-
ing, defined as the erosion of the dilation, removes the small
objects of the original image; the opening is the dual oper-
ator, filling the small gaps between objects. Other operators

B Pedro Bibiloni
p.bibiloni@uib.es

Manuel González-Hidalgo
manuel.gonzalez@uib.es

Sebastia Massanet
s.massanet@uib.es

1 Soft Computing, Image Processing and Aggregation
(SCOPIA) Research Group, Department of Mathematics and
Computer Science, University of the Balearic Islands, 07122
Palma, Spain

2 Balearic Islands Health Research Institute (IdISBa), 07010
Palma, Spain

include the top-hat by closing and top-hat by opening, mor-
phological template-matching [15],morphological filters and
contrast mappings [1].

Mathematical morphology was promptly extended to
grayscale images [19], but dealing with natural color images
or with multivariate images proved to be more challeng-
ing. From the vast amount of approaches proposed in
the literature, one can conclude that there is no success-
ful definition for color mathematical morphology operators
commonly accepted. We remark that the well-known lattice-
baseddefinition of erosion anddilation [26] cannot be applied
straightforwardly tomultivariate images: in contrast to binary
or grayscale images, multivariate images do not have a con-
sistent order. Different prior knowledge of the task at hand
suggest different color orderings [30].More formally, for any
total order � of a color space embedded in Rn , it is possible
to find three colors such that c1 � c2 � c3, and such that
the Euclidean distance between c1 and c2 is large but the
Euclidean distance between c1 and c3 is small [11]. Thus,
there is no total order between colors that is always consis-
tent with human perception.

Fuzzy techniques have been used to extend binary mor-
phological operators to grayscale ones [8,12,20]. They are
employed with non-binary structuring elements in order
to account for spatial uncertainty. Thus, one can design
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algorithms that are more robust and can handle a wide range
of difficulties such as noise and artifacts. To the authors’
knowledge, there are no color morphological operators that
generalize the fuzzymathematical morphology ones.We aim
at developing such a generalization to transfer the strengths
of fuzzy mathematical morphology to multivariate image
processing.

1.1 Related Literature

The vast majority of color morphology paradigms—which
have been scarcely used by practitioners—can be divided
into component-wise and vector approaches [2]. The former
ones, such as the one presented by Gu et al. [17], consider a
multivariate image as a stack of grayscale layers and process
each of them independently. They do not exploit spectral
correlations and are prone to introducing new colors.

The vector approach to color morphology, on the other
hand, encompasses the methods that process all the channels
of the image simultaneously. All of them order the colors
somehow. Sometimes, they specify a fixed total order to then
apply the dilation and erosion according to the lattice-based
definitions of erosion and dilation [26], avoiding thus the
creation of new colors. Aptoula and Lefèvre [3] use the lexi-
cographic ordering (i.e., order byfirst component, resolve ties
by second, and so on). Chanussot and Lambert [10] present a
variation of the lexicographic ordering, inwhich they employ
an8-bitRGBrepresentationof images. In this case, the higher
bits of each channel are givenmore importance than the lower
bits of the same or other channels. Although the behavior
provided by this ordering is more aligned with human per-
ception, it is arbitrary and not necessarily meaningful. For
instance, the human eye can distinguish more green shades
than red shades. Moreover, the channels of hyperspectral
imagery may have different statistical distributions which
makes them incomparable. Another variant of the lexico-
graphic order is employed by Louverdis et al. [23], where the
HSV color space is used, ordering the colors according by
minimizing their value, then maximizing their saturation and
finally minimizing their hue. Sartor andWeeks [24] present a
method that orders colors based on their distancewith respect
to a reference color. This approachprovides results thatmatch
the expectations, specially when the reference color has been
carefully selected. Its drawbacks are the need of such user-
supplied color (which could also be thought as a desirable
customization) and the theoretical instability: two very dis-
tant colors may change their relative ranking due to small
perturbations. Witte et al. [13] employed the fuzzy mathe-
matical morphology operators with multivariate images by
extending the usual operations. Specifically, they extend the
notions ofminimum,maximum, addition, negation and prod-
uct for colors encoded in several color spaces—RGB, HSV
and CIEL∗a∗b∗. Accordingly, they consider structuring ele-

ments encoded in the same color spaces. Bouchet et al. [9]
used a fuzzy order to create a total order between RGB
triplets. For each channel, they learn a pixel-wise fuzzy pref-
erence relation. The three fuzzy preference relations are then
aggregated with the arithmetic mean. Valle and Valente [27]
propose a total order in the CIEL∗a∗b∗ color space, based on
the distance between colors and their relative position. They
propose a binary operation between colors in the CIEL∗a∗b∗
complete lattice that is associative, commutative and has an
identity element. Employing it, they define morphological
operators that admit structuring elements also encoded in the
CIEL∗a∗b∗ color space.

A series of works also explore adaptive orderings. All of
them follow the same strategy than the previous algorithms—
finding a total order between colors—but they do so in an
image-dependent fashion. Velasco and Angulo [30] study
and compare several supervised and unsupervisedmethods to
reduce the dimensionality of the color space: principal com-
ponent analysis, support vector machine, reference color and
others. These approaches typically assume that small objects
are located on the foreground, whereas large objects con-
form the background. One of such approaches by Velasco
and Angulo [29] is the random projection technique: they
employ a one-dimensional measure of the degree of central-
ity of a sample—known as a depth function—, andmaximize
it for each possible projection of the multivariate data into
a one-dimensional space. Benavent et al. [5] also consid-
ered an adaptive ordering, which in this case is based on
the image histogram. By considering a smoothed version of
the histogram, they obtain a measure of how frequent a cer-
tain color is within the image. To decrease the computational
complexity, they average the histograms of multiple images
to obtain a reference color ordering for new, similar images.
Lézoray [22] learns a color ordering from the image, being
thus an adaptive ordering. It does so by learning a rank trans-
formation on a complete lattice—equivalent to a total order.
Laplacian eigenmaps are used to learn a nonlinear projection
of the color space.

1.2 Goal of ThisWork

In this paper, we cover the definitions of the Soft Color Mor-
phology operators—fuzzy, multivariate operators—and we
study their properties. A preliminary version of these oper-
ators can be found in [7]. Besides, we compare them with
the most interesting definitions of multivariate mathematical
morphology that have been recently published in the litera-
ture. Such comparison is based on two points of view. First,
their main theoretical properties are studied and summa-
rized. Second, several visual examples are shown to provide
insights into the behavior of each multivariate mathemati-
cal morphology alternative. These visual examples include
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different morphological operators applied to natural and arti-
ficial images.

The structure of the rest of the document is as follows. In
Sect. 2, we introduce formal notations to handle colors and
images. The basic operators of the soft color morphology are
formally defined in Sect. 3, and their theoretical properties
are studied in Sect. 4. Their behavior is visually presented
and compared with other approaches in Sect. 5, along with
some remarks regarding their usage.Wediscuss in depth such
comparison in Sect. 6, that we conclude with the strengths
and weaknesses of the soft color morphology operators.

2 Preliminaries

In this section, we introduce the concepts needed to define
the soft color morphology operators.

2.1 Formal Description of Images

First, we formally describe the objects we are dealing with,
such as colors, channels and images.

Definition 1 We define the following elements.

– A channel, C , is a set of real values, C ⊂ R.
– A color space, C, is the cartesian product of a series of

channels C = C1 × · · · × Cm .
– A C-encoded color is one element of the color space,

c ∈ C.
– A C-encoded multivariate image or simply a C-encoded
image, A, is a map A : Zn → C, where n is its spatial
dimension and C is its color space.

– Any image A is associated with its support dA ⊂ Z
n , the

region where the image is defined. We can consider A(x)
to be meaningless for x outside the support dA.

Some remarks must be mentioned. First, without loss of
generalization, we will always consider that the first channel
is C1 = [0, 1]. Otherwise, since C1 is a subset of R, we can
map it to [0, 1] with a monotonic bijection—either with a
linear function if C1 = [a, b], or with the sigmoid transfor-
mation for a general C1 ⊂ R. Second, we emphasize that we
consider images with generic spatial dimension n—which
includes, for instance, volumetric 3D imagery. Although we
focus on n = 2 throughout this paper, our operators from
Definitions 7 and 8 can process images having a generic spa-
tial dimension n. Third, a grayscale image is a particular case
of multivariate image, which has only one channel (that is,
m = 1). Finally, the support of an image A is simply a region
within the spatial location Zn that indicates which part of the
image is of interest. It can be assumed to contain no informa-
tion outside it (e.g., initialized to a meaningless fixed value).

To compute our soft color morphology operators, we
employ structuring elements whose values range in [0, 1].
We also define operators to deal with movements in the spa-
tial domain.

Definition 2 We define the following elements.

– A structuring element, B, is a grayscale image B : Zn →
[0, 1], where n is its spatial dimension.

– The reflection of a structuring element B is the structuring
element B defined by B(x) = B(−x).

– The spatial translation by a vector v ∈ Z
n , Tv , is a map

from subsets of Zn to subsets of Zn such that

∀d ⊂ Z
n,∀a ∈ Z

n, a ∈ Tv(d) ⇐⇒ a − v ∈ d.

Similarly to multivariate images, a structuring element B
is always associated with its support dB ⊂ Z

n . Outside their
support, we will consider that structuring elements have a
meaningless value (i.e., for all x /∈ dB , B(x) = 0). We will
always consider structuring elements with the same spatial
dimension n than the images we are processing and that have
a nonzero value in their domain.

2.2 The CIEL∗a∗b∗ Color Space

To deal with images in the visible spectrum, we will con-
sider the CIEL∗a∗b∗ color space, which has three channels.
The first one, L*, matches the human perception of lightness,
whereas the other two, a* and b*, conceil its chromatic infor-
mation. Besides, it is perceptually uniform: the Euclidean
distance between two colors is proportional to their differ-
ence when perceived by humans [31]. For more information
regarding the CIEL∗a∗b∗ color space and its relation to other
color spaces such as RGB and XYZ, seeWyszecki and Stiles
[31].

Typical implementations of the CIEL∗a∗b∗ color space
consider the first channel to be L∗ = [0, 100]. Throughout
this paper, we divide such lightness values by 100 so that our
first channel is exactly [0, 1].

Conversion between CIEL∗a∗b∗ and grayscale is straight-
forward, as shown in the following definition.

Definition 3 (Conversion of CIEL∗a∗b∗ to and from gray
scale) The map π , that converts a CIEL∗a∗b∗-encoded color
(A1, A2, A3) into a grayscale color, is defined as:

π : L∗ × a∗ × b∗ −→ [0, 1](
A1, A2, A3

) 	−→ A1.

The map ı , that converts a grayscale color G into a
CIEL∗a∗b∗-encoded color, is defined as:

ı : [0, 1] −→ L∗ × a∗ × b∗
G 	−→ (

G, 0, 0
)
.
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That is, simply by reducing the CIEL∗a∗b∗-encoded
image into the L* channel (i.e., forgetting the channels a*
and b*) provides a grayscale version.

2.3 Fuzzy Logic Operators

The soft color dilation and erosion are designed using fuzzy
logic operators. In particular, we are interested in conjunc-
tions and fuzzy implication functions.

Definition 4 A conjunction C is a map C : [0, 1]× [0, 1] →
[0, 1] that is increasing in both variables and that satisfies
C(1, 0) = C(0, 1) = 0 and C(1, 1) = 1.

A conjunctionC is a semi-norm if it satisfies the following
border condition: for all x ∈ [0, 1], C(1, x) = C(x, 1) = x .

Definition 5 A fuzzy implication function is amap I : [0, 1]×
[0, 1] → [0, 1] that is decreasing in the first variable and
increasing in the second and that satisfies I (1, 0) = 0 and
I (0, 0) = I (1, 1) = 1.

We say that a fuzzy implication function I fulfills the left
neutrality principle (NP) if and only if I (1, y) = y for all
y ∈ [0, 1], see [4].

Besides, for any conjunctionC we define its residual oper-
ator as

IC (x, y) = sup {t ∈ [0, 1] | C(x, t) � y},
for all x, y ∈ [0, 1].

If C(1, x) > 0 for all x > 0, then IC is a fuzzy impli-
cation function and it is called the residual implication (or
R-implication) of C . All R-implications fulfill (NP) [4].

Due to their use in the paper, special mention deserve the
so-called triangular norms (t-norms, for short) [21], which
are an important family of conjunctions, and their residual
implications. The fuzzy logic operators used in the paper are
summarized inTable 1.They are the pairs of t-norms and their
corresponding R-implications: the minimum t-norm TM and
the Gödel implication IGD, the product t-norm TP and the
Goguen implication IGG, and the Łukasiewicz t-norm TLK
jointly with the Łukasiewicz implication ILK.

Table 1 Fuzzy operators used in this article

t-norms Fuzzy implication functions

TM(x, y) = min(x, y) IGD(x, y) = 1x�y + y · 1x>y

TP(x, y) = x · y IGG(x, y) = min(1, y/x)

TLK(x, y) = max(0, x + y − 1) ILK(x, y) = min(1, 1 − x + y)

We remark that each row contains a t-norm and its R-implication [4].
To express piecewise functions, we use 1φ , that equals to 1 whenever
φ is true, and to 0 otherwise

3 Soft Color Morphology

We now formally introduce the Soft Color Morphology basic
operators. To do so, we extend the fuzzy mathematical mor-
phology approach to the first channel, maintaining (and
spreading) the values of the rest of the channels accordingly.

We define here a method to totally order the colors of an
image in a specific neighborhood, which is used to define
a max and min of a set of pixels. Let us assume, we are
processing an image I at the location y, and that we are
comparing some colors I (x) for x in the neighborhood of
y. We are interested in the information contained in the first
channel, and so we first order the spatial locations x by the
first component of their color, I1(x). To deal with ties, which
are uncommon in natural images, we first select the spatial
location x closest—with regard to the Euclidean distance—
to the location of pixel we are processing, y. Further ties are
resolvedwith the lexicographic order. That is, ordering by the
first channel, then by the second, and so on. The following
definition formally introduces thesemax andmin operators.

Definition 6 Let I : Zn → C be a multivariate image. Let
us consider a location y ∈ Z

n and a neighborhood N ⊂ Z
n .

Then, the maximum and minimum of the colors I (x) with
respect to y and N , maxy

x∈N (I ) and miny

x∈N (I ), are defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇1 = arg max
x∈N

I1(x),

∇2 = arg min
x∈∇1

d2(x, y),

maxy
x∈N (I ) = max

x∈∇2

lexic I (x),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ1 = arg min
x∈N

I1(x),

Δ2 = arg min
x∈Δ1

d2(x, y),

miny

x∈N (I ) = min
x∈Δ2

lexic I (x),

where d2 : R2 → R is the Euclidean distance and maxlexic

and minlexic are the lexicographic maximum and minimum.
We emphasize that ordering where ties may be resolved

according to the spatial location is not appropriate to define
idempotent opening and closing operations. However, any
other ordering would introduce some bias toward a particular
color—and we consider that there is not a consistent order
among colors. Besides, such an ordering is needed to obtain
the full color preservation property (see Proposition 2).

Once we have defined an order between colors, we can
proceed to define the soft color dilation and soft color ero-
sion. They are not defined using the lattice-based definition
of morphological operators, but extending the fuzzy mathe-
matical morphology definition to multivariate images.
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Fig. 1 From left to right, soft color erosion (left), the L*a*b*-encoded
Balloons image (center) and soft color dilation (right), with the mini-
mum t-norm, its residuated implication (the Gödel implication) and a

31× 31-pixel Gaussian-shaped structuring element, with σ = 8 pixels
and a maximum value of 1. We remark that the irregular shapes of the
eroded balloons reflect their irregular illumination (Color figure online)

Definition 7 Let C be a conjunction, A : Zn → C a multi-
variate image and B : Zn → [0, 1] a structuring element.
Then, the soft color dilation of A by B, DC (A, B), is

DC (A, B)(y)

= maxy
x∈dA∩Ty(dB )

{(
C

(
B(x − y), A1(x)

)
, A2(x), . . . , Am(x)

)}
.

Essentially, in the absence of ties, the definition selects the
spatial location x at which C(B(x − y), A1(x)) is maximum
(of course, restricted to the appropriate domain, x ∈ dA ∩
Ty(dB)). Once the location is selected, the other channels are
simply dragged.

Similarly, we define the soft color erosion as follows.

Definition 8 Let I be a fuzzy implication function, A : Zn →
C a multivariate image and B : Zn → [0, 1] a structuring
element. Then, the soft color erosion of A by B, EI (A, B),
is

EI (A, B)(y)

= miny
x∈dA∩Ty(dB )

{(
I
(
B(x − y), A1(x)

)
, A2(x), . . . , Am(x)

)}
.

The soft color morphology operators interpret the first
channel as a measure to indicate with which degree the pix-
els belong to the foreground or to the background. When
processing natural images with the CIEL∗a∗b∗ color space,
the first channel is already very informative, containing the
luminance of a color pixel and disregarding the chromatic
information. Using such channel to discriminate whether
the objects belong to the foreground or the background pro-
vides a generalization of the same procedure for grayscale
and binary images, which is coherent with human visual
perception. In specific applications, practitioners must nec-
essarily provide this information in accordance with the
task they are dealing with, since images from different
problems can be of a really different nature. Besides the

luminance channel L* in natural images, other examples
are the green channel, in RGB-encoded retinal angiogra-
phies; or an artificial channel that orders the colors according
to their frequency, such as in Benavent et al. [5]. Our
operators are designed to easily handle these and similar
cases.

Given these two definitions, other morphological opera-
tors are defined straightforwardly:

Definition 9 Let A be a multivariate image and let B be a
structuring element. Let C be a conjunction and let I be a
fuzzy implication function. Then, the closing of A by B,
CC,I (A, B), and the opening of A by B, OC,I (A, B), are
defined as:

CC,I (A, B) = EI
(DC (A, B), B

)
,

OC,I (A, B) = DC
(EI (A, B), B

)
.

Figure 1 shows the soft color dilation and soft color erosion
with the balloons image. As shown in this first example, the
soft color dilation makes bright objects larger, while the soft
color erosion diminishes them. We emphasize the behavior
when two objects clash: either one object is placed “over”
the other or they collide into a well-defined border.

In Fig. 2, the soft color opening and soft color closing
operators are visualized processing a 600 × 600-pixel der-
moscopic image in the CIEL∗a∗b∗ color space. In it, the skin
lesion has a globular network pattern. The opening provides
a darker image, in which small bright blobs disappear, but
the big ones remain. On the other hand, the closing operator
has the same behavior but on the dark blobs, providing thus
a brighter image.

In Fig. 3, the soft color dilation and soft color erosion
operators are visualized processing a 600× 400-pixel image
in theCIEL∗a∗b∗ color space.Different t-normswere used to
visualize their different behavior: the closer a t-norm is to the
minimum operator, the greater the impact in the final result.
The minimum t-norm and the Gödel implication provide a
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Fig. 2 Soft color opening (left) and soft color closing (right) of a dermoscopy image (center) depicting a globular network, using the same
configuration as in Fig. 1 (Color figure online)

Fig. 3 Soft color erosion (left column) and soft color dilation (right
column) of the L*a*b*-encoded, 600 × 400 image (center), with
the minimum t-norm (top row), the product t-norm (middle), the

Łukasiewicz t-norm (bottom) and their respective R-implications. It
was used a 31× 31-pixel Gaussian-shaped structuring element (σ = 8
pixels and a maximum value of 1) (Color figure online)

stronger response, whereas the Łukasiewicz pair provides
the softer one. This is specially noticeable in high-contrasted
regions, such as the grapes, and in regions that present texture,
such as the pineapple.Althoughwe employed pairs of t-norm
and R-implication, this does not need to be always the case.
More visual examples are found in Sect. 5.

In Fig. 4, different structuring elements are used along
with the minimum t-norm and the Gödel implication. In this
100 × 100-pixel patch of the jellybeans image, we can
visualize how different structuring elements affect the ero-
sion and dilation operations. Whereas the 1 × 1 impulsive

structuring element leaves the image unaffected (both for the
erosion and dilation operators), crisp structuring elements
highlight limits between objects and their shades. On the
other hand, non-binary structuring elements show a smoother
response in such limits and can be tailored to be isotropic
more easily.

In Sect. 5, these operators are shown and are also com-
pared with the corresponding operators derived from other
morphological frameworks.
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Fig. 4 Soft color erosion (left) and soft color dilation (right) for several
structuring elements (center): 1× 1 impulsive; 7× 7 squared flat; 7× 7
diamond-shaped flat; 9× 9 Gaussian-shaped; 13× 13 bar-shaped with

decay; and 35×35 right-neighborhood structuring element. We remark
that the results of the impulsive structuring element are equal to the
original image (Color figure online)

4 Properties

In this section, we study the properties of the soft color mor-
phology operators from a mathematical point of view.

4.1 Chromatic Preservation in CIEL∗a∗b∗

When dealing with natural images, it is natural to think that
the erosion and dilation should not introduce colors whose
shade or chromatic value was not originally present. The soft
color morphological operators from Definitions 7 and 8 have
been designed with this in mind, and so they preserve the
chromatic information of colors when the CIEL∗a∗b∗ color
space is used.

Proposition 1 (Chromatic preservation inCIEL∗a∗b∗)Let A
be a CIEL∗a∗b∗-encoded image with spatial dimension n, let
C be a conjunction and I a fuzzy implication function, and
let B be a structuring element.

Then, for all y ∈ dA, there exist x1, x2 ∈ dA such that the
components a* and b* ofDC (A, B)(y) and EI (A, B)(y) are
equal to, respectively, the components a* and b* of A(x1)
and A(x2).

Proof Recalling their definition, for a CIEL∗a∗b∗-encoded
image,

DC (A, B)(y)

= maxy
x∈dA∩Ty(dB )

{(
C

(
B(x − y), L∗(x)

)
, a∗(x), b∗(x)

)}
.

Thus, it is clear that the only channel that may have been
modified is the first one: the combination (a∗(x), b∗(x)) pre-
viously existed (as a matter of fact, in the spatial location x).
Since the chromatic information of a CIEL∗a∗b∗-encoded
color is determined by the combination of the second and
third components, a* and b*, and these channels are pre-
served, we conclude that such chromatic information is
indeed kept.

The same argument holds for the erosion. �


Of course, this property also holds for the closing and the
opening operators, since they are combinations of dilations
and erosions.

4.2 Full Color Preservation

In some settings, we should avoid creating colors—not only
the chromatic components, but all the components—that
were not present in the original image. The creation of new
colors, also called the false color problem, is sometimes
described as a problem to be overcomed, although it may
not necessarily be an undesired situation [28]. For instance,
the fuzzy mathematical morphology, which we extend, com-
prises operators that may introduce new colors. However, the
false color problem is more critical for multivariate images,
due to, among other factors, the correlation between chan-
nels. Regarding color images, van de Gronde and Roerdink
[28] consider operators invariant to hue rotations. Dealing
with more general multivariate imagery, such as a corregis-
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tered PET andCT scan,may still make full color preservation
a desirable property.

Our operators from Definitions 7 and 8 do preserve colors
under certain conditions. Specifically, whenever we are using
a binary structuring element and either a semi-norm (for the
dilation) or a fuzzy implication function that fulfills (NP) (for
the erosion). The following proposition provides sufficient
conditions to enforce color preservation.

Proposition 2 (Full color preservation) Let A be a multivari-
ate image with spatial dimension n, let C be a semi-norm, let
I be a fuzzy implication function that fulfills (NP), and let B
be a structuring element.

If B(x) ∈ {0, 1} for all x ∈ dB and B(0) = 1, then
DC (A, B) and EI (A, B) only contain colors that appear in
A.

Proof Let us see the case of the dilation. Since C is a semi-
norm, C(a, 1) = a and C(0, a) = 0 due to C(0, a) �
C(0, 1) = 0 for all a ∈ [0, 1]. Thus, C(

B(x − y), A1(x)
)
is

either A1(x) or 0. If any of such values is different to zero,
then the dilation in the location y ∈ Z

n is the maximum
among those colors, all of which appear in A. Otherwise, if
all values are 0, since B(0) = 1we can derive that A1(y) = 0
and, thus,DC (A, B)(y) = A(y) due to the choice procedure
in case of ties.

The erosion has a similar proof. All fuzzy implication
functions are increasing in the second variable, so I (0, a) =
1 for all a ∈ [0, 1] since I (0, a) � I (0, 0) = 1 for all
a ∈ [0, 1]. Since the fuzzy implication function fulfills the
left neutrality principle (NP), I (1, a) = a for all a ∈ [0, 1].
Thus, I

(
B(x − y), A1(x)

)
is either A1(x) or 1. The same

argument that in the dilation proof concludes that the color
provided was already present in the original image A. �


We remark that the opening and the closing do not create
new colors. Provided the hypotheses of the proposition are
satisfied, the dilation and the erosion do not create new colors
and, thus, so cannot combinations of them.

4.3 Generalization of the Fuzzy Mathematical
Morphology Operators

Another interesting property of these operators is that they
constitute a generalization of the fuzzy mathematical mor-
phology ones [8] when applied to CIEL∗a∗b∗-encoded
images.

Proposition 3 (Generalization of fuzzy mathematical mor-
phology for grayscale images) Let us consider the conversion
between CIEL∗a∗b∗ and grayscale colors from Definition 3.
Then, the soft color morphology operators, when applied to
grayscale images encoded in CIEL∗a∗b∗, coincide with the

corresponding operators from the fuzzy mathematical mor-
phology paradigm using the same structuring element.

Proof To see this, we must prove that, when restricted to
grayscale images, our newoperators provide exactly the same
results.

We begin by considering the dilation. LetG be a grayscale
image, B be a structuring element and C be a conjunc-
tion. Then, the CIEL∗a∗b∗ conversion of G is ı(G), where
ı(G)(x) = (G(x), 0, 0), and its support remains unchanged,
dı(G) = dG .

The dilation of ı(G) by B is then

DC (ı(G), B)(y) =
{ (

C
(
B(x − y),G(x)

)
, 0, 0

)
st.

x ∈ dG ∩ Ty(dB) and

C
(
B(x − y),G(x)

)
is maximum

}
.

Regardless the result of the choice procedure in case of
ties, the grayscale projection of such image is:

π
(DC (ı(G), B)(y)

) =
{
C

(
B(x − y),G(x)

)
st.

x ∈ dG ∩ Ty(dB) and C
(
B(x − y),G(x)

)
is maximum

}

= max
x∈dG∩Ty(dB )

{(
C

(
B(x − y),G(x)

)}
,

which matches the definition of dilation from the fuzzy
mathematical morphology paradigm. The case for erosion
is proved in a similar way and holds for any structuring ele-
ment B and fuzzy implication function I . �


4.4 First Channel Monotonicity

The aforementioned generalization of the fuzzy mathemati-
cal morphology is an interesting property because it can be
leveraged to prove several properties, such as the monotonic-
ity of the soft color morphological operators. To argue about
monotonicity, we must be able to compare both C-encoded
colors and C-encoded images.

This motivates the following definition of h-order [16]:

Definition 10 Given a complete lattice L and a surjective
mapping h : C → L, the h-order is the relation �h defined
as:

c1 �h c2 ⇐⇒ h(c1) � h(c2), ∀c1, c2 ∈ C.

We order the colors according to the first component.
In particular, when considering the CIEL∗a∗b∗ as the color
space to be used, the colors are ordered by their luminance.
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To do so, we consider the projection on the first component,
π :CIEL∗a∗b∗ → [0, 1] such that π(l, a, b) = l. Thus, we
consider its h-order, obtaining the following definition:

Definition 11 (Partial order in CIEL∗a∗b∗) Given two
CIEL∗a∗b∗ colors, c1 = (l1, a1, b1) and c2 = (l2, a2, b2),
we say that c1 is lighter or equal than c2, denoted by c1 �π c2
if and only if l1 � l2.

Besides, given two CIEL∗a∗b∗-encoded images with the
same spatial dimension and the same domain, U and V , we
say thatU is (pixel-wise) lighter or equal than V , denoted as
U ⊆π V if for all x ∈ dU = dV , it holds thatU (x) �π V (x).

We remark that, although we introduce now an h-order,
our mathematical morphology operators are not based on
an h-order, but on the total order presented in Definition 6.
Although such order resembles an h-order, it additionally
relies on the spatial location of pixels to resolve ties. This
h-order is introduced in relation with the first channel mono-
tonicity and the first channel adjunction.

Proposition 4 The relations from Definition 11 are, respec-
tively, a preorder (i.e., a reflexive and transitive relation) for
CIEL∗a∗b∗-encoded colors, and a preorder for CIEL∗a∗b∗-
encoded images.

We remark that such relations are not partial orders, since
antisymmetry does not hold. We can now state the mono-
tonicity of our operators as follows:

Proposition 5 (Monotonicity) Let A be a CIEL∗a∗b∗-
encoded image and B a structuring element such that B(0) =
1. Let C be a conjunction and I a fuzzy implication function.
Then,

EI (A, B) ⊆π A ⊆π DC (A, B). (1)

Besides, if I is the R-implication of C, then,

EI (A, B)

⊆π OC,I (A, B) ⊆π A ⊆π CC,I (A, B) ⊆π DC (A, B).(2)

Proof Since our operators generalize the ones of the fuzzy
mathematical morphology (Proposition 3) and the order only
takes into account the first component (Definition 11), we can
translate the result in [20, Proposition 45] to our framework.

�


4.5 Adjunction

The fuzzy mathematical morphology, which we extend, has
the property of being an adjunction [20, Proposition 52]:
under certain constraints on the conjunction C and the fuzzy
implication function I , A1 ⊆ EI (A2, B) if and only if

EC (A1, B) ⊆ A2. We remark that we use the reflection of
the structuring element, B, given our specific definition of
erosion and dilation, similar to the definition by Kerre et al.
[20, Definition 12].

Althoughwe consider that the inclusion is notwell defined
between multivariate images, we can transfer this property
to our settings if we restrict the inclusion to the first channel
as an h-adjunction [16]. Thus, considering the first channel
inclusion above defined, ⊆π , we may state the following
property.

Proposition 6 (h-Adjunction) Let C be a left-continuous t-
norm and I its residuated implication and B a structuring
element. Then, the operators EI (·, B) and DC (·, B) form a
π -adjunction. That is, for all images A1, A2,

A1 ⊆π EI (A2, B) ⇐⇒ DC (A1, B) ⊆π A2.

Proof Again we use the fact that our operators generalize the
ones of the fuzzy mathematical morphology (Proposition 3)
and the order restricted to the first component matches that
of the fuzzy mathematical morphology. Therefore, we can
translate the result in [20, Proposition 52] to our framework.

�


5 Comparison Between Color Morphologies

In this section, the Soft ColorMorphology operators are com-
paredwith othermorphological operators that dealwith color
images. They are compared both in terms of their character-
istics and with visual examples. The former are collected
in Table 2, which provides practical information about the
basics of each algorithm: whether they preserve colors, their
computational complexity, and so on. The latter are meant
to provide an insight into their behavior and compare it with
the other frameworks. Since we are designing general oper-
ators, our aim is to make them as interpretable as possible,
so practitioners know when to apply them. We remark that a
quantitative comparison is not possible: performancemetrics
can only be used when facing a specific application, which
is out of the scope of this paper.

For the rest of the section, we consider all the morpholog-
ical frameworks contained in Table 2. Among other features,
it explains the type of order between colors: marginal, for
channel-wise processing; total, when all colors have a fixed
ranking. The approach by Witte et al. [13] does not need to
consider a color ordering to process them. The complexity of
all of them is at least as high as computing the lattice-based
definition ofmorphological operators, but it is higher in some
situations: the histogram-based version by Benavent et al. [5]
requires computing a histogram of size 100×100×100 and
filter it (or precomputing it to process images that are similar
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Table 2 Comparison of different approaches to color mathematical morphology

18

25
24

14

30
28

26
15
15
15

13

15
13

The superscript ∗ indicates that the order is adaptive—that is, it depends on the image being processed. The superscript † indicates it is valid only
if properly customized

to a certain database); the random projections [29] technique
requires approximating a supremum over an infinite set of
projections with amaximum over a finite random projections
uniformly distributed (specifically, using 1000 projections in
the original paper).

The color preservation, chromatic preservation in natural
images and generalization of more elementary mathemati-
cal morphology frameworks are interpreted as in Proposi-
tions 1, 2 and 3. Although all works extend mathematical
morphology, not all of them generalize more elementary
operators. Specifically, we understand it as the fact that
performing some elementary operations on any elementary
image coincides with mapping it into the multivariate space,
performing some operations and projecting it back into the
elementary space. In particular, the operators that behave dif-
ferently based on the image to be processed lose the ability
to distinguish black from white, and as a consequence their
respective dilations may make bright objects smaller (if they
consider it to be background, for instance).

We emphasize that our method can consider structuring
elements being grayscale images, whereas other approaches,
[13] and [27], consider multivariate structuring elements.
Lastly, the customization classification goes beyond chang-
ing the structuring element: the color reference in the
CIEL∗a∗b∗ space [24] and in the CIEL∗a∗b∗ quantale
[27] depend on a user-chosen color; the histogram-based
morphology [5] admits coarser or finer smoothings of the his-
togram, and the soft color morphology depends on a fuzzy
conjunction and fuzzy implication function that model its
behavior for non-binary structuring elements.

Figures 5, 6, 7 and 8 shows the representations of the
same morphological operator for the different methods in
Table 2. All methods have been executed with the values of
the parameters recommended in the original articles, using
white reference for the method by Sartor [24] and black as
the color reference on the CIEL∗a∗b∗ quantale [27]. Specif-

ically, the method based on the multivariate fuzzy operators
by Witte et al. is executed with the CIEL∗a∗b∗ color space,
the minimum t-norm and its residuated R-implication [13].
The soft color morphology method also employs the mini-
mum t-norm as conjunction and its R-implication, the Gödel
implication. To compare a method that admits non-binary
structuring elements with another one limited to binary struc-
turing elements, whenever a non-binary structuring element
is considered, it is thresholded at the level 0.5 to be used
by the latter. Conversely, grayscale structuring elements are
mapped into the CIEL∗a∗b∗, according to Definition 3 for
the method by Witte et al. [13], and based on the unity ele-
ment for the method by Valle et al. [27]. Lastly, all methods
that employed an adaptive ordering, did so the first time the
original image was processed (not after each erosion or dila-
tion).

Figures 5 and 6 depict the basic operators: erosion and
dilation. We remind that erosion is meant to shrink objects,
whereas dilation enlarges them. Color reference for white
seems to work in an opposite direction as the other frame-
works, whereas random projections, being image dependent,
works counterintuitively in the first case, but intuitively in
the second. It is noticeable how the histogram-based tech-
nique provides a sharp result in Fig. 5 and blurs the original
image in Fig. 6, to the point of removing small objects, due to
its image-dependent behavior. The method based on lexico-
graphic order for the channelsVSHprovides a singular result:
the erosion contains large bright areas, such as the nose. The
method based on extending fuzzy operators to multivariate
data appears similar to the Soft Color Morphology in Fig. 5
but is clearly different in Fig. 6. This seems to be caused
by how the different operations are generalized. Although
the result of the component-wise operators seems similar to
the soft color operators, we remark that the colors gener-
ated are different from those in the original image. This is
not visually evident, but can be detected when comparing
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Fig. 5 Erosion by different morphologies, being (1) original 512×512
image, (2) 7× 7 binary structuring element, a component-wise [17], b
bit mixing [10], c color reference for white [24], d lexicographic order

for VSH [23], e multivariate fuzzy operations [13], f histogram-based
[5], g random projections [29], h color reference in CIELab Quantale
[27], i soft color morphology (Color figure online)

it pixel-wise with the original image. Both color reference
algorithms seem to behave similarly, taking into account that
they have opposite reference colors for the sake of showing a
wider comparison. Both of them order the colors prioritizing
their distance with regard to fixed one, usually determining
the order regardless of further tie resolving procedures. This
is specially relevant when using other operators such as the
top-hat or the morphological gradient. However, all of the
techniques remove either the eyes or the eyelashes in Fig. 6,

since they are almost perpendicular to the non-isotropic struc-
turing element employed.

Finally, Figs. 7 and8 contain, respectively, the opening and
the closing operators. These operators are meant to remove
objects smaller than the structuring element and to remove
holes between objects that are smaller than the structuring
element. This behavior makes them flatten heterogeneous
regions, transforming textures into more uniform areas. In
addition to it, the opening and the closing should keep the
shapes of big objects.
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Fig. 6 Dilation by different morphologies, being (1) original 512×512
image, (2) 13× 13 bar-like structuring element, (3) binarization of (2),
a component-wise [17], b bit mixing [10], c color reference for white
[24], d lexicographic order for VSH [23], e multivariate fuzzy opera-

tions [13], f histogram-based [5], g random projections [29], h color
reference in CIELab Quantale [27], i soft color morphology (Color fig-
ure online)

In Fig. 7, we observe how the component-wise approach
provides a visually similar image to the original one. Again,
the image-dependent morphologies, in Fig. 7e, f, provide
significantly different results, modifying the blue region the
former and the red region the latter. We remark that only
the soft color operators employ the non-binary structuring
element, since it is the only paradigm that can meaning-
fully handle it. The soft response provided by the non-binary
structuring element provides both sharp contours and smooth
regions.

With regard to the closing operator, in Fig. 8, most alter-
natives treat the white background as the object to be closed,
except for the color reference and the random projections
algorithms. The histogram-based method, as a matter of fact,
is not able to deal with this artificial image and highly distorts
the boundaries of the objects. Some approaches in Fig. 8c,
d, f do not preserve the shape of the inner squares. The rest
of them, including the soft color operators, are able to deal
with this artificial image.
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Fig. 7 Opening by different morphologies, being (1) original image,
(2) 50× 50 detail of the original image, (3) 9× 9 Gaussian structuring
element, (4) binarization of (3), a component-wise [17], b bit mixing
[10], c color reference for white [24], d lexicographic order for VSH

[23], emultivariate fuzzy operations [13], f histogram-based [5], g ran-
dom projections [29], h color reference in CIELab Quantale [27], i soft
color morphology (Color figure online)

6 Analysis and Conclusions

In this paper, we formally presented the basic operators of
the soft color mathematical morphology: the soft color ero-
sion and the soft color dilation (Definitions 7, 8), and we
also combined them to create other morphological operators.
Then, we studied their properties from a theoretical point of
view in Sect. 4, and compared them extensively to other color
morphologies in Sect. 5. We end the paper with a discussion

of the comparison and the strengths and weaknesses of the
soft color morphology.

6.1 Analysis of the Comparison

Regarding color preservation, the only morphology falling
short is the component-wise morphology. It is not able to
control whether new colors are created or not producing

123



Journal of Mathematical Imaging and Vision (2019) 61:394–410 407

Fig. 8 Closing by different morphologies, being (1) original 611×764
image, (2) 7× 7 binary structuring element, a component-wise [17], b
bit mixing [10], c color reference for white [24], d lexicographic order

for VSH [23], e multivariate fuzzy operations [13], f histogram-based
[5], g random projections [29], h color reference in CIELab Quantale
[27], i soft color morphology (Color figure online)

unexpected resultswhen combining erosion and dilation. The
rest of methods, which deal with vectors instead of indepen-
dent channels, do not show this weakness.

With regard to interpretability, the soft color and the lex-
icographic order for VSH morphologies are interpretable:
bright objects are enlarged with dilation and shrank with ero-
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sion. This, however, is not always the best solution, as can be
observed in Fig. 8: the closing operator is assumed to fill the
holes within the objects. On the other hand, adaptive order-
ings fall short in interpretability: depending on the image,
they may produce completely different results. For instance,
the same object captured under two different backgrounds
may be dealt with in a totally different way. Besides, extra
care should be taken when processing artificial images, such
as in Fig. 8, since they may alter unexpectedly the ordering.

Taking into account the visual appearance of results (that
is, how natural the processed images look), almost all meth-
ods provide acceptable responses, even the most basic ones.
With a closer look, as in the texture-flattening operator in
Fig. 7, the soft color morphology operators provide smoother
outputs due to the possibility of using non-binary structuring
elements.

Finally, the runtime of methods may also be important in
some applications. All of them are appropriate for off-line
image processing, although not for real-time image process-
ing. The fastest methods are the ones based on a non-adaptive
total ordering—such as morphologies based on bit mixing,
color reference and lexicographic orders and the soft color
morphology with binary structuring elements. These can
leverage the lattice-based definition of erosion and dilation.
The component-wisemorphology consists on replicating this
same operator once per channel, multiplying thus the com-
putational complexity by a fixed constant. The soft color
morphology operators do not replicate the same operator
several times, but whenever a non-binary structuring ele-
ment is used, we must evaluate the fuzzy conjunction (or
fuzzy implication function) several times. Computationally,
this is roughly equivalent to multiplying the computational
complexity of the lattice-based definition by as many dif-
ferent values as the structuring element has. Lastly, the
adaptive orderings studied here are the most time-consuming
methods. They spend the majority of time creating the adap-
tive ordering, which has to be done once per image. The
histogram-basedmethod proposes a solution to this problem,
consisting on reusing the same histogram if the processed
image is similar to a previously computed one from a statis-
tical point of view.

6.2 Strengths andWeaknesses of the Soft Color
Morphology Operators

The interpretability of the operators is of paramount impor-
tance.Mathematicalmorphology encompasses operators that
manipulate the shape of objects, and thus theymust implicitly
define what is object and what is background in an image.
This distinction is harder in color or multivariate images than
in grayscale or binary images. Our approach is to consider

that pixels that belong to the background have higher values
in the first channel. This is very intuitive for color images
encoded with the CIEL∗a∗b∗ color space.

On the other hand, these operators can also process
images encoded in other color spaces and general multivari-
ate images—like hyperspectral imagery with a large number
of channels. However, in this case the practitioner must
choose the channel that best distinguishes the objects of inter-
est, or estimate this information from a series of channels (for
instance, with the histogram-based approach by Benavent et
al. [5]).

The soft color morphology operators fulfill several inter-
esting theoretical properties. Firstly, they preserve the chro-
matic information of pixels when using the CIEL∗a∗b∗ color
space for color images. Secondly, they can be tuned to
preserve full colors, simply by using a binary structuring ele-
ment.We remark that creating new colorsmay be desirable in
some situations like morphological filtering, where smooth-
ness is favored over realism, although it may be unacceptable
in other application fields. If color preservation is pursued,
the soft color erosion and dilation become equivalent to the
lattice-based definition of dilation and erosion, with an order
that is highly interpretable to deal with color images. Thirdly,
these operators generalize the fuzzy mathematical morphol-
ogy ones, which ensures the monotonicity/antimonotonicity
of erosion and dilation, among other properties. This is also
responsible for the soft outputs achieved with non-binary
structuring elements. However, the soft color closing and
openingdonot inherit the idempotence from the fuzzymathe-
matical morphology operators. This, which is due to possible
ties when finding a maximum or minimum color (see Def-
inition 6), is not a big problem in practice since ties are
infrequent in natural images.

The computational complexity is comparable to that of the
fuzzymathematicalmorphology for grayscale images,which
is low but still greater than that of the lattice-based definition
of mathematical morphology. On a CPU Intel© CoreTM i5@
3.10 GHz, the time to process one soft color dilation or soft
color erosion ranges from 81 ms (256 × 256-pixel images)
to 1.56 s (1024× 1024-pixel images) with MATLAB®code,
using the minimum conjunction, the Gödel implication and
a 5 × 5-pixel Gaussian-shaped structuring element. This
performance could be greatly improved with parallelization
and GPU-optimized code, further achieving performances
enough to be embedded into real-time systems, as can be
seen in [6] in which an equivalent complex operator achieves
such a real-time performance.
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