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Abstract
We develop a general mathematical framework for variational problems where the unknown function takes values in the space
of probability measures on some metric space. We study weak and strong topologies and define a total variation seminorm
for functions taking values in a Banach space. The seminorm penalizes jumps and is rotationally invariant under certain
conditions. We prove existence of a minimizer for a class of variational problems based on this formulation of total variation
and provide an example where uniqueness fails to hold. Employing the Kantorovich–Rubinstein transport norm from the
theory of optimal transport, we propose a variational approach for the restoration of orientation distribution function-valued
images, as commonly used in diffusion MRI. We demonstrate that the approach is numerically feasible on several data sets.

Keywords Variational methods · Total variation · Measure theory · Optimal transport · Diffusion MRI · Manifold-valued
imaging

1 Introduction

In this work, we are concerned with variational problems in
which the unknown function u : Ω → P(S2) maps from an
open and bounded setΩ ⊆ R

3, the image domain, into the set
of Borel probability measuresP(S2) on the two-dimensional
unit sphere S

2 (or, more generally, on some metric space):
Each value ux := u(x) ∈ P(S2) is a Borel probability mea-
sure on S

2 and can be viewed as a distribution of directions
in R3.

Suchmeasuresμ ∈ P(S2), in particular when represented
using density functions, are knownasorientation distribution
functions (ODFs). We will keep to the term due to its popu-
larity, although we will be mostly concerned with measures
instead of functions on S

2. Accordingly, an ODF-valued
image is a function u : Ω → P(S2). ODF-valued images
appear in reconstruction schemes for diffusion-weighted
magnetic resonance imaging (MRI), such as Q-ball imaging
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(QBI) [75] and constrained spherical deconvolution (CSD)
[74].

Applications in diffusion MRI. In diffusion-weighted (DW)
magnetic resonance imaging (MRI), the diffusivity of water
in biological tissues is measured noninvasively. In medical
applications where tissues exhibit fibrous microstructures,
such as muscle fibers or axons in cerebral white matter,
the diffusivity contains valuable information about the fiber
architecture. ForDWmeasurements, six ormore full 3DMRI
volumes are acquired with varying magnetic field gradients
that are able to sense diffusion.

Under the assumption of anisotropic Gaussian diffusion,
positive definite matrices (tensors) can be used to describe
the diffusion in each voxel. This model, known as diffusion
tensor imaging (DTI) [7], requires few measurements while
giving a good estimate of the main diffusion direction in the
case of well-aligned fiber directions. However, crossing and
branching of fibers at a scale smaller than the voxel size,
also called intra-voxel orientational heterogeneity (IVOH),
often occurs in human cerebral white matter due to the rel-
atively large (millimeter-scale) voxel size of DW-MRI data.
Therefore, DTI data are insufficient for accurate fiber tract
mapping in regions with complex fiber crossings (Fig. 1).

More refined approaches are based on high angular res-
olution diffusion imaging (HARDI) [76] measurements that
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Fig. 1 Top left: 2D fiber phantom as described in Sect. 4.1.2. Bottom
left: peak directions on a 15 × 15 grid, derived from the phantom and
used for the generation of synthetic HARDI data. Center: The diffu-
sion tensor (DTI) reconstruction approximates diffusion directions in

a parametric way using tensors, visualized as ellipsoids. Right: The
QBI-CSA-ODF reconstruction represents fiber orientation using prob-
ability measures at each point, which allows to accurately recover fiber
crossings in the center region

allow for more accurate restoration of IVOH by increasing
the number of applied magnetic field gradients. Reconstruc-
tion schemes for HARDI data yield orientation distribution
functions (ODFs) instead of tensors. In Q-ball imaging
(QBI) [75], anODF is interpreted to be themarginal probabil-
ity of diffusion in a given direction [1]. In contrast, ODFs in
constrained spherical deconvolution (CSD) approaches [74],
also denoted fiber ODFs, estimate the density of fibers per
direction for each voxel of the volume.

In all of these approaches, ODFs are modeled as antipo-
dally symmetric functions on the sphere which could be
modeled just aswell on the projective space (which is defined
to be a sphere where antipodal points are identified). How-
ever, most approaches parametrize ODFs using symmetric
spherical harmonics basis functionswhich avoids any numer-
ical overhead. Moreover, novel approaches [25,31,45,66]
allow for asymmetric ODFs to account for intra-voxel geom-
etry. Therefore, we stick to modeling ODFs on a sphere even
though our model could be easily adapted to models on the
projective space.

Variational models for orientation distributions. As a com-
mon denominator, in the above applications, reconstructing
orientation distributions rather than a single orientation at
each point allows to recover directional information of
structures— such as vessels or nerve fibers—that may over-
lap or have crossings: For a given set of directions A ⊂ S

2,
the integral

∫
A dux (z) describes the fraction of fibers cross-

ing the point x ∈ Ω that are oriented in any of the given
directions v ∈ A.

However, modeling ODFs as probability measures in a
nonparametric way is surprisingly difficult. In an earlier con-
ference publication [78], we proposed a new formulation
of the classical total variation seminorm (TV) [4,14] for
nonparametric Q-ball imaging that allows to formulate the
variational restoration model

inf
u:Ω→P(S2)

∫

Ω

ρ(x, ux ) dx + λTVW1(u), (1)

with various pointwise data fidelity terms

ρ : Ω × P(S2) → [0,∞). (2)

This involved in particular a nonparametric concept of total
variation for ODF-valued functions that is mathematically
robust and computationally feasible: The idea is to build upon
the TV formulations developed in the context of functional
lifting [52]

TVW1(u) := sup

{∫

Ω

〈− div p(x, ·), ux 〉 dx :

p ∈ C1
c (Ω × S

2;R3), p(x, ·) ∈ Lip1(S
2;R3)

}
,

(3)

where 〈g, μ〉 := ∫
S2

g(z) dμ(z) whenever μ is a measure on
S
2 and g is a real- or vector-valued function on S2.
One distinguishing feature of this approach is that it is

applicable to arbitrary Borel probability measures. In con-
trast, existing mathematical frameworks for QBI and CSD
generally follow the standard literature on the physics of
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Fig. 2 Horizontal axis: angle of main diffusion direction relative to
the reference diffusion profile in the bottom left corner. Vertical axis:
distances of the ODFs in the bottom row to the reference ODF in the
bottom left corner (L1-distances in the top row and W 1-distance in the

second row). L1-distances do not reflect the linear change in direction,
whereas theW 1-distance exhibits an almost-linear profile. L p-distances
for other values of p (such as p = 2) show a behavior similar to L1-
distances

MRI [11, p. 330] in assuming ODFs to be given by a prob-
ability density function in L1(S2), often with an explicit
parametrization.

As an example of one such approach, we point to the fiber
continuity regularizer proposed in [67] which is defined for
ODF-valued functions u where, for each x ∈ Ω , the measure
ux can be represented by a probability density function z 	→
ux (z) on S

2:

RFC(u) :=
∫

Ω

∫

S2
(z · ∇xux (z))

2 dz dx (4)

Clearly, a rigorous generalization of this functional to
measure-valued functions for arbitrary Borel probability
measures is not straightforward.

While practical, the probability density-based approach
raises somemodeling questions, which lead to deepermathe-
matical issues. In particular, comparing probability densities
using the popular L p-norm-based data fidelity terms—in
particular the squared L2-norm—does not incorporate the
structure naturally carried by probability densities such as
nonnegativity and unit total mass and ignores metric infor-
mation about S2.

To illustrate the last point, assume that two probability
measures are given in terms of density functions f , g ∈
L p(S2) satisfying supp( f ) ∩ supp(g) = ∅, i.e., having dis-
joint support on S

2. Then, ‖ f − g‖L p = ‖ f ‖L p + ‖g‖L p ,
irrespective of the size and relative position of the supporting
sets of f and g on S

2.
One would prefer to use statistical metrics such as optimal

transport metrics [77] that properly take into account dis-
tances on the underlying set S2 (Fig. 2). However, replacing
the L p-norm with such a metric in density-based variational
imaging formulations will generally lead to ill-posed mini-
mization problems, as the minimum might not be attained in
L p(S2), but possibly in P(S2) instead.

Therefore, it is interesting to investigate whether one can
derive a mathematical basis for variational image process-

ing with ODF-valued functions without making assumptions
about the parametrization of ODFs nor assuming ODFs to be
given by density functions.

1.1 Contribution

Building on the preliminary results published in the con-
ference publication [78], we derive a rigorous mathematical
framework (Sect. 2 and Appendices) for a generalization of
the total variation seminorm formulated in (3) to Banach
space-valued 1 and, as a special case, ODF-valued functions
(Sect. 2.1).

Building on this framework, we show existence of mini-
mizers to (1) (Theorem 1) and discuss properties of TV such
as rotational invariance (Proposition 2) and the behavior on
cartoonlike jump functions (Proposition 1).

We demonstrate that our framework can be numerically
implemented (Sect. 3) as a primal-dual saddle-point problem
involving only convex functions. Applications to synthetic
and real-world data sets show significant reduction of noise
as well as qualitatively convincing results when combined
with existing ODF-based imaging approaches, including Q-
ball and CSD (Sect. 4).

Details about the functional-analytic and measure-
theoretic background of our theory are given in Appendix
A. There, well-definedness of the TV-seminorm and of vari-
ational problems of form (1) is established by carefully
considering measurability of the functions involved (Lem-
mas 1 and 2). Furthermore, a functional-analytic explanation
for the dual structure that is inherent in (3) is given.

1 Here and throughout the paper, we use “Banach space-valued” as
a synonym for “taking values in a Banach space” even though we
acknowledge the ambiguity carried by this expression. Similarly, “met-
ric space-valued” is used in [3] and “manifold-valued” in [8].
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1.2 RelatedModels

The high angular resolution of HARDI results in a large
amount of noise compared with DTI. Moreover, most QBI
and CSD models reconstruct the ODFs in each voxel sep-
arately. Consequently, HARDI data are a particularly inter-
esting target for post-processing in terms of denoising and
regularization in the sense of contextual processing. Some
techniques apply a total variation or diffusive regularization
to theHARDI signal beforeODF reconstruction [9,28,47,53]
and others regularize in a post-processing step [25,29,80].

1.2.1 Variational Regularization of DW-MRI Data

A Mumford–Shah model for edge-preserving restoration
of Q-ball data was introduced in [80]. There, jumps were
penalized using the Fisher–Rao metric which depends on a
parametrization of ODFs as discrete probability distribution
functions on sampling points of the sphere. Furthermore, the
Fisher–Rao metric does not take the metric structure of S2

into consideration and is not amenable to biological inter-
pretations [60]. Our formulation avoids any parametrization-
induced bias.

Recent approaches directly incorporate a regularizer into
the reconstruction scheme: Spatial TV-based regularization
for Q-ball imaging has been proposed in [61]. However, the
TV formulation proposed therein again makes use of the
underlying parametrization of ODFs by spherical harmon-
ics basis functions. Similarly, DTI-based models such as
the second-order model for regularizing general manifold-
valued data [8] make use of an explicit approximation using
positive semidefinite matrices, which the proposed model
avoids.

The application of spatial regularization to CSD recon-
struction is known to significantly enhance the results [23].
However, total variation [12] and other regularizers [41] are
based on a representation ofODFs by square-integrable prob-
ability density functions instead of the mathematically more
general probability measures that we base our method on.

1.2.2 Regularization of DW-MRI by Linear Diffusion

In another approach, the orientational part of ODF-valued
images is included in the image domain, so that images are
identified with functions U : R3 × S

2 → R that allow for
contextual processing via PDE-based models on the space
of positions and orientation or, more precisely, on the group
SE(3) of 3D rigid motions. This technique comes from the
theory of stochastic processes on the coupled spaceR3 ×S

2.
In this context, it has been applied to the problems of contour
completion [59] and contour enhancement [28,29]. Its prac-
tical relevance in clinical applications has been demonstrated
[65].

This approach has been used to enhance the quality of
CSD as a prior in a variational formulation [67] or in a post-
processing step [64] that also includes additional angular
regularization. Due to the linearity of the underlying lin-
ear PDE, convolution-based explicit solution formulas are
available [28,63]. Implemented efficiently [54,55], they out-
perform our more computationally demanding model, which
is not tied to the specific application of DW-MRI, but allows
arbitrary metric spaces. Furthermore, nonlinear Perona and
Malik extensions to this technique have been studied [20]
that do not allow for explicit solutions.

As an important distinction, in these approaches, spa-
tial location and orientation are coupled in the regulariza-
tion. Since our model starts from the more general setting
of measure-valued functions on an arbitrary metric space
(instead of only S

2), it does not currently realize an equiva-
lent coupling. An extension to anisotropic total variation for
measure-valued functions might close this gap in the future.

In contrast to these diffusion-basedmethods, our approach
is able to preserve edges by design, even though the coupling
of positions and orientations is able to make up for this short-
coming at least in part since edges in DW-MRI are, most
of the time, oriented in parallel to the direction of diffusion.
Furthermore, the diffusion-basedmethods are formulated for
square-integrable density functions, excluding point masses.
Our method avoids this limitation by operating on mathe-
matically more general probability measures.

1.2.3 Other Related Theoretical Work

Variants of the Kantorovich–Rubinstein formulation of the
Wasserstein distance that appears in our framework have
been applied in [51] and, more recently, in [32,33] to the
problems of real-, RGB- and manifold-valued image denois-
ing.

Total variation regularization for functions on the space
of positions and orientations was recently introduced in [16]
based on [18]. Similarly, the work and toolbox in [69] is
concerned with the implementation of so-called orientation
fields in 3D image processing.

ADirichlet energy for measure-valued functions based on
Wasserstein metrics was recently developed in the context of
harmonic mappings in [49] which can be interpreted as a
diffusive (L2) version of our proposed (L1) regularizer.

Our work is based on the conference publication [78],
where a nonparametric Wasserstein-total variation regular-
izer for Q-ball data is proposed. We embed this formulation
of TV into a significantly more general definition of TV for
Banach space-valued functions.

In the literature, Banach space-valued functions of
bounded variation mostly appear as a special case of metric
space-valued functions of bounded variation (BV) as intro-
duced in [3]. Apart from that, the case of one-dimensional
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domains attracts some attention [27] and the case of Banach
space-valued BV functions defined on a metric space is stud-
ied in [57].

In contrast to these approaches, we give a definition of
Banach space-valued BV functions that live on a finite-
dimensional domain. In analogy with the real-valued case,
we formulate the TV seminorm by duality, inspired by the
functional-analytic framework from the theory of functional
lifting [42] as used in the theory of Young measures [6].

Due to the functional-analytic approach, our model does
not depend on the specific parametrization of the ODFs and
can be combinedwith theQBI andCSD frameworks forODF
reconstruction fromHARDI data, either in a post-processing
step or during reconstruction. Combined with suitable data
fidelity terms such as least-squares or Wasserstein distances,
it allows for an efficient implementation using state-of-the-
art primal-dual methods.

2 AMathematical Framework for
Measure-Valued Functions

Our work is motivated by the study of ODF-valued functions
u : Ω → P(S2) for Ω ⊂ R

3 open and bounded. However,
froman abstract viewpoint, the unit sphereS2 ⊂ R

3 equipped
with the metric induced by the Riemannian manifold struc-
ture [50]—i.e., the distance between two points is the arc
length of the great circle segment through the two points—
is simply a particular example of a compact metric space.

As it turns out,most of the analysis only relies on this prop-
erty. Therefore, in the following we generalize the setting of
ODF-valued functions to the study of functions taking values
in the space of Borel probability measures on an arbitrary
compact metric space (instead of S2).

More precisely, throughout this section, let

1. Ω ⊂ R
d be an open and bounded set, and let

2. (X , d) be a compact metric space, e.g., a compact Rie-
mannian manifold equipped with the commonly used
metric induced by the geodesic distance (such as X =
S
2).

Boundedness of Ω and compactness of X are not required
by all of the statements below. However, as we are ulti-
mately interested in the case of X = S

2 and rectangular
image domains, we impose these restrictions. Apart from
DW-MRI, one natural application of this generalized setting
is two-dimensional ODFs where d = 2 and X = S

1 which is
similar to the setting introduced in [16] for the edge enhance-
ment of color or grayscale images.

The goal of this section is a mathematically well-defined
formulation of TV as given in (3) that exhibits all the prop-
erties that the classical total variation seminorm is known

for: anisotropy (Proposition 2), preservation of edges and
compatibility with piecewise-constant signals (Proposition
1). Furthermore, for variational problems as in (1), we give
criteria for the existence of minimizers (Theorem 1) and dis-
cuss (non-)uniqueness (Proposition 3).

A well-defined formulation of TV as given in (3) requires
a careful inspection of topological and functional-analytic
concepts from optimal transport and general measure theory.
For details, we refer the reader to the elaborate Appendix A.
Here, we only introduce the definitions and notation needed
for the statement of the central results.

2.1 Definition of TV

We first give a definition of TV for Banach space-valued
functions (i.e., functions that take values in a Banach space),
which a definition of TV for measure-valued functions will
turn out to be a special case of.

For weakly measurable (see Appendix A.1) functions
u : Ω → V with values in a Banach space V (later, we will
replace V by a space of measures), we define, extending the
formulation of TVW1 introduced in [78],

TVV (u) := sup

{∫

Ω

〈− div p(x), u(x)〉 dx :

p ∈ C1
c (Ω, (V ∗)d), ∀x ∈ Ω : ‖p(x)‖(V ∗)d ≤ 1

}
.

(5)

ByV ∗, we denote the (topological) dual space ofV , i.e.,V ∗ is
the set of bounded linear operators from V toR. The criterion
p ∈ C1

c (Ω, (V ∗)d) means that p is a compactly supported
function on Ω ⊂ R

d with values in the Banach space (V ∗)d
and the directional derivatives ∂i p : Ω → (V ∗)d , 1 ≤ i ≤ d
(in Euclidean coordinates) lie in Cc(Ω, (V ∗)d). We write

div p(x) :=
d∑

i=1

∂i pi (x). (6)

Lemma 1 ensures that the integrals in (5) are well defined
and Appendix D discusses the choice of the product norm
‖ · ‖(V ∗)d .

Measure-valued functions. Now we want to apply this def-
inition to measure-valued functions u : Ω → P(X), where
P(X) is the set of Borel probability measures supported on
X .

The space P(X) equipped with the Wasserstein met-
ric W1 from the theory of optimal transport is isometri-
cally embedded into the Banach space V = KR(X) (the
Kantorovich–Rubinstein space) whose dual space is the
space V ∗ = Lip0(X) of Lipschitz-continuous functions on
X that vanish at an (arbitrary but fixed) point x0 ∈ X . This
setting is introduced in detail in Appendix A.2. Then, for
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u : Ω → P(X), definition (5) comes back to (3) or, more
precisely,

TVKR(u) := sup

{∫

Ω

〈− div p(x), u(x)〉 dx :

p ∈ C1
c (Ω, [Lip0(X)]d), ‖p(x)‖[Lip0(X)]d ≤ 1

}

,

(7)

where the definition of the product norm ‖ · ‖[Lip0(X)]d is
discussed in Appendix D.3.

2.2 Properties of TV

In this section, we show that the properties that the classical
total variation seminorm is known for continue to hold for
definition (5) in the case of Banach space-valued functions.

Cartoon functions. A reasonable demand is that the new
formulation shouldbehave similarly to the classical total vari-
ation on cartoonlike jump functions u : Ω → V ,

u(x) :=
{
u+, x ∈ U ,

u−, x ∈ Ω \U ,
(8)

for some fixedmeasurable setU ⊂ Ω with smooth boundary
∂U , and u+, u− ∈ V . The classical total variation assigns to
such functions a penalty of

Hd−1(∂U ) · ‖u+ − u−‖V , (9)

where theHausdorffmeasureHd−1(∂U )describes the length
or area of the jump set. The following proposition, which
generalizes [78, Proposition 1], provides conditions on the
norm ‖ · ‖(V ∗)d which guarantee this behavior.

Proposition 1 Assume that U is compactly contained in Ω

with C1-boundary ∂U. Let u+, u− ∈ V and let u : Ω → V
be defined as in (8). If the norm ‖ · ‖(V ∗)d in (5) satisfies

∣
∣
∣
∑d

i=1 xi 〈pi , v〉
∣
∣
∣ ≤ ‖x‖2‖p‖(V ∗)d‖v‖V , (10)

‖(x1q, . . . , xdq)‖(V ∗)d ≤ ‖x‖2‖q‖V ∗ (11)

whenever q ∈ V ∗, p ∈ (V ∗)d , v ∈ V , and x ∈ R
d , then

TVV (u) = Hd−1(∂U ) · ‖u+ − u−‖V . (12)

Proof See Appendix B. ��

Rotational invariance. Property (12) is inherently rotation-
ally invariant: We have TVV (u) = TVV (ũ) whenever
ũ(x) := u(Rx) for some R ∈ SO(d) and u as in (8), with
the domain Ω rotated accordingly. The reason is that the

jump size is the same everywhere along the edge ∂U . More
generally, we have the following proposition:

Proposition 2 Assume that ‖ · ‖(V ∗)d satisfies the rotational
invariance property

‖p‖(V ∗)d = ‖Rp‖(V ∗)d ∀p ∈ (V ∗)d , R ∈ SO(d), (13)

where Rp ∈ (V ∗)d is defined via

(Rp)i =
d∑

j=1

Ri j p j ∈ V ∗. (14)

Then,TVV is rotationally invariant, i.e.,TVV (u) = TVV (ũ)

whenever u ∈ L∞
w (Ω, V ) and ũ(x) := u(Rx) for some

R ∈ SO(d).

Proof (Proposition 2) See Appendix C. ��

2.3 TVKR as a Regularizer in Variational Problems

This section shows that, in the case of measure-valued func-
tions u : Ω → P(X), the functional TVKR exhibits a
regularizing property, i.e., it establishes existence of mini-
mizers.

For λ ∈ [0,∞) and ρ : Ω × P(X) → [0,∞) fixed, we
consider the functional

Tρ,λ(u) :=
∫

Ω

ρ(x, u(x)) dx + λTVKR(u). (15)

for u : Ω → P(X). Lemma 2 in Appendix F makes sure that
the integrals in (15) are well defined.

Then, minimizers of energy (15) exist in the following
sense:

Theorem 1 Let Ω ⊂ R
d be open and bounded, let (X , d)

be a compact metric space and assume that ρ satisfies the
assumptions from Lemma 2. Then, the variational problem

inf
u∈L∞

w (Ω,P(X))
Tρ,λ(u) (16)

with the energy

Tρ,λ(u) :=
∫

Ω

ρ(x, u(x)) dx + λTVKR(u). (17)

as in (15) admits a (not necessarily unique) solution.

Proof See Appendix F. ��
Non-uniqueness of minimizers of (15) is clear for patho-

logical choices such as ρ ≡ 0. However, there are non-trivial
cases where uniqueness fails to hold:
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Proposition 3 Let X = {0, 1} be the metric space consisting
of two discrete points of distance 1 and define ρ(x, μ) :=
W1( f (x), μ) where

f (x) :=
{

δ1, x ∈ Ω \U ,

δ0, x ∈ U ,
(18)

for a non-empty subset U ⊂ Ω with C1 boundary. Assume
coupled norm (D.22) on [Lip0(X)]d in definition (7) of
TVKR.

Then, there is a one-to-one correspondence between fea-
sible solutions u of problem (16) and feasible solutions ũ of
the classical L1-TV functional

inf
ũ∈L1(Ω,[0,1])

T̃λ(u), T̃λ(u) := ‖1U − ũ‖L1 + λTV(ũ) (19)

via the mapping

u(x) = ũ(x)δ0 + (1 − ũ(x))δ1. (20)

Under this mapping T̃λ(ũ) = Tρ,λ(u) holds, so that problems
(16) and (19) are equivalent.

Furthermore, there exists λ > 0 for which the minimizer
of Tρ,λ is not unique.

Proof See Appendix E. ��

2.4 Application to ODF-Valued Images

For ODF-valued images, we consider the special case X =
S
2 equipped with the metric induced by the standard Rie-

mannian manifold structure on S
2, and Ω ⊂ R

3.
Let f ∈ L∞

w (Ω,P(S2)) be an ODF-valued image and
denote byW1 theWasserstein metric from the theory of opti-
mal transport (see equation (A.8) in Appendix A.2). Then,
the function

ρ(x, μ) := W1( f (x), μ), x ∈ Ω, μ ∈ P(S2), (21)

satisfies the assumptions in Lemma 2 and hence Theorem 1
(see Appendix F).

For denoising of an ODF-valued function f in a post-
processing step after ODF reconstruction, similar to [78] we
propose to solve the variational minimization problem

inf
u:Ω→P(S2)

∫

Ω

W1( f (x), u(x)) dx + λTVKR(u) (22)

using the definition of TVKR(u) in (7).
The following statement shows that this in fact penalizes

jumps in u by the Wasserstein distance as desired, correctly
taking the metric structure of S2 into account.

Corollary 1 Assume that U is compactly contained inΩ with
C1-boundary ∂U.Let the functionu : Ω → P(S2)bedefined
as in (8) for some u+, u− ∈ P(S2). Choosing norm (D.22)
(or (D.1) with s = 2) on the product space Lip(S2)d , we
have

TVKR(u) = Hd−1(∂U ) · W1(u
+, u−). (23)

The corollary was proven directly in [78, Proposition 1]. In
the functional-analytic framework established above, it now
follows as a simple corollary to Proposition 1.

Moreover, beyond the theoretical results given in [78], we
now have a rigorous framework that ensures measurability of
the integrands in (22), which is crucial for well-definedness.
Furthermore, Theorem 1 on the existence of minimizers
provides an important step in provingwell-posedness of vari-
ational model (22).

3 Numerical Scheme

As in [78], we closely follow the discretization scheme from
[52] in order to formulate the problem in a saddle-point form
that is amenable to standard primal-dual algorithms [15,37–
39,62].

3.1 Discretization

We assume a d-dimensional image domainΩ , d = 2, 3, that
is discretized using n points x1, . . . , xn ∈ Ω . Differentiation
in Ω is done on a staggered grid with Neumann boundary
conditions such that the dual operator to the differential oper-
ator D is the negative divergence with vanishing boundary
values.

The framework presented in Sect. 2 applies to arbitrary
compact metric spaces X . However, for an efficient imple-
mentation of the Lipschitz constraint in (7), we will assume
an s-dimensional manifold X = M. This includes the case
of ODF-valued images (X = M = S

2, s = 2). For future
generalizations to other manifolds, we give the discretiza-
tion in terms of a general manifold X = M even though this
means neglecting the reasonable parametrization of S2 using
spherical harmonics in the case of DW-MRI. Moreover, note
that the following discretization does not apply to arbitrary
metric spaces X .

Now, let M be decomposed (Fig. 3) into l disjoint mea-
surable (not necessarily open or closed) sets

m1, . . . ,ml ⊂ M (24)

with
⋃

k m
k = M and volumes b1, . . . , bl ∈ R with respect

to the Lebesgue measure onM. A measure-valued function
u : Ω → P(M) is discretized as its average u ∈ R

n,l on the
volume mk , i.e.,
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uik := uxi (m
k)/bk . (25)

Functions p ∈ C1
c (Ω,Lip(X ,Rd)) as they appear, for

example, in our proposed formulation of TV in (5) are iden-
tified with functions p : Ω × M → R

d and discretized as
p ∈ R

n,l,d via pikt := pt (xi , zk) for a fixed choice of dis-
cretization points

∀k = 1, . . . , l : zk ∈ mk ⊂ M. (26)

The dual pairing of p with u is discretized as

〈u, p〉b :=
∑

i,k

bku
i
k p

i
k . (27)

3.1.1 Implementation of the Lipschitz Constraint

The Lipschitz constraint in definition (A.8) of W1 and in
definition (7) of TVKR is implemented as a norm constraint
on the gradient. Namely, for a function p : M → R, which
we discretize as p ∈ R

l , pk := p(zk), we discretize gradients
on a staggered grid of m points

y1, . . . , ym ∈ M, (28)

such that each of the y j has r neighboring points among the
zk (Fig. 3):

∀ j = 1, . . . ,m : N j ⊂ {1, . . . , l}, #N j = r . (29)

The gradient g ∈ R
m,s , g j := Dp(y j ) is then defined as the

vector in the tangent space at y j that, together with a suitable
choice of the unknown value c := p(y j ), best explains the
known values of p at the zk by a first-order Taylor expansion

p(zk) ≈ p(y j ) + 〈g j , v jk〉, k ∈ N j , (30)

where v jk := exp−1
y j (zk) ∈ Ty jM is the Riemannian inverse

exponential mapping of the neighboring point zk to the tan-
gent space at y j . More precisely,

g j := arg min
g∈Ty jM

min
c∈R

∑

k∈N j

(
c + 〈g, v jk〉 − p(zk)

)2
. (31)

Writing the v jk into a matrix M j ∈ R
r ,s and encoding the

neighboring relations as a sparse indexing matrix P j ∈ R
r ,l ,

we obtain the explicit solution for the value c and gradient
g j at the point y j from the first-order optimality conditions
of (31):

c = p(y j ) = 1

r
(eT P j p − eT M j g j ), (32)

(M j )T EM j g j = (M j )T E P j p, (33)

yj
zk

mk

Fig. 3 Discretization of the unit sphere S2.Measures are discretized via
their average on the subsets mk . Functions are discretized on the points
zk (dot markers), and their gradients are discretized on the y j (square
markers). Gradients are computed from points in a neighborhood N j
of y j . The neighborhood relation is depicted with dashed lines. The
discretization points were obtained by recursively subdividing the 20
triangular faces of an icosahedron and projecting the vertices to the
surface of the sphere after each subdivision

where e := (1, . . . , 1) ∈ R
r and E := (I − 1

r ee
T ). The

value c does not appear in the linear equations for g j and is
not needed in our model; therefore, we can ignore the first
line. The second line, with A j := (M j )T EM j ∈ R

s,s and
B j := (M j )T E ∈ R

s,r , can be concisely written as

A j g j = B j P j p, for each j ∈ {1, . . . ,m}. (34)

Following our discussion about the choice of norm in
Appendix D, the (Lipschitz) norm constraint ‖g j‖ ≤ 1 can
be implemented using the Frobenius norm or the spectral
norm, both being rotationally invariant and both acting as
desired on cartoonlike jump functions (cf. Proposition 1).

3.1.2 DiscretizedW1-TV Model

Based on the above discretization, we can formulate saddle-
point forms for (22) that allow to apply a primal-dual first-
order method such as [15]. In the following, the measure-
valued input or reference image is given by f ∈ R

l,n and the
dimensions of the primal and dual variables are

u ∈ R
l,n, p ∈ R

l,d,n, g ∈ R
n,m,s,d , (35)

p0 ∈ R
l,n, g0 ∈ R

n,m,s, (36)

where gi j ≈ Dz p(xi , y j ) and g j
0 ≈ Dp0(y j ).

123



1490 Journal of Mathematical Imaging and Vision (2018) 60:1482–1502

Using aW1 data term, the saddle-point form of the overall
problem reads

min
u

max
p,g

W1(u, f ) + 〈Du, p〉b (37)

s.t. ui ≥ 0, 〈ui , b〉 = 1, ∀i, (38)

A j gi jt = B j P j pit ∀i, j, t, (39)

‖gi j‖ ≤ λ ∀i, j (40)

or, applying Kantorovich–Rubinstein duality (A.8) to the
data term,

min
u

max
p,g,p0,g0

〈u − f , p0〉b + 〈Du, p〉b (41)

s.t. ui ≥ 0, 〈ui , b〉 = 1 ∀i, (42)

A j gi jt = B j P j pit , ‖gi j‖ ≤ λ ∀i, j, t, (43)

A j gi j0 = B j P j pi0, ‖gi j0 ‖ ≤ 1 ∀i, j . (44)

3.1.3 Discretized L2-TV Model

For comparison, we also implemented the Rudin–Osher–
Fatemi (ROF) model

inf
u:Ω→P(S2)

∫

Ω

∫

S2
( fx (z) − ux (z))

2 dz dx + λTV(u) (45)

using TV = TVKR . The quadratic data term can be imple-
mented using the saddle-point form

min
u

max
p,g

〈u − f , u − f 〉b + 〈Du, p〉b (46)

s.t. ui ≥ 0, 〈ui , b〉 = 1, (47)

A j gi jt = B j P j pit , ‖gi j‖ ≤ λ ∀i, j, t . (48)

From a functional-analytic viewpoint, this approach requires
to assume that ux can be represented by an L2 density, suffers
from well-posedness issues and ignores the metric structure
on S2 asmentioned in Introduction. Nevertheless, we include
it for comparison, as the L2 norm is a common choice and
the discretizedmodel is a straightforwardmodification of the
W1-TV model.

3.2 Implementation Using a Primal-Dual Algorithm

Based on saddle-point forms (41) and (46), we applied the
primal-dual first-order method proposed in [15] with the
adaptive step sizes from [39]. We also evaluated the diagonal
preconditioning proposed in [62]. However, we found that
while it led to rapid convergence in some cases, the method
frequently became unacceptably slow before reaching the

desired accuracy. The adaptive step size strategy exhibited a
more robust overall convergence.

The equality constraints in (41) and (46) were included
into the objective function by introducing suitable Lagrange
multipliers. As far as the norm constraint on g0 is concerned,
the spectral and Frobenius norms agree, since the gradient
of p0 is one-dimensional. For the norm constraint on the
Jacobian g of p, we found the spectral and Frobenius norm
to give visually indistinguishable results.

Furthermore, since M = S
2 and therefore s = 2 in the

ODF-valued case, explicit formulas for the orthogonal pro-
jections on the spectral norm balls that appear in the proximal
steps are available [36]. The experiments below were calcu-
lated using spectral norm constraints, as in our experience
this choice led to slightly faster convergence.

4 Results

We implemented our model in Python 3.5 using the libraries
NumPy1.13, PyCUDA2017.1 andCUDA8.0. The examples
were computed on an IntelXeonX5670 2.93GHzwith 24GB
ofmainmemory and anNVIDIAGeForceGTX480 graphics
card with 1,5 GB of dedicated video memory. For each step
in the primal-dual algorithm, a set of kernels was launched
on the GPU, while the primal-dual gap was computed and
termination criteria were tested every 5 000 iterations on the
CPU.

For the following experiments, we applied our models
presented in Sects. 3.1.2 (W1-TV) and 3.1.3 (L2-TV) to
ODF-valued images reconstructed from HARDI data using
the reconstruction methods that are provided by the Dipy
project [34]:

– For voxel-wise QBI reconstruction within constant solid
angle (CSA-ODF) [1], we used CsaOdfModel from
dipy.reconst.shm with spherical harmonics func-
tions up to order 6.

– For voxel-wise CSD reconstruction as proposed in [73],
we used ConstrainedSphericalDeconvModel
as provided with dipy.reconst.csdeconv.

The response function that is needed for CSD reconstruc-
tion was determined using the recursive calibration method
[72] as implemented in recursive_response, which
is also part of dipy.reconst.csdeconv. We gener-
ated theODFplots usingVTK-based sphere_funcs from
dipy.viz.fvtk.

It is equally possibly to use other methods for Q-ball
reconstruction for the preprocessing step, or even integrate
the proposed TV-regularizer directly into the reconstruction
process. Furthermore, our method is compatible with differ-
ent numerical representations of ODFs, including sphere dis-
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Fig. 4 Top: 1D image of synthetic unimodal ODFs where the angle
of the main diffusion direction varies linearly from left to right. This
is used as input image for the center and bottom row. Center: solution
of L2-TV model with λ = 5. Bottom: solution of W1-TV model with
λ = 10. In both cases, the regularization parameter λ was chosen suffi-

ciently large to enforce a constant result. The quadratic data term mixes
all diffusion directions into one blurred ODF, whereas the Wasserstein
data term produces a tight ODF that is concentrated close to the median
diffusion direction

cretization [35], spherical harmonics [1], spherical wavelets
[46], ridgelets [56] or similar basis functions [2,43], as it does
not make any assumptions on regularity or symmetry of the
ODFs.We leave a comprehensive benchmark to future work,
as the main goal of this work is to investigate the mathemat-
ical foundations.

4.1 Synthetic Data

4.1.1 L2-TV vs.W1-TV

We demonstrate the different behaviors of the L2-TV
model compared to the W1-TV model with the help of a
one-dimensional synthetic image (Fig. 4) generated using
the multi-tensor simulation method multi_tensor from
dipy.sims.voxelwhich is based on [71] and [26, p. 42];
see also [78].

By choosing very high regularization parameters λ, we
enforce themodels to produce constant results. The L2-based
data term prefers a blurred mixture of diffusion directions,
essentially averaging the probability measures. The W1 data
term tends to concentrate the mass close to the median of the
diffusion directions on the unit sphere, properly taking into
account the metric structure of S2.

4.1.2 Scale-Space Behavior

To demonstrate the scale-space behavior of our variational
models, we implemented a 2D phantom of two crossing fiber
bundles as depicted in Fig. 1, inspired by [61]. From this
phantom, we computed the peak directions of fiber orienta-
tions on a 15 × 15 grid. This was used to generate synthetic
HARDI data simulating a DW-MRI measurement with 162
gradients and a b-value of 3 000, again using the multi-tensor
simulation framework from dipy.sims.voxel.

We then applied our models to the CSA-ODF reconstruc-
tion of this data set for increasing values of the regularization

parameter λ in order to demonstrate the scale-space behav-
iors of the different data terms (Fig. 5).

As both models use the proposed TV regularizer, edges
are preserved. However, just as classical ROF models tend
to reduce jump sizes across edges, and lose contrast, the L2-
TV model results in the background and foreground regions
becoming gradually more similar as regularization strength
increases. The W1-TV model preserves the unimodal ODFs
in the background regions and demonstrates a behavior more
akin to robust L1-TV models [30], with structures disap-
pearing abruptly rather than gradually depending on their
scale.

4.1.3 Denoising

We applied our model to the CSA-ODF reconstruction of a
slice (NumPy coordinates [12:27,22,21:36]) from the
synthetic HARDI data set with added noise at SNR = 10,
provided in the ISBI 2013 HARDI reconstruction chal-
lenge. We evaluated the angular precision of the estimated
fiber compartments using the script (compute_local_
metrics.py) provided on the challenge homepage [24].

The script computes the mean μ and standard deviation
σ of the angular error between the estimated fiber directions
inside the voxels and the ground truth as also provided on the
challenge page (Fig. 6).

The noisy input image exhibits a mean angular error of
μ = 34.52 degrees (σ = 19.00). The reconstructions using
W1-TV (μ = 17.73, σ = 17.25) and L2-TV (μ = 17.82,
σ = 18.79) clearly improve the angular error and give visu-
ally convincing results: The noise is effectively reduced and
a clear trace of fibers becomes visible (Fig. 7). In these exper-
iments, the regularizing parameter λ was chosen optimally
in order to minimize the mean angular error to the ground
truth.
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Fig. 5 Numerical solutions of the proposed variational models (see
Sects. 3.1.2 and 3.1.3) applied to the phantom (Fig. 1) for increasing
values of the regularization parameter λ. Left column: solutions of L2-
TVmodel for λ = 0.11, 0.22, 0.33.Right column: solutions ofW1-TV

model for λ = 0.9, 1.8, 2.7. As is known from classical ROF models,
the L2 data term produces a gradual transition/loss of contrast toward
the constant image, while theW1 data term stabilizes contrast along the
edges

4.2 Human Brain HARDI Data

One slice (NumPy coordinates [20:50, 55:85, 38])
of HARDI data from the human brain data set [68] was used

to demonstrate the applicability of our method to real-world
problems and to images reconstructed using CSD (Fig. 8).
Run times of theW1-TVand L2-TVmodel are approximately
35minutes (105 iterations) and 20minutes (6·104 iterations).
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Fig. 6 Slice of size 15 × 15 from the data provided for the ISBI
2013 HARDI reconstruction challenge [24]. Left: peak directions of
the ground truth. Right: Q-ball image reconstructed from the noisy

(SNR = 10) synthetic HARDI data, without spatial regularization. The
low SNR makes it hard to visually recognize the fiber directions

Fig. 7 Restored Q-ball images reconstructed from the noisy input data in Fig. 6. Left: result of the L2-TV model (λ = 0.3). Right: result of the
W1-TV model (λ = 1.1). The noise is reduced substantially so that fiber traces are clearly visible in both cases. The W1-TV model generates less
diffuse distributions

As a stopping criterion, we require the primal-dual gap
to fall below 10−5, which corresponds to a deviation from
the global minimum of less than 0.001% and is a rather
challenging precision for the first-order methods used. The
regularization parameter λ was manually chosen based on
visual inspection.

Overall, contrast between regions of isotropic and
anisotropic diffusion is enhanced. In regions where a clear
diffusion direction is already visible before spatial regular-
ization,W1-TV tends to conserve this information better than
L2-TV.

5 Conclusion and Outlook

Our mathematical framework for ODF- and, more gen-
eral, measure-valued images allows to perform total vari-
ation-based regularization of measure-valued data without
assuming a specific parametrization ofODFs,while correctly
taking the metric on S

2 into account. The proposed model
penalizes jumps in cartoonlike images proportional to the
jump size measured on the underlying normed space, in our
case the Kantorovich–Rubinstein space, which is built on the
Wasserstein-1-metric.Moreover, the full variational problem
was shown to have a solution and can be implemented using
off-the-shelf numerical methods.
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Fig. 8 ODF image of the corpus callosum, reconstructed with CSD
from HARDI data of the human brain [68]. Top: noisy input. Middle:
restored using L2-TV model (λ = 0.6). Bottom: restored using W1-
TV model (λ = 1.1). The results do not show much difference: Both
models enhance contrast between regions of isotropic and anisotropic
diffusion, while the anisotropy of ODFs is conserved

With the first-order primal-dual algorithm chosen in this
paper, solving the underlying optimization problem for DW-
MRI regularization is computationally demanding due to the
high dimensionality of the problem.However, numerical per-
formancewas not a priority in thiswork and can be improved.
For example, optimal transport norms are known to be effi-
ciently computable using Sinkhorn’s algorithm [21].

Aparticularly interestingdirection for future research con-
cerns extending the approach to simultaneous reconstruction
and regularization, with an additional (non-) linear operator
in the data fidelity term [1]. For example, one could consider
an integrand of the form ρ(x, u(x)) := d(S(x), Au(x)) for
somemeasurements S on ametric space (H , d) and a forward
operator A mapping an ODF u(x) ∈ P(S2) to H .

Furthermore, modifications of our total variation semi-
norm that take into account the coupling of positions and
orientations according to the physical interpretation of ODFs
inDW-MRI could close the gap to state-of-the-art approaches
such as [28,63].

The model does not require symmetry of the ODFs
and therefore could be adapted to novel asymmetric ODF
approaches [25,31,45,66]. Finally, it is easily extendable to
images with values in the probability space over a different
manifold, or even ametric space, as they appear, for example,
in statisticalmodels of computer vision [70] and in recent lift-
ing approaches [5,48,58] for combinatorial and non-convex
optimization problems.

Appendix A: Background from Functional
Analysis andMeasure Theory

In this appendix, we present the theoretical background for
a rigorous understanding of the notation and definitions
underlying the notion of TV as proposed in (5) and (7). Sec-
tion A.1 is concerned with Banach space-valued functions,
and Sect. A.2 focuses on the special case of measure-valued
functions.

A.1 Banach Space-Valued Functions of Bounded
Variation

This subsection introduces a function space on which the
formulation of TV as given in (5) is well defined.

Let (V , ‖ · ‖V ) be a real Banach space with (topological)
dual space V ∗, i.e., V ∗ is the set of bounded linear operators
from V to R. The dual pairing is denoted by 〈p, v〉 := p(v)

whenever p ∈ V ∗ and v ∈ V .
We say that u : Ω → V is weakly measurable if x 	→

〈p, u(x)〉 is measurable for each p ∈ V ∗ and say that
u ∈ L∞

w (Ω, V ) if u is weakly measurable and essentially
bounded in V , i.e.,
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‖u‖∞,V := ess supx∈Ω‖u(x)‖V < ∞. (A.1)

Note that the essential supremum is well defined even for
non-measurable functions as long as themeasure is complete.
In our case, we assume the Lebesgue measure on Ω which
is complete.

The following Lemma ensures that the integrand in (5) is
measurable.

Lemma 1 Assume that u : Ω → V is weakly measurable
and p : Ω → V ∗ is weakly* continuous, i.e., for each v ∈
V , the map x 	→ 〈p(x), v〉 is continuous. Then, the map
x 	→ 〈p(x), u(x)〉 is measurable.
Proof Define f : Ω × Ω → R via

f (x, ξ) := 〈p(x), u(ξ)〉. (A.2)

Then, f is continuous in the first and measurable in the sec-
ond variable. In the calculus of variations, functions with
this property are called Carathéodory functions and have
the property that x 	→ f (x, g(x)) is measurable whenever
g : Ω → Ω is measurable, which is proven by approxi-
mation of g as the pointwise limit of simple functions [22,
Proposition 3.7]. In our case, we can simply set g(x) := x ,
which is measurable, and the assertion follows. ��

A.2 Wasserstein Metrics and the KR Norm

This subsection is concerned with the definition of the space
of measures KR(X) and the isometric embedding P(X) ⊂
KR(X) underlying the formulation of TV given in (7).

By M(X) and P(X) ⊂ M(X), we denote the sets of
signed Radon measures and Borel probability measures sup-
ported on X . M(X) is a vector space [40, p. 360] and a
Banach space if equipped with the norm

‖μ‖M :=
∫

X
d|μ|, (A.3)

so that a function u : Ω → P(X) ⊂ M(X) is Banach space-
valued (i.e., u takes values in a Banach space). If we define
C(X) as the space of continuous functions on X with norm
‖ f ‖C := supx∈X | f (x)|, under the above assumptions on X ,
M(X) can be identified with the (topological) dual space of
C(X) with dual pairing

〈μ, p〉 :=
∫

X
p dμ, (A.4)

whenever μ ∈ M(X) and p ∈ C(X), as proven in [40,
p. 364]. Hence, P(X) is a bounded subset of a dual space.

We will now see that additionally, P(X) can be regarded
as subset of a Banach space which is a predual space (in the

sense that its dual space can be identifiedwith a “meaningful”
function space) and which metrizes the weak* topology of
M(X) on P(X) by the optimal transport metrics we are
interested in.

For q ≥ 1, the Wasserstein metrics Wq on P(X) are
defined via

Wq(μ,μ′) :=
(

inf
γ∈Γ (μ,μ′)

∫

X×X
d(x, y)q dγ (x, y)

)1/q

,

(A.5)

where

Γ (μ,μ′) := {
γ ∈ P(X × X) : π1γ = μ, π2γ = μ′} .

(A.6)

Here, πiγ denotes the i th marginal of the measure γ on
the product space X × X , i.e., π1γ (A) := γ (A × X) and
π2γ (B) := γ (X × B) whenever A, B ⊂ X .

Now, let Lip(X ,Rd) be the space of Lipschitz-continuous
functions on X with values inRd andLip(X) := Lip(X ,R1).
Furthermore, denote the Lipschitz seminorm by [·]Lip so that
[ f ]Lip is the Lipschitz constant of f . Note that, if we fix some
arbitrary x0 ∈ X , the seminorm [·]Lip is actually a norm on
the set

Lip0(X ,Rd) := {p ∈ Lip(X ,Rd) : p(x0) = 0}. (A.7)

The famous Kantorovich–Rubinstein duality [44] states that,
for q = 1, the Wasserstein metric is actually induced by a
norm, namely W1(μ,μ′) = ‖μ − μ′‖KR , where

‖ν‖KR := sup

{∫

X
p dν : p ∈ Lip0(X), [p]Lip ≤ 1

}

,

(A.8)

whenever ν ∈ M0(X) := {μ ∈ M : ∫
X dμ = 0}. The

completion KR(X) of M0(X) with respect to ‖ · ‖KR is a
predual space of (Lip0(X), [·]Lip) [79, Theorem 2.2.2 and
Cor. 2.3.5]. 2 Hence, after subtracting a point mass at x0, the
set P(X) − δx0 is a subset of the Banach space KR(X), the
predual of Lip0(X).

Consequently, the embeddings

P(X) ↪→ (KR(X), ‖ · ‖KR), (A.9)

P(X) ↪→ (M(X), ‖ · ‖M) (A.10)

2 Thenormed space (M0(X), ‖·‖KR) is not complete unless X is afinite
set [79, Proposition 2.3.2]. Instead, the completion of (M0(X), ‖·‖KR)

that we denote here by KR(X) is isometrically isomorphic to theArens–
Eells space AE(X).
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define two different topologies onP(X). The first embedding
space (M(X), ‖·‖M) is isometrically isomorphic to the dual
of C(X). The second embedding space (KR(X), ‖ · ‖KR)

is known to be a metrization of the weak*-topology on the
bounded subsetP(X) of the dual spaceM(X) = C(X)∗ [77,
Theorem 6.9].

Importantly, while (P(X), ‖ · ‖M) is not separable unless
X is discrete, (P(X), ‖·‖KR) is in fact compact, in particular
complete and separable [77, Theorem 6.18] which is crucial
in our result on the existence of minimizers (Theorem 1).

Appendix B: Proof of TV-Behavior for
Cartoonlike Functions

Proof (Prop. 1) Let p : Ω → (V ∗)d satisfy the constraints
in (5) and denote by ν the outer unit normal of ∂U . The
set Ω is bounded, p and its derivatives are continuous and
u ∈ L∞

w (Ω, V ) since the range of u is finite and U , Ω are
measurable. Therefore, all of the following integrals con-
verge absolutely. Due to linearity of the divergence,

〈div p(x), u±〉 = div(〈p(·), u±〉), (B.1)

〈p(x), u±〉 := (〈p1(x), u±〉, . . . , 〈pd(x), u±〉) ∈ R
d .

(B.2)

Using this property and applying Gauss’ theorem, we com-
pute

∫

Ω

〈− div p(x), u(x)〉 dx

= −
∫

Ω\U
div(〈p(x), u−〉) dx −

∫

U
div(〈p(x), u+〉) dx

Gauss=
∫

∂U

d∑

i=1

〈νi (x)pi (x), u+ − u−〉 dHd−1(x)

≤ Hd−1(∂U ) · ‖u+ − u−‖V .

(B.3)

For the last inequality, we used our first assumption on ‖ ·
‖(V ∗)d together with the norm constraint for p in (5). Taking
the supremum over p as in (5), we arrive at

TVV (u) ≤ Hd−1(∂U ) · ‖u+ − u−‖V . (B.4)

For the reverse inequality, let p̃ ∈ V ∗ be arbitrary with
the property ‖ p̃‖V ∗ ≤ 1 and φ ∈ C1

c (Ω,Rd) satisfying
‖φ(x)‖2 ≤ 1. Now, by (11), the function

p(x) := (φ1(x) p̃, . . . , φd(x) p̃) ∈ (V ∗)d (B.5)

has the properties required in (5). Hence,

TVV (u) ≥
∫

Ω

〈− div p(x), u(x)〉 dx (B.6)

= −
∫

Ω

div φ(x) dx · 〈 p̃, u+ − u−〉. (B.7)

Taking the supremum over all φ ∈ C1
c (Ω,Rd) satisfying

‖φ(x)‖2 ≤ 1, we obtain

TVV (u) ≥ Per(U ,Ω) · 〈 p̃, u+ − u−〉, (B.8)

where Per(U ,Ω) is the perimeter ofU inΩ . In the theory of
Caccioppoli sets (or sets of finite perimeter), the perimeter is
known to agreewithHd−1(∂U ) for setswithC1 boundary [4,
p. 143].

Now, taking the supremum over all p̃ ∈ V ∗ with ‖ p̃‖V ∗ ≤
1 and using the fact that the canonical embedding of aBanach
space into its bidual is isometric, i.e.,

‖u‖V = sup
‖p‖V∗≤1

〈p, u〉, (B.9)

we arrive at the desired reverse inequality which concludes
the proof. ��

Appendix C: Proof of Rotational Invariance

Proof (Proposition 2) Let R ∈ SO(d) and define

RTΩ := {RT x : x ∈ Ω}, p̃(y) := RT p(Ry). (C.1)

In (5), the norm constraint on p(x) is equivalent to the norm
constraint on p̃(y) by condition (13). Now, consider the inte-
gral transform

∫

Ω

〈− div p(x), u(x)〉 dx =
∫

RT Ω

〈− div p(Ry), ũ(y)〉 dy
(C.2)

=
∫

RT Ω

〈− div p̃(y), ũ(y)〉 dy.
(C.3)

where, using RT R = I ,

div p̃(y) =
d∑

i=1

∂i p̃i (y) =
d∑

i=1

d∑

j=1

R ji∂i
[
p j (Ry)

]
(C.4)

=
d∑

i=1

d∑

j=1

d∑

k=1

R ji Rki∂k p j (Ry) (C.5)
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=
d∑

j=1

d∑

k=1

∂k p j (Ry)
d∑

i=1

R ji Rki (C.6)

=
d∑

j=1

∂ j p j (Ry) = div p(Ry), (C.7)

which implies TVV (u) = TVV (ũ). ��

Appendix D: Discussion of Product Norms

There is one subtlety about formulation (5) of the total varia-
tion: The choice of norm for the product space (V ∗)d affects
the properties of our total variation seminorm.

D.1 Product Norms as Required in Proposition 1

The following proposition gives some examples for norms
that satisfy or fail to satisfy conditions (10) and (11) in Propo-
sition 1 about cartoonlike functions.

Proposition 4 The following norms for p ∈ (V ∗)d satisfy
(10) and (11) for any normed space V :

1. For s = 2:

‖p‖(V ∗)d ,s :=
(

d∑

i=1

‖pi‖sV ∗

)1/s

. (D.1)

2. Writing p(v) := (〈p1, v〉, . . . , 〈pd , v〉) ∈ R
d , v ∈ V ,

‖p‖L(V ,Rd ) := sup
‖v‖V ≤1

‖p(v)‖2 (D.2)

On the other hand, for any 1 ≤ s < 2 and s > 2, there is a
normed space V such that at least one of the properties (10),
(11) is not satisfied by corresponding product norm (D.1).

Remark 1 In the finite-dimensional Euclidean case V = R
n

with norm ‖ · ‖2, we have (V ∗)d = R
d,n ; thus, p is matrix-

valued and ‖ · ‖L(V ,Rd ) agrees with the spectral norm ‖ · ‖σ .
The norm defined in (D.1) is the Frobenius norm ‖ · ‖F for
s = 2.

Proof (Prop. 4) By Cauchy–Schwarz,

∣
∣
∣
∑d

i=1xi 〈pi , v〉
∣
∣
∣ ≤ ‖x‖2

(∑d
i=1 |〈pi , v〉|2

)1/2
(D.3)

≤ ‖x‖2
(∑d

i=1‖pi‖2V ∗‖v‖2V
)1/2

(D.4)

≤ ‖x‖2‖v‖V
(∑d

i=1‖pi‖2V ∗
)1/2

, (D.5)

whenever p ∈ (V ∗)d , v ∈ V , and x ∈ R
d . Similarly, for

each q ∈ V ∗,

(∑d
i=1‖xiq‖2V ∗

)1/2 = ‖x‖2‖q‖V ∗ . (D.6)

Hence, for s = 2, properties (10) and (11) are satisfied by
product norm (D.1).

For operator norm (D.2), consider

∣
∣
∣
∑d

i=1xi 〈pi , v〉
∣
∣
∣ ≤ ‖x‖2

(∑d
i=1 |〈pi , v〉|2

)1/2
(D.7)

= ‖x‖2‖p(v)‖2 (D.8)

≤ ‖x‖2‖p‖L(V ,Rd )‖v‖V , (D.9)

which is property (10). On the other hand, (11) follows from

‖(x1q, . . . , xdq)‖L(V ,Rd ) = sup
‖v‖V ≤1

(∑d
i=1|xiq(v)|2

)1/2

(D.10)

= ‖x‖2 sup
‖v‖V ≤1

|q(v)| (D.11)

= ‖x‖2‖q‖V ∗ . (D.12)

Now, for s > 2, property (10) fails for d = 2, V = V ∗ =
R, p = x = (1, 1) and v = 1 since

∣
∣
∣
∣
∣

d∑

i=1

xi 〈pi , v〉
∣
∣
∣
∣
∣
= 2 > 21/2 · 21/s = ‖x‖2‖p‖(V ∗)d ,s‖v‖V .

(D.13)

For 1 ≤ s < 2, consider d = 2, V ∗ = R, q = 1 and
x = (1, 1), then

‖(x1q, . . . , xdq)‖(V ∗)d ,s = 21/s > 21/2 = ‖x‖2‖q‖V ∗ ,
(D.14)

which contradicts property (11). ��

D.2 Rotationally Symmetric Product Norms

For V = (Rn, ‖ · ‖2), property (13) in Proposition 2 is satis-
fied by the Frobenius norm as well as the spectral norms on
(V ∗)d = R

d,n . In general, the following proposition holds:

Proposition 5 For any normed space V , rotational invari-
ance property (13) is satisfied by operator norm (D.2). For
any s ∈ [1,∞), there is a normed space V such that property
(13) does not hold for product norm (D.1).

123



1498 Journal of Mathematical Imaging and Vision (2018) 60:1482–1502

Proof By definition of the operator norm and rotational
invariance of the Euclidean norm ‖ · ‖2,

‖Rp‖L(V ,Rd ) = sup
‖v‖V ≤1

‖Rp(v)‖2 (D.15)

= sup
‖v‖V ≤1

‖p(v)‖2 = ‖p‖L(V ,Rd ). (D.16)

For product norms (D.1), without loss of generality, we
consider the case d = 2, V := (R2, ‖ · ‖1), p1 = (1, 0),
p2 = (0, 1) and

R :=
(

1/2 −√
3/2√

3/2 1/2

)

∈ SO(2). (D.17)

Then, V ∗ := (R2, ‖ · ‖∞) and

‖p‖(V ∗)d ,s =
(∑2

i=1‖pi‖s∞
)1/s = 21/s (D.18)

whereas

(Rp)1 = (1/2,−√
3/2), (Rp)2 = (

√
3/2, 1/2),

(D.19)

‖Rp‖(V ∗)d ,s =
(∑2

i=1(
√
3/2)s

)1/s
(D.20)

= 21/s · √
3/2 �= 21/s = ‖p‖(V ∗)d ,s, (D.21)

for any 1 ≤ s < ∞. ��

D.3 Product Norms on Lip0(X)

We conclude our discussion about product norms on (V ∗)d
with the special case of V = KR(X): For p ∈ [Lip0(X)]d ,
the most natural choice is

[p]Lip(X ,Rd ) := sup
z �=z′

‖p(z) − p(z′)‖22
d(z, z′)

, (D.22)

which is automatically rotationally invariant. On the other
hand, the product norm defined in (D.1) (with s = 2), namely√∑d

i=1[pi ]2Lip, is not rotationally invariant for general met-

ric spaces X . However, in the special case X ⊂ (Rn, ‖ · ‖2)
and p ∈ C1(X ,Rd), norms (D.22) and (D.1) coincide
with supz∈X ‖Dp(z)‖σ (spectral norm of the Jacobian) and
supz∈X ‖Dp(z)‖F (Frobenius norm of the Jacobian), respec-
tively, both satisfying rotational invariance.

Appendix E: Proof of Non-uniqueness

Proof (Prop. 3) Let u ∈ L∞
w (Ω,P(X)). With the given

choice of X , there exists a measurable function ũ : Ω →
[0, 1] such that

u(x) = ũ(x)δ0 + (1 − ũ(x))δ1. (E.1)

The measurability of ũ is equivalent to the weak measurabil-
ity of u by definition:

〈p, u(x)〉 = ũ(x) · p0 + (1 − ũ(x)) · p1 (E.2)

= ũ(x) · (p0 − p1) + p1. (E.3)

The constraint

p ∈ C1
c (Ω, [Lip0(X)]d), [p(x)]Lip(X ,Rd ) ≤ 1 (E.4)

from the definition of TVKR in (7) translates to

p0, p1 ∈ Cc(Ω,Rd), ‖p0(x) − p1(x)‖2 ≤ 1. (E.5)

Furthermore,

〈− div p(x), u(x)〉 (E.6)

= − div p0(x) · ũ(x) − div p1(x) · (1 − ũ(x)) (E.7)

= − div(p0 − p1)(x) · ũ(x) − div p1(x). (E.8)

By the compact support of p1, the last term vanishes when
integrated over Ω . Consequently,

TVKR(u) = sup

{∫

Ω

− div(p0 − p1)(x) · ũ(x) dx : (E.9)

p0, p1 ∈ Cc(Ω,Rd), ‖(p0 − p1)(x)‖2 ≤ 1

}

(E.10)

= sup

{∫

Ω

− div p(x) · ũ(x) dx : (E.11)

p ∈ Cc(Ω,Rd), ‖p(x)‖2 ≤ 1

}

(E.12)

= TV(ũ). (E.13)

and therefore

Tρ,λ(u) =
∫

Ω\Ũ
u(x) dx +

∫

U
(1 − ũ(x)) dx + λTV(ũ)

(E.14)

=
∫

Ω

|1U (x) − ũ(x)| dx + λTV(ũ) (E.15)

= ‖1U − ũ‖L1 + λTV(ũ). (E.16)

Thus we have shown that the functional Tρ,λ is equivalent
to the classical L1-TV functional with the indicator function
1U as input data and evaluated at ũ which is known to have
non-unique minimizers for a certain choice of λ [17]. ��
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Appendix F: Proof of Existence

F.1 Well-Defined Energy Functional

In order for the functional defined in (15) to be well defined,
the mapping x 	→ ρ(x, u(x)) needs to be measurable. In the
following lemma, we show that this is the case under mild
conditions on ρ.

Lemma 2 Let ρ : Ω × P(X) → [0,∞) be a globally
bounded function that is measurable in the first and con-
vex in the second variable, i.e., x 	→ ρ(x, μ) is measurable
for each μ ∈ P(X), and μ 	→ ρ(x, μ) is convex for each
x ∈ Ω . Then, the map x → ρ(x, u(x)) is measurable for
every u ∈ L∞

w (Ω,P(X)).

Remark 2 Aswill become clear from the proof, the convexity
condition can be replaced by the assumption that ρ be con-
tinuous with respect to (P(X),W1) in the second variable.
However, in order to ensure weak* lower semicontinuity
of functional (15), we will require convexity of ρ in the
existence proof (Theorem 1) anyway. Therefore, for sim-
plicity we also stick to the (stronger) convexity condition in
Lemma 2.

Remark 3 One example of a function satisfying the assump-
tions in Lemma 2 is given by

ρ(x, μ) := W1( f (x), μ), x ∈ Ω, μ ∈ P(S2). (F.1)

Indeed, boundedness follows from the boundedness of the
Wasserstein metric in the case of an underlying bounded
metric spaces (here S

2). Convexity in the second argument
follows from the fact that the Wasserstein metric is induced
by a norm (A.8).

Proof (Lemma 2) The metric space (P(X),W1) is com-
pact, hence separable. By Pettis’ measurability theorem [10,
Chapter VI, §1, No. 5, Proposition 12], weak and strongmea-
surability coincide for separably valued functions, so that
u is actually strongly measurable as a function with val-
ues in (P(X),W1). Note, however, that this does not imply
strong measurability with respect to the norm topology of
(M(X), ‖ · ‖M) in general!

As bounded convex functions are locally Lipschitz con-
tinuous [19, Theorem 2.34], ρ is continuous in the second
variable with respect toW1. As in the proof of Lemma 1, we
now note that ρ is a Carathéodory function, for which com-
positions withmeasurable functions such as x 	→ ρ(x, u(x))
are known to be measurable. ��

F.2 The Notion ofWeakly* Measurable Functions

Before we can go on with the proof of existence of minimiz-
ers to (15), we introduce the notion of weak* measurability
because this will play a crucial role in the proof.

Analogously with the notion of weak measurability and
with L∞

w (Ω, KR(X)) introduced above, we say that a
measure-valued function u : Ω → M(X) is weakly* mea-
surable if the mapping

x 	→
∫

X
f (z) dux (z) (F.2)

ismeasurable for each f ∈ C(X). L∞
w∗(Ω,M(X)) is defined

accordingly as the space of weakly* measurable functions.
For functions u : Ω → P(X) mapping onto the space

of probability measures, there is an immediate connection
between weak* measurability and weak measurability: u is
weakly measurable if the mapping

x 	→
∫

X
p(z) dux (z) (F.3)

ismeasurablewhenever p ∈ Lip0(X). However, since, by the
Stone–Weierstrass theorem, the Lipschitz functions Lip(X)

are dense in (C(X), ‖·‖∞) [13, p. 198], both notions of mea-
surability coincide for probability measure-valued functions
u : Ω → P(X), so that

L∞
w (Ω,P(X)) = L∞

w∗(Ω,P(X)). (F.4)

However, as this equivalence does not hold for the larger
spaces L∞

w∗(Ω,M(X)) and L∞
w (Ω,M(X)), it will be cru-

cial to keep track of the difference between weak and weak*
measurability in the existence proof.

F.3 Proof of Existence

Proof (Theorem 1) The proof is guided by the direct method
from the calculus of variations. The first part is inspired by
the proof of the fundamental theorem for Young measures as
formulated and proven in [6].

Let uk : Ω → P(X), k ∈ N, be a minimizing sequence
for Tρ,λ, i.e.,

Tρ,λ(u
k) → inf

u
Tρ,λ(u) as k → ∞. (F.5)

As M(X) is the dual space of C(X), L∞
w∗(Ω,M(X)) with

the norm defined in (A.1) is dual to the Banach space
L1(Ω,C(X)) of Bochner integrable functions on Ω with
values in C(X) [42, p. 93]. Now, P(X) as a subset of
M(X) is bounded so that our sequence uk is bounded in
L∞

w∗(Ω,M(X)) (here we use again that L∞
w∗(Ω,P(X)) =

L∞
w (Ω,P(X))).
Note that we get boundedness of ourminimizing sequence

“for free”, without any assumptions on the coercivity of Tρ,λ!
Hence we can apply the Banach–Alaoglu theorem, which
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states that there exist u∞ ∈ L∞
w∗(Ω,M(X)) and a subse-

quence, also denoted by uk , such that

uk
∗
⇀u∞ in L∞

w∗(Ω,M(X)). (F.6)

Using the notation in (A.4), this means by definition

∫

Ω

〈uk(x), p(x)〉 dx →
∫

Ω

〈u∞(x), p(x)〉 dx (F.7)

∀p ∈ L1(Ω,C(X)). (F.8)

We now show that u∞(x) ∈ P(X) almost everywhere,
i.e., u∞ is a nonnegative measure of unit mass: Convergence
(F.7) holds in particular for the choice p(x, s) := φ(x) f (s),
where φ ∈ L1(Ω) and f ∈ C(X). For nonnegative functions
φ and f , we have

∫

Ω

φ(x)〈uk(x), f 〉 dx ≥ 0 (F.9)

for all k, which implies

∫

Ω

φ(x)〈u∞(x), f 〉 dx ≥ 0. (F.10)

Since this holds for all nonnegative φ and f , we deduce that
u∞(x) is a nonnegative measure for almost every x ∈ Ω .
The choice f (s) ≡ 1 in (F.7) shows that u∞ has unit mass
almost everywhere.

Therefore, u∞(x) ∈ P(X) almost everywhere and we
have shown that u∞ lies in the feasible set L∞

w (Ω,P(X)). It
remains to show that u∞ is in fact a minimizer.

In order to do so, we prove weak* lower semicontinuity
of Tρ,λ. We consider the two integral terms in definition
(15) of Tρ,λ separately. For the TVKR term, for any p ∈
C1
c (Ω,Lip(X ,Rd)), we have div p ∈ L1(Ω,C(X)) so that

lim
k→∞

∫

Ω

〈div uk(x), p(x)〉 dx =
∫

Ω

〈div u∞(x), p(x)〉 dx .
(F.11)

Taking the supremum over all p with [p(x)][Lip(X)]d ≤ 1
almost everywhere, we deduce lower semicontinuity of the
regularizer:

TVKR(u∞) ≤ lim inf
k→∞ TVKR(uk). (F.12)

The data fidelity term u 	→ ∫
Ω

ρ(x, u(x)) dx is convex and
bounded on the closed convex subset L∞

w (Ω,P(X)) of the
space L∞

w∗(Ω,M(X)). It is also continuous, as convex and
bounded functions on normed spaces are locally Lipschitz
continuous. This implies weak* lower semicontinuity on
L∞

w (Ω,P(X)).

Therefore, the objective function Tρ,λ is weakly* lower
semicontinuous, and we obtain

Tρ,λ(u
∞) ≤ lim inf

k→∞ Tρ,λ(u
k) (F.13)

for theminimizing sequence (uk), which concludes the proof.
��
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