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Abstract
Among the various existing and mathematically equivalent definitions of the skeleton, we consider the set of critical points of
the Euclidean distance transform of the shape. The problem of detecting these points and using them to generate a skeleton
that is stable, thin and homotopic to the shape has been the focus of numerous papers. Skeleton branches correspond to ridges
of the distance map, i.e., continuous lines of points that are local maxima of the distance in at least one direction. Extracting
these ridges is a non-trivial task on a discrete grid. In this context, the average outward flux, used in the Hamilton–Jacobi
skeleton (Siddiqi et al. in Int J Comput Vis 48(3):215–231, 2002), and the ridgeness measure (Leborgne et al. in J Vis Commun
Image Represent 31:165–176, 2015) have been proposed as ridge detectors. We establish the mathematical relation between
these detectors and, extending the work in Dimitrov et al. (Computer vision and pattern recognition, pp 835–841, 2003), we
study various local shape configurations, on which closed-form expressions or approximations of the average outward flux
and ridgeness can be derived. In addition, we conduct experiments to assess the accuracy of skeletons generated using these
measures and study the influence of their respective parameters.

Keywords Skeleton · Distance · Flux · Ridgeness

1 Introduction

Question: What did the skeleton say while riding his
Harley Davidson motorcycle?
Answer: Bone to be wild!

Owing to its efficiency in representing shapes, and despite
its intrinsic instability to contour deformations, the skeleton,
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or medial axis [11], is extensively used for shape matching,
classification and indexing. Among several advantageous
properties over the shape contour itself, it lends itself to
the design of shape features with a certain degree of invari-
ance to articulated deformations and reorganization of shape
parts [6,41]. In addition to thinness and homotopy to the
shape, a desirable property of the skeleton in the context
of shape recognition is stability. A number of recent meth-
ods focus on computing a skeleton that captures the main
parts of the shape while being stable over global transfor-
mations or small local contour deformations [16,23,28,34].
These advantageous features are exploited in shape recogni-
tion and matching methods [6,33,42,48].

The choice of a skeletonization algorithm for a given
shape depends on the available representation of the shape.
When the data available is the border sampled in R

n∈{2,3}
typically, a polygon when n = 2 or a triangulated mesh
when n = 3—one would use Voronoi diagram-based algo-
rithms [2,13,30,37]. On the other hand, when the data
available is a discrete shape, i.e., a subset of Zn∈{2,3}, it is
preferable to choose from thinning procedures [4,10,26,38],
which iteratively remove border points with topological con-
ditions, and/or distance-based methods [5,20,22,25], which
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typically detect localmaxima of theEuclidean distance trans-
form. Furthermore, distance-based and thinning methods
are not mutually exclusive, as some methods combine both
aspects, e.g., [40,43]. This is also the case of the methods
studied in this paper.

Several equivalent definitions of the continuous skeleton
exist.Among these, one definition is that it is the set of centers
of maximally inscribed balls. Let Ω ⊂ R

n∈{2,3} be a shape
in a n-dimensional image. The distance transform D : Ω →
R

+ maps a point to the Euclidean distance to its nearest point
on the shape border ∂Ω:

D(x) = min
y∈∂Ω

‖x − y‖

The skeleton S is the subset ofΩ containing centers of max-
imal balls, or equivalently, balls having at least two distinct
contact points on the shape border [23]. The radius of the
maximal ball centered at a skeleton point s being D(s), the
skeleton is defined as

S = {s ∈ Ω | ∃ p, q ∈ ∂Ω, p �= q,

‖s − p‖ = ‖s − q‖ = D(s)}

Starting from the shape border, if one considers the evolution
of a curve in the inward normal direction, the skeleton is
the set of locations where fronts collide, namely shocks [44].
Equivalently, skeleton branches correspond to ridges, or crest
lines, of the distance map. In other words, skeleton points
are local maxima of D in at least one direction, and ∇D is
undefined at these points.

The extraction of ridges of the Euclidean distance map,
which is the focus of this paper, dates as far back as [5]. The
problem was initially addressed in a discrete ad hoc manner,
in which a set of discrete kernels were designed to extract
ridges. Later, it was formulated in a consistent, continuous
framework in the Hamilton-Jacobi skeleton [43], where the
Average Outward Flux (AOF), a measure of local divergence
of the distance map, was used to distinguish skeleton points
from non-skeleton points. The AOF measure was combined
with an homotopy-preserving thinning process. Starting from
the border, points are iteratively removed by ascending order
of AOF, in absolute value. Points with strong AOF being
located on local maxima of the distance map, the obtained
skeleton is consistent in the Euclidean sense. Numerous
works build upon the Hamilton-Jacobi skeleton, such as 3D
centerline extraction [12], shock graphs for shape matching
[42] and the curvature-density correction of [45]. Theoreti-
cal values of the AOF, known as flux invariants, were studied
in [18], for a number of local configurations of planar shapes.

We recently introduced the ridgeness measure in [28]. In
this method, candidate skeleton points are extracted by fil-
tering the Euclidean distance map with a negative Laplacian
of Gaussian (LoG) kernel. Local maxima of the distance

map have thus strong ridgeness. In [28], we applied hard
thresholding to remove points with insufficient ridgeness.
This results in significantly lower complexity in comparison
to iterative thinning, but to the detriment of connectivity, as
hard thresholdingmaydisconnect skeleton branches. In order
to guarantee homotopy to the shape, a reconnection step was
added, based on a criterion combining ridgeness and centers
of maximal balls.

Both AOF and ridgeness are, roughly speaking, differen-
tial operators applied on the distancemap.Amongother ridge
detectors of distance transforms is the skeleton strength map
[19,27,31]. It is defined as a divergence-like measure of the
diffused gradient field ∇D, which is the solution of a partial
differential equation. Unlike AOF or ridgeness, the skele-
ton strength map is the solution of a time-iterative process.
Since we focus on ridge detectors for which analytical solu-
tions can be derived for specific shape configurations, we do
not include this measure in the current study.

To generate a skeleton relevant for recognition tasks, a
common processing step is the pruning and/or hierarchiza-
tion of skeleton branches [7,29,48]. Meaningful branches,
generated from significant shape parts, should typically
be favored over branches arising from contour details. As
regards distance-based skeletonization algorithms, the ridge
detection step is crucial, as it affects the amount of branches
to be pruned afterward. In their respective methods, the
AOF and the ridgeness are thresholded at some stage. Points
selected by this thresholding step are retained as candidate
skeleton points. A loose thresholdingwill retainmany points,
resulting in a possibly high amount of undesirable branches,
while an excessive thresholding might remove significant
branches. Both measures have a parameter, related to their
spatial extent,which impacts the detection. Thus, a principled
way of determining the threshold, both according to the spa-
tial parameter and the desired degree of branching, by means
other than simple empirical study, would be of significant
value.

We believe that studying the behavior of the skeletonmea-
sures can provide insights on how to choose their thresholds
appropriately.We therefore conduct an analytical study of the
measures on a set of local theoretical shape configurations
(regular skeleton points, endpoints, etc.). We make multiple
contributions. First, we establish the mathematical relation
between the AOF and our ridgeness measure. Then, for the
AOF,we providemathematical derivations extending the flux
invariants of Dimitrov et al. [18]. We express this particu-
lar contribution more explicitly in Sect. 2, once the AOF is
defined. As regards the ridgeness, we provide completely
new invariants.1 Some configurations, like ligatures [24,
32,39]—connections between skeleton branches—are often

1 Throughout the paper, we refer to detailed mathematical derivations
in appendices, which are provided in a supplementary document.
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problematic in skeleton extraction and skeleton-based shape
matching. Unlike other local shape configurations, the case
of ligature was not studied in [18]. Therefore, we provide an
analysis of AOF and ridgeness measures for this particular
case. Finally, we report the experiments that we conducted on
a shape dataset, in which we vary parameters and thresholds
to corroborate our derivations and compared the perfor-
mances of AOF-based and ridgeness-based skeletons.

2 Ridge Detection in DistanceMaps

TheAOF and the ridgeness are local detectors of ridges of D.
As they imply first- and second-order differentiation, at a
point x where D is twice differentiable, the Laplacian, diver-
gence of gradient and Hessian matrix are linked as follows:

div ∇D(x) = ΔD(x) = tr(HD(x)).

2.1 Average Outward Flux

In a given region B, the outward flux of a vector field v is the
amount by which vectors of v point toward the exterior of B.
Naturally, the outward flux of ∇D is close to zero in regions
located on linear slopes of D (non-skeleton points), whereas
it becomes highly negative on ridges of D (skeleton points).
Siddiqi et al. [43] defined the skeleton likeliness as the AOF
of ∇D, i.e., the outward flux in region B(x) centered at x,
normalized by the length of the boundary of B(x):

aof(x) = 1

|∂B(x)|
∫

∂B(x)

∇D · n ds (1)

where ds is an element of the boundary ∂B(x) of the region
B(x) and n is the outward normal along this boundary. Via
the divergence theorem,

aof(x) = 1

|∂B(x)|
∫
B(x)

div ∇D( y) d y

= 1

|∂B(x)|
∫
B(x)

ΔD( y) d y (2)

In [43], region B is chosen as a ball of constant radius r . In
the 2D case, using Eqs. (1) and (2), the AOF is written as an
integral over the circle of radius r , spanned by angle θ :

aof(x, r) = 1

2π

∫ 2π

0
∇D

(
x +

[
r cos θ

r sin θ

])
·
[
cos θ

sin θ

]
dθ

(3)

The AOF is highly negative for skeleton points and close to
zero for non-skeleton points. The skeletonization procedure,
described in Algorithm 1, performs flux-ordered thinning,
using a max-heap, relying on a criterion based on simple

points [10], so that thinness and homotopy to the input shape
are maintained. Endpoints such that aof(x, r) < thaof are
automatically kept as skeletonpoints.As soon as a point p has
been processed, propagation is performed on its 8-connected
neighborhood, defined as

N8( p) = {q ∈ Z
2 | ‖q − p‖∞ = 1}

This algorithm theoretically operates in O(|Ω| log |Ω|)
iterations—due to the fact that thinning in ordered with
respect to the AOF measure—but is close to O(|Ω|) in prac-
tice. Skeletons generated with this procedure are studied in
Sect. 4.

2.2 Ridgeness

The n-dimensional Gaussian, with isotropic covariance
matrix � = σ 2I, where I is the n × n identity matrix and σ

the standard deviation, is

Gσ (x) = 1

(2π)n/2 σ n exp

(
− ‖x‖2

2σ 2

)

The n-dimensional Laplacian of Gaussian (LoG) filter is

ΔGσ (x) = 1

(2π)n/2 σ n+2

(
‖x‖2
σ 2 − n

)
exp

(
− ‖x‖2

2σ 2

)

In [28], we defined the ridgeness, at a given scale σ , as
the negative of the LoG-filtered distance transform:

rdg(x, σ ) = − (D ∗ ΔGσ ) (x) (4)

where ∗ is the convolution operator over Rn . Assuming that
the distance function is extended over the entire domain Rn ,

rdg(x, σ ) = −
∫
Rn

D( y)ΔGσ (x − y)d y (5)

or, if D is twice differentiable,

rdg(x, σ ) = −
∫
Rn

ΔD( y)Gσ (x − y)d y (6)

In our initial method [28], the skeleton construction uses
two thresholds on the ridgeness map, namely thrdg−low

and thrdg−high. Hard thresholding is performed with respect
to thrdg−low, chosen slightly above 0, in order to remove
all points that are unlikely to be skeleton points, in linear
time. The initial purpose was to avoid the log-linear com-
plexity of the ordered thinning as in Algorithm 1. However,
small branches connected by weak ligatures, as described in
Sect. 2.3, can be lost, as skeleton ligature points can have
very weak ridgeness. This impediment drastically reduces

123



Journal of Mathematical Imaging and Vision (2019) 61:310–330 313

Algorithm 1: AOF-ordered max heap-based thin-
ning [43]
Input:
Ω ⊂ Z

2 : discrete shape
r ∈ R

+: radius
Output:
S ⊂ Z

2: skeleton
Variables
H : max-heap sorted w.r.t aof
E ⊂ Z

2: set of skeleton endpoints
1 begin
2 S := Ω

3 E := ∅
4 foreach point p ∈ ∂Ω do
5 insert( p,H)
6 end
7 while notEmpty(H) do
8 p := extractTopElement(H)
9 if isSimple( p) then

10 if isEndpoint( p) and aof( p, r) ≤ thaof then
11 Add p to E
12 else
13 Remove p from S
14 foreach neighbor q ∈ N8( p) ∩ S do
15 if isSimple(q) and q /∈ E then
16 insert(q,H)
17 end
18 end
19 end
20 end
21 end
22 end

the range of thrdg−low for which an accurate skeleton can
be obtained. After thresholding, a thinning pass is per-
formed. Finally, the thin skeleton is pruned with a criterion
using, among others, the second threshold thrdg−high. We
now believe that the ridgeness-based skeleton can be gen-
erated more simply, in the same way as the AOF-based one.
Indeed, a similar homotopy-preserving iterative thinning can
be applied, with a single threshold thrdg. The adaptation of
Algorithm 1 to the ridgeness measure will be described in
Sect. 4.1.

2.3 Shortcomings and Contributions

We now introduce our contributions on the backdrop of the
limitations of existing work. In [43], Siddiqi et al do not
report a value for thaof , which is used for marking skeleton
endpoints in Algorithm 1. In [12, p. 220], thaof is selected
using an empirical approach only, such that 25–40% of the
AOF map has values below it. They report a value of −5.0
for all experiments. In [18, p. 840], a threshold value is given
with respect to theminimum object angle2 allowed for skele-

2 The notion of the object angle is explained in Sect. 3.

ton endpoints, but no explicit formula, involving the AOF
parameter r , is given. Similarly, in [28], we only provided an
empirical approach to determine threshold(s) on ridgeness.
Our position in the current paper, however, is that the thresh-
olds can be chosen by taking into account theoretical values
on specific shape configurations and can be expressed with
respect to their respective parameters r and σ .

Theoretical values of the AOF were calculated in [18,45]
for an infinitesimal r , i.e., as a limit when r tends to 0.
They were not calculated for a general r . Moreover, they
were calculated for skeleton points only, but not at locations
neighboring skeleton points. We extend the work in [18] by
providing invariants for any r . For some particular types of
skeleton points, we perform further extension by general-
izing the measure to points near skeleton points. Doing so,
we formalize the variation of AOF as the considered points
get farther from the skeleton. Since we establish the relation
between AOF and ridgeness, we are able to provide equiva-
lent results for the ridgeness.

In addition, we provide a model for ligature skeleton
points, induced by connections between branches, whichwas
not studied in [18]. In general, skeleton points are located on
significant ridges of D. However, there exist non-skeleton
points with undesirably high—in absolute value—AOF or
ridgeness (typically, points in branch extremities) and, con-
versely, skeleton with undesirably low AOF or ridgeness
(typically, ligature points). This phenomenon is depicted in
Fig. 1. Note that the presence of undesirably strong ridges
near branch extremities is amplified by discretization arti-
facts. Ligature points are problematic [24,32,39], as they are
weak ridges of D, that should nevertheless be kept as part of
the skeleton.

Fig. 1 Shortcomings of ridges on ligatures and branch extremities.
(Left) distance map and (right) ridgeness map. Ligatures create unde-
sirably weak ridges (dashed green ellipse) whereas branch extremities
create undesirably strong ridges (dashed red ellipses) (Color figure
online)
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3 Theoretical Values for AOF and Ridgeness

We use a novel approach to study the various skeleton points,
inspired by the classifications in [18,21,39]. We consider the
following types:

– regular skeleton points
– peak points
– end points
– ligature points
– junction points

We calculate theoretical values of the AOF in Eq. (3) and
ridgeness in Eqs. (5) for local shape configurations cor-
responding to these types of skeleton points. For some
configurations, integrals can be calculated explicitly, while
other configurations require approximations of D so that
closed-form expressions can be obtained. A useful prop-
erty, that will be used subsequently, is the rotation-invariance
of the AOF and ridgeness. To be more precise, aof(x, r)
and rdg(x, σ ) do not change if the shape is rotated with
center x. The following derivations are valid for any orienta-
tion of the skeleton branch under study. As will be derived,
the AOF and ridgeness have the advantageous property of
being independent of the local thickness of the shape, i.e., of
the absolute value of D(x). They rather depend on the local
geometry of the shape borders.

As the ridgenessmeasure implies convolutionof Dwith an
infinite support kernel, the distance map is extended outside
the object, so that it is defined everywhere. We thus consider
the signed distance transform

D(x) =
⎧⎨
⎩

min
y∈∂Ω

‖ y − x‖ if x ∈ Ω

− min
y∈∂Ω

‖ y − x‖ if x /∈ Ω
(7)

To begin with, we establish the link between the two mea-
sures.

Proposition 1 The AOF and ridgeness at point x are related
as follows:

rdg(x, σ ) = − 1

σ 4

∫ ∞

0
ρ2 exp

(
− ρ2

2σ 2

)
aof(x, ρ) dρ (8)

Proof The proof is given in Appendix A.1 ��
In what follows, we omit the second parameter for AOF and
ridgeness. Thus it is assumed that

aof(x) = aof(x, r)

rdg(x) = rdg(x, σ )

s

γ1

γ2

n1

n2

α

t

Fig. 2 Regular skeleton point

3.1 Regular Skeleton Point

Let γ : [0, 1] → R
2 be a parametrization of the shape con-

tour ∂Ω . The parameterization is continuously differentiable

and positively oriented, so that
γ ′(u)∥∥γ ′(u)

∥∥ and
γ ′(u)⊥∥∥γ ′(u)

∥∥ are the

unit tangent and inward normal vectors, respectively, at posi-
tion u. Consider a skeleton point s, as the center of amaximal
disk tangent to the contour at twopointsγ 1 andγ 2.Wedenote
by n1 and n2 the unit normal vectors at γ 1 and γ 2, respec-
tively. This regular skeleton point configuration is illustrated
in Fig. 2.

The distance between a point x and a line with origin p
and unit direction vector v is (x− p) ·v⊥. Thus, if we locally
approximate parts of the contour around γ 1 and γ 2 with
straight lines, distance D in the neighborhood of s is

D(x) = D(s) + min((x − s) · n1, (x − s) · n2) (9)

The unit direction of the skeleton branch is

t = n1⊥ − n2⊥

‖n1 − n2‖

Let α be the object angle, as introduced in [18], which is
half the angle formed by the two inward unit normal vectors.
Note that n1 ·n2 = cos(2α) and ‖n1 − n2‖ = 2 sin α. When

the two contour parts are parallel, the object angle is
π

2
.

For every point x located on the skeleton, i.e., ∃ k s.t. x =
s + k t , D is not differentiable. However, we can still derive
the expressions of the gradient and Laplacian of D, using

identity min(x, y) = x + y − |x − y|
2
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∇D(x)= 1

2
(n1+n2 − sgn((x − s) · (n1 − n2))(n1 − n2))

ΔD(x) = −δ((x − s) · (n1 − n2)) ‖n1 − n2‖2
(10)

where δ is the Dirac distribution, implying that the gradient
and Laplacian should be understood in the sense of distribu-
tions (weak derivatives).

As will be derived, the AOF and ridgeness at skeleton
point s depend on object angle α. In what follows, we cal-
culate the AOF and ridgeness measures for any point x
in the vicinity of s. As we will see, in absolute value,

both are decreasing functions of
∣∣∣(x − s) · t⊥

∣∣∣, the distance
between x and the nearest point on the skeleton.

3.1.1 Average Outward Flux

Proposition 2 The AOF at a point x in the neighborhood of
a regular skeleton point s, with object angle α, is

aofregular(x) =

⎧⎪⎪⎨
⎪⎪⎩

−2 sin α

πr

√
r2 − ((x − s) · t⊥)2

if
∣∣∣(x − s) · t⊥

∣∣∣ < r

0 otherwise

(11)

Proof The proof is given in Appendix A.2 ��
As a geometric interpretation, notice that
2
√
r2 − ((x − s) · t⊥)2 is the length of the line segment

resulting from the intersection of the disk and the skeleton
branch. As a particular case, when the point is the skeleton
point s,

aofregular(s) = − 2

π
sin α (12)

as found in [18]. A notable property is that the AOF at regular
skeleton point is independent of r . The most salient regular
skeleton point is obtained when the two contour parts are

parallel, i.e., α = π

2
, which gives aofregular(s) = − 2

π
.

3.1.2 Ridgeness

Proposition 3 The ridgeness at a point x in the neighborhood
of a regular skeleton point s, with object angle α, is

rdgregular(x) =
√
2π sin α

πσ
exp

(
− ((x − s) · t⊥)2

2σ 2

)
(13)

Proof The proof is given in Appendix A.3. ��
It is easy to see from Eq. (13) that the ridgeness decreases

with a Gaussian profile as x gets farther from the skeleton

branch. As a particular case, when the point is the skeleton
point s,

rdgregular(s) =
√
2π

πσ
sin α (14)

Again, the highest ridgeness value appearswhen the two con-

tour parts are parallel, which leads to rdgregular(s) =
√
2π

πσ
.

3.2 Peak Point

If Ω is a disk, there exist only one skeleton point s at its
center, which is a localmaximumof D. The distance function
is then

D(x) = D(s) − ‖s − x‖ (15)

which is non-differentiable at s. Otherwise, for any x �= s,

∇D(x) = s − x
‖s − x‖

ΔD(x) = − 1

‖s − x‖ (16)

This case is depicted in Fig. 3a. It is of little practical use in
itself, as the shape to be skeletonized is rarely a disk. How-
ever, in Sect. 3.3, we derive the more general endpoint case
from the current case. For calculating both AOF and ridge-
ness at x, we switch to a polar coordinate system, centered
at x s.t. s = x + [R cosβ,R sin β]T, and show that aof
and rdg are decreasing functions (in absolute value) of dis-
tance R = ‖x − s‖.

3.2.1 Preliminary Notes on Elliptic Integrals

We define special functions that arise when deriving the AOF
and ridgeness of points in the neighborhood of a peak point.

Given an argument ψ ∈
[
0,

π

2

]
and a modulus k ∈ [0, 1],

F(ψ, k) and E(ψ, k) are Legendre’s incomplete elliptic inte-
grals of the first and second kind [15, p. 486], respectively,
defined as

F(ψ, k) =
∫ ψ

0

1√
1 − k2 sin2 θ

dθ

E(ψ, k) =
∫ ψ

0

√
1 − k2 sin2 θdθ (17)

A particular case arises when ψ = π

2
, which leads to the

so-called complete elliptic integrals of the first and second
kind, respectively:
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s

R

x

0

-1

-0.1

0.7

0

0.1

(c)(b)(a)

Fig. 3 Peak point. a Distance. b Average outward flux with r = 2. c Ridgeness with σ = 2

K(k) = F
(π

2
, k

)
E(k) = E

(π

2
, k

)
(18)

These integrals have no closed-form expressions. They can
be numerically evaluated using Landen’s transformation,
related to the arithmetic-geometric mean [15, p. 493]. More-
over, closed-form approximations and bounds for them have
been extensively studied [1,3,14,36]. These bounds should be
understood in the pointwise sense, i.e., w.r.t k. Let A be the
generalized mean of two real numbers a and b, also known
as the power mean,

Ap(a, b) =

⎧⎪⎨
⎪⎩

(
a p + bp

2

) 1
p

if p �= 0
√
ab if p = 0

Special cases include the geometric mean (p = 0) and the
arithmetic mean (p = 1). We also define the logarithmic
mean:

L(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a = 0 or b = 0
a if a = b

a − b

log a − log b
otherwise

According to [14,46], the following inequality holds:

A0(a, b) < L(a, b) < A1(a, b) < Ap(a, b) with p > 1

(19)

Introducing the complementary modulus k′ =
√
1 − k2,

bounds for the complete elliptic integral of the first kind
are [1,14,36]:

π

2Ap(1, k
′)

< K(k) <
π

2A0(1, k
′)
with p ≥ 1

2

Note that a sharper upper bound can be found in [14]:

K(k) <
π

2L(1, k′)

The following bounds for E are due to [8,9,47]:

π

2
Ap(1, k

′) < E(k) <
π

2
A2(1, k

′) with p ≤ 3

2

We denote the following lower and upper bounds for K and E
involving generalized and logarithmic means:

Lp
K(k) = π

2Ap(1, k
′)
with p ≥ 1

2

U0
K(k) = π

2A0(1, k
′)

UL
K(k) = π

2L(1, k′)

Lp
E(k) = π

2
Ap(1, k

′) with p ≤ 3

2

UE(k) = π

2
A2(1, k

′)

The sharper lower bound Lp
K(k) is obtained with p = 1/2,

while the sharper lower bound Lp
E(k) is obtained with p =

3/2.

3.2.2 Average Outward Flux

Using polar coordinates centered at x and Eqs. (3) and (16),
we obtain the following result:

Proposition 4 The AOF at a point x, at distance R =
‖x − s‖ from a peak skeleton point s is
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aofpeak(x) = 1

π

∫ π

0

− r + R cos θ√
r2 + R2 − 2rR cos θ

dθ (20)

Proposition 5 The AOF at a point x, at distance R =
‖x − s‖ from a peak skeleton point s can be expressed using
complete elliptic integrals as

aofpeak(x) = 1

πr
((R − r)K(k) − (R + r)E(k)) (21)

with k = 2
√
rR

R + r
.

Proof The proofs for the two previous propositions are given
in Appendix A.5. ��

Note that k is the ratio between the geometric and arith-
meticmeans of r andR, which verifies, according toEq. (19),

2
√
rR

R + r
≤ 1

Let us compute bounds with k = 2
√
rR

R + r
. In our case, the

complementary modulus is

k′ =
√
1 − k2 = |R − r |

R + r

Using identities a + b+ |a − b| = 2max(a, b) and a + b−
|a − b| = 2min(a, b), we obtain

L1/2
K

(
2
√
rR

R + r

)
= π(R + r)

max(R, r) +
√∣∣R2 − r2

∣∣

L1
K

(
2
√
rR

R + r

)
= π(R + r)

2max(R, r)

U0
K

(
2
√
rR

R + r

)
= π(R + r)

2
√∣∣R2 − r2

∣∣

UL
K

(
2
√
rR

R + r

)
= π(R + r)

4min(R, r)
log

( R + r

|R − r |
)

L3/2
E

(
2
√
rR

R + r

)
= π

25/3

(√
(R + r)3 +

√
|R − r |3

)2/3
R + r

L1
E

(
2
√
rR

R + r

)
= π max(R, r)

2(R + r)

UE

(
2
√
rR

R + r

)
= π

√
R2 + r2

2(R + r)

Proposition 6 The AOF at a point x, at distance R =
‖x − s‖ from a peak skeleton point s is bounded as

Laofpeak < aofpeak(x) < Uaofpeak

with

Laofpeak

=

⎧⎪⎨
⎪⎩

1

πr
((R − r)UK(k) − (R + r)UE(k)) ifR ≤ r

1

πr

(
(R − r)Lp

K(k) − (R + r)UE(k)
)
ifR > r

(22)

Uaofpeak

=

⎧⎪⎨
⎪⎩

1

πr

(
(R − r)Lp

K(k) − (R + r)Lp
E(k)

)
ifR ≤ r

1

πr

(
(R − r)UK(k) − (R + r)Lp

E(k)
)
ifR > r

(23)

where UK is either U0
K or UL

K .

If one choosesU0
K and p = 1 for bothLp

K andLp
E, one obtains

the bounds with the simplest expressions:

L1
aofpeak =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

2r

(√
r2 − R2 +

√
r2 + R2

)
ifR ≤ r

1

2r

(
R2 − r2

R −
√
R2 + r2

)
ifR > r

U1
aofpeak =

⎧⎪⎪⎨
⎪⎪⎩

R2

2r2
− 1 ifR ≤ r

1

2r

(√
R2 − r2 − R

)
ifR > r

Theprevious lower andupper bounds are rather loose.Choos-
ing UL

K, L1/2
K and L3/2

E , much sharper bounds are obtained,
which we denote by L2

aofpeak and U2
aofpeak . Their expressions,

which are tedious, can be easily derived from Eqs. (22)
and (23). The bounds are plotted versus R, with r fixed,
in Fig. 4.

The analytical expressions of the bounds are intricate. It
appears that the second-order Taylor expansion of D gives
a suitable approximation to aofpeak as soon as R is large
enough. Let D̃ be the second-order Taylor approximation
of D in the neighborhood of x:

D̃( y) = D(x) + ( y − x)T∇D(x)

+1

2
( y − x)THD(x)( y − x)

D( y) = D̃( y) + O(‖ y − x‖3) (24)
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Fig. 4 Average outward flux and corresponding bounds at distance R
from a peak skeleton point, versus R (with r = 2)

The approximate AOF is

ãof(x)

= 1

2π

∫ 2π

0
∇ D̃

(
x +

[
r cos θ

r sin θ

])
·
[
cos θ

sin θ

]
dθ

(25)

Proposition 7 The second-order approximation of the AOF
at a point x, at distance R = ‖x − s‖ from a peak skeleton
point s is

ãofpeak(x) = − r

2R
Proposition 8 The AOF at x is asymptotically equivalent to
its second-order approximation

aofpeak(x) ∼ ãofpeak(x) (as ‖x − s‖ → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.6 ��
We observe from Fig. 4 that this approximation is accurate
as soon as R >> r .

3.2.3 Ridgeness

We rewrite Eq. (6) in the polar coordinate system centered
at x,

rdg(x) =
−

∫ ∞

0

∫ 2π

0
ρGσ (ρ)ΔD

(
x +

[
ρ cos θ

ρ sin θ

])
dθdρ,

(26)

where Gσ (ρ) is a shorthand notation for

Gσ (ρ cos θ, ρ sin θ) = 1

2πσ 2 exp

(
− ρ2

2σ 2

)

CombiningEqs. (26) and (16),we obtain the following result:

Proposition 9 The ridgeness at a point x, at distance R =
‖x − s‖ from a peak skeleton point s is

rdgpeak(x)

= 2
∫ ∞

0
ρGσ (ρ)

∫ π

0

1√
ρ2 + R2 − 2ρR cos θ

dθdρ

(27)

Proposition 10 The ridgeness at a point x, at distance R =
‖x − s‖ from a peak skeleton point s can be expressed using
the complete elliptic integral of the first kind as

rdgpeak(x)

= 2

πσ 2

∫ ∞

0

ρ

R + ρ
K

(
2
√

ρR
R + ρ

)
exp

(
− ρ2

2σ 2

)
dρ

(28)

Proof The proofs for the two previous propositions are given
in Appendix A.7. ��

Since the term Gσ (ρ)
ρ

R + ρ
is positive in [0,+∞),

Proposition 11 The ridgeness at a point x, at distance R =
‖x − s‖ from a peak skeleton point s is bounded as

Lrdgpeak < rdgpeak(x) < Urdgpeak

with

Lrdgpeak

= 2

πσ 2

∫ ∞

0

ρ

R + ρ
Lp
K

(
2
√

ρR
R + ρ

)
exp

(
− ρ2

2σ 2

)
dρ

(29)

Urdgpeak

= 2

πσ 2

∫ ∞

0

ρ

R + ρ
UK

(
2
√

ρR
R + ρ

)
exp

(
− ρ2

2σ 2

)
dρ

(30)

where UK is either U0
K or UL

K .

No closed-form expression can be found for Eq. (28),
for either its lower or upper bounds. In Fig. 5, numerical
integration was performed to plot rdgpeak and its bounds ver-

sus R. Loose lower and upper bounds L1
rdgpeak

and U1
rdgpeak

were obtainedwithL1
K andU0

K, respectively. Sharp lower and

upper bounds L2
rdgpeak

and U2
rdgpeak

were obtained with L1/2
K

and UL
K, respectively.

As for the AOF, the second-order Taylor expansion of D̃
gives a suitable approximation to rdgpeak as soon as R is
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Fig. 5 Ridgeness and corresponding bounds at distanceR from a peak
skeleton point, versus R (with σ = 2)

large enough. The approximate ridgeness is obtained using
Eqs. (24) and the polar transformation of Eq. (5):

r̃dg(x) =
−

∫ ∞

0

∫ 2π

0
ρΔGσ (ρ)D̃

(
x +

[
ρ cos θ

ρ sin θ

])
dθdρ,

(31)

where ΔGσ (ρ) is a shorthand notation for

ΔGσ (ρ cos θ, ρ sin θ) = 1

πσ 4

(
ρ2

2σ 2 − 1

)
exp

(
− ρ2

2σ 2

)
,

Proposition 12 The second-order approximation of the rid-
geness at a point x, at distance R = ‖x − s‖ from a peak
skeleton point s is

r̃dgpeak(x) = 1

R
Proposition 13 The ridgeness at x is asymptotically equiva-
lent to its second-order approximation

rdgpeak(x) ∼ r̃dgpeak(x) (as ‖x − s‖ → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.8 ��
As for the AOF, we observe from Fig. 5 that this approxima-
tion is accurate as soon as R >> σ .

3.3 Endpoint

The endpoint configuration, illustrated in Fig. 6a, is
described as a mix of properties of the regular skeleton point
in Sect. 3.1 and the peak point in Sect. 3.2. As in the case
of the regular skeleton point, the skeleton branch forms an
object angle α, which is half the angle formed by the two

inward unit normal vectors n1 and n2. The skeleton branch
has unit tangent vector

t = n1⊥ − n2⊥

‖n1 − n2‖ .

Weassume that the branch extremity forms an arc of angle 2α
with center s. In what follows, we focus on deriving the AOF
and ridgeness at s, as functions of α. The shape branch is
split into 3 open subregions. Ω1 is the region bounded by
line segments sγ 1, sγ 2 and the arc from γ 1 to γ 2. Ω2 is the
region above the skeleton branch and on the left of line sγ 1,
whereas Ω3 is the region below the skeleton branch and on
the left of the line sγ 2. In the current case, we consider a
piecewise definition of the distance,

D(x) =
⎧⎨
⎩

D(s) − ‖x − s‖ if x ∈ Ω1

D(s) + (x − s) · n1 if x ∈ Ω2

D(s) + (x − s) · n2 if x ∈ Ω3,

(32)

and its resulting gradient, which is undefined on the common
boundaries of Ω1, Ω2 and Ω3,

∇D(x) =

⎧⎪⎪⎨
⎪⎪⎩

s − x
‖s − x‖ if x ∈ Ω1

n1 if x ∈ Ω2

n2 if x ∈ Ω3.

(33)

3.3.1 Average Outward Flux

Proposition 14 The AOF at the endpoint s of a skeleton
branch, with object angle α, is3

aofend(s) = − 1

π
(α + sin α) (34)

Proof The proof is given in Appendix A.9. ��
For any point x ∈ Ω1 s.t. the disk of radius r and center x

is fully included within Ω1, aofend(x) = aofpeak(x). It can
be observed from Fig. 6b that the AOF in Ω1 has a behavior
similar to the one obtained for the peakpoint case. Its absolute
value decreases in O(1/ ‖x − s‖).

3.3.2 Ridgeness

Proposition 15 The ridgeness at the endpoint s of a skeleton
branch, with object angle α, is

rdgend(s) =
√
2π

2πσ
(α + sin α) (35)

Proof The proof is given in Appendix A.10. ��
3 A similar result was already stated in [18].

123



320 Journal of Mathematical Imaging and Vision (2019) 61:310–330

s

α

t

n1

n2

γ2

γ1

Ω1

Ω2

Ω3

-0.7

-0.1

0 γ1

γ2

s

0

0.1

0.5 γ1

γ2

s

(c)(b)(a)

Fig. 6 Endpoint. a Distance. b Average outward flux with r = 2. c Ridgeness with σ = 2

Again, it can be observed from Fig. 6c that the ridgeness
in Ω1 has a behavior similar to the one obtained for the peak
point case.

3.4 Ligature Point

In Fig. 7a, a thin branch connects to a thick branch, which
creates a ligature. As partially described in Sect. 2.3, a lig-
ature is a skeleton branch created by the junction of two
shape branches. Unlike a regular skeleton branch, it does not
arise from a shape branch itself. The junction creates two
corners p and q. Let � be the line passing through p and q.
Let us denote the two branches by Ω1 and Ω2, on the right
and left of �, respectively. The ligature is included into Ω2

and is located on the bisector of p and q, regardless of the
orientation of branch Ω1. Its unit tangent vector is

t = ( p − q)⊥

‖ p − q‖ .

Assuming that t is directed toward Ω2, any ligature point
verifies

s = p + q
2

+ At

withA ≥ 0. Midpoint ( p+q)/2 is referred to as the ligature
junction. Let B be the half-thickness of branch Ω1 at the
junction,

B = ‖ p − q‖
2

.

Let us assume that the thickness ofΩ2 ismuch greater thanB.
For any point in the neighborhood of a ligature point s,

D(x) = min(‖x − p‖ , ‖x − q‖), (36)

and, for the ligature point itself,

D(s) = ‖s − p‖ = ‖s − q‖ =
√
A2 + B2.

We calculate the AOF and ridgeness of a ligature point s,
assuming that distance A is reasonably small compared to
the thickness of Ω2. In other words, s is far enough from the
opposite border of Ω2, so that p and q are considered as the
only local borders. Aswill be derived, AOF and ridgeness are
decreasing functions, in absolute value, of distanceA. Hence,
in what follows, the distance to bordersR, and angle β both
depend on A:

R(A) =
√
A2 + B2

β(A) = tan−1 B
A (37)

3.4.1 Average Outward Flux

As an additional requirement, the following AOF is valid
only if A ≥ r and B ≥ r .

Proposition 16 The AOF at ligature point s, at a distanceA
from the ligature junction, is

aofligature(s)

= 1

π

∫ π

0

r − A cos θ − B sin θ√
r2 + A2 + B2 − 2r(A cos θ + B sin θ)

dθ

(38)

Proposition 17 The AOF at ligature point s, at a distanceA
from the ligature junction, can be expressed with complete
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Fig. 7 Ligature point. a Distance. b Average outward flux with r = 2. c Ridgeness with σ = 2 (color scales for the AOF and ridgeness are similar
to the ones in Fig. 6) (Color figure online)

and incomplete elliptic integrals as

aofligature(s) = 1

πr[
(R + r)

(
2E(k) − E

(
β

2
, k

)
− E

(
π

2
− β

2
, k

))

−(R − r)

(
2K(k) − F

(
β

2
, k

)
− F

(
π

2
− β

2
, k

))]

with k = 2
√
rR

R + r
, and R = R(A) and β = β(A).

Using theTaylor expansion D̃ ofEq. (24),we can calculate
an approximate AOF.

Proposition 18 The second-order approximation of the AOF
at ligature point s, at a distanceA from the ligature junction
is

ãofligature(s) = 1√
A2 + B2

(
r

2
− 2B

π

)

Proposition 19 The AOF at ligature point s is asymptotically
equivalent to its second-order approximation

aofligature(s) ∼ ãofligature(s) (as A → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.12 ��

3.4.2 Ridgeness

Since the ridgeness is calculated on an infinite domain, it
should be assumed that the following expressions are accu-
rate if A and the thickness of Ω2 are large enough, so
that A > nσ (usually, n = 3). Using a transformation of

definition (5) in the polar coordinate system centered at x,

rdg(x) =
−

∫ ∞

0

∫ 2π

0
ρΔGσ (ρ)D

(
x +

[
ρ cos θ

ρ sin θ

])
dθdρ,

(39)

we obtain the following result:

Proposition 20 The ridgeness at ligature point s, at a dis-
tance A from the ligature junction, is

rdgligature(s) = −2
∫ ∞

0
ρΔGσ (ρ)∫ π

0

√
ρ2 + A2 + B2 − 2ρ(A cos θ + B sin θ) dθdρ

(40)

Proposition 21 The ridgeness at ligature point s, at a dis-
tance A from the ligature junction can be expressed using
complete and incomplete elliptic integrals of the second kind
as

rdgligature(s) = 4

πσ 4

∫ ∞

0

(
1 − ρ2

2σ 2

)
exp

(
− ρ2

2σ 2

)

(R + ρ)

(
2E(k) − E

(
β

2
, k

)
− E

(
π

2
− β

2
, k

))
dρ

(41)

with k = 2
√

ρR
R + ρ

andR = R(A) and β = β(A), as defined

in Eq. (37).

Proof The proofs for the two previous propositions are given
in Appendix A.13. ��

Using theTaylor expansion D̃ ofEq. (24),we can calculate
an approximate ridgeness.

Proposition 22 The second-order approximation of the rid-
geness at ligature point s, at a distance A from the ligature
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junction is

r̃dgligature(s) = 1√
A2 + B2

(
B

√
2π

σπ
− 1

)

Proposition 23 The ridgeness at ligature point s is asymp-
totically equivalent to its second-order approximation

rdgligature(s) ∼ r̃dgligature(s) (as A → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.14 ��

The AOF and ridgeness are illustrated in Fig. 7b , c,
respectively. Note that their color scales are the same as for
Fig. 6b, c. In accordance with Propositions 18 and 22, it can
be observed that the AOF and ridgeness become weaker as
the considered ligature point gets farther from the ligature
junction.

3.5 Junction Point

We consider a simplified model of a junction of n
branches, such that the n corners { pi }i=1...n formed by the
branches are all equidistant to the junction skeleton point s,
as depicted in Fig. 8. We focus on the AOF and ridgeness at
junction point s. Note that any point located on a line seg-
ment between s and the midpoint of two successive corners,
( pi + pi+1)/2, is a ligature point. The distance from s to
any corner is denoted by R. In the neighborhood of s, the
distance is:

D(x) = min
i=1...n

Di (x)

Di (x) = ∥∥x − pi
∥∥ (42)

Switching to polar coordinates, corners are defined as

pi = s + [R cosβi ,R sin βi ]T (43)

where βi is the absolute angle formed by the line from s to pi
and the horizontal axis. We denote by αi the relative angle
formed by s and the two successive corners pi and pi+1, thus

αi = βi+1 − βi .

In the subsequent parts of this section, we show that the AOF
and ridgeness only depend on the spatial layout of the corners
and distance R—which is linked to the thicknesses of the
branches—but does not dependon the geometry of the branch
borders.

3.5.1 Average Outward Flux

Hereafter, we assume thatR > r .

Proposition 24 The AOF at junction point s at distance R
from n corners forming angles (αi )i=1...n is

aofjunction(s)

= 1

π

n∑
i=1

∫ αi
2

0

r − R cos θ√
r2 + R2 − 2rR cos θ

dθ
(44)

Proposition 25 The AOF at junction point s at distance R
from n corners forming angles (αi )i=1...n can be expressed
with complete and incomplete elliptic integrals as

aofjunction(s)

= 1

πr

n∑
i=1

[
(R + r)

(
E(k) − E

(π

2
− αi

4
, k

))

−(R − r)
(
K(k) − F

(π

2
− αi

4
, k

))] (45)

with k = 2
√
rR

R + r
.

Proof The proofs for the two previous propositions are given
in Appendix A.15 ��

Using theTaylor expansion D̃ ofEq. (24),we can calculate
an approximate AOF.

Proposition 26 The second-order approximation of the AOF
at junction point s, at distance R from n corners forming
angles (αi )i=1...n, is

ãofjunction(s) = − 1

π
s2 + r

2R
(
1 − 1

2π
s1

)
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where s1 and s2 are the sums of angles αi and their halves,
respectively:

s1 =
n∑

i=1

sin αi

s2 =
n∑

i=1

sin
(αi

2

)
(46)

This result should be put in perspective with the invariant

obtained in [18] for junction points. Indeed, the term − 1

π
s2

was also found by them. We extend their result with an addi-
tional term taking r into account.

Proposition 27 TheAOFat junction point s is asymptotically
equivalent to its second-order approximation

aofjunction(s) ∼ ãofjunction(s) (as R → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.16 ��

3.5.2 Ridgeness

Again, it should be assumed that the following expressions
are accurate if the thickness of the junction is large enough,
i.e., R > nσ (usually, n = 3). Starting from the polar LoG-
based expression of the ridgeness of Eq. (39), it follows that:

Proposition 28 The ridgeness at junction point s at dis-
tance R from n corners forming angles (αi )i=1...n is

rdgjunction(s) = − 2
∫ ∞

0
ρΔGσ (ρ)

n∑
i=1

∫ αi
2

0

√
r2 + R2 − 2rR cos θ dθ dρ

(47)

Proposition 29 The ridgeness at junction point s at dis-
tance R from n corners forming angles (αi )i=1,...,n can be
expressed using complete and incomplete elliptic integrals of
the second kind as

rdgjunction(s) = 4

πσ 4

∫ ∞

0

(
1 − ρ2

2σ 2

)
exp

(
− ρ2

2σ 2

)

n∑
i=1

(R + ρ)
(
E(k) − E

(π

2
− αi

4
, k

))
dρ

(48)

with k = 2
√

ρR
R + ρ

.

Proof The proofs for the two previous propositions are given
in Appendix A.17. ��

Proposition 30 The second-order approximation of the rid-
geness at junction point s, at distance R from n corners
forming angles (αi )i=1...n, is

r̃dgjunction(s) = 1

σ
√
2π

s2 − 1

R
(
1 − 1

2π
s1

)

with s1 and s2 as defined in Eq. (46).

Proposition 31 The ridgeness at junction point s is asymp-
totically equivalent to its second-order approximation

rdgjunction(s) ∼ r̃dgjunction(s) (asR → +∞)

Proof The proofs for the two previous propositions are given
in Appendix A.18 ��

4 Experiments

4.1 Implementation Details

Given a binary input image containing the shape Ω , the
Euclidean distance map D is computed thanks to the steer-
able algorithm of [17,35] which operates in O(|Ω|). Then,
for every p in the outer 8-connected border, i.e., the set of
background pixels with at least one 8-connected neighbor
in Ω , D is set to 0. Eventually, D is extended below 0 in the
background, according to Eq. (7), within a radius of r +1 for
the AOF-based skeleton, and 3σ + 1 for the ridgeness-based
skeleton. We thus obtain a truncated signed distance func-
tion, which is smooth on the object contour, avoiding border
artifacts on the AOF and ridgeness maps.

InAlgorithm1, line 4, boundary ∂Ω is discretized as the 8-
connected inner border, i.e., the subset of pixels in Ω having
at least one 8-connected neighbor in the background. For
the ridgeness-based skeleton, we use the same procedure, up
tominormodifications. Specifically, in the ridgeness-ordered
thinning procedure,H is a min-heap sorted w.r.t to ridgeness,
and the condition in line 10 should be replaced by

isEndpoint( p) and rdg( p, σ ) ≥ thrdg

4.2 Influence of Scale Parameters: Analysis on
Regular Skeleton Points

We performed several numerical experiments to corroborate
our derivations and to assess the applicability of the theoreti-
cal AOF and ridgeness values. We first give a short overview
of the influence of parameters r and σ , and their respective
thresholds, on the final skeleton. The choice of thresh-
olds thaof and thrdg in the AOF-based and ridgeness-based
thinning procedure is crucial, as they control the amount of
pixels that will be retained as skeleton endpoints, i.e., starting
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Fig. 9 AOF-based skeleton for shape with irregular border. Left: final skeleton, center: AOF, right: thresholded AOF. Top row: r = 1, bottom row:
r = 4

Fig. 10 Ridgeness-based skeleton for shape with irregular border. Left: final skeleton, Center: ridgeness, Right: thresholded ridgeness. Top row:
σ = 1, bottom row: σ = 4

points for branches, according to lines 10 and 11 in Algo-
rithm 1. Thresholds should be chosen as far as possible in
the light of the previously derived analytical expressions.

In [18, p. 840], it was suggested that thaof be chosen
with respect to a minimal object angle. However, no explicit
formula was provided nor was a relation established with
respect to a particular theoretical shape configuration. Fol-

lowing their suggestion, it seems natural to derive a threshold
according to a minimal object angle with respect to the reg-
ular skeleton point configuration described in Sect. 3.1, as
it is the type of skeleton point most commonly encountered.
Object protrusions generating branches with an object angle
below this minimal angle should be considered as insignifi-
cant. Choosing the threshold according to the minimal object
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Fig. 11 Overview of the synthetic shape dataset

η = 0 η = 1 η = 2 η = 3

Fig. 12 Synthetic shape n◦5 at different noise levels η with AOF-based skeletons (ridgeness-based skeletons are visually equivalent and are not
depicted)

angle gives a clear geometrical interpretation of what a sig-
nificant object part is. Hence, Eqs. (12) and (14) were used
as a basis:

thaof = − 2

π
sin α0

thrdg =
√
2π

πσ
sin α0

where α0 is the minimal object angle that a shape part should
form in order to generate a skeleton branch. Following [18, p.

840],we usedα0 = π

6
= 30◦ in the current experiment. AOF

and ridgeness-based skeletons were computed on a shape
with moderate noise, such that, at a fine scale, protrusions
and indentations on the shape border are expected to generate
branches. Results are depicted in Figs. 9 and 10. The left,
center and right columns contain skeletons, AOF/ridgeness
and thresholded AOF/ridgeness maps, respectively. For each
measure, two scales r , σ ∈ {1, 4} are tested and thresholds
are set accordingly. Note that thaof only depends on α0 and
is thus left unchanged when r varies. Conversely, thrdg is set
according to α0 and σ . Note that the color scale of the AOF
map, in the center column of Fig. 9, is inverted so that it can
be easily interpreted and compared to the ridgeness map.

In the right columns of Figs. 9 and 10, black pix-
els correspond to all p for which aof( p,R) ≤ thaof or

rdg( p, σ ) ≥ thrdg. Note that this thresholding does not cor-
respond to the final skeleton, as it has gaps and is not thin.
A visual inspection shows that a skeleton branch emanates
from each connected component of these selected pixels.
For both AOF and ridgeness, the amount of connected
components of thresholded pixels diminishes as the scale
is increased. Simultaneously, the thickness of the central
connected components, arising from the most significant
shape parts, increases. This corroborates the expressions of
AOF and ridgeness of points near regular skeleton branches,
in Eqs. (11) and (13). Let p be a point in the vicinity of the
skeleton branch and d its distance to the nearest regular skele-
ton point. We derive the conditions according to which p is
selected as a candidate skeleton point, i.e., aof( p,R) ≤ thaof
or rdg( p, σ ) ≥ thrdg, with respect to d and a given α, the
object angle of the considered branch. We assume that α ∈[
α0,

π

2

]
. Regarding the AOF, according to Eq. (11), p satis-

fies aof( p,R) ≤ thaof if

− 2

πr
sin α

√
r2 − d2 ≤ − 2

π
sin α0,

which implies

d ≤ r

√
1 − sin2 α0

sin2 α
. (49)
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Fig. 13 Accuracy of AOF-based skeleton for synthetic shape n◦5 at
noise levelη = 3. In the zoomedpart, blue pixels belong to the computed
skeleton, whereas red pixels belong to the ground-truth skeleton (Color
figure online)

Similarly, regarding the ridgeness, plugging the inequality
rdg( p, σ ) ≥ thrdg into Eq. (13) leads to

√
2π

πσ
sin α exp

(
− d2

2σ 2

)
≥

√
2π

πσ
sin α0

which implies

d ≤ σ

√
−2 log

(
sin α0

sin α

)
. (50)

According to Eqs. (49) and (50), at a fixed object angle α,
the distance d below which pixels will be thresholded as
candidate skeleton points increases as r or σ gets larger, in
agreement with our observation.

4.3 Quantitative Study of Accuracy

We study and compare quantitatively the accuracy of
skeletons generated using the AOF-based and ridgeness-
based thinning procedures, under variations of parameters
and thresholds. Quantifying the accuracy of the skele-
tonization algorithms requires images where the expected
structures of skeletons are known. For this purpose, we
created a dataset of 20 synthetic shapes. Various curved
centerlines were first manually generated. These centerlines
were then dilated by using circular masks with smoothly
varying radii along their entire length. This allows expected
skeleton branches to be known beforehand. The expected
skeleton branches correspond to the initial centerlines, except
in junction areas, which thus need to be corrected. For each
shape, the ground-truth reference skeleton was generated by
correcting these junction areas using those of the AOF-based
skeleton with r = 2 and thaof value selected as in Sect. 4.2.
An overview of this dataset is shown in Fig. 11.

In order to study the influence of contour noise on the
choice of parameters r and σ , and their respective thresh-
olds, the shapes were corrupted with additive white Gaussian

noise at different intensities. We achieved this by moving
contour points along their unit normal vector, with an offset
randomly drawn from a zero-mean Gaussian with standard
deviation η. A particular shape of the dataset at noise lev-
els η ∈ {0, 1, 2, 3} is depicted in Fig. 12. Note that η = 0
corresponds to the initial uncorrupted shapes, fromwhich the
ground-truth skeletons are extracted.

Accuracy is measured based on the similarity between the
extracted skeleton and the ground-truth skeleton. We use the
Modified Hausdorff distance (MHD) in the Euclidean sense:

MHD(P, Q)

= max

⎧⎨
⎩

1

|P|
∑
p∈P

min
q∈Q ‖ p − q‖ ,

1

|Q|
∑
q∈Q

min
p∈P

‖q − p‖
⎫⎬
⎭

where P and Q are non-empty subsets of Z2 (the extracted
skeleton and the ground-truth skeleton). The discrepancy
between the extracted and ground-truth skeleton is illustrated
in Fig. 13.

In addition to the AOF-based and ridgeness-based skele-
tons, we report results obtained with corrected AOF of
Torsello and Hancock [45], as well as the Integer Medial
Axis by Hesselink and Roerdink [22]. On the one hand, the
AOF arises from the divergence of ∇D, or equivalently, the
curvature of the front propagating along∇D [43]. According
to [45], the error in calculating the AOF is related to the pixel
resolution but is also proportional to the curvature. Hence,
they developed a method that alleviates the contribution of
the curvature to the error, by taking into account variations
of curvature density. This led to the correction of curvature
density effects on the AOF, that is subsequently referred to as
CC-AOF. On the other hand, the Integer Medial Axis (IMA)
algorithm is based on a discrete modeling of the shape. In
addition to D, it uses the feature transform, which maps each
shape point to the set of closest boundary points:

FT(x) = { y ∈ ∂Ω | ‖x − y‖ = D(x)}

The AOF and ridgeness-based skeletonization methods
include pruning natively. The pruning level is controlled
by thaof and thrdg, respectively. Similarly, the IMA inte-
grates pruning in the criterion used to select skeleton points.
This criterion implies the distance between feature transform
points of neighboring shape points. Three pruning modes
are proposed, depending on the form of the function of this
distance: constant pruning, linear pruning and square-root
pruning. Constant and linear pruning criteria depend on a
parameter γ , which is varied in the experiments.4

4 For the CC-AOF, we used the skeleton module by F.-X. Dupé inte-
grated inD. Tschumperlé’sCImg library: https://github.com/dtschump/
CImg. For the IMA, we used our own C++ translation of the Java imple-
mentation available at http://wimhesselink.nl/imageproc/skeletons.
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Fig. 14 Modified Hausdorff
distance between ground-truth
skeleton and computed skeleton,
for the individual 20 synthetic
shapes, at 4 different noise
levels
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Radius r and scale σ were both varied from 1 to 5 with
a step of 0.1. Threshold thaof was varied from − 1 to 0 with
a step of 0.02, whereas threshold thrdg was varied from 0
to 1 with a step of 0.02. For the IMA, the best results were
obtained with the constant pruning mode, with parameter γ

varying from 10 to 50. For each couple (r , thaof) (and corre-
spondingly, (σ, thrdg) and γ ), the AOF, CC-AOF, ridgeness
and IMA skeletons were generated from the 20 shapes at
the 4 different noise levels.

In Fig. 14, the MHD is graphically represented on a per-
shape basis. For each shape at each noise level, we retained
the configurations of (r , thaof), (σ, thrdg) and γ that resulted
in the most accurate skeleton. It is not straightforwad to
bring out a clear trend from Fig. 14, except that the IMA
skeleton gives lower accuracy than the three other ones at

Table 1 Modified Hausdorff distance between ground-truth skeleton
and computed skeleton, averaged over the 20 synthetic shapes, at 4
different noise levels

AOF CC-AOF rdg IMA

η = 0 0.034 0.040 0.046 0.094

η = 1 0.584 0.582 0.583 0.632

η = 2 0.711 0.703 0.695 0.760

η = 3 1.333 1.346 1.101 1.359

For each noise level, the lowest and highestMHDare highlighted in bold
and italic, respectively

noise level η = 0. CC-AOF seems to give the best results
at noise level η = 0, whereas the ridgeness-based skeleton
seems to deal better with noisy shapes. Note that the y-scale
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Fig. 15 Modified Hausdorff distance between ground-truth skeleton and computed skeleton, averaged over all shapes, versus parameter and
threshold, at 4 different noise levels. Top row: AOF, middle row: CC-AOF, bottom row: ridgeness

in Fig. 14 is different across noise levels. To get an over-
all view of the performances, results listed in Fig. 14 are
averaged in Table 1. On noisy shapes, it is observed that the
ridgeness-based skeleton outperform AOF-based ones. It is
slightly more accurate at noise level η = 2 and significantly
better at noise level η = 3. This is expected from the LoG fil-
tering embedded in the ridgeness measure, which integrates
regularization of the distance map into the ridge detection
process.

The previous experiments considers the skeletonization
algorithms with their most favorable parameter tuning, but
does not report their behavior with respect to the parame-
ters. In Fig. 15, the MHD is averaged over the 20 shapes,
for each couple (r , thaof) of the AOF (top row) and CC-AOF
(middle row) and each couple (σ, thrdg) of the ridgeness (bot-
tom row), at different noise levels. The IMA having only one
parameter, equivalent plots could not be obtained; hence, we

did not include it into this study. Notice that, in the top and
middle rows, values of thaof increase downwards. First, it can
be seen from the general appearance of the MHD surfaces
that accuracy smoothly evolves with respect to parameters
and thresholds. For the AOF and ridgeness, large Regions
of Accurate Skeletons (RAS), with characteristic shapes, are
observed. Unsurprisingly, as a general trend, accuracy falls
as the noise level increases. In each plot, the area above
the RAS corresponds to over-pruned skeletons, generated
with AOF and ridgeness maps that were thresholded too
hard. In this case, the skeleton is almost empty, all candi-
date skeleton points being filtered out. Conversely, the area
below the RAS is related to under-pruned noisy skeletons
with undesirable branches, due to loose thresholding. For
the ridgeness, hyperbola-shaped RAS are observed, indi-
cating that the optimal threshold is an inverse function of
scale σ , which supports, among others, our derivations that
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led to Eqs. (14) and (35). As claimed in [45], the correc-
tion of curvature density effects, as a postprocessing step in
the CC-AOF, makes the AOF significantly less sensitive to
parameter tuning. The interpretation is that it filters out noisy
branches while reinforcing the AOF on desired branches. No
area of empty skeletons can be observed, unlike in the AOF.

5 Conclusion

The AOF and ridgeness measures depend on the local geom-
etry of the shape borders. Closed-form exact expressions
could be obtained for regular skeleton points and their neigh-
boring points, as well as for skeleton endpoints. As regards
peak points, ligatures and junction points, exact expressions
using elliptic integrals and simpler closed-form approxima-
tions based on the Taylor expansion of the distance function
were derived. We established a strong relationship between
the spatial parameter (r or σ ) and the corresponding ideal
threshold, based on an analysis of regular skeleton points and
their neighboring points. This was validated by experiments
on a shape dataset with known ground-truth skeletons. As
a possible extension to this work, AOF and ridgeness mea-
sures could be studied for theoretical configurations of 3D
shapes. Further investigation could be conducted on the cor-
rected AOF. In that case, approximate analytical solutions to
the transport Eq. (6) in [45] would be necessary.

Acknowledgements We thank Moncef Hidane for the fruitful discus-
sions. In particular, he suggested that we study bounds for elliptic
integrals and directed us toward several well-known theorems in calcu-
lus.
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