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Abstract
Statistical analysis of dynamic systems, such as videos anddynamic functional connectivity, is often translated into a problemof
analyzing trajectories of relevant features, particularly covariance matrices. As an example, in video-based action recognition,
a natural mathematical representation of activity videos is as parameterized trajectories on the set of symmetric, positive-
definitematrices (SPDMs).The execution rates of actions, implying arbitrary parameterizations of trajectories, complicate their
analysis. To handle this challenge, we represent covariance trajectories using transported square-root vector fields, constructed
by parallel translating scaled-velocity vectors of trajectories to their starting points. The space of such representations forms
a vector bundle on the SPDM manifold. Using a natural Riemannian metric on this vector bundle, we approximate geodesic
paths and geodesic distances between trajectories in the space of this vector bundle. This metric is invariant to the action of the
re-parameterization group, and leads to a rate-invariant analysis of trajectories. In the process, we remove the parameterization
variability and temporally register trajectories. We demonstrate this framework in multiple contexts, using both generative
statistical models and discriminative data analysis. The latter is illustrated using several applications involving video-based
action recognition and dynamic functional connectivity analysis.

Keywords SPDM Riemannian structure · SPDM parallel transport · Invariant metrics · Covariance trajectories ·
Vector bundles · Rate-invariant classification
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1 Introduction

The problem of studying dynamical systems using image
sequences (such as videos) is both important and chal-
lenging. It has applications in many areas including video
surveillance, lip reading, pedestrian tracking, hand gesture
recognition, human–machine interfaces, brain functional
connectivity analysis and medical diagnosis. Since the size
of video data is generally very high, analyses are often
performed by extracting certain low-dimensional features
of interest—geometric, motion and colorimetric features,
etc—from each frame and then forming temporal sequences
of these features for full videos. Consequently, analysis of
videos gets replaced by analysis of longitudinal observations
in a certain feature space. (Some papers (e.g., [13,40]) dis-
card temporal structure by pooling all the feature together but
that may represent a severe loss of information.) Since many
features are naturally constrained to lie on nonlinear mani-
folds, the corresponding representations form parameterized
trajectories on these manifolds. Examples of these manifolds
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include unit spheres, Grassmann manifolds [16], Lie groups
[7], and the space of probability distributions.

One of the most common and effective features in image
analysis is a covariance matrix, as shown via applications
in medical imaging [3,31] and computer vision [15,17,23,
24,39,40]. These matrices are naturally constrained to be
symmetric positive-definite matrices (SPDMs) and have also
played aprominent role as regiondescriptors in texture classi-
fication, object detection, object tracking, action recognition
and face recognition. Tuzel et al. [40] introduced the concept
of covariance tracking where they extracted a covariance
matrix for each video frame and studied the temporal evo-
lution of this matrix in the context of pedestrian tracking in
videos. Since the set of SPDMs is a well-known set, denoted
by P̃ (or P̃(n) when the dimension of the SPDM manifold
is specified as n), a video segment can be represented as a
(parameterized) trajectory in P̃ . In the brain functional con-
nectivity analysis, the instantaneous connectivity, extracted
from functional magnetic resonance imaging (fMRI) data, is
typically represented as a SPDM [8,9]. Therefore, a dynamic
evolution of connectivity can be naturally represented as a
trajectory on the set of SPDMs. Figure 1 shows some exam-
ples of video frames for the two applications studied in this
paper: visual speech recognition and hand gesture classifica-
tion.

One challenge in characterizing activities as trajectories
comes from the variability in execution rates. The execu-
tion rate of an activity dictates the parameterization of the
corresponding trajectory. The execution rates for different
observations are quite different, even if the activities belong
to the same class. Different execution rates imply that the
trajectories go through the same sequences of points in P̃
but at different times. Consequently, directly analyzing such
trajectories without temporal alignment, e.g., comparing the
difference, and calculating point-wise mean and covariance,
can be erroneous.

To make these issues precise, we develop some notation
first. Let α : [0, 1] → P̃ be a trajectory and let γ : [0, 1] →

Fig. 1 Examples of video frames in visual speech recognition (first two
rows) and hand gesture classification (last two rows)

[0, 1] be a positive diffeomorphism such that γ (0) = 0 and
γ (1) = 1. This γ plays the role of a time-warping function,
or a re-parameterization function, so that the composition
α ◦ γ is now a time-warped or re-parameterized version of
α. In other words, the trajectory α ◦γ goes through the same
set of points as α but at a different rate (speed). Some kind of
temporal registration is necessary to deal with this so-called
phase variability.

There are two types of registration problems for trajec-
tories. The first type is pairwise registration: let α1, α2 :
[0, 1] → P̃ be two trajectories, and the process of registra-
tion of α1 and α2 is to find a time-warping γ such that α1(t)
is optimally registered to α2(γ (t)) for all t ∈ [0, 1], with
optimality defined using an objective function. Another type
is multiple registration: let α1, α2, . . . , αn be n trajectories
on P̃ , and we want to find out time-warpings γ1, γ2, . . . , γn
such that for all t , the variables {αi (γi (t))}ni=1 are optimally
registered. A solution for pairwise registration can be used
to solve the multiple registration problem using an iterative
solution—for the given trajectories, first define a template tra-
jectory and then align each given trajectory to this template
in a pairwise fashion. One way of defining this template is
to use the mean of given trajectories under an appropriately
chosen metric.

Notice that the problem of comparisons of trajectories
is different from the problem of curve fitting or trajectory
estimation fromnoisy data.Many papers have studied spline-
type solutions for fitting curves to discrete, noisy data points
on manifolds [20,25,30,33,37], but in this paper, we assume
that the trajectories are already available through some other
means.

1.1 PastWork and Their Limitations

There are very few papers in the literature for analyzing—in
the sense of comparing, averaging or clustering—trajectories
on nonlinear manifolds. What one may consider a very
natural approach actually has limitations when seeking
parameterization invariance. Let dP̃ denote the geodesic dis-

tance resulting from the chosen Riemannian metric on P̃ . It
can be shown that the quantity

∫ 1
0 dP̃ (α1(t), α2(t))dt forms

a proper distance for all trajectories on P̃ . For example, [22]
uses this metric, combined with the arc-length distance on
S
2, to cluster hurricane tracks. However, this metric is not

immune to different temporal evolutions of hurricane tracks.
Handling this variability requires performing some kind of
temporal alignment. It may be tempting to use the following
modification of this distance to align two trajectories:

inf
γ∈Γ

(∫ 1

0
dP̃ (α1(t), α2(γ (t)))dt

)

, (1)
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but this can lead to degenerate solutions (also known as
the pinching problem, described for real-valued functions
in [32,35]). Pinching implies that a severely distorted γ is
used to eliminate (or minimize) those parts of α2 that do
not match with α1, which can be done even when α2 is sig-
nificantly different from α1. While this degeneracy can be
avoided using a regularization penalty on γ , some of other
problems remain, including the fact that the solution is not
symmetric.

A recent solution, presented in [38,39], develops the con-
cept of elastic trajectories to deal with the parameterization
variability. It represents each trajectory by its transported
square-root vector field (TSRVF) defined as:

hα(t) =
(

α̇(t)√|α̇(t)|
)

α(t)→c
∈ Tc(P̃),

where c is a predetermined but arbitrary reference point on
P̃ and→ denotes a parallel transport of the vector α̇(t) from
the point α(t) to c along a geodesic path. A trajectory is
mapped into a curve in the tangent space Tc(P̃) and one
can compare/align these curves using the L2 norm, denoted
by ‖ · ‖, on that vector space. More precisely, the quantity
infγ ‖hα1 − hα2◦γ ‖ provides not only a criterion for opti-
mality of γ but also a proper metric for averaging and other
statistical analyses. This TSRVF representation is an exten-
sion of the SRVF framework used for elastic shape analysis
of curves in Euclidean spaces [36]. There are two main lim-
itations of this mathematical representation. One is that the
choice of reference point, c, is left arbitrary. The results
can potentially change with c, which makes it difficult to
interpret the results. A bigger issue is that the transport of
tangent vectors α̇(t) to c, along geodesics, can introduce
large distortion, especially when α(t) is far from c on the
manifold.

Since our original formulation [41], Brigant et al. [5,6]
have also used a similar Riemannian structure for comparing
trajectories. However, their representations are based on a
direct analysis of the vector fields α̇(t)√|α̇(t)| , i.e., without any
parallel translation, and the space of such representations is
the space of trajectories in full tangent bundle of the mani-
fold. As described next, the proposed representation in our
paper is a curve in a tangent space and, thus, the space of
representations is a vector bundle, a proper subset of the
tangent bundle used in [5,6]. Consequently, the resulting Rie-
mannian metric and geodesic paths are different in the two
sets of works. A major limitation of [5,6] is that, while they
use parameterization-invariant metrics, they do not explicitly
solve for the temporal registration across trajectories. This
registration is, in fact, the main reason for choosing invariant
metrics in the first place, and is a major contribution of the
current paper.

1.2 Our Approach

We introduce a novel mathematical representation of trajec-
tories that does not require a choice of c. In this representa-
tion, the trajectories are still represented by their transported
vector fields but not at the global reference point. For each
trajectory αi , the reference point is chosen to be its starting
point αi (0), and the transport is performed along the trajec-
tory itself. In other words, for each t , the velocity vector α̇i (t)
is transported alongα to the tangent space of the starting point
αi (0). As a consequence, the trajectory α gets mapped into a
curve in the tangent space Tα(0)(P̃). This idea has been used
previously in [25] and others, for some shape manifolds, and
results in a relatively stable curve with smaller distortions
than the TSRVFs of [38]. However, these previous papers do
not provide re-parameterization invariance in their analysis.
In contrast, we develop a metric-based framework for com-
paring, averaging, andmodeling such curves in amanner that
is invariant to their re-parameterizations. Consequently, this
framework provides a natural solution for removal of rate, or
phase, variability from trajectory data.

The main contributions of this paper are:

1. Provides a novel representation for parameterization-
invariant analysis of trajectories on manifolds. It results
in a significant improvement over [38,39] in the sense
that the new representation forms a vector bundle of the
manifold, rather than a predetermined tangent space.

2. Introduces a re-parameterization invariant metric on the
vector bundle and uses that metric to generate temporal
alignments, and rate-invariant sample summary of trajec-
tories on manifolds.

3. Provides efficient algorithms for computation of geodesic
paths under the chosen metric.

4. Demonstrates these ideas by analyzing covariance trajec-
tories from video-based action recognition and dynamic
brain functional connectivity analysis.

The rest of this paper is organized as follows. In Sect. 2, we
introduce our framework for aligning, averaging and com-
paring of trajectories on a general manifold M . Since we
mainly focus on covariance trajectories as an application, in
Sect. 4, we introduce a Riemannian structure on P̃ . Sections
5–8 demonstrate the proposed ideas with simulated and real
data, involving video-based action recognition and dynamic
functional brain network analysis.

2 Analysis of Trajectories onManifolds

In this section, we derive a framework for comparing trajec-
tories on a general Riemannian manifold M .
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2.1 Representation of Trajectories

Let α denote a piecewise C1 trajectory on a Riemannian
manifold M . That is, α : [0, 1] → M such that there are
finitely many points 0 = t0 < t1 < · · · < tn = 1 such
that on each [ti−1, ti ] α is a C1 curve (one-sided derivatives
at each end). Let Fp be all such piecewise C1 trajectories
starting at p, and let F = ∐

p∈M Fp.
Define Γ to be the set of all orientation preserving dif-

feomorphisms of [0, 1]: Γ = {γ : [0, 1] → [0, 1]|γ (0) =
0, γ (1) = 1, γ is a diffeomorphism}. Γ forms a group
under the composition operation. If α is a trajectory on M ,
then α ◦ γ is a trajectory that follows the same sequence of
points as α but at the evolution rate governed by γ . More
technically, the group Γ acts on F , F × Γ → F , according
to (α ∗ γ ) = α ◦ γ .

We introduce a new representation of trajectories that will
be used to compare and register them.We assume that for any
two pointsα(τ1), α(τ2) ∈ M, τ1 �= τ2, we have amechanism
for parallel transporting any vector v ∈ Tα(τ1)(M) along α

from α(τ1) to α(τ2), denoted by (v)α(τ1)→α(τ2).

Definition 1 Let α : [0, 1] → M denote a piecewise C1

trajectory starting with p = α(0). Given a trajectory α, and
the velocity vector field α̇, define its transported square-root
vector field (TSRVF) to be a scaled parallel transport of the
vector field along α to the starting point p according to: for

each τ ∈ [0, 1], q(τ ) =
(

α̇(τ )√|α̇(τ )|
)

α(τ)→p
∈ Tp(M) , where

| · | denotes the norm that is defined through the Riemannian
metric on M .

This representation is motivated from some similar but
distinct ideas used in the past literature. Firstly, it relates to
the notion of unrolling introduced by Jupp and Kent [20]
for spherical manifolds. Starting with a piecewise C1 curve
α on a sphere, they constructed a curve in R

2, called the
unrolling of α as follows. They define the unrolled curve as
the integral of the curve in Tp(M) generated by the parallel
translation of α̇(t) along α to p. That is, ν : [0, 1] → Tp(M)

is the unrolling of α, where ν(t) = ∫ t
0 (α̇(s)α(s)→p) ds.

The difference between unrolling and TSRVF is the use of√|α̇(t)| in the denominator of TSRVF and the extra integral
present in unrolling. Secondly, it is similar to the TSRVF in
[38] with the difference that in [38] the transport was along
geodesics to a reference point c, but here the parallel transport
is along α (to the starting point p). This reduces distortion
in representation relative to the parallel transport of [38] to a
faraway reference point.

This TSRVF representation maps a trajectory α on M to
a curve q in Tp(M). For any point p ∈ M , let Bp be the
set of functions on the tangent space Tp(M) of the type:
v : [0, 1] → Tp(M) is in Bp if there are finitely many
points 0 = t0 < t1 < · · · < tn = 1 such that, on each

[ti−1, ti ), v is continuous, and limt→ti− exists. The space of
interest, then, becomes an infinite-dimensional vector bun-
dle B = ∐

p∈M Bp, which is the indexed union of Bp for
every p ∈ M . We note in passing that Bp is a subspace of
the Hilbert space L

2([0, 1], Tp(M)), the set of all square-
integrable curves in Tp(M).

There is a bijection between Fp and Bp. This result is
straightforward except for the following point. If α ∈ Fp

has a bend at t0, then α̇(t0) does not exist. To define the cor-

responding TSRVF q, we can take q(t0) = limt→t0+
(
α̇(t)/

√|α̇(t)|
)

α→p
, and the resulting q ∈ Bp. As a corollary to

this result, the TSRVF representation is bijective: any α ∈ F
is uniquely represented by a pair (p, q) ∈ B, where p ∈ M is
the starting point, q ∈ Bp is its TSRVF. We can reconstruct
the trajectory from (p, q) using the covariant integral (see
Algorithm 3 for a numerical implementation).

2.2 Riemannian Structure onB

In order to compare trajectories, we will compare their corre-
sponding representations inB and that requires aRiemannian
structure on B. Let α1, α2 be two trajectories on M , with
starting points p1 and p2, respectively, and let the corre-
sponding TSRVFs be q1 and q2. Now α1, α2 are represented
as two points in the vector bundle (p1, q1), (p2, q2) ∈ B

over M . This representation space is an infinite-dimensional
vector bundle, whose fiber over each point p in M is
Bp.

We impose the following Riemannian structure on B. For
an element (x, v) in B, where x ∈ M , v ∈ Bx , we natu-
rally identify the tangent space at (x, v) to be: T(x,v)(B) ∼=
Tx (M)⊕Bx . To see this, suppose we have a curve inB given
by (x(s), v(s, τ )), s, τ ∈ [0, 1]. The velocity vector to this
curve at s = 0 is given by (xs(0),∇xsv(0, ·)) ∈ Tx (M)⊕Bx ,
where xs denotes dx/ds, and ∇xs denotes covariant differ-
entiation of tangent vectors. The Riemannian inner product
on B is defined in an obvious way: If (u1, w1(·)) and
(u2, w2(·)) are both elements of T(x,v)(B) ∼= Tx (M) ⊕ Bx ,
define

〈(u1, w1(·)), (u2, w2(·))〉 = (u1 · u2) +
∫ 1

0
(w1(τ ) · w2(τ )) dτ,

(2)

where the inner products on the right denote the original
Riemannian metric in Tx (M).

For given two points (p1, q1) and (p2, q2) in B, we
want to find the geodesic path connecting them. Let (x(s),
v(s, ·)), s ∈ [0, 1] be a path with (x(0), v(0, ·)) = (p1, q1)
and (x(1), v(1, ·)) = (p2, q2). We have the following char-
acterization of geodesics on B.
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Theorem 1 A parameterized path [0, 1] → B given by
s �→ (x(s), v(s, τ )) (where the variable τ corresponds to
the parameterization in Bx ), is a geodesic in B if and only if:

∇xs xs + ∫ 1
0 R(v,∇xsv)(xs)dτ = 0 for every s,

∇xs (∇xsv)(s, τ ) = 0 for every s, τ.
(3)

Here R(·, ·)(·) denotes the Riemannian curvature tensor, xs
denotes dx/ds, and∇xs denotes the covariant differentiation
of tangent vectors on tangent space Tx(s)(M).

Proof We will prove this theorem in two steps. (1) First,
we consider a simpler case where the space of interest is
the tangent bundle T M of the Riemannian manifold M . An
element of T M is denoted by (x, v), where x ∈ M and
v ∈ Tx (M). It is natural to identify T(x,v)(T M) ∼= Tx (M) ⊕
Tx (M). The Riemannian inner product on T M is defined in
the obvious way: If (u1, w1) and (u2, w2) are both elements
of T(x,v)(T M), define

〈(u1, w1), (u2, w2)〉 = u1 · u2 + w1 · w2

and, again, the inner products on the right denote the orig-
inal Riemannian metric on M . Suppose we have a path in
[0, 1] → T M given by s �→ (x(s), v(s)). We define the
energy of this path by

E =
∫ 1

0
(xs · xs + ∇xsv · ∇xsv)ds.

The integrand is the inner product of the velocity vector of
the path with itself. It is a standard result that a geodesic on
T M can be characterized as a path that is a critical point of
this energy function on the set of all paths between two fixed
points in T M . To derive local equations for this geodesic,
we now assume we have a parameterized family of paths
denoted by (x(s, t), v(s, t)), where s is the parameter of each
individual path in the family (as above) and the variable t tells
us which path in the family we are in. Assume 0 ≤ s ≤ 1 and
t takes values on (− δ, δ) for some small δ > 0. We want all
the paths in this family to start and end at the same points of
T M , so assume that (x(0, t), v(0, t)) and (x(1, t), v(1, t))
are constant functions of t . The energy of the path with index
t is given by:

E(t) =
∫ 1

0
(xs · xs + ∇xsv · ∇xsv)ds .

To simplify notation in what follows, we will write ∇s for
∇xs and ∇t for ∇xt . To establish conditions for (x, v) to be
critical, we take the derivative of E(t) with respect to t at
t = 0:

E ′(0) = 2
∫ 1

0
[(∇t xs · xs) + (∇t (∇sv) · ∇sv)]ds.

We will use two elementary facts: (a) ∇t (xs) = ∇s(xt ) and
(b) R(xt , xs)(v) = ∇t (∇sv) − ∇s(∇tv), without presenting
their proofs. Plugging these facts into the above calculation,
we get E ′(0) to be:

2
∫ 1

0
[∇s xt · xs + R(xt , xs)(v) · ∇sv + ∇s(∇tv) · ∇sv]ds

= 2
∫ 1

0
[(−∇s xs · xt ) + R(xt , xs)(v) · ∇sv + (−∇s(∇sv) · ∇tv)]ds.

The second equality comes from using integration by parts
on the first and third term, taking into account the fact that
xt and ∇tv vanish at s = 0, 1, (since all the paths begin and
end at the same point). Now, using the standard identities
R(X ,Y )(Z) ·W = R(Z ,W )(X) ·Y and R(X ,Y )(Z) ·W =
−R(X ,Y )(W ) · Z , we obtain:

E ′(0) = 2
∫ 1

0
[(−∇s xs · xt ) + (−R(v,∇sv)(xs) · xt )

+ (−∇s(∇sv) · ∇tv)]ds
= −2

∫ 1

0
[(∇s xs + R(v,∇sv)(xs)) · xt

+ (∇s(∇sv) · ∇tv)]ds
= −2

∫ 1

0
(∇s xs + R(v,∇sv)(xs)) · xt ds

− 2
∫ 1

0
∇s(∇sv) · ∇tv ds.

Now, (x(s), v(s)) is critical for E if and only if E ′(0) = 0
for every possible variation xt of x and ∇t (v) of v, which is
clearly true if and only if

∇s xs + R(v,∇sv)(xs) = 0 and ∇s(∇sv) = 0.

Thus we have derived the geodesic equations for T M .
(2) Nowwe consider the case of the infinite-dimensional vec-
tor bundleB → M whose fiber over x ∈ M isL2(I , Tx (M)),
I = [0, 1]. A point in B is denoted by (x, v(τ )), where the
variable τ corresponds to the I -parameter in L

2(I , Tx (M)).
The tangent space toB at (x, v(τ )) isTx (M)⊕L

2(I , Tx (M)).
Suppose (u1, w1(τ )) and (u2, w2(τ )) are elements of this
tangent space and we use the Riemannian metric:

〈(u1, w1(τ )), (u2, w2(τ ))〉 = u1 · u2 +
∫ 1

0
w1(τ ) · w2(τ ) dτ.

Nowwewant towork out the local equations for geodesics
in B. A path in B is denoted by (x(s), v(s, τ )). The energy
calculation is basically the same as above but surround every-
thing with integration with respect to τ . So, it starts out with

E =
∫ 1

0

(

xs · xs +
∫ 1

0
∇sv · ∇sv dτ

)

ds
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=
∫ 1

0

∫ 1

0
(xs · xs + ∇sv · ∇sv) dsdτ.

(Of course xs · xs does not involve the parameter τ , but sur-
rounding it with

∫ 1
0 . . . dτ does not change its value!)

In order to perform variational calculus, we now con-
sider a parameterized family of such paths, denoted by
(x(s, t), v(s, t, τ )) where we assume that x(0, t) and x(1, t)
are constant functions of t , and for each τ , v(0, t, τ ) and
v(1, t, τ ) are constant functions of t , since we want every
path in our family to start and end at the same points of B.

Then, following through the computation exactly as in
earlier case, we obtain

E ′(0) = −2
∫ 1

0

(

∇s xs +
∫ 1

0
R(v,∇sv)(xs) dτ

)

· xt ds

− 2
∫ 1

0

∫ 1

0
∇s(∇sv) · ∇tv dτds.

In order for our path (x(s), v(s, τ )) to be critical for E , E ′(0)
must vanish for every variation xt (s) of x(s) and ∇t (v(s, τ ))

of v(s, τ ), which is clearly true if and only if

∇s xs +
∫ 1

0
R(v,∇sv)(xs) dτ = 0, for every s

∇s(∇sv) = 0, for every s and every τ. ��
The geodesic path (x(s), v(s, τ )) can be intuitively under-

stood as follows: (1) x(s) is a baseline curve onM connecting
p1 and p2, and the covariant differentiation of xs at the
tangent space of Tx(s)(M) equals the negative integral of
the Riemannian curvature tensor R(v(s, τ ),∇xsv(s, τ ))(xs)
with respect to τ . In other words, the values of v at each τ

equally determine the geodesic acceleration of x(s) in the
first equation. (2) The second equation leads to a fact that
v is covariantly linear, i.e., v(s, τ ) = a(s, τ ) + sb(s, τ )

and ∇xs a = ∇xs b = 0 for every s and τ . For a geodesic
path connecting (p1, q1) and (p2, q2), it is natural to let
a(s, τ ) = q1(τ )x(0)→x(s) and b(s, τ ) = w(τ)x(0)→x(s),
where q1(τ )x(0)→x(s) and w(τ)x(0)→x(s) represent the par-
allel transport of q1(τ ) and w(τ) along x from x(0) to x(s),
and w is the difference between the TSRVFs q2 and q1 in
Tx(0)(M), defined as (q2)x(1)→x(0) − q1. In Fig. 2, we illus-
trate geodesic paths between some arbitrary trajectories on
M = S

2. In each case, the solid line denotes the baseline
x(s) and the intermediate lines are the covariant integrals (in
Algorithm3) of v(s, ·)with starting point x(s). As a compari-
son, the dash line shows the standard geodesic curve between
starting points p1 and p2 in S2.

Theorem 1 is only a characterization of geodesics and
does not provide explicit expressions for computing them. In
the following section, we develop a numerical solution for
constructing geodesics in B.

Fig. 2 Examples of geodesic between two trajectories on S2. The solid
line denotes the baseline x(s), and the dash line shows the geodesic on
S
2 as a comparison

2.3 Numerical Computations of Geodesics inB

Here we develop a numerical approach for computing
geodesic paths in the representation space. To simplify dis-
cussion, we will assume that the original trajectories on M
are not only piecewise C1 but also piecewise geodesic. This
implies that the corresponding TSRVFs are piecewise con-
stant. (This restriction was also discussed for unrolling of
spherical curves in [20].) Therefore, our focus in this section
will be on piecewise constant TSRVFs.

There are two main approaches in numerical construction
of geodesic paths on manifolds. The first approach, called
path straightening, initializes the search with an arbitrary
path, between the given two points on the manifold, and then
iteratively “straightens” it until a geodesic is reached. The
second approach, called the shootingmethod, tries to “shoot”
a geodesic from the first point, iteratively adjusting the shoot-
ing direction, so that the resulting geodesic passes through
the second point. In this paper, we use the shooting method
to construct geodesic paths in B.

In order to implement the shooting method, we need
the exponential map on B. Given a point (p, q) ∈ B and
a tangent vector (u, w) ∈ T(p,q)(B), the exponential map
exp(p,q) (s(u, w)) for s ∈ [0, 1] gives a geodesic path
(x(s), v(s)) in B. Equation 3 helps us with this construction
as follows. The two equations essentially provide expressions
for second-order covariant derivatives of x and v components
of the path. Therefore, using numerical techniques, we can
perform covariant integration of these quantities to recover
the path itself.

We assume that v and w are piecewise constant over
the same partition of [0, 1]. Furthermore, using the re-
parameterization group introduced later, we can also assume
that this partition is a uniform partition of [0, 1]. Also, we
point out that addition and subtraction of piecewise constant
functions with identical partitions simplify to these opera-
tions restricted to only the midpoints of the intervals.

In this setup, Algorithm 1 corresponds to the Euler’s
method for numerical integration of an ordinary differential
equation and, thus, follows a standard convergence analysis.

Once we have a procedure for the exponential map, we
can establish the shooting method for finding geodesics.

123



1312 Journal of Mathematical Imaging and Vision (2018) 60:1306–1323

Algorithm 1Numerical implementation of exponential map
on B

Let the initial point be (x(0), v(0)) ∈ B and the tangent vector be
(u, w) ∈ T(x(0),v(0))(B). We have xs(0) = u, ∇xs v(s)|s=0 = w. We
will approximate this map using n steps and let ε = 1

n . Then, for i =
1, · · · , n the exponential map (x(iε), v(iε)) = exp(x(0),v(0)) (iε(u, w))

is given as:

1. Set x(ε) = expx(0)(εxs(0)), where xs(0) = u, and v(ε) = (v‖ +
εw‖), where v‖ and w‖ are parallel transports of v(0) and w along
path x from x(0) to x(ε), respectively.

2. For each i = 1,2,...,n-1, calculate

xs(iε) = [
xs((i − 1)ε) + ε∇xs xs((i − 1)ε)

]
x((i−1)ε)→x(iε) ,

where ∇xs xs((i − 1)ε) = −R
(
v((i − 1)ε),∇xs v((i − 1)ε)

)

(xs((i − 1)ε)) is given by the first equation in Theorem 1.
It is easy to show that R

(
v((i − 1)ε),∇xs v((i − 1)ε)

) =
R

(
v‖ + ε(i − 1)w‖, w‖) = R

(
v‖, w‖), where v‖ =

v(0)x(0)→x((i−1)ε), and w‖ = wx(0)→x((i−1)ε).
3. Obtain x((i+1)ε) = expx(iε) (εxs(iε)), and v((i+1)ε) = v‖+(i+

1)εw‖, where v‖ = v(0)x(0)→x((i+1)ε), and w‖ = wx(0)→x((i+1)ε).

Let (p1, q1) be the starting point and (p2, q2) be the tar-
get point. The shooting method iteratively updates the
tangent or shooting vector (u, w) on T(p1,q1)(B) such
that exp(p1,q1) ((u, w)) = (p2, q2). Then, the geodesic
between (p1, q1) and (p2, q2) is given by (x(s), v(s)) =
exp(p1,q1)(s(u, w)), s ∈ [0, 1]. The key step here is to
use the current discrepancy between the point reached,
exp(p1,q1) ((u, w)), and the target, (p2, q2), to update the
shooting vector (u, w), at each iteration. There are several
possibilities for performing the updates and we discuss one
here. Since we have two components to update, u and w, we
will update them separately: (1) Fix w and update u. For the
u component, the increment can come from parallel trans-
lation of the vector exp−1

p̃ (p2) (the difference between the
reached point p̃ and the target point p2) from p̃ to p1, where
p̃ is the first component of reached point exp(p1,q1)((u, w)).
(2) Fix u and update w. For the w component, we can take
the difference between q2 and the second component of the
point reached (denoted as q̃) as the increment. This is done
by parallel translating q̃ to Tp2(M) (the same space as q2)
and calculate the difference, and then parallel translate the
difference to Tp1(M) to update w.

Once again we will assume that the TSRVFs q1 and q2
are piecewise constant curves on a uniform partition of the
interval [0, 1]. Numerical accuracy of this shooting algorithm
naturally depends on the numerical accuracy of Algorithm 1.

Recall that trajectories on M and their representations in
B are bijective. For each pair (p, q) ∈ B, one can reconstruct
the corresponding trajectory α using covariant integration. A
numerical implementation of this procedure is summarized
in Algorithm 3. Similar to Algorithm 1, Algorithm 3 is also
an Euler’s method for numerical integration of an ordinary

Algorithm 2 Shooting algorithm for calculating geodesic on
B

Given (p1, q2), (p2, q2) ∈ B, select one point, say (p1, q1), as the
starting point and the other, (p2, q2), as the target point. The shooting
algorithm for calculating the geodesic from (p1, q1) to (p2, q2) is:

1. Initialize the shooting direction: find the tangent vector u at p1
such that the exponential map expp1 (u) = p2 on the manifold M .
Parallel transport q2 to the tangent space of p1 along the shortest
geodesic between p1 and p2, denoted as q

‖
2 . Initializew = q‖

2 − p1.
Now we have a pair (u, w) ∈ T(p1,q1)(B).

2. Construct a geodesic starting from (p1, q1) in the direction (u, w)

using the numerical exponential map in Algorithm 1. Let us denote
this geodesic path as (x(s), v(s)), where s is the time parameter for
the geodesic path.

3. If (x(1), v(1)) = (p2, q2), we are done. If not, measure the discrep-
ancy between (x(1), v(1)) and (p2, q2) using a simple measure,
e.g., the L2 distance.

4. Iteratively, update the shooting direction (u, w) to reduce the dis-
crepancy to zero. This update can be done using a two-stage
approach: (1) fix u and update w until convergence; (2) fix w and
update u until convergence.

differential equation and, thus, follows a standard conver-
gence analysis.

Algorithm 3 Covariant integral of q along α

Given a piecewise constant TSRVF q sampled at a uniform partition
of size T , {tδ|t = 0, 1, . . . , T − 1}, δ = 1/T , and the starting point p:

1. Set α(0) = p, and compute α(δ) = expα(0)(δq(0)|q(0)|), where
exp denotes the exponential map on M .

2. For t = 1, 2, . . . , T − 1

(a) Parallel transport q(tδ) to α(tδ) along the current trajectory
from α(0) to α(tδ), and call it q‖(tδ).

(b) Compute

α((t + 1)δ) = expα(tδ)(δq
‖(tδ)|q‖(tδ)|).

Algorithm 2 allows us to calculate the geodesic between
two points in B. So, for each point along the geodesic
(x(s), v(s)) in B, one can easily reconstruct the trajectory
on M using Algorithm 3. Here, one sets x(s) as the starting
point and v(s) as the TSRVF of the trajectory.

2.4 Geodesic Distance onB

Using the chosen Riemannian metric onB (defined in Eq. 2),
the geodesic distance between any two points in B is defined
as follows.

Definition 2 Given two trajectories α1, α2 and their repre-
sentations (p1, q1), (p2, q2) ∈ B, and let (x(s), v(s)) ∈ B,
s ∈ [0, 1] be the geodesic between (p1, q1) and (p2, q2) on
B, the geodesic distance is given as:
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dc((p1, q1), (p2, q2)) =
√

l2x +
∫ 1

0
|q‖

1 (τ ) − q2(τ )|2dτ .

(4)

This distance has two components: (1) the length between the
starting points on M , lx = ∫ 1

0 |ẋ(s)|ds; and (2) the standard
L
2 norm onBp2 between the TSRVFs of the two trajectories,

where q‖
1 represents the parallel transport of q1 ∈ Bp1 along

x to Bp2 . Since we have a numerical approach for approxi-
mating the geodesic, the same algorithm can also provide an
estimate for the geodesic distance.

3 Analysis of Trajectories Modulo
Re-parameterization

The main motivation of using TSRVF representation for tra-
jectories on M and constructing the distance dc to compare
two trajectories comes from the following. If a trajectory α

is warped by γ , resulting in α ◦ γ , the new TSRVF is given
by:

qα◦γ (t) =
(

(α̇(γ (t))γ̇ (t))√|α̇(γ (t))γ̇ (t)|
)

α(γ (t))→p

=
(

(α̇(γ (t)))
√

γ̇ (t)√|α̇(γ (t))|
)

α(γ (t))→p

= qα(γ (t))
√

γ̇ (t) ≡ (qα ∗ γ )(t).

Theorem 2 For any two trajectories α1, α2 ∈ F and their
representations (p1, q1), (p2, q2) ∈ B, the metric dc sat-
isfies dc((p1, qα1◦γ ), (p2, qα2◦γ )) = dc((p1, q1), (p2, q2)),
for any γ ∈ Γ .

Proof First, if a trajectory is warped by γ ∈ Γ , the resulting
trajectory is α ◦ γ , i.e., γ acts on the space B by (p, q) ∗
γ = (p, q ∗ γ ). The differential of this action is the map
T(p,q)(B) → T(p,q∗γ )(B) given by (u, w) �→ (u, w ∗γ ). We
prove that this differential preserves our Riemannian inner
product (Eq. 2) as follows: let (u1, w1) and (u2, w2) be two
tangent vectors on T(p,q)(B); it follows that

〈(u1, w1 ∗ γ ), (u2, w2 ∗ γ )〉
= (u1 · u2) +

∫ 1

0
w1(γ (t))

√
γ̇ (t)w2(γ (t))

√
γ̇ (t)dt

= (u1 · u2) +
∫ 1

0
w1(γ )w2(γ )dγ

= (u1 · u2) +
∫ 1

0
w1(s)w2(s)ds

= 〈(u1, w1), (u2, w2)〉 , (5)

Since Γ acts on B by isometries, i.e., preserving the Rie-
mannian inner product, it follows immediately that it takes
geodesics to geodesics, and preserves geodesic distance. ��

Theorem 2 reveals the advantage of using TSRVF rep-
resentation: the action of Γ on B under the metric dc is
by isometries. The isometry property allows us to compare
trajectories in a manner that the resulting comparison is
invariant to the time warping. This is achieved through defin-
ing a distance in the quotient space of re-parameterization
group.

3.1 Theoretical Setup

To form the quotient space of B modulo the re-parameteri-
zation group, we take the approach presented in several
previous papers, including [27]. While [27] considers shapes
of curves in Euclidean domains, these ideas naturally extend
to the nonlinear manifolds. The approach is to introduce a
set Γ̃ as the set of all non-decreasing, absolutely continuous
functions γ on [0, 1] such that γ (0) = 0 and γ (1) = 1. This
set is a semigroup with the composition operation (it does
not have a well-defined inverse). It can be shown that Γ is
a dense subset of Γ̃ . For any q ∈ L

2([0, 1], Tp(M)), let
[q]Γ̃ denote the set {(q ∗ γ )|γ ∈ Γ̃ }. This is a closed set
[27,38], while the orbit of q under Γ is not, and therefore
we choose to work with the former, at least for the formal
development. (However, in practice, we approximate solu-
tions using the elements of Γ .) Note that the actions of Γ

and Γ̃ on q are exactly same as if α was a Euclidean curve, as
the kind studied in [27]. Therefore, borrowing results from
[27], the closure of Γ -orbit of q is equal to the Γ̃ -orbit of q.
Consequently, will call the set [q]Γ̃ a closed-up orbit of q.
We define the quotient space B/Γ̃ as the set of all closed-up
orbits, with each orbit being:

[(p, q)] ≡ (p, [q]) = {(p, (q ∗ γ ))|γ ∈ Γ̃ }.

To understand the concept of a closed-up orbit, one can view
it as an equivalence class under the following relation. For
any two trajectories α1, α2 and their representations in B,
(p1, q1), (p2, q2), we define them to be equivalent when: (1)
p1 = p2; and (2) there exists a sequence γi ∈ Γ̃ such that
qα2◦γi converges to q1. In otherwords, if two trajectories have
the same starting point, and the TSRVF of one can be time
warped into the TSRVF of the other, using a sequence of time
warpings, then these two trajectories are deemed equivalent
to each other. Theorem 2 states that if two trajectories are
warped by the same γ function, the distance dc between them
remains the same. In other words, the closed-up orbits in B

are “parallel” to each other.
The main reason for introducing the quotient space B/Γ̃

is to define a proper distance on it and to compute geodesic
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paths between its elements with respect to this distance for
the purposes of statistical analysis. We define a distance on
the quotient spaceB/Γ̃ using the inherentRiemannianmetric
from B, as follows.

Definition 3 The geodesic distance dq onB/Γ̃ is the shortest
distance between two closed-up orbits in B, given as

dq((p1, [q1]), (p2, [q2]))
= inf

γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2))) (6)

For a similar representation, [38] established that the induced
distance is a proper distance on the set of closed-up orbits
and that same proof applies to the current context also. It is
also similar to the theory described for Euclidean curves in
[27].

In order to compute geodesics paths inB/Γ̃ , one can solve
for the optimization problem stated in Eq. 6 and use the opti-
mal points to form geodesics in the upper space B. That is,
for any α1, α2 ∈ B, and the corresponding representations
(p1, q1), (p2, q2), we first solve for

(γ̂1, γ̂2) = argmin
γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2))). (7)

Then, we simply compute a geodesic path between (p1, q1 ∗
γ̂1), and (p2, q2 ∗ γ̂2) in B, as described in the previous sec-
tion.

3.2 Numerical Approximations

Conceptually, the geodesic and thegeodesic distancebetween
closed-up orbits (p1, [q1]) and (p2, [q2]) are defined by opti-
mizing over geodesics between all possible cross-pairs in sets
(p1, [q1]) and (p2, [q2]). This, in turn, requires a double opti-
mization on the set Γ̃ , as stated in Definition 3. We now look
at the computational aspects of this definition and seek some
faster approximations.

Firstly, sinceΓ is dense in Γ̃ ,we can compute the geodesic
distance dq((p1, [q1]), (p2, [q2])) using only a single opti-
mization on the group Γ . This is because:

argmin
γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2)))

= argmin
γ1,γ2∈Γ

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2)))

= inf
γ∈Γ

dc((p1, q1), (p2, (q2 ∗ γ ))). (8)

There is no approximation here and the infimum on a single
Γ is much faster compared to the double optimization on Γ̃ .

If we further assume that the trajectories α1, α2 are
piecewise geodesic and, thus, their TSRVFs are piecewise
constants, then some additional results hold. The paper

[27] provided an exact approach for optimal alignment of
SRVFs of piecewise linear curves in Euclidean spaces. Since
TSRVFs are Euclidean curves, that approach can be easily
adapted to solve for the optimal alignment in Eq. 7. This
would provide optimal alignment and consequently a pre-
cise geodesic path between (p1, [q1]) and (p2, [q2]).

However, this approach can be slow in practice, and one
can speed the implementation using a single optimization
according to Eq. 8. That is, we can solve for a single γ̂

and match the point α1(t) to the point α2(γ̂ (t)). While this
approach is much faster than the joint optimization, a draw-
back here is that there is no guarantee that we are close to an
optimal matching. However, in practice, we have found that
matchings and geodesic paths obtained this way are quite
similar to the optimal solutions in most real data. To solve
Eq. 8, it is equivalent to optimizing the following equation:

min
(x,v),γ

(

l2x +
∫ 1

0
‖q‖

1,x (t) − (q2 ∗ γ )(t)‖2dt
)

, (9)

where (x, v) is the path between (p1, q1) and (p2, qα2◦γ ),

and q‖
1,x means parallel transport q1 along x to Bp2 . Note

that the time-warping γ acting on α2 changes the under-
lying geodesic (x, v) between two trajectories. Algorithm
4 describes a numerical solution for optimizing Eq. 9 on a
general manifold M .

Algorithm 4 Pairwise registration of two trajectories on M
Represent two trajectories α1, α2 by their TSRVFs, (p1, q1) and
(p2, q2). Initialize γ ∗ = γid , and set i termax = K (a large integer),
i ter = 1 and a small ε > 0.

1. Select one point, say (p1, q1), as the starting point and the other,
(p2, q̃2), as the target point, where q̃2 denotes (qα2 ∗γ ), for γ ∈ Γ .
In this step, let γ = γid .

2. Obtain (u, w) ∈ T(p1,q1)(B) such that exp(p1,q1)(s(u, w)) =
(x(s), v(s)), s ∈ [0, 1] and (x(1), v(1)) = (p2, q̃2).

3. Parallel transport q̃2 to the tangent space Tp1 (M) along x(s),

denoted as q̃‖
2 . Align q̃

‖
2 to q1 using Dynamic Programming Algo-

rithm and obtain the optimal warping function γ .
4. Update γ ∗ = γ ∗ ◦ γ by composition. If ‖γ − γid‖ < ε or i ter >

i termax stop. Else, set q̃2 = (q̃α2 ∗ γ ), i ter = i ter + 1 and go
back to step 3.

Note that in Algorithm 4, Step 2 corresponds to the first
argument (x, v) and Step 3 corresponds to the second argu-
ment γ in Eq. 9, respectively. The optimization over the
warping function in Step 3 is achieved using the Dynamic
Programming Algorithm (page 435–436 in [35]). Here one
samples the interval [0, 1] using N discrete points and then
restricts to only piecewise linear γ ’s that pass through that
N × N grid. In practice, Algorithm 4 typically takes a few
iterations to converge.
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Since Algorithm 4 involves multiple evaluations of the
exponential map and dynamic programming alignment, it
is still not computationally very efficient. We further speed
up this computation as follows: find the baseline x(s) con-
necting two trajectories first (using geodesic between α1(0)
and α(1) on M) and then align their TSRVFs accordingly.
This substantially speeds up the solution albeit at the cost of
diverging from the optimal solution stated under the theoret-
ical formulation. In the experimental results presented later,
we use this method to speed up registration and comparison.

4 Riemannian Structure on P̃
Next we discuss the geometry of P̃ and impose a Rieman-
nian structure that facilitates our analysis of trajectories on
P̃ . Several past papers have studied the space of SPDMs
as a nonlinear manifold and have imposed metric structures
on that manifold [3,12,19,31,34]. While they mostly seek to
define distances on this set, a few of these distances originate
from a Riemannian structure with expressions for geodesics
and exponential maps. However, the most common Rie-
mannian framework [31] does not provide expressions for
all desired items that are needed in our context, especially
expressions for parallel transport and Riemannian curva-
ture tensor. Therefore, we choose a more recent Riemannian
structure that was introduced in [37], and subsequently used
in [38]. We will summarize the main results here and refer
the reader for more details to these papers and two supple-
mentary files.

Let P̃ be the space of n×n SPDMs, and letP be its subset
of matrices with determinant one. The idea is to first identify
the spaceP with the quotient space SL(n)/SO(n) and bor-
row the Riemannian structure from the latter directly. Then,
one can straightforwardly extend the Riemannian structure
on P to P̃ . The process starts by choosing a Riemannian
metric on SL(n) as follows: for any point G ∈ SL(n) the
metric is defined by pulling back the tangent vectors under
G−1 to I , and then using the trace metric (see more details
in Sect. 1 of Supplementary Material I). This definition leads
to expressions for the exponential map, its inverse, parallel
transport of tangent vectors, and the Riemannian curvature
tensor on SL(n). It also induces a Riemannian structure on
the quotient space SL(n)/SO(n) in a naturalwaybecause the
chosen metric is invariant to the action of SO(n) on SL(n).
Finally, these results are transferred toP using the mapping

π : SL(n)/SO(n) → P, π([G]) =
√
G̃G̃t ,

for any G̃ ∈ [G]. One can check that this map is well defined
and is a diffeomorphism, by letting G̃ = PS (polar decom-

position), and then π([G]) =
√
G̃G̃t = √

PSSt P = P .

This square root is the symmetric, positive-definite square
root of a symmetric matrix. The inverse map of π is given
by: π−1(P) = [P] ≡ {PS|S ∈ SO(n)} ∈ SL(n)/SO(n).
This establishes a one-to-one correspondence between the
quotient space SL(n)/SO(n) andP . In turn, this correspon-
dence is used to derive required expressions for geodesics,
exponential map, curvature tensor, etc., on P . We refer the
reader to the Supplementary Material I for more details.

These results are then extended to the set P̃ using a prod-
uct map. Since for any P̃ ∈ P̃ we have det(P̃) > 0, we can

express P̃ = (P, 1
n log(det(P̃))) with P = P̃

det(P̃)1/n
∈ P .

Thus, P̃ is identified with the product space of P × R. To
define a metric on this product space, we can use the square
root of sum of squares of the individual metrics but with arbi-
traryweights. Herewe use theweight 1/n for the determinant
term. We summarize expressions for the required mathemat-
ical tools on P̃ :

1. Exponential mapGive P̃ ∈ P̃ and a tangent vector Ṽ ∈
TP̃ (P̃).We denote Ṽ = (V , v), where V ∈ TP (P), P =
P̃/ det(P̃)1/n and v = 1

n log(det(P̃)). The exponential

map expP̃ (Ṽ ) is given as ev expP (V ), where expP (V ) =√
Pe2P−1V P−1 P.

2. Geodesic distance For any P̃1, P̃2 ∈ P̃ , the squared
geodesic distance between them is : dP̃ (P̃1, P̃2)2 =
dP (I , P12)2 + 1

n (log(det(P̃2)) − log(det(P̃1)))2, where

P12 =
√
P−1
1 P2

2 P
−1
1 and dP (I , P12) = ‖A12‖ for

eA12 = P12 ∈ P .
3. Inverse exponential map For any P̃1, P̃2 ∈ P̃ , the

inverse exponential map exp−1
P̃1

(P̃2) = Ṽ ≡ (V , v),

where V = P1 log(
√
P−1
1 P2

2 P
−1
1 )P1 and

v = 1

n
log(det(P2)) − 1

n
log(det(P1)).

4. Parallel transport For any P̃1, P̃2 ∈ P̃ and a tangent
vector Ṽ = (V , v) ∈ TP̃1

(P̃), the parallel transport of Ṽ

along the geodesic from P̃1 to P̃2 is: (P2T T
12BT12P2, v),

where B = P−1
1 V P−1

1 , T12 = P−1
12 P−1

1 P2 and P12 =√
P−1
1 P2

2 P
−1
1 .

5. Riemannian curvature tensor For any P̃ ∈ P̃ , and
tangent vectors X̃ = (X , x), Ỹ = (Y , y) and Z̃ =
(Z , z) ∈ TP̃ (P̃), the Riemannian curvature tensor is
given by R(X̃ , Ỹ )(Z̃) = −P[[A, B],C]P , where A =
P−1X P−1, B = P−1Y P−1,C = P−1Z P−1 and
[A, B] = AB − BA.

Remark 1 The Riemannian structure used here and the one
used previously [31] are both derived from the same induced
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structure on the quotient space SL(n)/SO(n). The differ-
ence lies in the mapping used to map the metric from
SL(n)/SO(n) to P . In [31], the mapping from the quotient
space P is GGT , leading to the relationship:

SL(n)

SL(n)/SO(n)
π1([G])=GGT

π−1
1 (P)=[√P]

P

√
P

while in our approach, this mapping is
√
GGT , leading to

the picture:

SL(n)

SL(n)/SO(n)
π2([G])=√

GGT

π−1
2 (P)=[P]

P

P

The main motivation for the current choice of mapping, and
the resulting Riemannian metric on P , is as follows. Con-
sider any G ∈ SL(n). It is an important fact that

√
GGT is

the only element in [G] that is also inP . So, it is a very nat-
ural idea to represent the equivalence class [G] with √

GGT

giving a representation of SL(n)/SO(n) usingP . Note that
GGT , used in [31], is generally not an element of [G]. In
view of this simplification, i.e., the identity mapping fromP
to SL(n), P can be viewed as a subset of SL(n). Thus, all
the relevant expressions can be derived under this identifica-
tion rather than treating P as a separate space. Specifically,
we have readily available expressions for geodesic, geodesic
distance, exponential map and its inverse, parallel transport,
and Riemannian curvature tensor onP viewed as a subset of
SL(n).

5 Demonstration of Numerical Procedures

In this section, we demonstrate the numerical procedures of
the proposed framework on simulated covariance trajecto-
ries. We used M = P(3), the set of 3 × 3 SPDMs with
determinant one.

Geodesic computation As a first example, we compute
the geodesic between two arbitrary trajectories using the
numerical method in Algorithm 2. Figure 3 shows the result.
In this plot, each matrix is visualized by an ellipsoid and a
trajectory in P(3) by a sequence of ellipsoids. The top row
shows two original trajectories α1 and α2 with representa-
tions (p1, q1) and (p2, q2)). The next row shows the baseline
path x(s) associated with the geodesic between α1 and α2,
and the end point of the geodesic, i.e., exp(p1,q1)(u, w). Here
we select (p1, q1) as the starting point and compute the shoot-

Original trajectories: 

Shot trajectory: Baseline path: 

Iteration 

E
nergy 

Fig. 3 Example of calculating geodesic using shooting method for tra-
jectories onP . The first row shows the original trajectory (p1, q1) and
the target trajectory (p2, q2). The second and third rows show some
results obtained from Algorithm 2: baseline curve x(s) connecting p1
and p2 on P , the final shot trajectory exp(p1,q1)(u, w) and the L2 dis-
crepancy between the shot trajectory and the target trajectory versus
number of iterations

Before: α1 and α2 After: α1 and α2 ◦ γ∗

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

γ∗

Fig. 4 Pairwise registration of two trajectories α1 (first row) and α2
(second row). The bottom panel shows the warping function γ to warp
α2 to α1

ing direction (u, w) such that exp(p1,q1)(u, w) ≈ (p2, q2).
The bottom panel shows the evolution of L2 norm between
the shot trajectory and the target (p2, q2) during the shooting
algorithm.

Temporal alignment Next, we present an example of
aligning two trajectories α1 and α2 in P(3) in Fig. 4. This
alignment is based on particularization of Algorithm 4 to
M = P(3). As the figure shows, the two trajectories are
very well aligned as a result.

Computation of summary statistics Finally, we focus on
the problemof generating statistical summaries of covariance
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trajectories. Since dq defines a metric in the quotient space
B/Γ̃ , this framework allows us to perform statistical analysis
of multiple trajectories in B/Γ̃ . Given a set of trajectories
{αi , i = 1 . . . k}, we are interested in computing the average
of these trajectories and using it as a template for registering
these trajectories. The sample mean can be approximated
through:

(μp, [μq ]) = argmin
(p,[q])∈B/Γ̃

n∑

i=1

dq((p, [q]), (pi , [qαi ]))2.

(10)

Note that (μp, [μq ]) is an orbit (equivalence class of tra-
jectories) and one can select any element of this orbit as a
template to align multiple trajectories.

Algorithm 5 Calculation of mean trajectory
For each αi , compute its mathematical representation (pi , qi ). Let
(μ

j
p, μ

j
q ), j = 0 be the initial estimate of the mean (e.g., we can choose

one of the trajectories). Set small ε, ε1, ε2 > 0.

1. For i = 1 to n, align each trajectory (pi , qi ) to (μ
j
p, μ

j
q ) according

to Algorithm 4, denoted as (pi , q̃i ). Algorithm 4 also gives us the
inverse exponential map: (ui , wi ) = exp−1

(μ
j
p ,μ

j
q )

(pi , q̃i ).

2. Compute the average direction: ū = 1
n

∑n
i=1 ui , w̄ = 1

n

∑n
i=1 wi .

3. If ||ū|| < ε1 and ||w̄|| < ε2, stop. Else, update (μ
j
p, μ

j
q ) in

the direction of (ū, w̄) using exponential map: (μ
j+1
p , μ

j+1
q ) =

exp
(μ

j
p ,μ

j
q )

(εū, εw̄), where ε is the step size. We suggest using

ε = 0.5.
4. Set j = j + 1, return to step 2.

For discussions on existence of this Riemannian sample
mean and convergence of Algorithm 5 to a limit, we refer the
reader to [1,21].

After Algorithm 5 coverages, one can compute the covari-
ant integral of (μp, μq) using Algorithm 3, denoted by μ,
which is the mean of {α1, α2, . . . , αn}. Figure 5 shows an
example of calculating the mean of given trajectories. The
upper part of the figure shows four simulated trajectories.
The bottom part shows the mean trajectory in two situations:
inB using dc (without temporal alignment) and inB/Γ under
dq (with alignment). One can see that under dq the structures
along the trajectories are better preserved.

6 Comparison with PreviousWork

The proposed framework is an improvement over [38] in
the following sense. It preserves the invariance properties
achieved in [38], but does not require choosing a global ref-
erence point. Also, this framework naturally includes the
difference between the starting points of two trajectories

Simulated trajectories:

Mean before registration Mean after registration

Fig. 5 Example of calculating the mean trajectory. The upper panel
shows simulated trajectories, and the bottom panel shows means before
and after alignment

that was ignored in [38]. Since the velocity vectors here are
transported to the starting point of a trajectory, along that
trajectory, as opposed to a transport to an arbitrary reference
point in [38], this representation is more stable.

To quantitatively compare with [38,39], we performed the
same visual speech recognition task utilizing the same sub-
set of OuluVS dataset [39,42]. Here, we briefly introduce
the experiment setup and more details can be found in [39].
OuluVS dataset includes 20 speakers, each uttering 10 every-
day greetings five times: Hello, Excuseme, I am sorry, Thank
you, Good bye, See you, Nice to meet you, You are welcome,
How are you, Have a good time. Thus, the database has a
total of 1000 videos. All the image sequences are segmented,
having the mouth region determined by manually labeled
eye positions in each frame [43]. Some examples of the seg-
mented mouth images are shown in Fig. 6. We performed the
experiment on a subset of the dataset, which contains 800
video sequences by removing some short videos [39]. The
same covariance matrix features as [39] were extracted to
represent each video. The resulting trajectories in P̃(7) are
aligned using Algorithm 4 and compared using distance dq
defined in Eq. 6.

In Fig. 7a, we show some optimal γ ’s obtained to align
one video of phrase (“excuseme”) to other videos of the same
phrase spokenby the sameperson.One can see that there exist
temporal differences in the original videos and theyneed to be
aligned before further analysis. In (b), we show the histogram
of (dc − dq)/max(dc, dq)’s (the relative distance changes
before and after alignment). In this case, each person has 50
videos, and we can calculate (50× 49)/2 pairwise distances
before and after alignment, and their differences. For all 20
persons in this dataset, we have 20× (50× 49)/2 = 24, 500
such differences. From the histogram of the relative changes,
one can see that after our alignment, the distances (dq ’s)
consistently become smaller.
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Fig. 6 Examples of down sampled video sequences in OuluVS dataset.
The first and second rows show one person’s two speech samples of the
phrase “Nice to meet you”; the third and fourth rows show the phrases
“How are you” and “Good bye” uttered by different persons
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Fig. 7 a shows the optimal γ ’s obtained to align one video of phrase
(“excuse me”) to the other four videos of the same phrase spoken by the
same person. b shows the histogram of (dc − dq )/max(dc, dq )’s (The
relative distance changes before and after alignment)

Table 1 Comparison of SDT performance on OuluVS

Method 1NN rate (%)

Su et al. [39] Before alignment 33.8

After alignment 70.5

Our method Before alignment 41.0

After alignment 78.6

Table 1 shows the average nearest neighbor (1NN) clas-
sification rate of our method and [39]. Our method has the
classification rate of 78.6%, which is 8.1% better than [39]’s.
These results indicate that the new representation of tra-
jectories and analysis framework have better discriminative
power even before alignment comparing with the reference
point-based method in [38,39]. In addition, there is a 37.6%
improvement due to alignment (registration), which demon-
strates the importance of removing temporal difference in
comparing of the dynamic systems in computer vision.

7 Application 1: Generative Modeling of
Trajectories

Algorithm 5 results in several quantities of interest: (i)
the mean trajectory (μp, [μq ]), (ii) the aligned trajecto-

ries (pi , q̃i ), and (iii) the shooting vectors from the mean
to (pi , q̃i ), denoted as (ui , wi ). Since our representation is
invertible, one can develop generative models of given tra-
jectories using these quantities. For example, we can use
statistical methods to infer the distribution of a set of trajecto-
ries, draw random samples and perform statistical inference.
We illustrate these ideas using a simple example onP(3), as
it is easy to visualize.

As described in Supplementary Material I, the tangent
element X ∈ Tμp (P) can be identified as μp Bμp, where
B ∈ TI (P) = {A|At = A and tr(A) = 0}. For matrix
size three, elements of TI (P(3)) has only five degrees of
freedom. Let φ : TI (P(3)) �→ R

5 be an embedding given
by φ(A) = [a11, a12, a13, a22, a23]T . Given tangent vec-
tors (ui , wi ) for i = 1, . . . , n in T(μp,μq )(B), we have
ui ∈ Tμp (P(3)) and wi ∈ L

2([0, 1], Tμp (P(3))). We trans-
form (ui , wi ) into (u0i , w

0
i ) such that u0i ∈ TI (P(3)) and

w0
i ∈ L

2([0, 1], TI (P(3))) according to

ui = μpu
0
i μp and wi (s) = μpw

0
i (s)μp, for s ∈ [0, 1],

and perform the statistical modeling in TI (P(3)). These
elements are further mapped into R

5 and functions in R
5,

respectively, using φ. Statistical modeling of the trajectories
inP(3) becomes of modeling points in R5 and L2 functions
in R5.

Next, we consider the problem of fitting a distribution
to the given sample trajectories. For the first component
ui , we use a simple multivariate Gaussian distribution. For
the second component wi , we follow a similar procedure
as [26] to define a Gaussian distribution in a principal sub-
space and then map it back to the trajectory space. Let the
trajectory αi be sampled with a finite number of points,
say m, we then calculate the sample covariance matrix
K ∈ R

5m×5m similar to [26]. Let K = U�UT be the
singular value decomposition of K, and let Ur , the first r
columns of U, span the principal subspace of the observed
data. The principal scores of each data can be calculated
by projecting each φ(w0

i ) to this principal subspace, and
we apply a Gaussian distribution to model these principal
scores.

In the simulation study, we generate 50 random trajecto-
ries in P(3), some of them are shown in Fig. 8a. To give an
idea about variability along these trajectories, we compute
the fractional anisotropy (FA) [4] value of each SPDM in a
trajectory, and visualize it as a scalar function of time. In Fig.
8b,we showFAcurves of the 50 simulated trajectories. Using
Algorithm 5, we calculate the mean trajectory, the aligned
trajectories (pi , q̃i ), and the shooting vectors (ui , wi ). Fig-
ure 9a shows FA curves of the aligned trajectories, and (b)
shows the mean trajectory and its FA curve. A PCA of shoot-
ing vectors leads to dimension reduction in data, which is
necessary for reaching an efficient statistical modeling on
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Fig. 8 Simulated trajectories in (a) (with FA value) and their FA values
in (b)
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Fig. 9 Statistical modeling on the tangent space of the mean trajectory.
a shows the FA curves of the aligned trajectories to the mean; b shows
the mean trajectory and its FA curve; and c shows the first PC direction
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Fig. 10 Randomly sampled trajectories from the fitted model. a shows
the FA curves of the 200 simulated trajectories and b shows 9 example
trajectories

trajectories. Figure 9c shows the variability of trajectories
along the first PC of the given data. Figure 10 shows some
random samples from the Gaussian models discussed above.
In (a), we show the FA curves of the 200 sampled trajecto-
ries, and in (b), we show 9 random trajectories. Notice that
the statistical model is in B/Γ̃ , so we do not consider the
variation of the wrapping functions γ . To build a more com-
plex model that considers γ , we refer the reader to Chapter
7 in [35].

(a)

(b)

Fig. 11 a shows three examples of gestures in the Cambridge hand
gesture database. b shows the five different illumination conditions in
the database

8 Application 2: Discriminative Analysis of
Trajectories

Now we turn to evaluation of the framework for discrimina-
tive pattern recognition. We consider two applications here:
(1) action recognition and (2) dynamic functional brain con-
nectivity analysis.

8.1 Hand Gesture Recognition

Hand gesture recognition using videos is an important
research area since people use gestures to depict sign lan-
guage for deaf, convey messages in loud environment and
to interface with computers. In this section, we are inter-
ested in applying our framework in video-base hand gesture
recognition. We use the Cambridge hand gesture dataset
[24] which has 900 video sequences with nine different hand
gestures (100 video sequences for each gesture). The nine
gestures result from 3 primitive hand shapes and 3 primi-
tive motions, and as collected under different illumination
conditions. Some example gestures are shown in Fig. 11.
The gestures are imaged under five different illuminations,
labeled as Set1, Set2, . . . , Set5.

In addition to the illumination variability, the main chal-
lenge here comes from the fact that hands in this database
are not well aligned, e.g., the proportion of a hand in an
image and the location of the hand are different in differ-
ent video sequences. To reduce these effects, we evenly
split one image into four quadrants (upper-left, upper-right,
bottom-left, bottom-right) with some overlaps. Each of the
four quadrants is represented by a sequence of covariance
matrices in P̃ . In this experiment, we use HOG features
[10] to form a covariance matrix per image quadrant as
follows. We use 2 × 2 blocks of 8 × 8 pixel cells with
7 histogram channels to form HOG features. Those HOG
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Table 2 Recognition results on
the Cambridge Hand Gesture
dataset

Method Set1 (%) Set2 (%) Set3 (%) Set4 (%) Set5 (%)

TCCA [23] 81 81 78 86 –

RLPP [17] 86 86 85 88 –

PM 1-NN [29] 89 86 89 87 –

PMLSR [28] 93 89 91 94 –

kgLC [16] 96 94 96 98 –

Our

BA 94 91 90 88 77

AA (unsup.) 98 95 93 97 94

AA (sup.) 99 97 97 96 98

AA after alignment; BA before alignment

features are then used to generate a 7 × 7 covariance
matrix for each quadrant of each frame. Thus, our rep-
resentation of a video is now given by t �→ α(t) ∈
P̃(7)4.

Since we have split each hand gesture into four dynamic
parts, the total distance between any two hand gestures is
a composite of four corresponding distances. For each cor-
responding dynamic quadrant, e.g., the upper-left part, we
first align a pair of videos (using Algorithm 4) and then
compare them using the metric dq , denoted by dqupl. The
final distance is obtained using an weighted average of the
four parts: d = λ1d

q
upl + λ2d

q
upr + λ3d

q
downl + λ4d

q
downr and∑4

i=1 λi = 1. For an unsupervised study, we set λi = 1/4
for i = 1, . . . , 4. In another setting, we learn a different
weight for each illumination to make d be more robust to
the registration and illumination issues. In our experiment,
we randomly selected half of the data (90 video sequences)
as training data, and the other half of the data were used for
testing. Table 2 shows our results using the nearest neighbor
classifier on all five sets. One can see that the alignment
can significantly improve the classification rate on every
illumination condition in both supervised and unsupervised
settings. We also reported the state-of-the-art results on this
database [16,28,29].One can see thatwith only a 7×7 covari-
ance feature per quadrant per frame, we are able to achieve
a classification result that is equivalent or better than the
state-of-the-art results. The classification result may further
be improved using a more discriminative feature or better
classifier.

8.2 Dynamic Functional Connectivity Study

Another interesting application of the proposed framework
is in analyzing functional brain connectivity using fMRI
data. Functional connectivity (FC) is defined as statistical
dependencies among remote neurophysiological events. The
short-term FC is often represented as a covariance or cor-
relation matrix of fMRI data over a small time window,

with the matrix size being the number of brain regions.
In the early studies, FC associated with individual tasks
or stimuli was treated as fixed over time. However, later
studies [18] revealed that FC is a dynamic process and
evolves over time. Therefore, it is natural to represent FC
observed over a long interval as an indexed sequence of
covariance matrices. Consequently, we can use the method
developed in this paper for comparing and analyzing such
FC.

We present some experimental results using data from
the Human Connectome Project (HCP). For the first experi-
ment, we select fMRI data for 20 subjects during resting state
and during performances of various other tasks. The data are
aligned and denoised using HCP data preprocessing pipeline
[14], and the Destrieux atlas [11] is used to parcellate cor-
tical regions into 74 nodes per hemisphere. We choose 10
regions, including the inferior frontal gyrus and sulcus, and
transverse temporal sulcus, that are related to the go/no tasks
[2]. The dynamic connectivity of these regions is represented
as a trajectory of covariance matrices between the regions.
We use a sliding window [18] to calculate a covariance tra-
jectory. For comparisons, we have selected two tasks: resting
state fMRI and gambling task fMRI, and 10 trajectories for
each task.

The results are shown in Fig. 12. In panel (a), we show
the determinant ( 1n log(det(P̃(t)))), as function of t , of these
20 covariance trajectories. We can clearly see fluctuations
in the dynamics of the determinant part over time. Since
the gambling task is carefully designed to repeat the reward,
neutral and loss blocks, we see similar periodic fluctuations
for different subjects (but there are some temporal misalign-
ment due to inter-subject variability). This dynamic pattern
seems different from that for the resting state fMRI. Fig-
ure 12 (b) shows the pairwise distances dq between the 20
trajectories. The block pattern in this distance matrix is an
evidence that the resting state are very different from the
gambling task state. The dynamic FC trajectories are more
homogeneous in the gambling task (after temporal align-
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Fig. 12 a shows the determinant part ( 1n log(det(P̃)) ) of the 20
dynamic brain subnetworks. b shows the pairwise distances between
the 20 subnetworks after alignment. c shows the histogram of (dc −
dq )/max(dc, dq ). d shows the pairwise distances calculated based on
log-E metric

ment). The temporal alignment plays an important role in
studying dynamic FC. Panel (c) shows the histograms of
percentages of distance changes before and after alignment
for resting and gambling task. We see a significant reduc-
tion in distances in both cases, but the percentage reduction
for task trajectories is more than that of the resting ones.
This is due to the fact that the gambling task is performed
under a well-designed rule, and although there are some tem-
poral misalignments, everyone in the experiment exhibits
similar dynamic FC among the selected ROIs. For compar-
ison, we also compute pairwise trajectory distances under
the log-Euclidean distance [44]. That is, for any two tra-
jectories α1, α2, the distance between them is calculated as
dlogE(α1, α2) = ∫ 1

0 ‖ log(α1(t)) − log(α2(t))‖dt . Panel (d)
shows the pairwise distance matrix calculated using dlogE
for the same data. One can see that there is no block pattern
there, indicating the lack of power of this metric in dynamic
FC study.

In the previous experiment, the 10 selected regions are
marked as “Set1 ROIs”. We take another set of 10 regions
(postcentral and precentral gyrus, and central and precentral
sulcus, that are part of the motor cortex) to generate another
set of covariance trajectories. These 10 regions are denoted
as “Set2 ROIs”. We compare the dynamic FC generated by
these two sets of ROIs under different tasks, and the results
are shown inFig. 13.The results show that,while the dynamic
FCs are very different for the two sets of ROIs in the motor
task, the connectivities are not that well separated in the gam-
bling task. These experiments demonstrate that the proposed
framework can perform statistical analysis of dynamic FCs.
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Fig. 13 The pairwise distances (based on dq ) between covariance tra-
jectories generated from different sets of nodes. a shows the distance
in the motor task for 20 trajectories after the alignment. b shows the
distance in the gambling task

9 Conclusion

In summary, we have proposed a metric-based approach
for simultaneous alignment and comparisons of trajecto-
ries on P̃ , the Riemannian manifold of covariance matrices
(SPDMs). We impose a Riemannian structure on this mani-
fold that facilitates explicit expressions for geometric quan-
tities, such as parallel transport and Riemannian curvature
tensor. For analyzing covariance trajectories, the basic idea
is to represent each trajectory by a starting point P̃ ∈ P̃ and
a TSRVF which is a curve in the tangent space TP̃ (P̃). The
metric for comparing these elements is a composite of: (a)
the length of the path between the starting points and (b) the
difference introduced by the TSRVFs. The search for optimal
path, or a geodesic, is based on a shooting method, that in
itself uses geodesic equations for computing the exponential
map. Using a numerical implementation of the exponential
map,we derive numerical solutions for pairwise alignment of
covariance trajectories and to quantify their differences using
a rate-invariant distance. We have applied this framework to
two scenarios: (1) covariance tracking in video data, with an
application to the hand gesture recognition, and (2) dynamic
functional connectivity study in fMRI data. The advantages
and potential applications of the proposed framework have
been demonstrated in these experiments.
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