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Abstract
Shape representation is a main problem in computer vision, and shape descriptors are widely used for image analysis. In this
paper, based on the previous work Balázs, P., Brunetti, S.: A New Shape Descriptor Based on a Q-convexity Measure, Lecture
Notes in Computers Science 10502, 20th Discrete Geometry for Computer Imagery (DGCI) (2017) 267–278, we design a new
convexity vector descriptor derived by the notion of the so-called generalized salient points matrix. We investigate properties
of the vector descriptor, such as scale invariance and its behavior in a ranking task. Moreover, we present results on a binary
and a multiclass classification problem using k-nearest neighbor, decision tree, and support vector machine methods. Results
of these experiments confirm the good behavior of our proposed descriptor in accuracy, and its performance is comparable
and, in some cases, superior to some recently published similar methods.

Keywords Shape descriptor · Q-convexity · Generalized salient point · Classification methods

1 Introduction

As shape is an intrinsic feature of the object, shape rep-
resentation is a main problem in computer vision and
shape descriptors are widely used for image understanding
[13,25]. One class of descriptors captures single geometri-
cal or topological characteristics of shapes, like moments
[10], orientation and elongation [30], circularity [18], just
to mention a few. Among them, convexity is studied in
several papers [17,20]. Depending on whether the inte-
rior or the boundary of the shape is investigated in order
to determine the degree of convexity, these measures can
be grouped into area-based [4,25,27] and boundary-based
[29] categories. Other works use a probabilistic approach
(see, for example, [19,21]) and exploit convexity for shape
decomposition [15,22]. Closely related questions are exten-
sions for classification of shapes [23] (providing corner and
shape parameters to study the abrasion process) and the
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use of some kind of convexity to deal with complex spa-
tial relationships [3,8] (like enlacement, interlacement, and
surrounding).

In [1], we proposed a shape descriptor (scalar) which used
both boundary and area information and based on the concept
of Q-convexity [6,7], mostly studied in Discrete Tomogra-
phy [14] (it generalizes so-called hv-convexity to any two or
more directions and has interesting connections with “total”
convexity). The notion of salient points of a Q-convex image
has been introduced in [9] as the analog of extremal points of
a convex set. Salient points can be generalized for any binary
image, and they have been studied to model the “complex-
ity” of a binary image which lead to the convexity measure
of [1,5].

In [2], we extended the Q-convexity measure by weight-
ing differently the generalized salient points—depending on
“how” far they are from the boundary—in calculating the
measure. For this purpose, we introduced the matrix of gen-
eralized salient points g.s.p. of a binary image, shortly, GS
matrix (see Sect. 2 for the definition).

Unfortunately, how to choose the proper weights for a
given image processing issue is by far not trivial. Therefore
in this paper, we provide a more flexible descriptor exten-
sion of [1] and [2] derived directly from the GS matrix.
Indeed, a GS matrix characterizes its binary image by means
of its g.s.p. maintaining the information about their “depth”
(see Sects. 4 and 5 for details). A vector descriptor is now
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considered instead of a scalar descriptor to get additional
flexibility. Since the size of the vector depends on the image
itself, we introduce the concept of “maximal sequence” to
impose an upper bound to the number of components of the
vector descriptor. This theoretical bound is then used in the
experiments for dealing with the classification of images.

We investigate properties of the new vector descrip-
tor, such as scale invariance and its behavior in a ranking
task. Moreover, we conduct image classification (a binary
and a multiclass classification problem) and robustness-to-
noise tests on two different suitable datasets: the datasets
DRIVE [26], CHASEDB1 [12] of fundus photographs of
the retina, and the dataset of algae (desmids taxon Micras-
terias) in [21]. The choice of these datasets allows us to
evaluate and compare our shape descriptor to the descrip-
tors defined in [8] and in [21] also based on a convexity
measure. As classifiers, we use k-nearest neighbor with
Euclidean distance (kNN), decision tree (DT), and support
vector machine with linear kernel (SVM). Results of these
experiments confirm the good behavior of our proposed
descriptor: it reaches an accuracy comparable and, in some
cases, superior to the methods in [8], [21], and it is com-
putationally more efficient (as it is linear in the size of the
image).

The structure of the paper is the following. In Section 2,we
present the background. In Sect. 3, the concept of maximal
sequences is introduced. In Sect. 4, we define the matrix of
generalized salient points (GSmatrix, for short) and describe
a linear-time algorithm for the construction of the binary
image from its GS matrix. The aim of Sect. 5 is to briefly
show how the GS matrix can be efficiently computed, in
linear time in the size of the image. In Sect. 6, we give the
definition of the new shape descriptor. In Sect. 7, we report
on the experiments we conducted. Finally, Sect. 8 is for the
conclusion.

2 Background

Any binary image F is a m × n binary matrix, and it
can be represented by a set of black, foreground pixels
denoted by F , and white, background pixels (unit squares)
(see Fig. 1 left). Equivalently, foreground pixels can be
regarded as points of Z2 contained in a finite lattice grid
G (rectangle of size m × n), up to a translation, and back-
ground pixels can be viewed as points in G \ F . In this
view, the non-empty finite set F is called lattice set (see
Fig. 1 right). Throughout the paper, we will use both rep-
resentations for binary images as interchangeable, even if
the order of the points in the lattice and the order of
the items in a matrix are different. For our convenience
when not confusing, we use F for both the image and
its representations, and we denote by Fc the complement

Fig. 1 A binary image represented as black and white pixels (left), and
by a lattice set (right)
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Fig. 2 Illustration of the concept of Q-convexity. A Q-convex (left)
and a non-Q-convex (right) lattice set. Note that the image on the left
is the Q-convex hull of the image on the right

of F , i.e., the image obtained as the complement of its
pixel values reversing foreground and background pixels. In
the lattice representation, Fc corresponds to the lattice set
G \ F .

Let us introduce the main definitions concerning Q-
convexity [6,9]. In order to simplify our explanation, let us
consider the horizontal and vertical directions and denote
the coordinate of any point M of the grid G by (xM , yM ).
Then, M and the directions determine the following four
quadrants:

Z0(M) = {N ∈ G : 0 ≤ xN ≤ xM , 0 ≤ yN ≤ yM }
Z1(M) = {N ∈ G : xM ≤ xN < m, 0 ≤ yN ≤ yM }
Z2(M) = {N ∈ G : xM ≤ xN < m, yM ≤ yN < n}
Z3(M) = {N ∈ G : 0 ≤ xN ≤ xM , yM ≤ yN < n}.

Definition 1 A lattice set F is Q-convex if Z p(M) ∩ F �= ∅
for all p = 0, . . . , 3 implies M ∈ F .

We say that the binary image F is Q-convex, if F is Q-
convex. We also say that Z p(M) is a background quadrant,
if Z p(M) ∩ F = ∅. Thus, in other words, a binary image
is Q-convex if there exists at least a background quadrant
Z p(M) for every pixel M in the background of F . Figure 2
illustrates the above concepts.

The Q-convex hull of F can be defined as follows:
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Definition 2 The Q-convex hull Q(F) of a lattice set F is
the set of points M ∈ G such that Z p(M) ∩ F �= ∅ for all
p = 0, . . . , 3.

Equivalently, the Q-convex hull Q(F) of a lattice set F
is the intersection of all the Q-convex sets containing F . By
Definitions 1 and 2, if F is Q-convex, then F = Q(F).
Conversely, if F is not Q-convex, then Q(F) \ F �= ∅ (see
Fig. 2, again, where for the lattice set F on the right,Q(F) \
F = {M}).
Definition 3 Let F be a lattice set. A pointM ∈ F is a salient
point of F if M /∈ Q(F \ {M}).

We may speak about the salient points of a binary image,
accordingly. Let us denote the set of salient points of F
by S(F). Of course S(F) = ∅ if and only if F = ∅.
Moreover, Q(F) = Q(S(F)). Daurat proved in [9] that the
salient points of F are the salient points of the Q-convex
hull Q(F) of F , i.e., S(F) = S(Q(F)). This means that
if F is Q-convex, its salient points completely character-
ize F . If it is not, there are other points belonging to the
Q-convex hull of F but not in F that “track” the non-Q-
convexity of F . These points are called generalized salient
points (abbreviated by g.s.p.). The set of generalized salient
points Sg(F) of F is obtained by iterating the definition of
salient points on the sets obtained each time by discarding
the points of the set from its Q-convex hull, i.e., using the
set notation:

Definition 4 If F is a lattice set, then the set of its gener-
alized salient points (g.s.p.) Sg(F) is defined by Sg(F) =⋃

i S(Fi ), where F1 = F , Fi = Q(Fi−1) \ Fi−1.

We may denote the binary images related to Q(F),
S(F), and Fi by Q(F), S(F), and Fi , respectively. Fig-
ure 3 illustrates the definition in the lattice representation.
Last set in the sequence is F4, since F4 is Q-convex and
so F5 = Q(F4) \ F4 = ∅. We notice that Fi is con-
tained in Fc

i−1 (more precisely, in Q(Fi−1) \ Fi−1), and
if i is even, Fi is contained in Fc

1 , else if i is odd Fi

is contained in F1. In the pixel representation, this cor-
responds to say that foreground and background pixels in
Fi correspond to white and black pixels for i even and
to black and white pixels for i odd, respectively. In this
view, the Q-convex hull of the foreground pixels of Fi−1

contains the Q-convex hull of the foreground pixels of
Fi .

3 Maximal Sequences

LetF be a binary image of sizem×n (or equivalently, F ⊂ G
and G is of sizem×n). ByDefinition 4, we obtain a sequence
of sets (F1, . . . , Fk), k being the index such that Fk+1 = ∅.

Fig. 3 Generalized salient points are in black. Top left: F1. Top right:
F2. Bottom left: F3. Bottom right: F4

Fixed G, there can be another image E which gives rise to the
sequence of sets (E1, . . . , Ek′), with k′ �= k.

Definition 5 Wesay that a sequence (F1, . . . , Fk) is maximal
for G, if k is maximum among all the lattice subsets in G.

Proposition 1 Let G be given. A maximal sequence (F1, . . . ,
Fk) for G exists such that Q(Fi ) \ Q(Fi+1) = S(Fi ), for
i = 1, . . . , k.

Proof If there exists a maximal sequence (F1, . . . , Fk) such
that Q(Fi ) \ Q(Fi+1) ⊃ S(Fi ), we may ”remove” pixels
other than g.s.p to construct another maximal sequence (cor-
responding to a different binary image): indeed, Q(Fi ) ⊃
Q(Fi+1), and we may change Fi+1 by adding the pix-
els in Q(Fi ) \ Q(Fi+1) which are not g.s.p., i.e., Ei+1 =
Fi+1 ∪ (Q(Fi ) \ (S(Fi ) ∪ Q(Fi+1))). This change reflects
on F1, . . . , Fi accordingly. Let k′ be the index of the
new sequence (E1, . . . , Ei+1, . . . , Ek′); since Q(Ei+1) ⊃
Q(Fi+1), we have that k′ ≥ k. �
Proposition 2 Let (F1, . . . , Fk) be a maximal sequence
for a given G. Q(Fi ) \ Q(Fi+1) = S(Fi ), for i =

123



196 Journal of Mathematical Imaging and Vision (2019) 61:193–203

1, . . . , k − 1 if and only if all the pixels in Q(F1) are
g.s.p.

Proof Let Q(Fi ) \ Q(Fi+1) = S(Fi ) and Q(Fk) = S(Fk);
then,Q(F1) = S(F1)∪. . .∪S(Fk). If all the pixels inQ(F1)
are g.s.p., Q(F1) = S(F1) ∪ . . . ∪ S(Fk). There follows
Q(F1)\S(F1) = S(F2)∪. . .∪S(Fk) is Q-convexbecause by
definition, the set obtained by removing salient points from a
Q-convex set is Q-convex. So,Q(F2) = S(F2)∪. . .∪S(Fk),
and Q(F1) \ Q(F2) = S(F1). By induction on i , the thesis
follows. �

By inspection, it is easy to see that the chessboard con-
figuration is such that all its pixels are g.s.p. We now prove
by construction that it is the unique image having this prop-
erty.

Proposition 3 The unique binary image such that all its pix-
els are g.s.p. is the chessboard.

Proof Consider a pixel M to be in S(Fi ), and Z0(M) ∩
(Q(Fi ) \ {M}) = ∅. Since all the pixels in F are g.s.p.,
P = (xM +1, yM ) and Q = (xM , yM +1) are in S(Fi+1). In
the sameway,wededuce that (xP+1, yP ) and (xP , yP+1) =
(xQ+1, yQ) and (xQ, yQ+1) are inS(Fi+2). This construc-
tion gives rise to a chessboard configuration. �

From this proposition, we can claim that

Theorem 1 Let G be given. The chessboard image gives rise
to the maximal sequence for G.

As a consequence, it is easy to prove:

Remark 1 Let G of size m × n be given. The maximal
sequence (F1, . . . , Fk) for G is such that k ≤ min(m, n).

This remark is useful to theoretically upper bound the
length of the sequences and will be used in the experimental
section.

4 The GSMatrix

In this section, we present a characterization of a binary
image based on its g.s.p. Consider the matrix representa-
tion of F = ( fi j ). We may associate F with the m × n
integer matrix B of its generalized salient points defined
as follows: bi j = h, if and only if fi j is a g.s.p. of Fh ;
bi j = 0 otherwise. Informally, items 0 < h(≤ k) of the
integer matrix B correspond to g.s.p in S(Fh); items 0 do
not correspond to any g.s.p. of F . For example, the matrix
in Fig. 4 is the GS matrix associated with the first image
in Fig. 3. We call B, the GS matrix associated with F ,
where GS stands for “generalized salient”. The GS matrix is
well defined since by Definition 4, we have that ∩iS(Fi ) =
∅.

Fig. 4 GS matrix of the image
in Fig. 3

Theorem 2 Any two binary images are equal if and only if
their GS matrices are equal.

Proof Let B be the GS matrix associated with the binary
image F . The following construction permits to determine
F by B. For all items i in B considered in decreas-
ing order (of i), compute the Q-convex hull of the pixels
corresponding to the items i and fill the correspond-
ing pixels not already considered with the foreground
w.r.t. i .

To show that this construction is correct, let k be the
maximum value in the GS matrix; then, Fk+1 = ∅, and
Fk is Q-convex. Therefore, in the first step i = k, the
construction determines Fk = Q(S(Fk)). Suppose at step
i + 1 the construction determines Fi+1, we show by induc-
tion step i : the construction computes the Q-convex hull of
the pixels corresponding to the items i in the GS matrix,
i.e., Q(S(Fi )) = Q(Fi ), and fills the corresponding pix-
els not already considered with the foreground w.r.t. i , i.e.,
Q(Fi ) \ Fi+1. By definition, Fi+1 = Q(Fi ) \ Fi , and
since Q(Fi ) = Fi ∪ Fi+1 and Fi ∩ Fi+1 = ∅, we have
Fi = Q(Fi ) \ Fi+1. By induction, the construction deter-
mines F = F1 = Q(F1) \ F2. Therefore, starting from B
we obtain F .

Finally, since two different binary images have different
GS matrices, there is a one-to-one correspondence between
images and matrices. �

In order to design an efficient algorithm based on the con-
structive proof of the theorem, we extend the definition of
Q-convex hull as follows:

Definition 6 The Q-convex hull Q(Fi ) of the lattice set Fi
is the set of points M ∈ G such that Z p(M) ∩ Fi �= ∅ for all
p = 0, . . . , 3.

Remark 2 Since Q(Fi ) = Q(S(Fi )), pixel M belongs to
the Q-convex hull of Fi if Z p(M) ∩ S(Fi ) �= ∅ for
all p, or equivalently, if there is an item i in the GS
matrix associated with Fi in each zone of M . Since the
Q-convex hull of the foreground pixels of Fi contains the
Q-convex hull of the foreground pixels of Fi+1, pixel M
belongs to Q(Fi ) \ Q(Fi+1), if i is the minimum among
the maximum items in the GS matrix in each zone in M ,
i = 1, . . . , k. Therefore if i is odd, then fM = 1 (i.e.,
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M ∈ F), else if i is even, then fM = 0 (i.e., M /∈
F). This also ensures that every pixel can be considered
once.

Let us extend the definition of the four zones Z0, Z1,
Z2, Z3 to the items (viewed as weighted lattice points) of
theGSmatrix B, i.e., Z0(bi j ) is the submatrix of Bwith items
bi ′ j ′ such that i ′ ≥ i and j ′ ≤ j , Z1(bi j ) is the submatrix
of B with items bi ′ j ′ such that i ′ ≥ i and j ′ ≥ j , Z2(bi j )
is the submatrix of B with items bi ′ j ′ such that i ′ ≤ i and
j ′ ≥ j , and Z3(bi j ) is the submatrix of B with items bi ′ j ′
such that i ′ ≤ i and j ′ ≤ j . Moreover, let Zt = (zti j ) denote
the integer matrix such that zti j = h if and only if bi j = 0
and h is the maximum item in the submatrix Zt (bi j ), for
t ∈ {0, 1, 2, 3} (zti j = 0 if bi j �= 0). We design the following
procedure reconstructing F from its associatedGSmatrix B.

1: procedure (B)
2: for each bi j = 0 do
3: for each t=0,1,2,3 do
4: find b the maximum item of B in Zt (bi j )
5: store b in zti j of matrix Zt

6: end for
7: end for
8: for each bi j = 0 do
9: h ← min(z0i j , z

1
i j , z

2
i j , z

3
i j )

10: if h is odd then fi j ← 1
11: else fi j ← 0
12: end if
13: end for
14: for each bi j �= 0 do
15: if bi j is odd then fi j ← 1
16: else fi j ← 0
17: end if
18: end for
19: end procedure

For example, starting from the GS matrix B in input,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 2 1 0
0 0 3 3 0 0
1 0 0 0 0 1
0 0 0 0 3 2
2 3 0 4 0 1
1 0 0 0 0 0
0 0 0 4 0 0
0 0 0 3 0 0
0 0 1 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The procedure computes Z0(B), Z1(B), Z2(B) and Z3(B)

(lines 2–7):

Z0=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0 0 4
2 3 0 0 4 4
0 3 3 4 4 0
2 3 3 4 0 0
0 0 3 0 4 0
0 1 1 4 4 4
0 0 1 0 4 0
0 0 1 0 3 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Z1=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0 0 0 2
4 4 0 0 4 4
0 4 4 4 3 0
4 4 4 4 0 0
0 0 4 0 1 0
0 4 4 4 1 0
4 4 4 0 1 0
3 3 3 0 1 0
2 2 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Z2=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0 0 0
3 3 0 0 1 0
0 3 3 3 1 0
3 3 3 3 0 0
0 0 4 0 3 0
0 4 4 4 3 2
4 4 4 0 3 2
4 4 4 0 3 2
4 4 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Z3=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 2
0 1 0 0 3 3
0 1 3 3 3 0
1 1 3 3 0 0
0 0 3 0 4 0
0 3 3 4 4 4
2 3 3 0 4 4
2 3 3 0 4 4
2 3 0 0 0 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If we consider, for instance, b22 = 0, since min{z022 =
3, z122 = 4, z222 = 3, z322 = 3} = 3, then f22 is in
Q(F3)\Q(F4) and so f22 = 1 (lines 8–13). Moreover, since
item b02 = 2, then pixel associates with f02 is a g.s.p. in
F2 and so f02 = 0 (lines 14–18). Note the procedure recon-
structs F of Fig. 3.

Theorem 3 The procedure computes the binary image from
its GS matrix in linear time.

Proof Let B = (bi j ) be the m × n GS matrix in input, and
F = ( fi j ) be the binary matrix representation of the image
associated with B. Initially, fi j = 0, for all i, j . The correct-
ness of the algorithm comes from Remark 2, since fi j = h
(mod 2), where h is the minimum (line 9) among the maxi-
mum items in theGS matrix in each zone in M , i = 1, . . . , k
(lines 3–6).

We show that the complexity of the algorithm is O(mn).
The computation of the maximum in any zone for each item
bi j = 0 (statements 2-7) can be done in linear time in the size
of the image. Indeed, consider zone Z0: for bi j , by definition,
Z0(bi j ) = Z0(bi−1 j ) ∪ Z0(bi j−1). Therefore, the maximum
in Z0(bi j ) can be computed by previous computations for
Z0(bi−1 j ) and Z0(bi j−1) and stored in a matrix Z0. (Anal-
ogous relations hold for Z1, Z2, Z3.) For any item bi j , the
minimumamong four corresponding values stored in the four
matrices Z0, Z1, Z2, Z3 (statement 9), and the determination
of the parity of the minimum cost O(1) (statements 10, 14).
Hence, the complexity of the algorithm is linear in the size
of matrix B. �

123



198 Journal of Mathematical Imaging and Vision (2019) 61:193–203

Fig. 5 The GS matrix associated with the second image in Fig. 7 and
represented as a grayscale image

5 Computation ofGSMatrix

The GS matrix can be computed in linear time in the size
of the binary image by the algorithm designed in [5] for the
determination of generalized salient pixels.

Here we briefly describe the algorithm. The basic idea
is that salient points and generalized salient points of a
binary image F can be determined by implicit computation
of Q(F). Indeed, the authors in [5] proved that Q(F) is
the complement of the union of maximal background quad-
rants. At each step i , the algorithm finds the foreground
(generalized) salient pixels of Fi by computing the maxi-
mal background quadrants of Fi . Pixels in the background
quadrants are discarded, and the remaining complemented
image is considered in the next step being the Q-convex hull
of Fi (recall that Fi+1 = Q(Fi ) \ Fi ).

During the computation of generalized salient points, the
algorithm constructs theGSmatrix B = (bi j ). Indeed, bi j =
h, if fi j is a g.s.p. in Fh and the algorithm finds it at step h
(and bi j = 0 for any item which is not a g.s.p.). Therefore,
B is the matrix of the steps at which every g.s.p. is found.

In Fig. 5, we illustrate the GS matrix associated with the
second image in Fig. 7, and in Fig. 6, the GS matrix asso-
ciated with the fourth image in Fig. 7. In particular, g.s.p. is
represented in grayscale colors depending on the iteration at
which the g.s.p. has been found (darker color indicates later
iteration).

6 The NewDescriptor

Since the GS matrix characterizes the binary image it is
associated with, we exploit information to define a shape
descriptor. In [1], we defined a shape measure in terms of
proportion between salient points and generalized salient

Fig. 6 The GS matrix associated with the fourth image in Fig. 7 and
represented as a grayscale image

0.0996 0.1087 0.2246 0.2403 0.2510 0.2557 0.3681

0.4282 0.4595 0.5089 0.6743 0.6861 1.0000 1.0000

Fig. 7 Shapes ranked into ascending order by ||Ψ (.)||2. Values are
rounded to four digits

points, and in [2] we generalized the measure by providing a
parametrized version. In this paper, the idea is to investigate
a vector descriptor based on the GS matrix. Denoting the
cardinality of an arbitrary set P of points by |P|, here we
extend the measure as follows:

Definition 7 Let F and B be any binary image and its GS
matrix, respectively. The Q-convexity descriptorΨ (F) ofF
is defined by

Ψ (F) =
( |B|bi j=1

|B|bi j>0
,
|B|bi j=2

|B|bi j>0
, . . . ,

|B|bi j=k

|B|bi j>0

)

.

By definition of GS matrix, we also have that

Ψ (F) =
( |S(F1)|

|Sg(F)| ,
|S(F2)|
|Sg(F)| , . . . ,

|S(Fk)|
|Sg(F)|

)

.

Each component of the vector is in (0, 1], and if the binary
image is Q-convex, then its vector descriptor reduces to one
non-null component which equals 1. For comparing images
of the same size,wefix the dimension of the vector descriptor.
Indeed, due to Remark 1, the upper bound for the maximal
index k in the sequence is obtained by the chessboard image.
Finally, the descriptor needs only to compute the GS matrix,
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which—as mentioned in Sect. 5—can be done in linear time
in the number of pixels of the image.

7 Experiments

To examine the properties of our shape descriptor, we con-
ducted experiments of different kinds for the study of ranking
a variety of shapes and investigating scale invariance.

At first, we consider a variety of shapes in [21] of size
512 × 512, and we rank them simply according to the
Euclidean norm of the vector descriptor. Note that we pre-
scribe k = 512 components for the vector descriptor due
to Remark 1. In Fig. 7, the ranking in ascending order and
the values are illustrated. Note that the measure correctly
assigns value 1 to the “L” and rectangular shapes. Moreover,
the ranking is very similar to the one obtained in [2] (with
parameters equal to 1) andwe achieve lower values for shapes
with many narrow and/or deep intrusions (see the first four
elements of the first row of Fig. 7) than for shapes with wider
intrusions (see the second to fifth element of the second row
of Fig. 7). At first glance, the value assigned to the rectan-
gle with lozenges could seem too low (in comparison with
the rectangle), but the lozenges give rise to many g.s.p.. We
stress that this configuration cannot be considered at all as a
noisy version of the rectangle, and indeed, we will show in
the experiments that the measure is robust to (a reasonable
amount of) noise (see, later, 2nd paragraph of Sect. 7.3).

Secondly, we test scale tolerance. This time we omit the
fully Q-convex images as their convexities are naturally scale
invariant. Taking the vectorized version of the remaining 12
images,we digitize themon different scales (32×32, 64×64,
128 × 128, 256 × 256). Then, for each image, we compute
the normalized difference with the original sized image as

||Ψ (Fo) − Ψ (Fr )||2
||Ψ (Fo)||2 , (1)

whereFo andFr are the original and rescaled image, respec-
tively. Table 1 shows the average and variance of the values
found for the 12 images for each size. Of course, in lower res-
olutions, the small details of the shapes disappear; therefore,
the differences are higher. Nevertheless, for higher resolu-
tions the values are small, from which we can deduce that
scaling has no significant impact, from the practical point of
view.

7.1 Datasets for Classification

In the experiments, we use the following datasets for the
classification issues. The datasets from DRIVE [26] and
CHASEDB1 [12] databases contain images of fundus pho-
tographs of the retina. In particular, our datasets are com-

Table 1 Average normalized difference and variance of the convexity
vector of the original and rescaled images

Size 32 × 32 64 × 64 128 × 128 256 × 256

Average 1.1600 0.7986 0.5122 0.2973

Variance 1.1746 0.5201 0.2028 0.0591

Fig. 8 Examples of two retinal images. Left: from the DRIVE dataset.
Right: from the CHASEDB1 dataset

Fig. 9 Some of the 43 desmids, one for each class

posed by the segmented images. First dataset is constituted
by 20 binary images where the optic disk is shifted from the
center, whereas second dataset is constituted by 20 binary
images where the optic disk is centered. Figure 8 shows a
sample from both dataset.

For the second classification test, we use the dataset
of images in [21] constituted by 43 types of algae, called
desmids (taxon Micrasterias) with 4–7 drawings for each of
eight classes. Some shapes, one for each class, are illustrated
in Fig. 9. Finally, in the third classification experiment we use
the well-known KIMIA-99 dataset consisting of 9 classes
of images, with 11 representatives from each class (see
Fig. 10) [24].

7.2 Classifiers

In all three experiments, we attempt to classify the images of
the datasets into the correct classes by using three different
types of classifiers: k-nearest neighbor with Euclidean dis-
tance (kNN), decision tree (DT), and support vector machine
with linear kernel (SVM). We decided to use the kNN
classifier for comparison with descriptors in [8] and [21].
Moreover, we exploit the power of SVM to weighting the
components of the vector shape descriptor to reach addi-
tional flexibility. Finally, decision trees allow us to better
understand the results of kNN and SVM and can help in
selecting the proper vector components for classification. For
the implementation of the classifiers, we choose the WEKA
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Fig. 10 The KIMIA-99 dataset. The class Fish, Rabbit,
Aircraft, Greeble, Tool, Hand, Doll, Four-legged
animal, Sea-animal, from top to bottom, respectively

Table 2 Classification accuracy (in percentage) of CHASEDB1 and
DRIVE images in the noiseless case, for different resolutions

#Components

10 20 30 40 50 All

128 × 128

5NN 95.00 95.00 95.00 95.00 95.00 95.00

DT 85.00 82.50 72.50 95.00 95.00 95.00

SVM 95.00 95.00 95.00 95.00 95.00 95.00

256 × 256

5NN 92.50 95.00 95.00 95.00 95.00 95.00

DT 85.00 85.00 85.00 77.50 77.50 95.00

SVM 92.50 92.50 92.50 95.00 95.00 95.00

512 × 512

5NN 87.50 95.00 92.50 95.00 95.00 95.00

DT 77.50 80.00 80.00 75.00 70.00 82.50

SVM 85.00 95.00 90.00 92.50 92.50 90.00

1024 × 1024

5NN 67.50 90.00 92.50 95.00 95.00 95.00

DT 67.50 95.00 87.50 95.00 95.00 92.50

SVM 80.00 92.50 95.00 95.00 95.00 87.50

Rows stand for the different classifiers, while columns for different
numbers of feature vector components used

Toolbox [11]. We use leave-one-out cross-validation to eval-
uate the accuracy of the methods.

7.3 Experimental Protocol and Results

At first, we tested scale invariance in binary classification.
Results are reported in Table 2. We scaled the images of

the CHASEDB1 and DRIVE datasets to different sizes from
128×128 up to 1024×1024 and set the maximal number of
vector components, accordingly. We performed the classifi-
cation using just the first 10−20−30−40−50 and also with
all the components of the vector descriptor (“all” in the table).
We observe this problem can be solved with high accuracy
even when only a small number (say, 20) of components are
taken into account. We also notice that taking more than 50
components no better results are found. We can deduce that
5NN seems the best choice for this problem; nevertheless,
SVM performs similarly well. Knowing that kNN is a lazy
learner, when classification speed is an issue SVM may be
prioritized. However, one must take into account that this
latter classifier tends to overfit, especially when many vector
components are used for bigger sized images (see the drop
in the accuracy for all the components in case of 512 × 512
and 1024 × 1024). DT is not considered as a useful alterna-
tive here; it is more sensitive to scaling. Indeed, SVM and
5NN are robust to scaling, as their classification is based on
the Euclidean distance, by which scale tolerance was mea-
sured in (1), whereas DT uses the information content of the
attributes (vector components).

Following the strategy of [8], we gradually added dif-
ferent types of random noise to the images of size 1024 ×
1024 (which can be interpreted as increasingly strong seg-
mentation errors) and repeated the experiments with 5NN.
Gaussian and speckle noise were added with 10 increas-
ing variances σ 2 ∈ [0, 2], while salt and pepper noise was
added with 10 increasing amounts in [0, 0.1]. Some example
images are shown in Fig. 11, while the results are presented
in Table 3. We can observe that in case of speckle noise we
need at least 40 components of the feature vector to ensure
similar classification accuracy as in the noiseless case. Salt
and pepper noise can also be beaten when the complete fea-
ture vector is used. The same holds for a moderate amount
of Gaussian noise. However, further increasing the amount
of Gaussian noise results a drop in classification accuracy.
In [8], the authors reported to reach an average accuracy
of 97.75%, 99.25%, and 98.75% for speckle, Gaussian, and
salt and pepper noise, respectively, on the same dataset with
5NN. Their results are surprisingly good (the images are
completely distorted by the high levels of noise, in case
of Gaussian) and slightly better than ours. Notice that they
employ the so-called interlacement descriptor using d = 180
discrete directions along with measuring directional convex-
ity, which has a computational complexity ofO(dN 2), where
N is the number of image pixels. By comparison, our vec-
tor descriptor uses the information of Q-convexity w.r.t. two
directions, and it is computationally more efficient since it
can be computed in O(N ) time. Finally, the authors of [8]
also report better results in comparisonwith force histograms
[16] and generic Fourier descriptors [28]. In turn, our results
are slightly better than force histograms and competitivewith
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Fig. 11 Retina images with moderate (top row) and high (bottom row)
amount of noise. Speckle, salt and pepper, and Gaussian noise, from
left to right, respectively

generic Fourier descriptors for speckle and salt and pepper
noise, whereas they are worse for Gaussian.

For the more complex multiclass separation problem
(desmids), the results are given in Table 4. Since the image
classes in this case are rather small (they may contain less
than 5 elements), 5NN could bemisleading here. For this rea-
son and also for a further comparison with the results in [21],
we present here the accuracy of 1NN classification instead
of the 5NN. Notice that 1NN reaches the best accuracy when
only the first 20 components are used, whereas the other
two (more sophisticated) methods use 40 components for the
best classifications. Using less components, clearly, results
in underfitting. On the other hand, taking more components
can lead to overfitting. Both phenomena of machine learn-
ing are clearly observable from the entries of the table and
should be avoided. Overall, we can say that nearest neighbor
is, again, a good choice for this problem. However, to avoid
overfitting it is desirable to provide a strategy to select the
proper vector components for classification. Here, DT can
come to our help. Knowing that it positions the most infor-
mative attributes (in our case, vector components) close to
the root of the model tree built, we can select the vector com-
ponents that are preserved in the pruned tree to expect a good
classification rate. Indeed, taking all the components, build-
ing a DT, and pruning it, yields a tree that only contains the
{1, 8, 28, 113} set of components. Feeding these four vec-
tor components to 1NN, we achieve the accuracy of 58.13%
(best value in the table). Of course, since the algorithm build-
ing the tree is greedy, the solution could be not optimal, and
indeed, we also found that for the first 16 components we
may reach the accuracy of 62.79%. We also point out that in
comparison with the performance of the convexity measure
C0,0 in [21] (with an accuracy of 55.81% for 1NN), our result
is slightly better.

Table 3 5NN classification accuracy (in percentage) of CHASEDB1
and DRIVE images for different types and levels of noise (first column)

#Components

10 20 30 40 50 All

Speckle

Level 1 80.0 92.5 95.0 95.0 95.0 95.0

Level 2 65.0 70.0 90.0 90.0 92.5 92.5

Level 3 47.5 80.0 90.0 92.5 92.5 92.5

Level 4 62.5 87.5 87.5 92.5 95.0 92.5

Level 5 57.5 75.0 92.5 92.5 95.0 95.0

Level 6 65.0 87.5 87.5 92.5 95.0 95.0

Level 7 67.5 87.5 90.0 95.0 95.0 92.5

Level 8 65.0 87.5 87.5 95.0 95.0 92.5

Level 9 65.0 87.5 90.0 95.0 95.0 95.0

Level 10 62.5 90.0 92.5 95.0 95.0 95.0

Salt and pepper

Level 1 45.0 75.0 90.0 92.5 95.0 95.0

Level 2 42.5 55.0 52.5 70.0 67.5 95.0

Level 3 42.5 47.5 55.0 45.0 65.0 95.0

Level 4 42.5 57.5 62.5 40.0 42.5 95.0

Level 5 35.0 42.5 42.5 47.5 45.0 95.0

Level 6 55.0 55.0 37.5 47.5 42.5 95.0

Level 7 42.5 42.5 37.5 42.5 45.0 95.0

Level 8 35.0 45.0 52.5 60.0 60.0 95.0

Level 9 55.0 40.0 20.0 37.5 40.0 95.0

Level 10 55.0 55.0 50.0 47.5 65.0 95.0

Gaussian

Level 1 80.0 92.5 95.0 95.0 95.0 95.0

Level 2 60.0 67.5 77.5 85.0 85.0 95.0

Level 3 75.0 65.0 75.0 70.0 70.0 95.0

Level 4 45.0 37.5 32.5 35.0 45.0 92.5

Level 5 67.5 62.5 77.5 75.0 65.0 90.0

Level 6 45.0 62.5 60.0 65.0 55.0 87.5

Level 7 45.0 50.0 47.5 47.5 52.5 77.5

Level 8 32.5 35.0 52.5 62.5 50.0 77.5

Level 9 45.0 32.5 55.0 52.5 50.0 60.0

Level 10 40.0 50.0 55.0 47.5 50.0 50.0

Columns stand for the different numbers of feature vector components
used

Table 4 Classification accuracy (in percentage) of the desmid images

#Components

10 20 30 40 All

1NN 44.18 58.13 53.48 44.18 34.88

DT 37.20 44.18 48.83 51.16 44.18

SVM 25.58 41.86 37.20 37.20 46.51

Rows stand for the different methods, while columns for different num-
bers of feature vector components used
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Table 5 Classification accuracy (in percentage) of the KIMIA-99
images

#Components

5 10 15 All

1NN 55.55 70.70 66.66 66.66

5NN 53.53 62.62 58.58 62.63

DT 58.58 62.62 62.62 63.63

SVM 36.36 54.54 49.49 55.55

Rows stand for the different methods, while columns for different num-
bers of feature vector components used

In the last classification experiment, we deal with the
KIMIA-99 dataset for testing the behavior of our vector
descriptor on a dataset not suitable for the features extracted
by shape descriptors based on convexity. Indeed, as far as we
know, we do not find in the literature comparable descriptors
tested on this dataset. This is particularly difficult because
images present two types of occlusions. The results are
reported in Table 5 with the best accuracy of 70.70% reached
using 10 components. Here, the pruned decision tree con-
tains the component set {1, 2, 4, 8, 9} by which we can reach
71.71% and 66.66% accuracy, with the 1NN and 5NN clas-
sifier, respectively. Taking a look at the confusion matrix
in case of 1NN for this special attribute set, we notice that
classes Sea-animal, Doll, Aircraft, and Tool are
easy (10–11 hits per classes), while Greeble is the hardest
to classify (only 3 of the 11 instances get the correct class
label, and in six cases, the wrong class label is Rabbit). In
the remaining classes, 6–7 instances are correctly classified.

8 Conclusion

In this paper, we presented a more flexible vector descrip-
tor, extension of [1] and [2], derived directly from the GS
matrix. First we proved how to upper bound the dimension of
the vector descriptor by introducing the concept of maximal
sequences. This theoretical bound is then used in the experi-
ments for dealing with the classification of images. Then, we
tested for scale invariance, ranking, and binary andmulticlass
classification problems using kNN, decision tree, and sup-
port vector machine methods. Results of these experiments
confirmed the good behavior of our proposed descriptor in
accuracy, and its performance is comparable and, in some
cases, superior to some recently published similar methods.
Moreover, our vector descriptor can be computed in linear
time in the size n of the image, and this makes our method
even more competitive with respect to the compared descrip-
tors which depend quadratically on n [8], or require at least
O(nlog(n)) time (see [21] and the implementations for force
histograms and generic Fourier descriptors). Therefore, our

approach is computationally efficient in contrast to other
time-consuming shape-recognition methods.
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