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Abstract
Rigid motions (i.e. transformations based on translations and rotations) are simple, yet important, transformations in image
processing. In R

n , they are both topology and geometry preserving. Unfortunately, these properties are generally lost in Z
n .

In particular, when applying a rigid motion on a digital object, one generally alters its structure but also the global shape of
its boundary. These alterations are mainly caused by digitization during the transformation process. In this specific context,
some solutions for the handling of topological issues were proposed in Z

2. In this article, we also focus on geometric issues
in Z

2. Indeed, we propose a rigid motion scheme that preserves geometry and topology properties of the transformed digital
object: a connected object will remain connected, and some geometric properties (e.g. convexity, area and perimeter) will be
preserved. To reach that goal, our main contributions are twofold. First, from an algorithmic point of view, our scheme relies
on (1) a polygonization of the digital object, (2) the transformation of the intermediate piecewise affine object of R

2 and (3)
a digitization step for recovering a result within Z

2. The intermediate modeling of a digital object of Z
2 as a piecewise affine

object of R
2 allows us to avoid the geometric alterations generally induced by standard pointwise rigid motions. However, the

final digitization of the polygon back to Z
2 has to be carried out cautiously. In particular, our second, theoretical contribution

is a notion of quasi-regularity that provides sufficient conditions to be fulfilled by a continuous object for guaranteeing both
topology and geometry preservation during its digitization.

Keywords Rigid motions · Geometry and topology preservation · Polygonization · Digitization · Quasi-r -regularity

1 Introduction

Image processing and computer vision applications often
require manipulation of discrete models of images. Among
various existing discrete models (e.g. meshes, point clouds),
digital images, defined as finite sets of points on Z

n , are of
wide importance. Indeed, digital images naturally fit with
most image acquisition devices based on a Cartesian sam-
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pling of the observed scene (e.g. medical imaging scanners,
remote sensing optical imagers). Being able to manipulate
digital objects defined as finite subsets of Z

n is then of
paramount importance.

Such manipulations can involve rigid or non-rigid trans-
formations. Non-rigid transformations are generally consid-
ered for matching different scenes (e.g. for registration [1])
or to fit a given model onto a structure of interest (e.g. for
segmentation [2]). In this context, topological preservation is
crucial, while geometry may evolve. Rigid transformations
are much simpler operations. They are basically involved
in the handling of digital objects, or preprocessing tasks. In
this context, both topology and geometry preservation are
crucial. Indeed, the structure of the digital objects has to be
preserved, but their shape should also remain unchanged.

In this article, we are interested in rigid transformations
of digital objects. More precisely, we focus on rigid motions.
Rigidmotions are defined as compositions of translations and
rotations, namely the two most fundamental operations for
“moving” objects in a scene. Intuitively, such rigid motions
have to preserve the shape, this is indeed the case in the
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Euclideanmodel currently used for our physicalworld. InR
n ,

rigidmotions are bijective, isometric operations; the structure
of the handled objects is preserved such as their geometrical
properties, and in particular their shape.

In general, this is no longer true in discrete spaces. This is
mainly due to the sparse structure of Z

n , that implies a non-
continuous behavior of rigid motions [3]. In other words,
when applying a rigid motion operator T on a digital point
p ∈ Z

n , the resulting value T(p) generally lies out of Z
n .

It is then necessary to find a way for carrying T(p) back
to Z

n . The induced approximation may lead to altering the
topological structure of the object X containing p. It may also
modify the global shape of X by slightly moving its different
points in a heterogeneous way [4].

In the case of Z
2, some strategies were recently investi-

gated for providing topological guarantees when applying
a rigid motion on digital objects [5,6]. However, such
approaches do not provide geometric guarantees. This weak-
ness is mainly due to the fact that rigid motions are carried
out in a pointwise way: each point p of X is transformed
independently from the others, thus altering the shape of the
object.

Our proposed solution for tackling the issue of geome-
try preservation is to consider an intermediate, continuous,
representation P(X) of the object X of Z

2. More precisely,
we propose to define P(X) as a polygon modeling the gen-
eral shape of the digital boundary of X. Such a polygon, as
a piecewise affine object of R

2, can be processed in a topol-
ogy and geometry preserving way by the transformation T.
The main issue remaining to be tackled is then related to
the digitization of the polygon T(P(X)) back to Z

2. Such
digitization problem is related to pioneering works [7] devel-
oped by Pavlidis in the 1980s. However, while Pavlidis was
interested in the digitization of “smooth” objects, i.e. objects
of R

2 with boundaries having differentiable properties, we
have to consider here some polygons, with non-differentiable
boundary points.

This article is an extended and improved version of the
conference paper [8]. A first contribution, in Sect. 3, is a
sufficient condition for guaranteeing the preservation of con-
nectedness during the process of digitization of an object
of R

2. This condition, defined under the name of quasi-r -
regularity, can be seen as an analogue of the r -regularity
proposed by Pavlidis for smooth objects [7]. This condition
is then involved in the next two sections, for preserving sat-
isfactory geometry and topology properties during the rigid
motion of a digital object. In Sect. 4, we describe our rigid
motion process in the case where the input digital object is
well-composed and convex. (In such case, the induced poly-
gon is also convex.) The transformed object remains convex;
in particular, its topology is unchanged. In Sect. 5, we con-
sider, more generally, the case of well-composed objects, not
necessarily convex. We also show that under the condition

of quasi-r -regularity, the transformed object remains well-
composed and preserves the global geometry of its shape.
Section 6 provides some experimental results of the proposed
framework for rigid motions on convex and non-convex digi-
tal objects. A concluding discussion is proposed in Sect. 7. In
order to make this work self-contained, we recall, in Sect. 2,
some basic definitions and notations related to rigid motions,
and various notions of regularity on digital images.

2 Rigid Motions and Digitization

2.1 Rigid Motions onR
2

A rigid motion T in the Euclidean space R
2 is defined, for

any point x = (x1, x2)T ∈ R
2 as

T(x) =
(
cos θ − sin θ

sin θ cos θ

) (
x1
x2

)
+

(
t1
t2

)
(1)

where θ ∈ [0, 2π) is a rotation angle, and (t1, t2)T ∈ R
2 is a

translation vector.
Let X be a continuous object in the Euclidean space R

2.
(In the sequel, we will implicitly consider that X is bounded
and connected.) The transformation T is bijective, isomet-
ric and orientation-preserving. Then, the transformed object
T(X) has the same shape, i.e. the same geometry and topol-
ogy, as X. In the next subsections, we will observe that these
properties are generally lost during the digitization process
required to define rigid motions on Z

2 from rigid motions on
R
2.

2.2 Digitization and Topology Preservation

A digital object X ⊂ Z
2 is generally the result of a digitiza-

tion process applied on a continuous object X ⊂ R
2. (In the

sequel, we will implicitly consider that X is a finite subset
of Z

2, which can be given as an image segmentation result
in practice.) We consider the Gauss digitization [9], which is
simply the intersection of a continuous object X with Z

2

X = X ∩ Z
2 (2)

The object X is a subset of Z
2; but from an imaging point

of view, it can also be seen as a subset of pixels, i.e. unit
squares defined as the Voronoi cells of the points of X within
R
2. Based on these different models, the structure of X can be

defined in various topological frameworks which are mainly
equivalent [10] to that of digital topology [11]. However, this
digital topology of X is often non-coherent with the continu-
ous topology of X. This fact is illustrated in Fig. 1, where a
connected continuous object X leads, after the Gauss digiti-
zation, to a disconnected digital object X.
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(a) (b) (c)

Fig. 1 a A continuous object X in R
2. b A Gauss digitization of X ,

leading to the definition of X which is composed by the black points
of Z

2 within X . c The digital object X represented as a set of pixels.
The objects X and X are not topologically equivalent: the digitization
process led to a disconnection, due to the resolution of the discrete grid,
not fine enough for catching the shape of X

In the literature, various studies proposed conditions for
guaranteeing the preservation of topology of digitized objects
[12–14]. In particular, in [7] Pavlidis introduced the notion
of r -regularity.

Definition 1 (r -regularity) An object X ⊂ R
2 is r -regular if

for each boundary point of X, there exist two tangent open
disks of radius r , lying entirely in X and its complement X,
respectively.1

The notion of r -regularity is based on classical concepts
of differential geometry. In particular, r -regularity is strongly
related to bounded values of curvature, parameterized by the
resolution of the digitization sampling. Pavlidis proved the
topological equivalence of an r -regular continuous, smooth,
object X and its digital counterpart X, for a dense sampling.

Proposition 1 ([7])Anr-regular object X ⊂ R
2 has the same

topological structure as its digitized version X = X ∩ Z
2 if

r ≥
√
2
2 .

Remark 1 In [7], “the same topological structure” between
two objects means that there exists an homeomorphism
between both. In the sequel, we will consider the same
paradigm.However, it isworthmentioning that in the 2Dcase
and for digital objects whose continuous analogues have a
manifold boundary (thiswill be our casewithwell-composed
objects, see below), most topological invariants are indeed
equivalent, namely homotopy type, adjacency tree and home-
omorphism [15–17].

It was shown that the digitization process of an r -regular
object yields a well-composed object [13], whose definition
relies on standard concepts of digital topology, recalled here-
after, for the sake of completeness.

1 This definition of r -regularity can be equivalently expressed as the
invariance of X with respect to both opening and closing by a struc-
turing element defined as a close ball of radius r . This mathematical
morphology analogy will be given in Sect. 3.

(a) (b) (c)

Fig. 2 a X ⊂ Z
2 (in gray) is neither connected nor well-composed. b

X is 8-connected, but neither 4-connected nor well-composed. c X is
4-connected and well-composed

Two distinct points p,q ∈ Z
2, are k-adjacent if

‖p − q‖� ≤ 1 (3)

with k = 4 (resp. 8) when � = 1 (resp. ∞). From the
reflexive–transitive closure of the k-adjacency relation on a
finite subset X ⊂ Z

2, we derive the k-connectivity relation
on X. It is an equivalence relation, whose equivalence classes
are called the k-connected components of X. Due to para-
doxes related to the discrete version of the Jordan theorem
[18], dual adjacencies are used for X and its complement X,
namely (4, 8)- or (8, 4)-adjacencies [19].

The notion of well-composedness [20] has been intro-
duced to characterize the digital objects whose structure
intrinsically avoids the topological issues of the Jordan the-
orem.

Definition 2 (Well-composed sets) A digital object X ⊂ Z
2

is well-composed if each 8-connected component of X and
of its complement X is also 4-connected.

This definition implies that the boundary2 of X is a set of
1-manifolds whenever X is well-composed (see Fig. 2). In
particular, there exists a strong link between r -regularity and
well-composedness.

Proposition 2 ([13]) If an object X ⊂ R
2 is r-regular, with

r ≥
√
2
2 , then X = X ∩ Z

2 is a well-composed digital object.

2.3 Digitized Rigid Motions

If we straightforwardly apply a rigid motion T, such as
defined in Eq. (1), to a digital object X ⊂ Z

2, we generally
obtain a transformed object T(X) 
⊂ Z

2. In order to obtain a
result in Z

2, we further need a digitization operator

D : R
2 → Z

2 (4)

2 The boundary of X is defined here as the boundary of the continuous
object obtained as the union of the closed Voronoi cells associated to
the points of X, in R

2.
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(a)

(b)

Fig. 3 Examples of non-injectivity and non-surjectivity of rigid
motions followed by a digitization. a The square grid of Z

2 and the
associatedVoronoi cell boundaries. bRigidmotion followed by a digiti-
zation applied on the square grid of a; the red and blue pixels correspond
to non-surjectivity and non-injectivity cases, respectively (Color figure
online)

which can be, for instance, the standard rounding function.
Then, a digital analogue of T can be defined as the composi-
tion of T, (restricted to Z

2) with such digitization operator,
i.e. D ◦ T|Z2 .

As stated above, rigid motions on R
2 are bijective. By

contrast, rigid motions followed by a digitization operator
are, in general, neither injective nor surjective. This may lead
to unwanted results, such as conflicted or empty pixels, as
illustrated in Fig. 3. To overcome such issues, we generally
consider the inverse of the rigid motion to define the discrete
analogue of T on Z

2 by setting

T −1
Point = D ◦ T−1

|Z2 (5)

In otherwords, we use a backwardmodel for the computation
of the rigid motion of a digital object X. Indeed, we consider
that the object TPoint (X) ⊂ Z

2 induced by the digitized ver-
sion of the rigid motion T is defined such that

p ∈ TPoint (X) ⇔ T −1
Point (p) ∈ X (6)

2.4 Topology and Geometry Alterations Caused by
Digitized Rigid Motions

This backward model can also be interpreted, in a forward
way, as the digitization of a transformed continuous object.
Indeed, let us denote by V (X) ⊂ R

2 the continuous object
obtained as the union of the closed Voronoi cells associated
to the points of X; in other words, let us consider the digi-
tal object as its set of pixels. Then, the transformed digital
object TPoint (X) is obtained as the Gauss digitization of the
transformed object resulting from the rigid motion of V (X)

by T. More formally, we have

TPoint (X) = T(V (X)) ∩ Z
2 (7)

Note that this is equivalent to Eqs. (5) and (6).
In other words, the problem of digital rigid motion can

be expressed as a problem of digitization of a continuous
object. However, this continuous object V (X) has a bound-
ary consisting of pixel edges. In particular, such boundary
is locally non-differentiable, and the approach proposed by
Pavlidis for smooth-boundary object is then non-valid.

The issue of topology preservation in such non-diffe-
rentiable case was investigated in [6], where it led to the
definition of a notion ofdigital regularity (simply called regu-
larity in [6]).Digital regularity provides a sufficient condition
for guaranteeing that a well-composed digital object X will
not be topologically modified by any arbitrary rigid motion.
However, despite this topological property, the notion of dig-
ital regularity does not tackle the issue of geometry alteration.
Indeed, the rigid motion model, such as defined in Eqs. (5–
7), acts on the object in a pointwise way. It is then unable to
preserve the global coherence of the object boundary, thus
leading to a “noisy” result. This is illustrated in Fig. 4.

2.5 Purpose and Contributions

Our purpose is to perform rigid motions on digital objects
while preserving their geometry. In particular, we are inter-
ested in preserving the global shape of the objects. To tackle
this issue, our main idea is to apply the rigid transformation
on an object as a whole, and no longer in a pointwise fashion.

To this end, we propose to represent a digital object of Z
2

as a digitization of a continuous object, namely a polygon of
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(a)

(b)

Fig. 4 Geometry and topology alterations induced by digitized rigid
motions. a A well-composed object, in gray. The object is not digitally
regular at the corners of the rectangle, and at the junction between the
disk and the rectangle. bDigital rigid motion TPoint of a. The boundary
is more noisy than that of the initial object. In addition, we observe that
the 4-connectivity has been lost at the junction between the disk and
the circle (red frames), and at the opposite corner of the rectangle (blue
frames); this is a side effect of non-digital regularity in these areas (Color
figure online)

R
2. This strategy has several advantages. First, it allows us to

apply any rigidmotion inR
2,with the geometric and topolog-

ical guaranteeswithin this space. Second, since a polygon has
a discrete representation, it can be processed without numer-

ical error, by considering transformations based on integers
(or, equivalently, rationals).

In this context, our assumption is that the polygon has to
relevantly capture the geometry of the digital object. In par-
ticular, this means that the Gauss digitization of the polygon
has to get us back to the initial digital object. In other words,
the global shape of the digital object, namely the succession
of the convex and concave parts of its boundary, has to be cap-
tured by a polygonization process. In particular, this means
that a digitally convex object of Z

2 will lead to a convex
polygon. In that case, we will choose as a relevant polygon
model its convex hull. In other cases, a polygon will be made
depending on users polygonization policy.

Based on these hypotheses, we propose, as a first con-
tribution, an algorithmic framework for rigid motion of
digital objects in Z

2. It relies on three successive steps: (1)
polygonization of a digital object; (2) transformation of an
intermediate piecewise affine object (polygon) of R

2; and
(3) digitization of the transformed polygon for recovering a
result withinZ

2. In the case of an initial object being digitally
convex, our framework is proved to provide a final digital
object which is also digitally convex. In the other cases, it is
experimentally observed that the shape of objects is correctly
preserved. More precisely, such an observation can be done
qualitatively and quantitatively, in which geometric proper-
ties, for example area and perimeter, are measured.

Generally, preserving the geometry also implies to pre-
serve the topology. This implication is mostly offered in R

2,
while it is hardly obtained in Z

2. This is the motivation for
our second contribution. Indeed, we propose a new notion
of quasi-r -regularity, defined on continuous objects, and in
particular polygons. It provides sufficient conditions to be
fulfilled by a continuous object for guaranteeing topology
preservation during its digitization.

In Sects. 4–5, we deal with simply connected objects, i.e.
digital objects that are connected andwithout holes. The case
of non-connected objects with holes may be handled without
much difficulty from this case.

3 Quasi-r-Regularity

In order to make this article self-contained, let us first recall
some notations and a few mathematical morphology notions
[12,21,22]. We denote by ⊕ and � the classical operators of
dilation and erosion, corresponding to the Minkowski addi-
tion, and its associated subtraction

X ⊕ Y =
⋃
y∈Y

Xy =
⋃
x∈X

Yx (8)

X � Y =
⋂
y∈Y

X−y (9)
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Fig. 5 Examples of quasi-1-regular (a) and non-quasi-1-regular (b–d)
objects X: b X � (X� B1)⊕ B√

2; c X� B1 is not connected; d X� B1

is not connected. The objects X ⊂ R
2 are in blue, some disks B1 and

B√
2 are in red and gray, respectively, the erosion X � B1 are in red,

and the opening whose centers are in the erosion (X � B1) ⊕ B√
2 are

in green (Color figure online)

where Xy = {x + y | x ∈ X} and, in our case, X ,Y ⊂ R
2.

We also denote by ◦ the composition of erosion and dilation,
that is

X ◦ Y = (X � Y ) ⊕ Y (10)

We denote by Br a closed disk of R
2 of radius r > 0 and

centered on (0, 0) ∈ R
2.

We are now ready to introduce the notion of quasi-
r -regularity. Intuitively, a quasi-r -regular object X of R

2

presents sufficient conditions for guaranteeing that its con-
nectedness will not be affected by the Gauss digitization
process.

Definition 3 (Quasi-r -regularity) Let r > 0. Let X ⊂ R
2

be a bounded, simply connected (i.e. connected and with no
hole) object. We say that X is quasi-r -regular if it satisfies
the following four properties:

– X � Br is non-empty and connected;
– X � Br is connected;
– X ⊆ (X � Br ) ⊕ Br

√
2; and

– X ⊆ (X � Br ) ⊕ Br
√
2;

Remark 2 This definition does not require specific assump-
tion on the boundary of X . In particular, it does not need to
be differentiable.

Remark 3 In order to compare the two notions of quasi-r -
regularity and of Pavlidis’ r -regularity, we rewrite hereafter
the definition of r -regularity of a bounded, simply connected
object X ⊂ R

2: X is r -regular if:

– X � Br is non-empty and connected;
– X � Br is connected;
– X = (X � Br ) ⊕ Br ; and
– X = (X � Br ) ⊕ Br .

In particular we observe that the principal difference between
both notions is the fact that thematching between X (resp. X )
and its opening need to be perfect in the case of r -regularity,
while a “margin” (

√
2 − 1)r is authorized in the case of

quasi-r -regularity, which allows X to have non-smooth (for
instance, non-differentiable, noisy…) boundary. Examples
of quasi-1-regular and non-quasi-1-regular objects are given
in Fig. 5. Perspectives related to this remark will be evoked
in Sect. 7.

Proposition 3 If X is quasi-1-regular, then X = X ∩ Z
2 and

X = X ∩ Z
2 are both 4-connected. In particular, X is then

well-composed.

Proof We prove the 4-connectedness of X; the same reason-
ing holds for X. Let us first prove that (X ◦ B1) ∩ Z

2 is
4-connected. Let p and q be two distinct points of (X ◦ B1)∩
Z
2. Let Bp

1 and B
q
1 be two disks of radius 1, included in X◦B1

and such that p ∈ Bp
1 and q ∈ Bq

1 . (Such disks exist, from
the definition of opening.) Let bp and bq be the centers of B

p
1

and Bq
1 , respectively. We have bp, bq ∈ X � B1, from the

definition of erosion. Since X � B1 is connected in R
2, there

exists a continuous pathΠ from bp to bq in X�B1. Note that
for any disk B1, we always have B1 ∩ Z

2 non-empty and 4-
connected; in particular it contains at least two points of Z

2.
For a value ε > 0 small enough, two disks B1 and B ′

1 with
centers distant of ε are such that B1∩ B ′

1∩Z
2 
= ∅. As a con-

sequence, the union
⋃

b∈Π B1(b) ∩ Z
2 (with B1(b) the disk

of center b) is a 4-connected set of Z
2. In addition, we have

p,q ∈ ⋃
b∈Π B1(b) ∩ Z

2. Then, p and q are 4-connected in
(X◦B1)∩Z

2, and it follows that (X◦B1)∩Z
2 is a 4-connected

set. Let us now prove that any point r ∈ X\(X ◦ B1) ∩Z
2 is

4-adjacent to a point of (X ◦ B1) ∩ Z
2. Let us consider such

a point r ∈ Z
2. We have r ∈ X ⊆ X � B1 ⊕ B√

2. Then, from
the definition of dilation, there exists b ∈ X � B1 such that b
is the center of the disk B√

2(b) of radius
√
2, and r is a point

in that disk. In particular, the distance between b and r lies
in (1,

√
2]. As b is a point of X � B1, it is also the center of
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(a) (b)

Fig. 6 Illustration for the proof of Prop. 3. a A part of object X ⊂ R
2

is in blue; the erosion X � B1 is in red and the opening (X � B1)⊕ B√
2

is in green; the disk B1(b) is in red; and the circle C1(r) is in black. b
The intersection of the circle C1(r) (in black) and the disk B1(b) (in
red) is a circular segment of radius 1 and angle α such that cos( α

2 ) =
d(r ,b)

2 , where d(r , b) is the Euclidean distance between r and b. Since

d(r , b) ∈ (1,
√
2], we have α ∈ [ π

2 , 2π
3 ) (Color figure online)

a disk B1(b) of radius 1 included in X ◦ B1. Let us consider
the circle C1(r) of radius 1 and center r. This circle C1(r)
intersects B1(b), and this intersection is a circular segment
of radius 1 and angle α ∈ [π

2 , 2π
3 ), included in X ◦ B1; in

particular, we have α ≥ π
2 (see Fig. 6).

Then, this segment necessarily contains a point t ∈ Z
2,

that lies in (X ◦ B1) ∩ Z
2. The points r and t are 4-adjacent.

It follows that X ∩ Z
2 is 4-connected. ��

This notion of quasi-r -regularity will be used in the next
two sections for guaranteeing the preservation of topological
properties of digital objects during rigid motions, via their
polygonal representation.

4 Rigid Motions of Digitally Convex Objects

In this section, we first deal with a specific case of digi-
tal objects, namely convex ones. For rigid motion purpose,
we build a continuous polygon corresponding to the convex
hull of an input digital object. Then, we move this contin-
uous polygon, and finally digitize it for retrieving the final
transformed digital object. We show that, by this process, the
digital convexity is preserved if the convex hull is quasi-1-
regular.

4.1 Digital Convexity

In the Euclidean space R
2, an object X is said to be convex

if, for any pair of points x, y ∈ X, the line segment joining
x and y

[x, y] = {λx + (1 − λ)y ∈ R
2 | 0 ≤ λ ≤ 1} (11)

is included in X. However, this intuitive continuous notion
cannot be directly transposed to digital objects inZ

2. Indeed,
given a digital object X in Z

2, for p,q ∈ X we have [p,q] 
⊂
Z
2 if p 
= q.

In order to tackle this problem, various extensions of the
notion of convexity have been proposed for Z

2. We can cite,
for instance: MP-convexity [23] which is a straightforward
extension of the continuous notion; S-convexity [24] which
uses convex objects in R

2 to determine the convexity of
objects in Z

2; H-convexity3 [25,26] which is a geometri-
cal version of S-convexity, using the convex hull of digital
objects; and D-convexity [27] which is based on the notion
of digital line.

In the case of 4-adjacencymodeling of digital objects,MP-
and H-convexities have been proved equivalent [25, Theo-
rem 5]. Similar results under the assumption of 8-adjacency
can be found in [26], via the chord property, which relate the
MP-, H- and D-convexities. Under the condition that X has
no isolated point (i.e. no point adjacent to other point within
X), it was then proved that X is H-convex iff it is S-convex
[25, Theorem 4]. A more complete description on various
notions of digital convexity can be found in [28, Chapter 9].

In this section, the notion ofH-convexity was chosen. This
is motivated, on the one hand, by its compliance with the
other kinds of convexities in the case of 4-connected (and, a
fortiori, well-composed) digital objects. On the other hand,
the notion of H-convexity relies on the explicit definition of
the convex hull of the digital object. Such polygonal object
provides us with a continuous model that can be involved in
the continuous part of our rigid motion algorithmic process.

We recall hereafter the definition of the convex hull of a
digital object X ⊂ Z

2, denoted by Conv(X):

Conv(X) =
{
x =

|X|∑
i=1

λipi ∈ R
2

∣∣∣∣
|X|∑
i=1

λi = 1

∧ ∀i ∈ {1, . . . , |X|}, (λi ≥ 0 ∧ pi ∈ X)

}
(12)

Definition 4 (H-convexity [26]) A digital object X ⊂ Z
2 is

H-convex if

X = Conv(X) ∩ Z
2 (13)

i.e. if X is equal to the digitization of its continuous polygonal
convex hull.

Remark 4 An H-convex object is not necessarily connected.
This is exemplified in Fig. 7.

It is important to notice that, similarly to the continuous
convexity,H-convexity remains stable by intersection. In par-
ticular, we have the following property.

3 Kim introduced in [25] the definition of cellular convexity and proved
the equivalence to the one using the convex hull [25, Lemma 10]. In
[26], Eckhardt reformulated and renamed this notion H-convexity.
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Fig. 7 A digital object X that is H-convex, but not connected. This is
due, here, to the acute angle at the highest vertex of the convex hull
Conv(X) that allows the induced polygon to “pass between” two 4-
adjacent points of the background of X (Color figure online)

Property 1 Let X and Y be two digital objects in Z
2. If X and

Y are H-convex, then X ∩ Y is H-convex.

Proof Let X and Y be two H-convex digital objects. We have
X = Conv(X) ∩ Z

2 and Y = Conv(Y) ∩ Z
2. Then, it comes

X ∩ Y = Conv(X) ∩ Conv(Y) ∩ Z
2. It is plain that Conv(X ∩

Y) ⊆ Conv(X) ∩ Conv(Y) and then we have Conv(X ∩ Y) ∩
Z
2 ⊆ Conv(X) ∩ Conv(Y) ∩ Z

2. Now, let us consider p ∈
Conv(X)∩Conv(Y)∩Z

2.Wehavep ∈ Conv(X)∩Z
2 = X and

p ∈ Conv(Y)∩Z
2 = Y. Then,wehavep ∈ X∩Y ⊆ Conv(X∩

Y). But since p ∈ Z
2, it comes p ∈ Conv(X ∩ Y) ∩ Z

2.
Consequently, we have Conv(X ∩ Y) ∩ Z

2 = Conv(X) ∩
Conv(Y) ∩ Z

2. ��

4.2 Polygonization of H-Convex Digital Objects

The first step of the algorithmic process for computing the
rigid motion of an H-convex digital object X consists of com-
puting its convex hull.

If X contains at least three non-collinear points, then its
convex hull Conv(X) is a non-trivial convex polygon whose
vertices are some points ofX. As these vertices are grid points
of Z

2, the polygon Conv(X) is defined as the intersection of
closed half-planes with integer coefficients

Conv(X) =
⋂

H∈R(X)

H (14)

where R(X) is the smallest set of closed half-planes that
include X. This set is finite and sufficient for defining
Conv(X). Each closed half-plane H of this subset is defined
as

H = {(x, y) ∈ R
2 | ax + by + c ≤ 0} (15)

(a) (b)

Fig. 8 A digital H-convex object X of Z
2 (black dots and gray pixels).

a The half-plane representation of X, depicted by the 5 red support
lines. The red points/pixels are those required to define these closed
half-spaces. b The convex hull Conv(X) in R

2, defined as the polygon
whose vertices are these red points (Color figure online)

with a, b, c ∈ Z and gcd(a, b) = 1. Note that the integer
coefficients ofH are obtained by a pair of consecutive vertices
of Conv(X), denoted byu, v ∈ Z

2, which are in the clockwise
order, such that

(a, b) = 1

gcd(wx , wy)
(−wy, wx ) (16)

c = (a, b) · u (17)

where (wx , wy) = v − u ∈ Z
2.

Many algorithms can be used to compute the convex hull
of a digital object. In [29], a linear time algorithm determines
whether a given polyomino is convex and, in that case, it
returns its convex hull. This method relies on the incremen-
tal digital straight line recognition algorithm [30] and uses the
geometrical properties of leaning points of maximal discrete
straight line segments on the contour. The algorithm scans
the contour curve and decomposes it into discrete segments
whose extremities must be leaning points. The tangential
cover of the curve [31] can be used to obtain this decomposi-
tion. Alternatively, an approach presented in [32] uses tools
of combinatorics on words to study contour words: the lin-
ear Lyndon factorization algorithm [33] and the Christoffel
words. A linear time algorithm decides convexity of poly-
ominoes and can also compute the convex hull of a digital
object. (It is presented as a discrete version of the classical
Melkman algorithm [34].)

The half-planes can then be deduced from the consecutive
vertices of the computed convex hull, from Eqs. (15–17). An
example of convex hull and half-plane modeling of an H-
convex digital object is illustrated in Fig. 8.

4.3 Convexity-Preserving Rigid Motion

In order to perform rigid motions without any numerical
approximation, one can consider only rigid motions with
rational parameters. Doing so, only exact computations with
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integers can be involved. This does not constitute an applica-
tive restriction, due to the density of rational values within
the rotation and translation parameter space.

Thus,we assume hereafter that all the parameters of a rigid
motionT are rational (see Eq. (1)).More precisely, on the one

hand, the rotation matrix R is defined as 1
r

(
p − q
q p

)
where

p, q, r ∈ Z constitute a Pythagorean triple, i.e. p2+q2 = r2,
r 
= 0. On the other hand, the translation vector is defined
as (t1, t2)T ∈ Q

2. This assumption is fair, as we can always
find rational parameter values as close as desired from any
real values [35] for defining such a Pythagorean triple.

A half-plane H, as defined in Eq. (15), is transformed by
such (rational) rigid motion T as follows:

T(H) = {(x, y) ∈ R
2 | αx + β y + γ ≤ 0} (18)

where α, β, γ ∈ Q are given by (α β)T = R(a b)T and
γ = c+αt1 +βt2. This leads to a rational half-plane, which
can be easily rewritten as an integer half-plane in the form of
Eq. (15).

Since an H-convex digital object X is represented by a
finite set of digital half-planes, we can define the rigidmotion
TConv of X on Z

2 via its continuous polygonal convex hull as
follows:

TConv(X) = T(Conv(X)) ∩ Z
2 = T

( ⋂
H∈R(X)

H

)
∩ Z

2 (19)

This constitutes an alternative to the standard pointwise rigid
motion defined in Eq. (5).

Note that we have

T

( ⋂
H∈R(X)

H

)
∩ Z

2 =
( ⋂

H∈R(X)

T(H)

)
∩ Z

2

=
⋂

H∈R(X)

(T(H) ∩ Z
2) (20)

As the digitization of any continuous half-space of R
2 is

H-convex., from Eqs. (19–20), TConv(X) is expressed as the
intersection of a finite number of H-convex digital objects.
The following proposition is then a corollary of Property 1.

Proposition 4 Let X be a digital object of Z
2. Let TConv be

the polygon-based rigid motion induced by a rigid motion T
with rational parameters. If X is H-convex, then TConv(X) is
H-convex.

The polygon corresponding to the convex hull of TConv(X)

is not equal, in general, to the transformed convex hull of X.
However, we have the following inclusion relation.

Fig. 9 A sequence of transformations TConv on an H-convex object X.
The convex hull of TConv(X) is included in the transformed convex hull
of X, and the cardinality of TConv(X) is lower than that of X (Color figure
online)

Property 2 With the same hypotheses as in Prop. 4, we have

Conv(TConv(X)) ⊆ T(Conv(X)) (21)

The proof of this property derives from the fact that
TConv(X) = T(Conv(X)) ∩ Z

2. Thus we have TConv(X) ⊆
T(Conv(X)), and this inclusion also holds for the convex
hull of TConv(X).

First, this means that the cardinality of TConv(X) is lower
(often strictly) than that of X. In other words, TConv is a
decreasing operator with respect to the cardinality of input
digital object. A straightforward consequence is that TConv

is not bijective, in general. Second, this means that the poly-
gons of the two convex hulls of the input and output digital
objects may be distinct, with respect to their number and size
of edges, and angles at vertices. However, the H-convexity of
the digital objects is preserved, which was the fundamental
property digital satisfy. These facts are exemplified in Fig. 9
and experimentally observed in Sect. 6.

4.4 Rigid Motions and Topological Aspects of
Convexity

In the previous subsections, we proposed an algorithmic
scheme for performing rigid motions on H-convex digi-
tal objects, while preserving their H-convexity. In R

2, the
continuous definition of convexity intrinsically implies con-
nectedness. By contrast, in Z

2 the notion of H-convexity
(such as various other notions of digital convexity) does not
always offer guarantees of connectedness, e.g. with respect
to 4- and 8-adjacencies.

In order to illustrate that fact, let us consider the example
of Fig. 7. The digital object X, composed of 8 points/pixels, is
H-convex. Indeed, its convex hull contains only digital points
that belong to X. However, X is not connected (with neither
4- nor 8-adjacencies). Such phenomenon is mainly caused
by angular and/or metric factors; whenever an angle of the
convex hull polygon is too acute, and/or when an edge is too
short, such disconnections may happen.

Then, in addition to providing geometry guarantees of
convexity—via the H-convexity of digital objects—when
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performing rigid transformations of a digital object, it is
desirable to also provide topology guarantees, and more pre-
cisely connectedness guarantees.

To reach this goal, we use the notion of quasi-r -regularity
introduced in Sect. 3. This additional notion provides us with
a sufficient condition for ensuring that a digitalH-convex dig-
ital object will remain not only H-convex but also connected
after any rigid motion.

In particular, the next proposition is a corollary of Propo-
sitions 3 and 4.

Proposition 5 Let X ⊂ Z
2 be an H-convex digital object. If

Conv(X) is quasi-1-regular, then TConv(X) is H-convex, 4-
connected and well-composed.

Proof Let X ⊂ Z
2 be an H-convex digital object, and let us

suppose that Conv(X) is quasi-1-regular. Then, from Prop. 4,
TConv(X) is H-convex. In addition, since Conv(X) is quasi-
1-regular, then so is T(Conv(X)). Thus, from Proposition 3
we deduce thatT(Conv(X))∩Z

2 = TConv(X) is 4-connected
and well-composed. ��
Remark 5 If Conv(X) is quasi-1-regular, then the initial
object X is also 4-connected and well-composed.

5 Rigid Motions of General Digital Objects

In this section, we now deal with rigid motions of digital
objects without convexity hypothesis.

5.1 Polygonization of a Digital Object

There exist variousmethods for polygonizing a digital object.
In the field of digital geometry, numerous approaches used
the contour curves extracted from the digital objects; each
method computes a polygonal representation of the digi-
tal object with particular properties. In [36,37], invertible
methods enable us to compute Euclidean polygons whose
digitization is equal to the original discrete contour. These
methods use the Vittone algorithm [38] in the preimage
space for straight line recognition. In [39–42] the arithmetical
recognition algorithm [30] is used to decompose a discrete
contour and deduce a polygonal representation. These meth-
ods rely on the tangential cover of the contour [31], composed
of the sequence of its maximal discrete straight segments. It
was proved in [39] that all polygonal representations of the
contour can be deduced from its tangential cover, leading to
a linear algorithm which computes the polygon with mini-
mal integral summed squared error. In [40–42], the goal was
different. It consisted of determining a reversible polygon
that faithfully represents the convex and concave parts of the
boundary of a digital object. The polygonizationmethod pro-
posed in [43,44] also exploits the idea of maximal straight

segment primitives. It allows to identify the characteristic
points on a contour, called dominant points, and to build a
polygon representing the given contour. Another technique
presented in [45] is the curve decomposition. It uses the ana-
lytical primitives, called digital level layers, to decompose
a given contour and to obtain an analytical representation.
Another algorithm is proposed in [46] to compute the polyg-
onal simplification of a curve such that the Fréchet distance
[47] between the simplified polygon and the original curve
is lower than a given error.

It should be mentioned that, for a given digital object, dif-
ferent results can be obtained from these various polygoniza-
tion techniques. In other words, the polygonal representation
of a digital object is not unique.However, the crucial property
to be satisfied is that the polygon P(X) computed for a digital
object X has to be coherent with respect to digitization, i.e.
P(X) ∩ Z

2 = X. A second important property, in our frame-
work of discrete geometry and exact computation, is that the
vertices of P(X) have integer or rational coordinates.

It should be mentioned that none of the methods men-
tioned above respects both of these properties. Most of them
compute simplified polygon of input contours with criteria
to minimize. Consequently, we adapt a polygonization strat-
egy based on [43,44] in the experiment section (Sect. 6) in
which it guarantees the above two properties. Some other rel-
evant, but sometimes antagonistic, properties are discussed
in Sect. 5.3.

5.2 Rigid Motion of a Polygon

As P(X) may be non-convex, we cannot use the half-plane
representation, as it was done in Sect. 4.2 for convex poly-
gons. Here, we use a standard vertex representation, by
modeling a polygon via a sequence of successive vertices
of its boundary.

Note that the vertices of P(X) are integer (or rational)
points, and those of T(P(X)) are rational points, since the
rigid motion T is given by a rational matrix and a rational
translation vector (see Sect. 4.3).

Then, for each vertex of the polygon P(X), we simply
apply the rigid motion T (see Eq. (1)) and preserve the order
of the vertex sequence.

5.3 Digitization of Polygons and
Geometry/Topology Preservation

Once the polygon T(P(X)) has been computed, the resulting
object, denoted by TPoly(X) can be deduced. Similarly to the
case of H-convex digital objects (see Eq. (19)), this is done
by embedding T(P(X)) in Z

2 via the Gauss digitization

TPoly(X) = T(P(X)) ∩ Z
2 (22)
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Various ways exist for carrying out this digitization in an
exact way. For instance, it is possible to decomposeT(P(X))

into a partition of triangles whose vertices are (rational-
coordinate) vertices on the boundary of T(P(X)). Each of
such triangles being defined as a convex region is modeled
by three half-planes with rational parameters, and the points
of Z

2 contained herein can be determined without numerical
error.

In order to ensure the connectedness preservation of X, we
require, as for the H-convex case, that the polygon P(X) of
X is quasi-1-regular.

Proposition 6 LetX ⊂ Z
2 be a digital object. Let P(X) ⊂ R

2

be a polygon such that P(X) ∩ Z
2 = X. If P(X) is quasi-1-

regular, then TPoly(X) is 4-connected and well-composed.

Proof Let X ⊂ Z
2 be a digital object, and let us suppose that

P(X) ⊂ R
2 is a quasi-1-regular polygon such that P(X) ∩

Z
2 = X. Then, T(P(X)) is also a quasi-1-regular polygon.

From Prop. 3 we deduce that T(P(X)) ∩ Z
2 = TPoly(X) is

then 4-connected and well-composed. ��
Remark 6 Beyond topological guarantees (4-connectedness,
well-composedness), the notion of quasi-1-regularity also
presents some geometry properties. Indeed, any point of X is
either part of P(X)◦ B1 (i.e. the “smooth” opening of a poly-
gon) or part of the (noisy) boundary in P(X)\(P(X) ◦ B1).
But, in this second case, this point is necessarily at a dis-
tance not greater than

√
2 − 1 < 0, 5 (i.e. the half of a

pixel size) from this opening P(X) ◦ B1. In other words,
quasi-1-regularity describes objects with boundaries that
may not be completely smooth (in particular, they may be
non-differentiable), but that will be, in the worst cases, only
slightly noisy, by contrast with results of standard pointwise
rigid motions TPoint . This can be illustrated in Tables 1 and
2.

As stated above, P(X) can be defined by following various
policies. Then, there exist many (actually an infinite number
of) polygons whose digitization leads to X. In particular, it
may happen that P(X) is not quasi-1-regular, while X and
TPoly(X) are indeed 4-connected and well-composed.

This statement emphasizes the importance of choosing
wisely a polygonization policy. In this context, various prop-
erties may be relevantly targeted.

A first property is related to the preservation of area.
Indeed, due to the digitization procedure of the polygon, car-
ried out by a regular sampling with respect to Z

2, it may
be useful that P(X) has an area in R

2 of the same order as
the cardinal |X|. This is a heuristic strategy, since we can-
not guarantee that the digitized result will have exactly the
same area as the initial digital object. It is however justified
by the fact that each pixel (i.e. Voronoi cell) of a point of
Z
2 has an area of 1 in R

2. Consequently, for digital objects

that are sufficiently large, the analogy between the area and
the number of digital points makes sense. For smaller digital
objects, where the boundary points are no longer negligible
with respect to the overall set of points, this heuristics can be
refined by considering more accurate formulas, for instance
via Pick’s theorem [48].

A second property is related to the positioning of P(X)

with respect to X. More precisely, it may be relevant that the
barycenter of both P(X) and X be the same. Otherwise, the
shift between both may statistically induce a translation bias
in the rigid motion result.

6 Experiments and Results

In this section,wepresent someexperimental results obtained
with the proposedmethods on different digital objects, which
are convex and non-convex. The comparisons, in terms of
topology and geometry—in particular, connectedness, con-
vexity, area andperimeter—between three (resp. two)models
of rigid motions TPoint , TConv and TPoly (resp. TPoint and
TPoly) on convex (resp. non-convex) objects are made. The
effects of rigid motions on boundaries of digital objects are
especially focused on.

It should bementioned that the digital objects used in these
experiments have their associated polygons quasi-1-regular.

6.1 Polygonization of Digital Objects

For an efficient computation of TConv , we use the discrete
versionof theMelkmanalgorithm [34] to compute the convex
hull of H-convex objects. This algorithm has a linear time
complexity with respect to the number of digital points.

Concerning TPoly , for the polygonization of non-convex
objects, we apply the method of dominant point detection
proposed in [43,44] with adaptation in order to obtain a result
satisfying the two properties: (1) P(X) ∩ Z

2 = X and (2) the
vertices of P(X) are integer points.More precisely,we initial-
ize the ordered vertex set V of the polygon P as the sequence
of dominant points (supposing that the order is clockwise).
For each consecutive vertices p1 and p2 of V , let us consider
the set of the contour points between p1 and p2, denoted by
C(p1,p2). First, we verify if

C(p1,p2)\P 
= ∅ (23)

If there exists at least one point of C(p1,p2) outside of P;
then, we select a point p3 ∈ C(p1,p2)\P such that

p3 = arg max
q∈C(p1,p2)\P

{d(q) | (Δqp1p2 ∩ Z
2) ⊂ X}

where d(q) is the distance of q to the line passing by p1 and
p2 and Δpqr is the triangle whose vertices are p, q and r.
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Table 1 Experiments on geometry and topology preservation of a disk digitized of radius 10 under rotations of angle θ (the rotation center is the
center of the disk). See Sect. 6.2

#Points=317

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10 θ = π
2

TP oint(X)

#Points=317 #Points=317 #Points=317 #Points=317 #Points=317

TConv(X)

#Points=297 #Points=273 #Points=257 #Points=237 #Points=213

TP oly(X)

#Points=297 #Points=297 #Points=297 #Points=297 #Points=317

If Eq. (23) does not hold, then we verify whether there
exists any point q ∈ X ∩ P such that q is in the polygon
constructed from the polygonal line of C(p1,p2) and the
line segment from p2 to p1. If so, we select p3 ∈ C(p1,p2)
such that

p3 = arg max
q∈C(p1,p2)

{d(q) |
(∀r1 ∈ C(p1,q), (Δp1r1q ∩ Z

2) ⊂ X)

∨ (∀r2 ∈ C(q,p2), (Δqr2p2 ∩ Z
2) ⊂ X)}

For either case, if suchp3 exists, we add it to V betweenp1
and p2.We repeat this process with V until no point is added;

see Fig. 10 for an illustration. Note that dominant points are
also vertices of the obtained polygon. It is shown in [30] that
dominant point detection algorithm can be achieved with a
linear time complexity with respect to the number of contour
points. Furthermore, the algorithm involves exact compu-
tation with integers and the obtained polygon has integer
vertices.

6.2 Topological and Convexity Preservation

The first experiment of rigid motions was carried out on an
H-convex digital object (see Fig. 11a). Figure 11 presents the
result ofTPoint , TConv andTPoly onX. It should bementioned
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Table 2 Experiments on geometry and topology preservation on a square digitized of size 21 × 21, under rotations of angle θ (the rotation center
is the barycenter of the square). See Sect. 6.2

#Points=441

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10 θ = π
2

TP oint(X)

#Points=445 #Points=437 #Points=437 #Points=445 #Points=441

TConv(X)

#Points=397 #Points=385 #Points=373 #Points=357 #Points=349

TP oly(X)

#Points=397 #Points=409 #Points=409 #Points=397 #Points=441

that, in general, the polygon P(X) obtained by the method
proposed in Sect. 6.1 is not equal to the convex hull Conv(X).
In particular, even ifX isH-convex, P(X) is often non-convex,
as illustrated in Fig. 12. Therefore, TPoly does not guarantee
to preserve the H-convexity of the transformed object (see
Fig. 11d). On the contrary, TConv preserves the H-convexity
of the transformed object as shown in Prop. 4 and Fig. 11a.
By contrast, TPoint hardly preserves the H-convexity of the
transformed object.

We performed the second experiments on two H-convex
digital objects, namely a disk of radius 10 and a square of
size 21 × 21. We provide an assessment of the performance
of rigid motions using three transformation models: TPoint ,
TConv and TPoly . The experiment was conducted under a

sequence of successive rotations around the origin (center
of the objects), to evaluate the topological alterations accu-
mulated in the transformed images. The experiment is as
follows: a rotation is applied on the input image; then the
transformed image is used as input for the next rotation, and
so on. Tables 1 and 2 provide the visual results of rotated
images by the three transformation models on the disk and
the square, respectively.

From both experiments, we observe that the rigid motions
by TPoint alter the boundary of the objects and modify their
topology.

Indeed, the initial disk and square objects are well-
composed and H-convex; however, the transformed objects
are not. By contrast, the rigid motions by TConv allow us
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(a) (b) (c)

Fig. 10 a Tangential cover (in red) of a contour curve [31], composed
of the sequence of its maximal discrete straight segments, and domi-
nant points (in green) detected by using the tangential cover [43,44]. b
Polygon of dominant points (in blue). c Polygon of the contour curve
(in purple) and its vertices (in yellow), obtained from b, such that it
encloses all contour points and does not contain any point outside of
the contour curve (Color figure online)

Fig. 11 Experiments on H-convexity preservation for digitized rigid
motions TPoint , TConv and TPoly , with rotation angle of π

10 and transla-
tion of (0.1,0.2). See Sect. 6.2 a the initial digital object X, b TPoint (X),
c TConv(X), d TPoly(X)

Fig. 12 Polygon (in blue) and convex hull (in red) of the digital object
X of Fig. 11a (Color figure online)

to preserve topology together with convexity, as shown in
Prop. 5, as far as Conv(X) is quasi-1-regular. However, as
mentioned in Sect. 4.3, TConv is a decreasing operator with
respect to the cardinality of the input object (see Remark 2).
The rigid motions by TPoly avoid this effect since TPoly is

based on a polygon that fits the size of the digital object in
a better way than the convex hull. Similarly to TConv , TPoly

allows the topological preservation when P(X) is quasi-1-
regular, as shown in Prop. 6.

6.3 Area and Perimeter Preservation

Now,we aim to quantify experimentally the accuracy and sta-
bility of geometric measurements using the three models of
rigid motions on H-convex digital objects. More precisely,
we observe two measures: area and perimeter. The area is
computed as the number of digital points within the trans-
formed objects [49], and the perimeter is calculated based on
curve segmentation by maximal digital standard segments
[50] of the 4-connected curves extracted from the trans-
formed objects. It has been proven that these estimators have
multigrid convergence property [51].

Two series of experiments are performed: the first with
rotations for angles θ varying from 0 to 2π ; the second with
rigid motions randomly generated.

Figures 13 and 14 report some quantitative comparisons
of those geometric measures between rotations by TPoint ,
TConv and TPoly on the input images given in Tables 1 and
2. We can observe that TPoint and TConv do not preserve
well the perimeter of the transformed objects since TPoint

alters the boundary of the objects and TConv is a decreasing
operator. By construction, TPoly uses a polygon that fits the
input digital object for the transformation; thus, it preserves
well the perimeter. For the same reasons, TConv does not
preserve the area, contrary to TPoly . Since TPoint is defined
on a point-by-point model, it also preserves the areameasure.

Figures 15 and 16 show results under rigid motions gen-
erated randomly with rotation angles θ ∈ [0, 2π) and
translation values t1, t2 ∈ [0, 1). The results are similar to
those of Figs. 13 and 14. The difference is that the peaks at
the special angles of π

2 k for TConv are not seen in Figs. 15
and 16 since random rigid motions are applied.

In our last experiments, we perform rigid motions on
non-convex objects (see Figs. 17, 18). Again, we evaluate
the proposed transformation models TPoint and TPoly with
respect to the following measures: (i) area and (ii) perimeter.
The results are, respectively, shown in Figs. 19 and 20, for
rigid motions TPoly generated randomly with rotation angles
θ ∈ [0, 2π) and translation values t1, t2 ∈ [0, 1). We can
observe that both TPoint and TPoly have a stable behavior
with respect to area measure, and TPoly preserves better the
perimeter than TPoint .

Comparing three models of rigid motions TPoint , TConv

and TPoly , we can see that TPoint and TPoly preserve better
area. Whereas TConv is a decreasing operator, it is the only
that allows the preservation of convexity. TPoint alters the
boundary of the objects and does not preserve topology nor
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Fig. 13 Area (left) and perimeter (right) variations induced by successive rotations for the disk of radius 10 of Table 1. See Sect. 6.3 (Color figure
online)

Rotation angle

A
re

a

0 Pi/2 Pi 3*Pi/2 2*Pi

10
0

20
0

30
0

40
0

Rotation angle

P
er

im
et

er

0 Pi/2 Pi 3*Pi/2 2*Pi

40
60

80
10

0
12

0
14

0
16

0

Fig. 14 Area (left) and perimeter (right) variations induced by successive rotations for the square of size 21 × 21 of Table 2. See Sect. 6.3 (Color
figure online)

perimeter, while TPoly preserves better perimeter and topol-
ogy, when P(X) is quasi-1-regular.

7 Conclusion

In this article, we proposed an algorithmic process for per-
forming rigid motions on digital objects, i.e. finite subsets of
Z
2, while preserving their global shape. This shape preser-

vation was expressed in terms of geometry, but also in terms
of topology, since the object should not be erroneously dis-

connected due to the discrete structure of Z
2. In order to

tackle these issues, our contributions were twofold. From a
methodological point of view, we proposed to consider an
intermediate continuous model of the digital object, namely
a polygonal model. Such polygon is continuous and can
then be processed by standard continuous transformations;
it also remains discrete and can then be processed with-
out numerical error. From a theoretical point of view, we
proposed a new notion of quasi-r -regularity that provides
sufficient conditions for guaranteeing topological preserva-
tion when digitizing a continuous object. This notion of
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Fig. 17 Non-convex digital
objects used as input for the
experiments of Sect. 6.2. a X1, b
X2, c X3
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Fig. 18 Non-convex digital
objects used as input for the
experiments of Sect. 6.2. a X1. b
X2. c X3
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Fig. 19 Area (left) and perimeter (right) evolution of the three digital objects X1, X2 and X3 (see Fig. 17), under successive rigid motions TPoint
and TPoly . See Sect. 6.2 (Color figure online)
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quasi-r -regularity was indeed required to correctly handle
themandatory digitization step induced by the use of an inter-
mediate continuous polygonal model.

This work opens the way to various perspectives. First we
will investigate how this rigidmotion schemecanbe extended
to the 3D case, i.e. to digital objects defined in Z

3. Such an
extension cannot be straightforward as topological (and geo-
metric) properties of Gauss digitization for more than two
dimensions are different and more complex than those in
two dimensions [52]. In addition, we will describe how to
consider not only simply connected objects, but more gen-
erally arbitrary-topology objects (this is tractable in Z

2, but
less simple in Z

3). Second, from a practical point of view,
we will investigate the relevance of different polygonization
approaches, in order to identify those that are the best fitted to
the proposed transformation approach. We will also investi-
gate digital objects that correspond to limit cases, just beyond
the domain of validity of quasi-1-regularity; indeed, some of
these objects (often thin, or small-sized) may preserve some
topological properties, although not being quasi-1-regular.
Third, we will explore more deeply the notions of regular-
ity. In particular, we will aim at proposing a notion that
may encompass both the notions of Pavlidis’ r -regularity
and of quasi-r -regularity. Such notion could allow us to bet-
ter understand—and handle—the intrinsic mechanisms of
topology-preserving digitization, in various regular grids,
adjacency models and space dimensions.

An online demonstration based on the DGtal library [53]
is available online.4
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