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Abstract
A spatially varying Gamma mixture model prior is employed for tomographic image reconstruction, ensuring effective noise
elimination and the preservation of region boundaries. We define a line process, modeling edges between image segments,
through appropriate Markov random field smoothness terms which are based on the Student’s t-distribution. The proposed
algorithm consists of two alternating steps. In the first step, themixture model parameters are automatically estimated from the
image. In the second step, the reconstructed image is estimated by optimizing the maximum-a-posteriori criterion using the
one-step-late expectation–maximization and preconditioned conjugate gradient algorithms.Numerical experiments on various
photon-limited image scenarios show that the proposed model outperforms the compared state-of-the-art reconstruction
models.

Keywords Emission tomography · Iterative image reconstruction · Expectation–maximization (EM) algorithm · Spatially
varying Gamma mixture models · Student’s t-distribution · Edge preservation

1 Introduction

Emission tomography (ET) and tomographic reconstruction
have gained tremendous attention in the last decades. This is
due to the crucial role that medical imaging has come to play
in the diagnosis of human disease, as well as in monitoring
the progress of therapeutic methods. From a computational-
model point of view, tomographic reconstruction is a typical
inverse problem. After noisy emission data are collected, the
goal is to reconstruct the original object, thereby inverting in
this sense the image generation process [10,16,19].
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Several approaches have been proposed for tomographic
reconstruction, a considerable part ofwhich focuses onmeth-
ods based on iterative image reconstruction. This family of
methods involves an iterative procedure of repeated projec-
tions andbackprojections that progressively refines the image
estimate [2,38]. Iterative tomographic reconstruction tech-
niques are separated into two basic categories: algebraic and
statistical [1,40], with the latter having proved to be the most
popular. Shepp and Vardi have defined the problem in terms
of maximization of a likelihood function [35], proposing the
widely usedmaximum likelihood expectation–maximization
(MLEM) algorithm. In EM and its variants, a probabilis-
tic model is solved with an iterative scheme of alternating
steps: the expectation (E-step) and the maximization step
(M-step). In the E-step, moments of latent model variables
are computedwith respect to the current non-latent parameter
estimate. In theM-step, non-latent parameters are optimized,
with respect to current latent variable moments. The two
interrelated steps are iterated until convergence. In practice,
slight variants of the basic EM algorithm are used, such as
MAP-EM, where part of the model random variables can be
treated as parameters to be optimized, and their prior plays
the standard role of a penalty term.

The ordered subsets EM (OSEM) algorithm has been
proposed [14,17] as an efficient variation of the MLEM
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algorithm, reducing the reconstruction time and the com-
putational cost, as well as facilitating clinical use. The
kernel-based EM algorithm that has been presented in [37]
for PET image reconstruction is also of note. The row
action maximum likelihood algorithm (RAMLA) [5] has
been proposed as another MLEM variation, further speeding
up convergence rate. Furthermore, with respect to speeding
up reconstruction, also notable is the parallel tomographic
reconstruction technique that has recently been proposed in
[26], suitable for use with GPU-ready machines.

Bayesian maximum a posteriori methods, tantamount to
penalized maximum likelihood [4], have been employed for
tomographic reconstruction.Methods of this family impose a
prior probability density function (pdf) on the reconstruction,
encouraging image smoothness or other desirable traits (e.g.,
sharp edges). When the reconstruction problem is posed as
an inverse problem, prior pdfs are in fact not only useful but
necessary as well, as reconstruction from projections is in
general an ill-posed problem. As such, in order to proceed
a form of regularization is required [8–10]. In this sense of
posing tomographic reconstruction as an inverse problem,
a prior pdf acts as an objective function regularizer. With
respect to traits that are deemed desirable for the reconstruc-
tion, image smoothness is perhaps one of the most usual
constraints. The image smoothness constraint is based on
the preassumption that high-frequency components in the
reconstruction are more likely to be present due to noise.
A common smoothness prior is the Markov random field
(MRF) prior, formulated as a Gibbs distribution. Numerous
Gibbs/MRF-based methods have been proposed, using vari-
ous potential functions [12,13,21]. Under Gibbs/MRF priors,
local differences between neighboring pixels are penalized
in order to encourage small values, hence enforcing output
image smoothness.

Another popular prior is the total variation (TV) prior
[6,11,25,28,36,39], with application to many imaging tasks,
including tomographic reconstruction.Themotivationbehind
using TV priors is that they provide a principled, coherent
way to favor a smooth solution with sharper edges, in the
premise that such solutions should have lower total intensity
variation [6]. The penalty associated with total variation is
in practice typically formulated as the discrete sum of gra-
dient norms over the reconstructed image. In tomographic
reconstruction with TV priors, the objective function is the
weighted sum of the TV prior term and a data term. The
data term is formulated as the distance between the recon-
structed object and the original projections [11,36]. Prior
models and associated algorithms that can’t readily be cat-
egorized as Gibbs/MRF or TV priors have otherwise been
proposed [7,15]. A notable example is the clustered intensity
histogram algorithm [15], where Gamma-distributed priors
are used to enforce emission positivity constraints.

More complex prior models are in general possible,
formulated as hierarchical probabilistic models [3]. In hier-
archical probabilistic models, multiple stochastic and deter-
ministic parameters may interact to model the reconstruction
as a data generation process. The expectation–maximization
(EM) algorithm is typically used to solve hierarchical prob-
abilistic models [30], provided the model is suitably con-
structed (for example, pdf conjugacy requirements need to
be met [3]). The tomographic reconstruction model and
algorithm proposed in the current work is a hierarchical
probabilistic model, solved with a MAP-EM algorithm. We
propose a spatially varying mixture model [22,23,27,32,33]
based on a Gamma mixture prior. In order to account for
the modeling of edges between image segments, appropriate
MRF smoothness priors on pixel label mixing proportions
are defined. These priors model edges as random, latent vari-
ables, an assumption known in the literature as a line process
model. The proposed model is based on aMAP tomographic
reconstruction formula that uses a Gamma mixture prior and
encourages edge preservation by modeling edge presence as
a Student’s t-distribution on the pixel contextual mixing pro-
portions.

In the proposed model, parameters are automatically
estimated from the observed data. In effect, this yields
location-dependent smoothing which cannot be modeled
by the standard Gibbs distribution. The image reconstruc-
tion process integrates this prior in a standard MAP-EM
iterative algorithm, where the proposed spatially varying
Gamma mixture model (SVGammaMM) parameters and
the unknown image are estimated in an alternating scheme.
Numerical experiments usingphoton-limited images validate
the method’s usefulness with respect to results using com-
mon state-of-the-art MRF-based priors.

The remainder of this paper is organized as follows. The
image formation model and proposed reconstruction method
is presented inSect. 2.Wepresent numerical results in Sect. 3,
testing our model and comparing it against other well-known
reconstructionmodels. In Sect. 4, we discuss our conclusions
and perspectives for future work.

2 Image FormationModel and Image
Reconstruction

Let f be the vectorized form of the image to be recon-
structed. Let also g be the observed projections (sinogram),
also in vectorized form, and let H represent the projection
matrix. Penalized likelihoodmodels rely on a stochastic inter-
pretation of reconstruction regularization by introducing an
appropriate prior p(f) for the image f . The likelihood func-
tion p(g|f) is related to the posterior probability p(f |g) by
the Bayes rule, p(f |g) ∝ p(g|f)p(f).
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In emission tomography, the likelihood p(g|f) is a Poisson
distribution if the detector counts are mutually independent
and not corrupted by additional data errors. Formally, we can
write:

p(g|f) =
M∏

m=1

([Hf]m)gm
exp(−[Hf]m)

gm ! , (1)

with respect to f , where M is the number of projection mea-
surements, gm is themth component of g and [Hf]m is themth

component of the vector Hf . MAP estimates for the image f
may be obtained by maximizing the log-posterior:

log p(f |g) = log p(g|f) + log p(f) + const . (2)

We assume that the N intensity values { fn}Nn=1 of the
reconstructed image f are independent and identically dis-
tributed. These can be assumed to be generated by a finite
mixture model [20]:

p( fn) =
J∑

j=1

π jφ( fn; θ j ) (3)

where π = {πj}Jj=1 is the prior probability vector of a pixel

membership on class j . The {θ j }Jj=1 parameters control the
shape of the kernel functions φ. Thus, there is a natural corre-
spondence between pixel class-membership and kernels, and
we can classify the pixels according to posterior class mem-
berships [32]. A standard and well-known choice of a kernel
function are the Gaussian distribution [32] or the Gamma
distribution [3]. The Gamma distribution is nonzero valued
on positive real numbers only, the positivity constraint of the
reconstruction problem is inherently satisfied. The general
form of a mixture-of-Gammas prior pdf is:

p(f |θ) =
N∏

n=1

J∑

j=1

π jG ( fn|q j , r j ). (4)

In Eq. (4), the set of parameters θ involves the vector
q, with elements {q j } j=1,...,J and the vector r , {r j } j=1,...,J ,
which parameterize the gamma density. The gamma density
is defined only for f > 0. Furthermore, r j > 0 is the mean
and r2j /q j the variance of the j-th component. Like other pos-
itivity preserving priors, it motivates a slight bias due to the
difference between mean and mode. The mixing proportions
(weights) π j are positive and satisfy the constraint:

J∑

j=1

π j = 1. (5)

In this paper, we extend the above assumptions (Eqs. 3, 4,
5) which assumes global mixing weights π j and assume that
mixing proportions vary pixel-wise. Formally, we assume
that the conditional distribution of f given a latent variable z
is:

p(f |z) =
J∏

j=1

N∏

n=1

φ( fn; θ j )
znj (6)

where the prior distribution for the latent variable z is multi-
nomial [32]:

p(z|π) =
J∏

j=1

N∏

n=1

(πn
j )

znj (7)

where zn is a binary vector [zn1zn2 . . . znJ ]T with a single com-
ponent equal to 1, znj = 1 and all others equal to 0, i.e.,
a “one-hot” vector representation. Pixel n is estimated to
be part of segment j if and only if znj = 1. Note that,
while the vector zn is binary and one-hot, the correspond-
ing πn vector [πn

1 πn
2 . . . πn

J ]T is a probability vector with

πn
j ∈ [0, 1]∀ j ∈ [1, J ] and

∑J
j=1 πn

j = 1. Also, as a
direct consequence of Eq. (7), the two vectors are related
by <znj>= πn

j , where <·> denotes random variable expec-
tation.

Our model differs from the standard Gamma mixture
model in the definition of the mixing proportions. More pre-
cisely, each pixel fn , n = 1, . . . , N has a distinct vector of
mixing proportions denoted by πn

j , j = 1, . . . , J , with J
being the number of Gamma kernels. We call these parame-
ters contextual mixing proportions to distinguish them from
the mixing proportions of a standard Gammamixture model.

Apart from inherently assuming an image segmentation
by means of the Gamma mixture prior, the edges in the
image are preserved because the local differences of the
contextual mixing proportions are considered to follow a
univariate Student’s t-distribution (or referred to as simply
t-distribution for brevity). Following the definition of the Stu-
dent’s t-distribution [18], we can write the Student’s t as a
two-step generative process:

πn
j − πk

j ∼ N (0, β2
jd/u

nk
j ),

unkj ∼ G (ν jd/2, ν jd/2), ∀n, j, d, k ∈ γd(n), (8)

where γd(n) is the set of neighbors of the pixel indexed
by n, with respect to the dth adjacency type. This model
first draws unkj from a Gamma distribution parameterized
by ν jd and then considers that the local differences of the
mixing proportions follow a Gaussian distribution with zero
mean and standard deviation β2

jd/u
nk
j . We consider D differ-

ent adjacency types (e.g., horizontal, vertical, diagonal). For
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example, if d=“horizontal adjacency” and n is a non-border
pixel, we have |γd(n)| = 2 as pixel n has one horizontal
neighbor to its left pixel and one horizontal neighbor to its
right. The total number of neighbors for all adjacency types
d ∈ [1, D] is considered equal to Γ .

Note that Eq. (8) effectively defines aGibbs distribution on
the contextual mixing proportions π . The Gibbs distribution
has the general form e− ∫

βV ( f (x,y),γ (x,y))dxdy where β and
V (·) areGibbs parameters and clique potentials, respectively.
In the currentmodel, these are defined by a zero-centered nor-
mal distribution on neighbor differences (8), parametrized
by β jd and line process u. Note that this use is quite differ-
ent from the typical use of the Gibbs distribution, which is
defined directly over pixel value estimates.

Formally, the Student’s t-distribution is defined as

p(u;μ, σ 2, ν) = Γ (ν
2 + 1

2 )

|σ |(Γ
2 )

1
2 [1 + (u−μ)2

νσ 2 ]
(9)

The t-distribution is heavy-tailed, which means that it is
more likely to generate values that fall far from its mean.
As the number of degrees of freedom ν increases, the t-
distribution approaches the normal distribution [3]. On the
contrary, the closer ν is to zero, the more heavy-tailed the
distribution is.

The proposed generativemodel can be examined in Fig. 1.
The model imposes edge preservation through the Student’s
t-distributionon the difference of themixingproportions. The
variables unkj , effectivelymodeling a continuous line process,
provide a detailed description of the boundary structure of the
image.

Estimation of model parameters is obtained through a
standard MAP-EM approach, consisting of a two-step alter-
nating optimization scheme. In the first step, the parameters
of the SVGammaMM model are estimated using the EM
algorithm [32] given a fixed image estimate f . In the sec-
ond step, the image estimate f is updated while the model
parameters are kept fixed.

The EM algorithm consists of performing alternating E-
steps andM-steps until model likelihood convergence. In the
E-step, moments of the hidden variables z and u are com-
puted:

〈znj 〉(t) = π
n(t)
j G ( fn; q(t)

j , r (t)
j )

∑J
l=1 π

n(t)
l G ( fn; q(t)

l , r (t)
l )

, (10)

〈unkj 〉(t) = ζ
nk(t)
j /η

nk(t)
j , (11)

〈ln unkj 〉(t) = ψ(ζ
nk(t)
j ) − ln η

nk(t)
j , (12)

where t denotes iteration index. ψ(·) denotes the digamma
function, while z, η are determined by:

Fig. 1 Graphical model for the continuous line process edge preserving
model (SVGammaMM). fn are the N reconstructed object pixel inten-
sities, assumed to be Gamma distributed an parametrized by q j , r j .
Each of the N pixels of the reconstruction belongs to one of J image
segments. This relationship is encoded as the multinomially distributed
znj values, parametrized by the Gibbs-distributed πn

j . Parameters πn
j

depend on Gibbs parameters β2
jd and on line process unkj , over D pixel

adjacency types and Γ neighbors per pixel. The line process intensity
is locally controlled by the “degrees of freedom” parameters ν jd . The
reconstruction and all parameters are automatically estimated with the
proposed MAP EM-based algorithm. See text for more details

ζ
nk(t)
j = 1

2
(ν

(t)
jd + 1), ∀k ∈ γd(n), (13)

η
nk(t)
j = 2

(
ν

(t)
jd + (π

n(t)
j − π

k(t)
j )2

β
2(t)
jd

)
, ∀k ∈ γd(n). (14)

In the M-step, the non-stochastic parameters r , q, β are
updated with:

r (t)
j =

∑N
n=1 〈znj 〉(t) fn

〈znj 〉(t)
, (15)

q(t)
j =

N∑

n=1

log fn〈znj 〉(t) − 〈znj 〉(t) log r (t)
j

−〈znj 〉(t)ψ(q(t)
j ), (16)

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd (n) 〈unkj 〉(t)(πn(t)

j − π
k(t)
j )2

∑N
n=1 |γd(n)| . (17)

In addition, the degrees of freedom parameter ν
(t+1)
jd are

estimated as the solution of the below equation:

ln (ν
(t+1)
jd /2) − ψ(ν

(t+1)
jd /2) +

∑N
n=1

∑
k∈γd (n) (〈ln unkj 〉(t) − 〈unkj 〉(t))

∑N
n=1 |γd(n)| + 1 = 0 (18)
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Thereafter, the MAP estimate for the random process π

is computed. The elements of π are updated by solving the
following quadratic equation:

anj (π
n(t+1)
j )2 + bnj (π

n(t+1)
j ) + cnj = 0 (19)

with coefficients:

anj = −
D∑

d=1

⎧
⎨

⎩(β
(t)
jd )−2

∑

k∈γd (n)

〈unkj 〉(t)
⎫
⎬

⎭, (20)

bnj =
D∑

d=1

⎧
⎨

⎩(β
(t)
jd )−2

∑

k∈γd (n)

〈unkj 〉(t)πk(t)
j

⎫
⎬

⎭, (21)

cnj = 1

2
〈znj 〉(t). (22)

While the vector elements of π are probability distribu-
tions, the real nonnegative solutions will not, in general,
satisfy the sum-to-unity constraint. In order to get proper
mixing weight vectors, we perform a projection step onto
the constraints subspace using the quadratic programming
algorithm described in [32].

After having updated the SVGammaMM parameters with
the updates presented above, the next step consists in estimat-
ing the reconstruction f given these parameters. An update
for f should maximize Eq. 2. The intensity of the nth pixel of
the unknown image can therefore be updated as follows:

f̂ (t+1)
n = f̂ (t)

n
∑

i ′ Hi ′n + ∂ log p
∂ fn

∣∣∣
fn= f̂ (t)

n

∑

i

Hin
gi

∑
k Hik f̂

(t)
k

.

(23)

This “one-step-late” (OSL) update [12,38] uses the previous
image estimate to evaluate the derivative term in Eq. (23).

Algorithm 1 summarizes the steps of the proposed tomo-
graphic reconstruction algorithm. The algorithm stops when
the estimated image does not change significantly or when a
predefined number of iterations is reached.

3 Numerical Results

The performance of the proposed spatially varying mix-
ture models for the tomographic reconstruction problem was
evaluated using the well-known Shepp-Logan phantom and
a phantom consisting of three regions of relative intensities,
represented by a hot disk, a cold disk and a background
ellipse (Fig. 2). We call this phantom Elliptical phantom.
The resolution of the reconstructed objects f , for both cases
is 256 × 256 pixels. Projections are observed for tilt angles
{0◦, 1◦, 2◦, . . ., 179◦}. The observed sinograms g are of size
367 × 180, for both cases again. We have set J = 3 and

Algorithm1MAP-EMtomographic reconstruction using
a SVGammaMM prior

• input: A sinogram g, a threshold ε, MAXiterations.
• output: The reconstructed image estimate f̂ .
• Initialize f by an image with constant intensity, counter=0.
• while ||f̂ (t+1) − f̂ (t)|| > ε and counter ≤ MAXiterations

– Estimate the parameters of the SVGammaMM using the EM
updates.
while likelihood convergence criterion is not satisfied

• Compute E-step updates (Eq. 10-14).
• Compute M-step updates (Eq. 15-22).

end while
– Update the image estimate f̂ with an OSL (Eq. 23) or PCG

update.
– counter++

• end while

Fig. 2 a Shepp–Logan phantom. b Elliptical phantom

J = 5 clusters for the mixture models taking into account
the segments of the two phantoms. The algorithm stopped
when ε = 10−3 or when 60 iterations were reached. The
presented algorithm, namely the spatially varying Gamma
mixture model (SVGammaMM), was evaluated with respect
to the standard MLEM [35], the established MAP-EM algo-
rithm with a Gibbs [12] and a TV prior [25]. The MLEM
method solves the problem by performing a maximum like-
lihood fit over the Poisson-distributed emissions. The Gibbs
and TV prior models penalize the solution according to a
prior distribution model. The Gibbs prior term is defined as
a MRF over the reconstruction itself [12], contrary to the
proposed hierarchical model, as:

pGibbs( f ) = e− ∫
βV ( f (x,y),γ (x,y))dxdy (24)

where β is a parameter controlling prior weight with respect
to the data term. V (·) is a clique potential function, penaliz-
ing reconstruction pixel values that are different from their
neighbors, denoted here as γ (x, y). The TV prior term takes
the form [6,25]:
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pTV ( f ) = e− ∫
β|∇ f (x,y)|dxdy (25)

Furthermore, we have compared our algorithm to a spatially
varying Gaussian mixture model (SVGMM) [24], a stan-
dardGaussianmixturemodel (GMM) and a standardGamma
mixture model (GammaMM). The latter two models define
likelihood according to Eq. 3, with different choices for the
kernel function φ.

For the image estimation step (see algorithm 1) we have
tried employing two alternatives. We ran tests either using an
OSL update (Eq. 23) or preconditioned conjugate gradients
(PCG) to compute the image estimate. Concerning parame-
ters of the competing algorithms (e.g., the weight parameter
between data term and total variation term in the TV prior
method), tests were run over different parameter values, and
the optimal ones, result-wise, were chosen to be presented
for comparison.

A number of performance indices were used. To this end,
degraded images were generated from the initial images by
modifying the total photon counts. More specifically, images
having 75, 55, 35 and 15 photons/pixel on average were gen-
erated to degrade the signal quality, and for the Elliptical
phantom, 80, 56, 36 and 24 photons/pixel were simulated.
Since the various performance indices are so similar for the
whole set of photon counts, only comparative statistics for
one rate of photons per pixel is illustrated (75 photons/pixel
for the Shepp–Logan phantom and 80 photons/pixel for the
Elliptical phantom).

Furthermore, we have artificially degraded the original
phantoms by smoothing with a Gaussian blur filter. We have
used two different levels of smoothing, σ = 2 and σ = 4.We
have run tests corresponding to the original, non-smoothed
phantoms as well as the smoothed phantoms, in order to test
for our algorithm’s robustness also to this type of degradation.

At first, the algorithms were put in test in terms of the
improvement in signal to noise ratio (ISNR) with respect to
a reconstruction obtained by a simple filtered backprojection
using the Ram–Lak filter:

ISNR = 10 log10
||f − fFBP ||2

||f − f̂||2 , (26)

where f is the ground truth image, fFBP is the reconstructed
image by filtered backprojection and f̂ is the reconstructed
image using the proposed image model. Practically, ISNR
measures the improvement (or deterioration) in the quality
of the reconstruction of the proposed method with respect to
the reconstruction obtained by filtered backprojection.

Moreover, the consistency of themethodwasmeasured by
the bias (BIAS) and the variance (VAR) of the reconstructed
images:

BIAS = ||f − f̄ ||, (27)

VAR =
K∑

k=1

||f̄ − f̂k ||2, (28)

with

f̄ = 1

K

K∑

k=1

f̂k, (29)

where f is the ground truth image and f̂k , for k = 1, . . . , K , is
the kth reconstructed image, obtained from K = 40 different
realizations for each noise level. Finally, we also considered
for the evaluation the structural similarity index (SSIM) [34],
which represents the visual distortion between the recon-
structed image and the ground truth. It is computed to be
close to 1 for all the resulted images except fromMLEM and
MAP-EM with Gibbs prior, hence it is not included in the
illustrated comparative results.

The statistical comparisons for the aforementioned algo-
rithms are shown in Fig. 3 for the Shepp–Logan phantom. For
all the quantities, their mean values over the K = 40 exper-
iments are shown. All of the obtained ISNR values are very
close to the mean values as their standard deviations over the
whole set of experiments are very small. The ISNR, bias and
variance for the Shepp–Logan phantom, for 75 photons per
pixel on average, are shown. The statistical comparisons for
the Elliptical phantom for 80 photons per pixel are illustrated
in Fig. 4. It may be observed from all these indices for both
phantoms that the proposed spatially varying mixture model
performs better with respect to the other priors. Specifically,
for the Shepp–Logan phantom with 75 photons per pixel and
for the Elliptical phantom with 80 photons, ISNR reaches
its peak for the spatially varying Gamma mixture model,
carried out by a preconditioned conjugate gradient opti-
mizer (SVGammaMM (PCG)), as shown in Figs. 3a and 4a.
The spatially varying Gamma mixture methods have simi-
lar ISNR values but always larger than the other algorithms.
The proposed methods similarly outperform the competition
for the case where we perform reconstructions over the blur-
degraded versions of the phantoms, for either blur intensity
(Figs. 5, 6, 7, 8).

The same stands for the bias which yields its minimum
through the SVGammaMM (PCG) for both phantoms as it
can be observed in Figs. 3c and 4c. Furthermore, the vari-
ance of the estimates is relatively consistent for the spatially
varying mixture model for both phantoms. This is due to the
mixture nature of the priors. The results confirm the effec-
tiveness of the proposed model.

In general, the images provided by the proposed spa-
tially varying mixture model are visually sharper. Estimated
images obtained using this model (SVGammaMM, PCG) are
illustrated in Figs. 9 and 10, where we show reconstructions
on input data degraded with Gaussian blur (σ = 2). For com-
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Fig. 3 Comparative statistics for various performance indices for the Shepp–Logan phantom for 75 photons per pixel. a ISNR (mean values of the
40 experiments), b bias, c variance

Fig. 4 Comparative statistics for various performance indices for the Elliptical phantom for 80 photons per pixel. a ISNR (mean values of the 40
experiments), b bias, c variance

Fig. 5 Comparative statistics for various performance indices for the Shepp–Logan phantom for 75 photons per pixel, smoothed with a Gaussian
filter (σ = 2). a ISNR (mean values of the 40 experiments), b bias, c variance

parison, estimates obtained using MLEM, MAP-EM with a
Gibbs prior and a TV prior and a filtered backprojections
(FBP) estimate are shown in the same Figures. Note that the
performance of SVGammaMM (OSL) is always very close
to SVGammaMM (PCG), with only small differences, and
with at times slightly better performance.

In addition, to highlight the accuracy of the proposed
model, the estimated image intensities along a scan line for
both phantoms are shown inFigs. 11 and 12.Results using the
SVGammaMM (PCG) model and a MAP-EM with a Gibbs
prior are compared. It can be observed that the spatially vary-
ing Gamma mixture model provides values which are closer
to the ground truth.
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Fig. 6 Comparative statistics for various performance indices for the Shepp–Logan phantom for 75 photons per pixel, smoothed with a Gaussian
filter (σ = 4). a ISNR (mean values of the 40 experiments), b bias, c variance

Fig. 7 Comparative statistics for various performance indices for the elliptical phantom for 80 photons per pixel, smoothed with a Gaussian filter
(σ = 2) a ISNR (mean values of the 40 experiments), b bias, c variance

Fig. 8 Comparative statistics for various performance indices for the Elliptical phantom for 80 photons per pixel, smoothed with a Gaussian filter
(σ = 4) a ISNR (mean values of the 40 experiments), b bias, c variance

Finally, the required execution time of the proposed
models on a standard PC using MATLAB without any opti-
mization is on average 4 minutes, which is explained by the
number of required computations for the EM or PCG for the
reconstruction and the EM for the estimation of the model
parameters.

4 Conclusion and FutureWork

The main goal of this work was to explore the possibility of
the development of a robust model for tomographic image
reconstruction purposes. We have proposed an alternative
hierarchical and spatially constrainedmixturemodel in order
to enforce them to preserve image edges. We have presented
a spatially varying Gamma mixture model with a Student’s
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FBP MLEM Gibbs TV SVGammaMM (PCG)

Fig. 9 The reconstructed images for the Shepp–Logan phantom (degraded with Gaussian smoothing, σ = 2) with 75 photons per pixel

FBP MLEM Gibbs TV SVGammaMM (PCG)

Fig. 10 The reconstructed images for the Elliptical phantom (degraded with Gaussian smoothing, σ = 2) with 80 photons per pixel

Fig. 11 Comparison of horizontal profiles between the original Shepp–
Logan phantom and the reconstructed images provided by the proposed
SVGammaMM and the Gibbs prior for 75 counts per pixel

Fig. 12 Comparison of horizontal profiles between the original Ellip-
tical phantom and the reconstructed images provided by the proposed
SVGammaMM and the Gibbs prior for 75 counts per pixel

tMRF-based prior governing the contextual mixing propor-
tions. Spatially varying mixture models are characterized by
the dependence of their mixing proportions on location (con-
textual mixing proportions) and they have been previously
successfully used in image segmentation.

The main contribution of this work is the effectiveness
of the adaptive MRF priors which may capture spatial
coherence and preserve image boundaries, retaining them
unsmoothed. The proposed Gamma mixture component of
the model assumes a multiple-mode histogram in the object,
and enforces positivity naturally. Furthemore, an important
property of the proposed model is the automatic estimation
of model parameters from the data which is crucial, as many
state-of-the-art reconstruction algorithms rely on empiri-
cal parameter selection. Numerical experiments on various
photon-limited image scenarios showed that the proposed
models are more accurate than the corresponding results of
the compared methods.

With regard to directions for future improvements, an
important perspective of this study would be to explore how
to automatically estimate the number of components of the
mixture model assumed in the image reconstruction frame-
work. This remains an important open problem in themixture
modeling literature [3,29].

Furthermore, the space complexity of the proposed algo-
rithm could perhaps be improved upon. Taking into account
that for each iteration we require space for the Markov ran-
dom field values π and the line process u, we can easily see
that our space complexity is O(N JΓ ). For values J = 5 and
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a standard 8− neighborhood, this may mean a requirement
of up to ∼ 50 times the space of the reconstruction. Perhaps
a grid-update strategy [31] could be envisaged and improved
upon to save on required space.
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