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Abstract
We tackle the problem of reflectance estimation from a set of multi-view images, assuming known geometry. The approach we
put forward turns the input images into reflectancemaps, through a robust variationalmethod. The variationalmodel comprises
an image-driven fidelity term and a term which enforces consistency of the reflectance estimates with respect to each view.
If illumination is fixed across the views, then reflectance estimation remains under-constrained: A regularization term, which
ensures piecewise-smoothness of the reflectance, is thus used. Reflectance is parameterized in the image domain, rather than
on the surface, which makes the numerical solution much easier, by resorting to an alternating majorization–minimization
approach. Experiments on both synthetic and real-world datasets are carried out to validate the proposed strategy.

Keywords Reflectance · Multi-view · Shading · Variational methods

1 Introduction

Acquiring the shape and the reflectance of a scene is a key
issue, e.g., for the movie industry, as it allows proper relight-
ing. The current proposed solutions focus on small objects
and standonmultiple priors [39] or need very controlled envi-
ronments [34, Chapter 9].Well-established shape acquisition
techniques such as multi-view stereo exist for accurate 3D-
reconstruction. Nevertheless, they do not aim at recovering
the surface reflectance. Hence, the original input images are
usually mapped onto the 3D-reconstruction as texture. Since
the image graylevel mixes shading information (induced by
lighting and geometry) and reflectance (which is characteris-
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tic of the surface), relighting based on this approach usually
lacks realism. To improve the results, reflectance needs to be
separated from shading.

In order tomore precisely illustrate our purpose, let us take
the example of a Lambertian surface. In a 2D-point (pixel)
p conjugate to a 3D-point x of a Lambertian surface, the
graylevel I (p) is written

I (p) = ρ(x) s(x) · n(x). (1)

In the right-hand side of (1), ρ(x) ∈ R is the albedo,1

s(x) ∈ R
3 the lighting vector, and n(x) ∈ S

2 ⊂ R
3 the

outer unit-length normal to the surface. All these elements
a priori depend on x i.e.,they are defined locally. Whereas
I (x) is always supposed to be given, different situations can
occur, according to which are also known, among ρ(x), s(x)
and n(x).

One Eq. (1) per pixel is not enough to simultaneously
estimating the reflectance ρ(x), the lighting s(x) and the
geometry, represented here by n(x), because there are much
more unknowns than equations. Figure 1 illustrates this
source of ill-posedness through the so-called workshop
metaphor introduced by Adelson and Pentland in [1]: among
three plausible interpretations (b), (c) and (d) of image (a), we
are particularly interested in (d), which illustrates the princi-
ple of photometric 3D-reconstruction. This class of methods

1 Since the albedo suffices to characterize the reflectance of a Lamber-
tian surface, we will name it “reflectance” as well.
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Fig. 1 The “workshop metaphor” (extracted from a paper by Adelson
and Pentland [1]). Image (a) may be interpreted either by: b incorpo-
rating all the brightness variations inside the reflectance; c modulating
the lighting of a white planar surface; d designing a uniformly white

3D-shape illuminated by a parallel and uniform light beam. This last
interpretation is one of the solutions of the shape-from-shading problem

usually assume that the lighting s(x) is known. Still, there
remains three scalar unknowns per Eq. (1): ρ(x) and n(x),
which has two degrees of freedom. Assuming moreover that
the reflectance ρ(x) is known, the shape-from-shading tech-
nique [16] uses the shading s(x) · n(x) as unique clue to
recover the shape n(x) from Eq. (1), but the problem is still
ill-posed.

A classical way to make photometric 3D-reconstruction
well-posed is to use m > 1 images taken using a single
camera pose, but under varying known lighting:

I i (p) = ρ(x) si (x) · n(x), i ∈ {1, . . . ,m} (2)

In this variant of shape-from-shading called photometric
stereo [40], the reflectance ρ(x) and the normal n(x) can
be estimated without any ambiguity, as soon as m ≥ 3 non-
coplanar lighting vectors si (x) are used.

Symmetrically to (2), solving the problem:

I i (p) = ρ(x) s(x) · ni (x), i ∈ {1, . . . ,m} (3)

allows to estimate the lighting s(x), as soon as the reflectance
ρ(x) andm ≥ 3non-coplanar normalsni (x), i ∈ {1, . . . ,m},
are known. This can be carried out, for instance, by placing a
small calibration pattern with known color and known shape
near each 3D-point x [32].

The problem we aim at solving in this paper is slightly
different. Suppose we are given a series of m > 1 images of
a scene taken using a single lighting, but m camera poses.
According to Lambert’s law, this ensures that a 3D-point
looks equally bright in all the images where it is visi-
ble. Such invariance is the basic clue of multi-view stereo
(MVS), which has become a very popular technique for
3D-reconstruction [12]. Therefore, since an estimate of the
surface shape is available, n(x) is known. Now, we have
to index the pixels by the image number i . Fortunately,

additional data provided by MVS are the correspondences
between the different views, taking the form of m-tuples of
pixels (pi )i∈{1,...,m} which are conjugate to a common 3D-
point x.

Our problem is written2:

I i (pi ) = ρ(x) s(x) · n(x), i ∈ {1, . . . ,m} (4)

where pi is the projection of x in the i-th image, and ρ(x)
and s(x) are unknown. Obviously, this system reduces to Eq.
(1), since its m equations are the same one: the right-hand
side of (4) does not depend on i , not more than the left-
hand side I i (pi ) since, as already noticed, the lighting s(x)
does not vary from one image to another, and the surface is
Lambertian.

Multi-view helps estimating the reflectance, because it
provides the 3D-shape via MVS. However, even if n(x) is
known, Eq. (1) remains ill-posed. This is illustrated, in Fig. 1,
by the solutions (b) and (c), which correspond to the same
image (a) and to a common planar surface. In the absence
of any prior, Eq. (1) has an infinity of solutions in ρ(x) s(x).
In addition, determining ρ(x) from each of these solutions
would give rise to another ambiguity, since s(x) is not forced
to be unit-length, contrarily to n(x).

Such a double source of ill-posedness probably explains
why various methods for reflectance estimation have been
designed, introducing a variety of priors in order to disam-
biguate the problem. Most of them assume that brightness
variations induced by reflectance changes are likely to be
strong but sparsely distributed, while the lighting is likely to
induce smoother changes [21].

This suggests to separate a single image into a piecewise-
smooth layer and a more oscillating one. In the computer

2 Even if they look very similar, Problems (2), (3) and (4) have com-
pletely different peculiarities.
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Fig. 2 Overview of our contribution. From a set of n images of a surface acquired under different angles, and a coarse geometry obtained for
instance using multi-view stereo, we estimate a shading-free reflectance map per view (Color figure online)

vision literature, this is often referred to as “intrinsic image
decomposition”, while the terminology “cartoon + texture
decomposition” is more frequently used by the mathematical
imaging community. (Both these problems will be discussed
in Sect. 2.)

Contributions In this work, we show the relevance of
using multi-view images for reflectance estimation. Indeed,
this enables a prior shape estimation using MVS, which
essentially reduces the decomposition problem to the joint
estimation of a set of reflectance maps, as illustrated in
Fig. 2. We elaborate on the variational approach to multi-
view decomposition into reflectance and shading, which we
initially presented in [26]. The latter introduced a robust l1-
TV framework for the joint estimation of piecewise-smooth
reflectance maps and of spherical harmonics lighting, with
an additional term ensuring the consistency of the reflectance
maps. The present paper extends this approach by develop-
ing the theoretical foundations of this variational model. In
this view, our parameterization choices are further discussed
and the underlying ambiguities are exhibited. The variational
model is motivated by a Bayesian rationale, and the proposed
numerical scheme is interpreted in terms of a majorization–
minimization algorithm. Finally, we conclude that, besides a
preliminary measurement of the incoming lighting, varying
the lighting along with the viewing angle, in the spirit of pho-
tometric stereo, is the only way to estimate the reflectance
without resorting to any prior.

Organizationof thePaperAfter reviewing related approaches
in Sect. 2, we formalize in Sect. 3 the problem of multi-view
reflectance estimation. Section 4 then introduces a Bayesian-
to-variational approach to this problem. A simple numer-
ical strategy for solving the resulting variational problem,
which is based on alternating majorization–minimization,
is presented in Sect. 5. Experiments on both synthetic and
real-world datasets are then conducted in Sect. 6, before sum-

marizing our achievements and suggesting future research
directions in Sect. 7.

2 RelatedWorks

Studied since the 1970s [21], the problem of decomposing an
image (or a set of images) into a piecewise-smooth compo-
nent and an oscillatory one is a fundamental computer vision
problem, which has been addressed in numerous ways.

Cartoon + Texture Decomposition Researchers in the field
of mathematical imaging have suggested various variational
models for this task, using for instance non-smooth regular-
ization and Fourier-based frequency analysis [3], or l1-TV
variational models [23]. However, such techniques do not
use an explicit photometric model for justifying the decom-
position, whereas photometric analysis, which is another
important branch of computer vision, may be a source of
inspiration for motivating new variational models.

Photometric Stereo As discussed in Introduction, photomet-
ric stereo techniques [40] are able to unambiguously estimate
the reflectance and the geometry, by considering several
images obtained from the same viewing angle but under cal-
ibrated, varying lighting. Photometric stereo has even been
extended to the case of uncalibrated, varying lighting [5]. In
the same spirit as uncalibrated photometric stereo, our goal
is to estimate reflectance under unknown lighting. However,
the problem is less constrained in our case, since we cannot
ensure that the lighting is varying. Our hope is that this can
be somewhat compensated by the prior knowledge of geom-
etry, and by the resort to appropriate priors. Various priors
for reflectance have been discussed in the context of intrinsic
image decomposition.
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Intrinsic Image Decomposition Separating reflectance from
shading in a single image is a challenging problem, often
referred to as intrinsic image decomposition. Given the ill-
posed nature of this problem, prior information on shape,
reflectance and/or lighting must be introduced. Most of the
existing works are based on the “retinex theory” [21], which
states that most of the slight brightness variations in an image
are due to lighting,while reflectance is piecewise-constant (as
for instance aMondrian image).Avariety of clustering-based
[13,36] or sparsity-enhancing methods [14,29,36,37] have
been developed based on this theory. Among others, thework
of Baron and Malik [4], which presents interesting results,
stands on multiple priors to solve the fundamental ambigu-
ity of shape-from-shading that we aim at revoking in the
multi-view context. Some other methods disambiguate the
problem by requiring the user to “brush” uniform reflectance
parts [8,29], or by resorting to a crowdsourced database [7].
Still, these works require user interactions, which may not
be desirable in certain cases.

Multi-view 3D-reconstruction Instead of introducing pos-
sibly unverifiable priors, or relying on user interactions,
ambiguities can be reduced by assuming that the geome-
try of the scene is known. Intrinsic image decomposition
has for instance been addressed using an RGB-D camera
[9] or, closer to our proposal, multiple views of the same
scene under different angles [19,20]. In the latter works,
the geometry is first extracted from the multi-view images,
before the problem of reflectance estimation is addressed.
Geometry computation can be achieved using multi-view
stereo (MVS). MVS techniques [35] have seen significant
growth over the last decade, an expansionwhich goes hand in
hand with the development of structure-from-motion (SfM)
solutions [27]. Indeed, MVS requires the parameters of the
cameras, outputs of the SfM algorithm. Nowadays, these
maturemethods are commonly used in uncontrolled environ-
ments, or even with large-scale Internet data [2]. For the sake
of completeness, let us also mention that some efforts in the
direction of multi-view and photometrically consistent 3D-
reconstruction have been devoted recently [17,18,22,24,25].
Similar to these methods, we will resort to a compact repre-
sentation of lighting, namely the spherical harmonics model.

Spherical Harmonics Lighting Model Let us consider a point
x lying on the surface S ⊂ R

3 of the observed scene, and let
n(x)be the outer unit-length normal vector toS inx. LetH(x)
be the hemisphere centered in x, having as basis plane the
tangent plane toS inx. Each light source visible fromx canbe
associated to a point ω onH(x). If we describe by the vector
s(x, ω) the corresponding elementary light beam (oriented
toward the source), then by definition of the reflectance (or
BRDF) of the surface, denoted r , the luminance of x in the
direction v is given by

L(x, v) =
∫
H(x)
r(x,n(x),

s(x, ω)

‖s(x, ω)‖ , v)

[s(x, ω) · n(x)] dω, (5)

where [s(x, ω) · n(x)] is the surface illuminance. In general,
r depends both on the direction of the light s(x, ω), and on
the viewing direction v, relatively to n(x).

This expression of the luminance is intractable in the gen-
eral case. However, if we restrict our attention to Lambertian
surfaces, the reflectance reduces to the albedo ρ(x), which
is independent of any direction, and L(x, v) does not depend
on the viewing direction v anymore. If the light sources are
further assumed to be distant enough from the object, then
s(x, ω) is independent of x i.e.,the light beams are the same
for the whole (supposedly convex) object, and thus, the light-
ing is completely defined on the unit sphere. Therefore, the
integral (5) acts as a convolution on H(x), having as kernel
s(ω) · n(x). Spherical harmonics, which can be considered
as the analogue to the Fourier series on the unit sphere, have
been shown to be an efficient low-dimensional representation
of this convolution [6,33]. Many vision applications [18,41]
use second-order spherical harmonics, which can capture
over 99% of the natural lighting [11] using only nine coeffi-
cients. This yields an approximation of the luminance of the
form

L = ρ

π
σ · ν, (6)

where ρ ∈ R is the albedo (reflectance), σ ∈ R
9 is a compact

lighting representation, and ν ∈ R
9 stores the local geometric

information. The latter is deduced from the normal according
to:

ν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
1

n1 n2
n1 n3
n2 n3

n21 − n22
3n23 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In (6), the lighting vector σ is the same in all the points
of the surface, but the reflectance ρ and the geometric vector
ν vary along the surface S of the observed scene. Hence, we
will write (6) as:

L(x) = ρ(x)
π

σ · ν(x), ∀x ∈ S. (8)

Our aim in this paper is to estimate the reflectance ρ(x) in
each point x ∈ S, as well as the lighting vector σ , given a
set of multi-view images and the geometric vector ν(x). We
formalize this problem in the next section.
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3 Multi-view Reflectance Estimation

In this section, we describe with more care the problem of
reflectance estimation from a set of multi-view images. First,
we need to make explicit the relationship between graylevel,
reflectance, lighting and geometry.

3.1 Image FormationModel

Let x ∈ S be a point on the surface of the scene. Assume
that it is observed by a graylevel camera with linear response
function and let I : Ω ⊂ R

2 → R be the image, where
Ω is the projection of S onto the image plane. Then, the
graylevel in the pixel p ∈ Ω conjugate to x is proportional
to the luminance of x in the direction of observation v:

I (p) = γ L(v, x), (9)

where the coefficient γ > 0, referred to in the following as
the “camera coefficient,” is unknown.3 By assuming Lam-
bertian reflectance and the light sources distant enough from
the object, Eqs. (8) and (9) yield:

I (p) = γ
ρ(x)
π

σ · ν(x). (10)

Now, let us assume that m images I i of the surface,
i ∈ {1, . . . ,m}, obtained while moving a single camera, are
available, and discuss how to adapt (10).

Case 1: unknown, yet fixed lighting and camera coefficient
If all the automatic settings of the camera are disabled, then
the camera coefficient is independent from the view. We can
thus incorporate this coefficient and the denominator π into
the lighting vector: σ := γ

π
σ . Moreover, if the illumination

is fixed, the lighting vector σ is independent from the view.
In any point x which is visible in the i-th view, Eq. (10)
becomes:

I i (π i (x)) = ρ(x) σ · ν(x), (11)

where we denote by π i the 3D-to-2D projection associated
to the i-th view. In (11), the unknowns are the reflectance
ρ(x) and the lighting vector σ . Eq. (11), i ∈ {1, . . . ,m},
constitute a generalization of (4) to more complex illumina-
tion scenarios. For the whole scene, this is a problem with
n + 9 unknowns and up to nm equations, where n is the
number of 3D-points x which have been estimated by multi-
view stereo. However, as for System (4), only n equations
are linearly independent; hence, the problem of reflectance
and lighting estimation is under-constrained.

3 This coefficient depends on several factors such as the lens aperture,
the magnification, the exposure time, etc.

Case 2: unknownand varying lighting and camera coefficient
If lighting is varying, thenwehave tomake the lighting vector
view-dependent. If it is also assumed to vary, the camera
coefficient can be integrated into the lighting vector with the

denominator π i.e.,σ i := γ i

π
σ i , since the estimation of each

σ i will include that of γ i . Equation (10) then becomes:

I i (π i (x)) = ρ(x) σ i · ν(x). (12)

There are even more unknowns (n + 9m), but this time the
nm equations are linearly independent, at least as long as the
σ i are not proportional i.e.,if not only the camera coefficient
or the lighting intensity vary across the views, but also the
lighting direction.4 Typically, n is of the order of [103, 106];
hence, the problem is over-constrained as soon as at least
two out of the m lighting vectors are non-collinear. This is
a situation similar to uncalibrated photometric stereo [5],
but much more favorable: The geometry is known; hence,
the ambiguities arising in uncalibrated photometric stereo
are likely to be reduced. However, contrarily to uncalibrated
photometric stereo, lighting is not actively controlled in our
case. Lighting variations are likely to happen e.g. in outdoor
scenarios, yet they will be limited. The m lighting vectors
σ i , i ∈ {1, . . . ,m}, will thus be close to each other: Lighting
variationswill not be sufficient in practice for disambiguation
(ill-conditioning).

Since (11) is under-constrained and (12) is ill-conditioned,
additional informationwill have to be introduced eitherways,
and we can restrict our attention to the varying lighting case
(12).

So far, we have assumed that graylevel images were avail-
able. To extend our study to RGB images, we abusively
assume channel separation, and apply the framework inde-
pendently in each channel � ∈ {R,G, B}. We then consider
the expression:

I i�(π
i (x)) = ρ�(x) σ i

� · ν(x) (13)

where ρ�(x) and σ i
� denote, respectively, the colored refle-

ctance and the i-th colored lighting vector, relatively to the
response of the camera in channel �. A more complete study
of Model (13) is presented in [31].

Since we will apply the same framework independently in
each color channel, we consider hereafter the graylevel case
only i.e.,we consider the image formation model (12) instead
of (13). The question which arises now is how to estimate the
reflectance ρ(x) from a set of equations such as (12), when
the geometry ν(x) is known but the lighting σ i is unknown.

4 Another case, which we do not study here, is when the lighting and
camera coefficient are both varying, yet only lighting is calibrated. This
is known as “semi-calibrated” photometric stereo [10].
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3.2 Reflectance Estimation on the Surface

We place ourselves at the end of the multi-view 3D-
reconstruction pipeline. Thus, the projections π i are known
(in practice, they are estimated using SfM techniques), as
well as the geometry, represented by a set of n 3D-points
x j ∈ R

3, j ∈ {1, . . . , n}, and the corresponding normals
n(x j ) (obtained for instance using SFM techniques), from
which the n geometric vectors ν j := ν(x j ) are easily
deduced according to (7).

The unknowns are then the n reflectance values ρ j :=
ρ(x j ) ∈ R and the m lighting vectors σ i ∈ R

9, which are
independent from the 3D-point number j due to the distant
light assumption. At first glance, one may think that their
estimation can be carried out by simultaneously solving (12)
in all the 3D-points x j , in a purely data-driven manner, using
some fitting function F : R → R:

min{ρ j∈R} j
{σ i∈R9}i

m∑
i=1

n∑
j=1

vij F
(
ρ j σ

i · ν j − I ij

)
, (14)

where we denote I ij = I i (π i (x j )), and vij is a visibility

boolean such that vij = 1 if x j is visible in the i-th image,

and vij = 0 otherwise.
Let us consider, for the sake of pedagogy, the simplest case

of least-squares fitting (F(x) = x2) and perfect visibility
(vij ≡ 1). Then, Problem (14) is rewritten in matrix form:

min
ρ∈Rn

S∈R9×m

‖N (ρ ⊗ S) − I‖2F , (15)

where the Kronecker product ρ ⊗ S is a matrix of R9n×m, ρ

being a vector ofRn which stores the n unknown reflectance
values, and S a matrix of R9×m which stores the m unknown
lighting vectors σ i ∈ R

9, column-wise, N ∈ R
n×9n is a

block-diagonal matrix whose j-th block, j ∈ {1, . . . , n}, is
the row vector ν


j , matrix I ∈ R
n×m stores the graylevels,

and ‖ · ‖F is the Frobenius norm.
Using the pseudo-inverse N† of N, (15) is rewritten:

min
ρ∈Rn

S∈R9×m

∥∥∥ρ ⊗ S − N† I
∥∥∥2
F

. (16)

Problem (16) is a nearest Kronecker product problem, which
can be solved by singular value decomposition (SVD) [15,
Theorem 12.3.1].

However, this matrix factorization approach suffers from
three shortcomings:

(1) It is valid only if all 3D-points are visible under all the
viewing angles, which is rather unrealistic. In practice,
(15) should be replaced by

min
ρ∈Rn

S∈R9×m

∥∥V ◦ [
N (ρ ⊗ S) − I

]∥∥2
F , (17)

whereV ∈ {0, 1}n×m is a visibilitymatrix containing the
values vij , and ◦ is the Hadamard product. This yields a
Kronecker product problem with missing data, which is
much more arduous to solve.

(2) It is adapted only to least-squares estimation. Consider-
ing a more robust fitting function would prevent a direct
SVD solution.

(3) If lighting is not varying (σ i = σ ,∀i ∈ {1, . . . ,m}),
then it can be verified that (15) is ill-posed. Among its
many solutions, the following trivial one can be exhib-
ited:

Strivial = σ diffuse 11×m, (18)

ρtrivial =
[
Ei [I i1], . . . , Ei [I in]

]

, (19)

where:

σ diffuse = [0, 0, 0, 1, 0, 0, 0, 0, 0]
 (20)

and Ei is the mean over the view indices i . This trivial
solution means that the lighting is assumed to be com-
pletely diffuse5, and that the reflectance is equal to the
image graylevel, up to noise only. Obviously, this is not
an acceptable interpretation. As discussed in the previ-
ous subsection, in real-world scenarios we will be very
close to this degenerate case; hence, additional regular-
ization will have to be introduced, which makes things
even harder.

Overall, the optimization problem which needs to be
addressed is not as easy as (16). It is a non-quadratic reg-
ularized problem of the form:

min{ρ j∈R} j
{σ i∈R9}i

p∑
i=1

n∑
j=1

vij F
(
ρ j σ

i · ν j − I ij

)

+
n∑
j=1

∑
k|xk∈V(x j )

R(ρ j , ρk), (21)

whereV(x j ) is the set of neighbors of x j on surfaceS, and the
regularization function R needs to be chosen appropriately
to ensure piecewise-smoothness.

However, the sampling of the points x j on surface S is
usually non-uniform, because the shape of S is potentially
complex. Itmay thus be difficult to design appropriate fidelity

5 In the computer graphics community, this is referred to as “ambient
lighting.”
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and regularization functions F and R, and to design an appro-
priate numerical solving. In addition, some thin brightness
variationsmay bemissed if the sampling is not dense enough.
Overall, direct estimation of reflectance on the surface looks
promising at first sight, but rather tricky in practice. There-
fore, we leave this as an interesting future research direction
and follow in this paper a simpler approach, which consists
in estimating reflectance in the image domain.

3.3 Reflectance Estimation in the Image Domain

Instead of trying to colorize the n 3D-points estimated by
MVS i.e.,of parameterizing the reflectance over the (3D)
surface S, we can also formulate the reflectance estimation
problem in the (2D) image domain.

Equation (12) is equivalently written, in each pixel p :=
π i (x) ∈ Ω i := π i (S):

I i (p) = ρi (p) σ i · νi (p), (22)

where we denote ρi (p) := ρ(π i−1
(p)) and νi (p) :=

ν(π i−1
(p)). Instead of estimating one reflectance value ρ(x)

per estimated 3D-point, the reflectance estimation problem
is thus turned into the estimation of m “reflectance maps”

ρi : Ω i ⊂ R
2 → R. (23)

On the one hand, the 2D-parameterization (23) does not
enforce the consistency of the reflectance maps. This will
have to be explicitly enforced later on. Besides, the surface
will not be directly colorized, but the estimated reflectance
maps have to be back-projected and fused over the surface
in a final step.

On the other hand, the question of occlusions (visibility)
does not arise, and the domains Ω i are subsets of a uni-
form square 2D-grid. Therefore, it will be much easier to
design appropriate fidelity and regularization terms. Besides,
there will be as many reflectance estimates as pixels in those
sets: With modern HD cameras, this number is much larger
than the number of 3D-points estimated bymulti-view stereo.
Estimation will thus be much denser.

With such a parameterization choice, the regularized prob-
lem (21) will be turned into:

min
{ρi :Ω i→R}i

{σ i∈R9}i

p∑
i=1

∑
p∈Ω i

F
(
ρi (p) σ i · νi (p) − I i (p)

)

+
p∑

i=1

∑
p∈Ω i

∑
q∈V i (p)

R(ρi (p), ρi (q))

s.t. C({ρi }i ) = 0, (24)

with C some function to ensure multi-view consistency, and
whereV i (p) is the set of neighbors of pixel pwhich lie inside
Ω i . Note that since Ω i is a subset of a square, regular 2D-
grid, this neighborhood is much easier to handle than that
appearing in (21).

In the next section, we discuss appropriate choices for
F, R and C in (24), by resorting to a Bayesian rationale.

4 A Bayesian-to-variational Framework for
Multi-view Reflectance Estimation

Following Mumford’s Bayesian rationale for the variational
formulation [28], let us now introduce a Bayesian-to-
variational framework for estimating reflectance and lighting
from multi-view images.

4.1 Bayesian Inference

Our problem consists in estimating the m reflectance maps
ρi : Ω i → R and the m lighting vectors σ i ∈ R

9, given
the m images I i : Ω i → R, i ∈ {1, . . . ,m}. As we already
stated, amaximum likelihood approach is hopeless, because a
trivial solution arises.We rather resort to Bayesian inference,
estimating ({ρi }i , {σ i }i ) as themaximum a posteriori (MAP)
of the distribution

P({ρi }i , {σ i }i |{I i }i )

= P({I i }i |{ρi }i , {σ i }i )P({ρi }i , {σ i }i )
P({I i }i ) , (25)

where the denominator is the evidence, which can be dis-
carded since it depends neither on the reflectance nor on the
lighting, and the factors in the numerator are the likelihood
and the prior, respectively.

Likelihood The image formation model (22) is never strictly
satisfied in practice, due to noise, cast-shadows and possibly
slightly specular surfaces. We assume that such deviations
from the model can be represented as independent (with
respect to pixels and views) Laplace laws6 with zero mean
and scale parameter α:

6 We consider the Laplace law here because: i) since it has higher tails
than the Gaussian, it allows for sparse outliers to the Lambertian model
such as cast-shadows or specularities; ii) it yields convex optimization
problems, unlike other heavy-tailed distributions such as Cauchy or t
distributions.
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P({I i }i |{ρi }i , {σ i }i )

=
m∏
i=1

(
1

2α

)|Ω i |
exp

{
− 1

α

∥∥∥ρi σ i · νi − I i
∥∥∥
i,1

}

=
(

1

2α

)∑m
i=1|Ω i |

exp

{
− 1

α

m∑
i=1

∥∥∥ρi σ i · νi − I i
∥∥∥
i,1

}

(26)

where ‖ · ‖i,p, p ≥ 0, is the 	p-norm over Ω i and |Ω i | is the
cardinality of Ω i .

Prior Since the reflectance maps {ρi }i are independent from
the lighting vectors {σ i }i , the prior can be factorized to
P({ρi }i , {σ i }i ) = P({ρi }i )P({σ i }i ). Since the lighting vec-
tors are independent from each other, the prior distribution
of the lighting vectors factorizes toP({σ i }i ) = ∏m

i=1 P(σ i ).
As each lighting vector is unconstrained, we can consider
the same uniform distribution i.e.,P(σ i ) = τ , independently
from the view index i . This distribution being independent
from the unknowns, we can discard the lighting prior from
the inference process. Regarding the reflectance maps, we
follow the retinex theory [21], and consider each of them as
piecewise-constant. The natural prior for each such map is
thus the Potts model:

P(ρi ) = Ki exp

{
− 1

β i

∥∥∥∇ρi
∥∥∥
i,0

}
(27)

where ∇ρi (p) = [
∂xρ

i (p), ∂yρ
i (p)

]

represents the gra-

dient of ρi at pixel p (approximated, in practice, using
first-order forward stencils with a Neumann boundary condi-
tion), and with Ki a normalization coefficient and β i a scale
parameter. Note that we use the abusive 	0-norm notation
‖∇ρi‖i,0 to denote:
∥∥∥∇ρi

∥∥∥
i,0

=
∑
p∈Ω i

∑
q∈V i (p)

f
(
ρi (p) − ρi (q)

)
(28)

with f (x) = 1 if x = 0, and f (x) = 0 otherwise.
The m reflectance maps are obviously not independent:

The reflectance, which characterizes the surface, should be
independent from the view. It follows that the parameters
(K i , β i ) are the same for each Potts model (27) and that the
reflectance prior P({ρi }i ) can be taken as the product of m
independent distributions with the same parameters (K , β):

P({ρi }i ) = Km exp

{
− 1

β

m∑
i=1

∥∥∥∇ρi
∥∥∥
i,0

}
(29)

but only if the coupling between the reflectance maps is
enforced by the following linear constraint:

Ci, j (ρi − ρ j ) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (30)

where Ci, j is a Ω i × Ω j → {0, 1} “correspondence func-
tion,” which is easily created from the (known) projection
functions {π i }i and the geometry, and which is defined as
follows:

Ci, j (pi ,p j ) =

⎧⎪⎨
⎪⎩
1 if pixels pi and p j correspond

to the same surface point,

0 otherwise.

(31)

Since maximizing the MAP probability (25) is equivalent
to minimizing its negative logarithm, we eventually obtain
the following constrained variational problem, which explic-
its the functions F, R and C in (24):

min
{ρi :Ω i→R}i

{σ i∈R9}i

m∑
i=1

∥∥∥ρi σ i · νi − I i
∥∥∥
i,1

+ λ

m∑
i=1

∥∥∥∇ρi
∥∥∥
i,0

s.t. Ci, j (ρi − ρ j ) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (32)

where λ = α/β and where we neglect all the normalization
coefficients.

4.2 Relationship with Cartoon + Texture
Decomposition

Applying a logarithm transformation to both sides of (22),
we obtain:

Ĩ i (p) = ρ̃i (p) + log
(
σ i · νi (p)

)
, (33)

where the tilde notation is used as a shortcut for the logarithm.
By applying the exact same Bayesian-to-variational ratio-

nale, we would end up with the following variational prob-
lem:

min
{ρ̃i :Ω i→R}i

{σ i∈R9}i

m∑
i=1

∥∥∥ρ̃i + log
(
σ i · νi

)
− Ĩ i

∥∥∥
i,1

+ λ

m∑
i=1

∥∥∥∇ρ̃i
∥∥∥
i,0

s.t. Ci, j (ρ̃i − ρ̃ j ) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (34)

The variational problem (34) can be interpreted as a
multi-view cartoon + texture decomposition problem, where
each log-image Ĩ is decomposed into a component Ci :=
ρ̃i which is piecewise-smooth (“cartoon”, here the log-
reflectance), and a component T i := log

(
σ i · νi

)
which

contains higher-frequency details (“texture,” here the log-
shading). In contrast with conventional methods for such a
task, the present one uses an explicit shading model for the
texture term.

Note, however, that such a decomposition is justified only
if the log-images Ĩ i are considered. If using the original
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images I i , our framework should rather be considered as a
multi-view cartoon “×” texture decomposition framework.

4.3 Bi-convex Relaxation of the Variational
Model (32)

Problem (32) is a non-convex (due to the 	0-regularizers),
non-smooth (due to the 	0-regularizers and to the 	1-
fidelity term). Although some efforts have recently been
devoted to the resolution of optimization problems involv-
ing 	0-regularizers [38], we prefer to keep the optimization
simple and approximate these by (convex, but non-smooth)
anisotropic total variation terms:

m∑
i=1

∥∥∥∇ρi
∥∥∥
i,0

≈
m∑
i=1

∥∥∥∇ρi
∥∥∥
i,1

. (35)

Besides, the correspondence functionmay be slightly inaccu-
rate in practice, due to errors in the prior geometry estimation
obtained via multi-view stereo. Therefore, we turn the linear
constraint in (32) into an additional term. Eventually, we
replace the non-differentiable absolute values arising from
the 	1-norms by the (differentiable) Moreau envelope i.e.,the
Huber loss:7

|x | ≈ φδ(x) :=

⎧⎪⎨
⎪⎩

x2

2 δ
, |x | ≤ δ

|x | − δ

2
, |x | > δ

(36)

Altogether, this yields the following smooth, bi-convex
variational problem:

min
ρ:={ρi : Ω i→R}i

σ :={σ i∈R9}i

ε(ρ, σ ) :=
m∑
i=1

∑
p∈Ω i

φδ

(
ρi (p) σ i · νi (p) − I i (p)

)

+ λ

m∑
i=1

∑
p∈Ω i

[
φδ

(
∂xρ

i (p)
)

+ φδ

(
∂yρ

i (p)
)]

+ μ
∑∑
1≤i< j≤m

∑
pi∈Ω i

∑
p j∈Ω j

Ci, j (pi ,p j ) φδ

(
ρi (pi ) − ρ j (p j )

)
.

(37)

In Eq. (37), the first term ensures photometric consistency
(in the sense of the Huber loss function), the second one
ensures reflectance smoothness (smoothed anisotropic total
variation), and the third term ensures multi-view consistency
of the reflectance estimates (again, in the sense of the Huber
loss function). At last, λ and μ are tunable hyper-parameters
controlling the reflectance smoothness and the multi-view
consistency, respectively.

7 We use δ = 10−4, in the experiments.

(ρ (k)
,σ (k))

(ρ (k+1)
,σ (k))

(ρ (k+1)
,σ (k+1))

ε(ρ, σ)

ε
(k)
ρε

(k+1)
ρ ε

(k)
σ

. . .

Fig. 3 Sketch of the proposed alternating majorization–minimization
solution. The partially freezed energies ε(·, σ ) and ε(ρ, ·) are locally
majorized by the quadratic functions ερ (in red) and εσ (in blue). Then,
these quadratic majorants are (globally) minimized, and the process is
repeated until convergence is reached (Color figure online)

5 AlternatingMajorization–minimization for
Solving (37)

To solve (37), we propose an alternating majorization-
minimization method, which combines alternating and
majorization–minimization optimization techniques. As
sketched in Fig. 3, this algorithm works as follows. Given
an estimate (ρ(k), σ (k)) of the solution at iteration (k), the
lighting vectors and the reflectance maps are successively
updated according to:

ρ(k+1) = argmin
ρ

ε(k)
ρ (ρ), (38)

σ (k+1) = argmin
σ

ε(k)
σ (σ ), (39)

where ε
(k)
ρ and ε

(k)
σ are local quadratic majorants of ε(·, σ (k))

and ε(ρ(k+1), ·) around, respectively, ρ(k) and σ (k). Then, the
process is repeated until convergence.

To this end, let us first remark that the function

ψδ(x; x0) =

⎧⎪⎪⎨
⎪⎪⎩

x2

2 δ
, |x0| ≤ δ,

x2

2 |x0| + |x0|
2

− δ

2
, |x0| > δ,

(40)

is such that ψδ(x0; x0) = φδ(x0), and is a proper local
quadratic majorant of φδ around x0,∀x0 ∈ R. This is easily
verified if |x0| ≤ δ, from the definition (36) of φδ . If |x0| > δ,
the difference ψδ(x; x0) − φδ(x) writes:
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⎧⎪⎪⎨
⎪⎪⎩

(|x0| − δ)
(|x0| δ − x2

)
2 |x0| δ , |x | ≤ δ,

(|x | − |x0|)2
2 |x0| , |x | > δ,

(41)

which is positive in any case.
Therefore, the function

ε
(k)
ρ (ρ) :=

m∑
i=1

∑
p∈Ω i

ψδ

(
ρi (p) σ i,(k) · νi (p) − I i (p); r i,(k),(k)

)

+ λ

m∑
i=1

∑
p∈Ω i

[
ψδ

(
∂xρ

i (p); ∂xρ
i,(k)(p)

)

+ψδ

(
∂yρ

i (p); ∂yρ
i,(k)(p)

)]

+ μ
∑ ∑
1≤i< j≤m

∑
pi∈Ω i

∑
p j∈Ω j

Ci, j (p
i , p j )

ψδ

(
ρi (pi ) − ρ j (p j ); ρi,(k)(pi ) − ρ j,(k)(p j )

)
,

(42)

with

r i,(k1),(k2) = ρi,(k1)(p) σ i,(k2) · νi (p) − I i (p), (43)

is a local quadratic majorant of ε(·, σ (k)) around ρ(k) which
is suitable for the update (38).

Similarly, the function

ε(k)
σ (σ ) :=

m∑
i=1

∑
p∈Ω i

ψδ

(
ρi,(k+1)(p)σ i · νi (p) − I i (p); r i,(k+1),(k)

)

+ λ

m∑
i=1

∑
p∈Ω i

[
φδ

(
∂xρ

i,(k+1)(p)
)

+ φδ

(
∂yρ

i,(k+1)(p)
)]

+ μ
∑∑
1≤i< j≤m

∑
pi∈Ω i

∑
p j∈Ω j

[
Ci, j (pi ,p j )

φδ

(
ρi,(k+1)(pi ) − ρ j,(k+1)(p j )

) ]
(44)

is a local quadraticmajorant of ε(ρ(k+1), ·) aroundσ (k) which
is suitable for the update (39).

The update (38) then comes down to solving a large sparse
linear least-squares problem, which we achieve by applying
conjugate gradient iterations to the associated normal equa-
tions. Regarding (39), it comes down to solving a series of
m independent small-scale linear least-squares problems, for
instance, by resorting to the pseudo-inverse.

We iterate the optimization steps (38) and (39) until con-
vergence or a maximum iteration number is reached, starting
from the trivial solution of the non-regularized (λ = μ = 0)
problem. This non-regularized solution is attained by consid-
ering diffuse lighting (see (20)) and using the input images
as reflectance maps. In our experiments, we found 50 itera-
tions were always sufficient to reach a stable solution (10−3
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Fig. 4 Top: evolution of the energy ε(ρ(k), σ (k)) defined in (37), in
function of iterations (k), concerning the test presented in Fig. 8. Bot-
tom: absolute value of the relative variation between two successive
energy values. Our algorithm stops when this value is less than 10−3,
which happens in less than 50 iterations and takes around 3 minutes
on a recent i7 processor, with non-optimized Matlab codes for m = 13
images of size 540 × 960

relative residual between two consecutive energy values
ε(ρ(k), σ (k)) and ε(ρ(k+1), σ (k+1))).

Proving convergence of our scheme is beyond the scope
of this paper, but the proof could certainly be derived
from that in [31], where a similar alternating majorization–
minimization called “alternating reweighted least-squares”
is used. Note, however, that the convergence rate seems to
be sublinear (see Fig. 4); hence, possibly faster numerical
strategies could be explored in the future.

6 Results

In this section, we evaluate the proposed variational method
for multi-view reflectance estimation, on a variety of syn-
thetic and real-world datasets. We start by a quantitative
comparison of our results with two single-view methods,
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namely the cartoon + texture decomposition method from
[23] and the intrinsic image decomposition method from
[14].

6.1 Quantitative Evaluation on a Synthetic Dataset

We first test our reflectance estimation method using m =
13 synthetic images, of size 540 × 960, of an object whose
geometry is perfectly known (see Fig. 5a). Two scenarios are
considered:

• In Fig. 6, a purely Lambertian, piecewise-constant
reflectance is mapped onto the surface of the object,
which is then illuminated by a “skydome” i.e.,an almost
diffuse lighting. Shading effects are thus rather lim-
ited; hence, applying to each image an estimation
method which does not use an explicit reflectance model
e.g. the cartoon + texture decomposition method from
[23], should already provide satisfactory results. The
reflectance being perfectly piecewise-constant, applying
sparsity-based intrinsic image decomposition methods
such as [14] to each image should also work well.

• In Fig. 7, a more complicated (non-uniform) reflectance
is mapped onto the shirt, the hair is made partly spec-
ular, and the diffuse lighting is replaced by a single
extended light source, which induces much stronger
shading effects. It will thus be much harder to remove
shading without an explicit reflectance model (cartoon +
texture approach), while the single-view image decom-
position approach should be non-robust to specularities.

In both cases, the competing methods [23] and [14] are
applied independently to each of the m = 13 images. The
estimates are thus not expected to be consistent, which may
be problematic if the reflectance maps should be further

mapped onto the surface for, e.g. relighting applications. On
the contrary, our approach simultaneously, and consistently,
estimates the m reflectance maps.

As we dispose of the reflectance ground truth, we can
numerically evaluate these results by estimating the root
mean square error (RMSE) for each method, over the whole
set of m = 13 images. The values are presented in Table 1.
In order to compare comparable things, the reflectance esti-
mated by each method is scaled, in each channel, by a factor
common to the m = 13 reflectance maps, so as to mini-
mize the RMSE. This should thus highlight inconsistencies
between the reflectance maps.

Based on the qualitative results from Figs. 6 and 7, and
the quantitative evaluations shown in Table 1, we can make
the following three observations:

(1) Considering an explicit image formation model improves
cartoon + texture decomposition Actually, the cartoon part
from the cartoon + texture decomposition is far less uni-
form than the reflectance estimated using both othermethods.
Shading is only blurred, and not really removed. This could
be improved by augmenting the regularizationweight, but the
price to pay would be a loss of detail in the parts containing
thinner details (as the shirt, in the example of Fig. 7).

(2) Simultaneously estimating the multi-view reflectance
maps makes them consistent and improves robustness to
specularities When estimating each reflectance map indi-
vidually, inconsistencies arise, which is obvious for the hair
in the third line of Fig. 6, and explains the RMSE values
in Table 1. In contrast, our results confirm our basic idea
i.e.,that reflectance estimation benefits in two ways from the
multi-view framework: This allows us not only to estimate
the 3D-shape, but also to constrain the reflectance of each
surface point to be the same in all the pictures where it is
visible. In addition, since the location of bright spots due

Fig. 5 a 3D-shape used in the tests (the well-known “Joyful Yell” 3D-model), which will be imaged under two scenarios (see Figures 6 and 7). b
Same, after smoothing, thus less accurate. c–d Zooms of a and b, respectively, near the neck
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Fig. 6 First row: three (out of m = 13) synthetic views of the object
of Fig. 5a, computed with a purely Lambertian reflectance taking only
four different values (hair, face, shirt and plinth), illuminated by a “sky-
dome.” Second row: estimation of the reflectance using the cartoon +
texture decomposition described in [23] (with its parameter fixed to 0.4).

Third row: estimation of the reflectance using the method proposed in
[14] (with 4 clusters). Forth row: estimation of the reflectance using the
proposed approach (with λ = 8 andμ = 1000). Fifth row: ground truth
(Color figure online)
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Fig. 7 First row: three (out of m = 13) synthetic views of the object of
Fig. 5a, computed with a non-uniform shirt reflectance, a uniform, but
partly specular hair reflectance, illuminated by a single extended light
source. Second row: estimation of the reflectance using the cartoon +
texture decomposition described in [23] (with its parameter fixed to 0.4).

Third row: estimation of the reflectance using the method proposed in
[14] (with 6 clusters). Forth row: estimation of the reflectance using the
proposed approach (with λ = 2.5 and μ = 1000). Fifth row: ground
truth (Color figure online)
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Table 1 RMSE on the reflectance estimates (the estimated and ground truth reflectance maps are scaled to [0, 1]), with respect to each channel and
to the whole set of images, for our method and two single-view approaches

Test Channel Cartoon + texture [23] Intrinsic decomposition [14] Ours

Purely Lambertian surface R 0.62 0.26 0.07

+ Piecewise-constant reflectance G 0.23 0.14 0.04

+ Skydome lighting (see Fig. 6) B 0.38 0.24 0.07

Non-uniform shirt reflectance R 0.60 0.29 0.22

+ Partly specular hair reflectance G 0.32 0.22 0.13

+ Single extended light source (see Fig. 7) B 0.24 0.21 0.12

Our method overcomes the latter on the two considered datasets. See text for details

Fig. 8 Same test as in Fig. 7, using a coarse version of the 3D-shape
(see Fig. 5b and d), with λ = 2.5 and μ = 1000. Results are qualita-
tively similar to those shown in Fig. 7, obtained with perfect geometry.

The RMSE in the RGB channels are, respectively: 0.24, 0.14 and 0.13,
which are only slightly higher than those attainedwith perfect geometry
(see Table 1) (Color figure online)

to specularity depends on the viewing angle, they usually
occur in some places on the surface only under certain view-
ing angles. Consideringmulti-view data should thus improve
robustness to specularities. This is confirmed in Fig. 7 by the
reflectance estimates in the hair, where the specularities are
slightly better removed than with single-view methods.

(3) A sparsity-based prior for the reflectance should be pre-
ferred over total variation As we use a TV-smoothing term,
which favors piecewise-smooth reflectance, the satisfactory
results of Fig. 6 were predictable. However, some penum-
bra remains visible around the neck. Since we also know
the object geometry, it seems that we could compensate for
penumbra. However, this would require that the lighting is
known as well, which is not the case in the framework of the
targeted use case, since an outdoors lighting is uncontrolled.
Moreover, we would have to consider not only the primary
lighting, but also the successive bounces of light on the dif-
ferent parts of the scene. (These were taken into account by
the ray-tracing algorithm, when synthesizing the images.) In
contrast, the sparsity-based approach [14] is able to eliminate
penumbra rather well, without modeling secondary reflec-
tions. It is also able to more appropriately remove shading
on the face in the example of Fig. 7, while not degrading as

much as total variation the thin structures of the shirt. Hence,
the relative simplicity of the numerical solution, which is a
consequence of the choice of replacing the Potts prior by
a total variation one (see Sect. 4.3), comes with a price.
In future works, it may be important to design a numeri-
cal strategy handling the original non-smooth, non-convex
problem (32).

6.2 Handling Inaccurate Geometry

In the previous experiments, the geometry was perfectly
known. In real-world scenarios, errors in the 3D-shape esti-
mation using SfM and MVS are unavoidable. Therefore, it
is necessary to evaluate the ability of our method to handle
inaccurate geometry.

Thus, we use for the next experiment the surface shown in
Fig. 5b (zoomed in Fig. 5d), which is obtained by smoothing
the original 3D-shape of Fig. 5a (zoomed in Fig. 5c), using
a tool from the meshlab software. The results provided
in Fig. 8 show that our method seems robust to such small
inaccuracies in the object geometry and is thus relevant for
the intended application.
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Fig. 9 Test on a real-world dataset. First row: three (out of m = 8) views of the scene. Second row: estimated reflectance maps using the proposed
approach (with λ = 2 and μ = 1000). Geometry and camera parameters were estimated using an SfM/MVS pipeline (Color figure online)

In Fig. 9, we qualitatively evaluate our method on the out-
puts of an SfM/MVS pipeline applied to a real-world dataset,
which provides estimates of the camera parameters and a
rough geometry of the scene. These experiments confirm
that small inaccuracies in the geometry input can be han-
dled. The specularities are also appropriately removed, and
the reflectancemaps present the expected cartoon-like aspect.
However, the reflectance is under-estimated in the sides of the
nose and around the chin. Indeed, since lighting is fixed, these
areas are self-shadowed in all the images. Two workarounds
could be used: forcing the regularization term (and, possibly,
losing fine-scale details), or actively controlling the lighting
in order to be sure that no point on the surface is shadowed in
all the views. This is further discussed in the next subsection.

6.3 Tuning the Hyper-parameters λ andμ

In the previous experiments, we arbitrarily chose the values
of parameters λ and μ which provided the “best” results.
Of course, such a tuning, which may be tedious, must be
discussed.

In order to highlight the influence of these parameters, let
us first question what would happen without neither regu-
larization nor multi-view consistency i.e.,when λ = μ = 0.
In that case, only the photometric term would be optimized,
which corresponds to the maximum likelihood case. If light-
ing is not varying, then we are in a degenerate case which
may result in estimating diffuse lighting (see Eq. (20)) and
replacing the reflectance maps by the images. Lighting will
thus be “baked in” the reflectance maps, which is precisely
what we pretend not to do.

To avoid this effect, the smoothness termmust be activated
by setting λ > 0. If we still consider μ = 0, then the vari-

ational Problem (37) comes down to m independent image
restoration problems. In fact, these problems are similar to
	1-TV denoising problems, except that a physically plausi-
ble fidelity term is used to help removing the illumination
artifacts not only from the total variation regularization, but
also by incorporating prior knowledge of the surface geom-
etry. However, because the photometric term is invariant by
the transformation (ρi , σ i ) := (κ iρi , σ i/κ i ), κ i > 0, each
reflectance map ρi is estimated only up to a scale factor,
hence the m maps will not be consistent, as this is the case
for the competing single-view methods.

The latter issue is solved by activating themulti-view con-
sistency term i.e.,by setting μ > 0. In that case, there is still
an ambiguity {ρi , σ i }i := {κρi , σ i/κ}, κ > 0, but it is now
global i.e.,independent from i . To solve this ambiguity, it is
enough in practice to set one reflectance value arbitrarily, or
to normalize the reflectance values.

Overall, it is necessary to ensure that both λ and μ are
strictly positive. The choice ofμ is not really critical. Indeed,
themulti-view consistency regularizer which is controlled by
μ arises from relaxing a hard constraint (compare (32) and
(37)).Hence,μonly needs to be chosen “high enough” so that
the regularizer approximates fairly well a hard constraint. In
all the experiments, we used μ = 1000 and did not face any
particular problem. Obviously, if the correspondences were
not appropriately computed by SfM, then this value should
be reduced, but SfM solutions such as [27] are now mature
enough to provide accurate correspondences.

The choice of λ is much more critical. This is illustrated
in Fig. 10, which shows the RMSE in each channel, using
images from the same dataset as that of Fig. 7, at convergence
of our algorithm, as a function of λ. This graph shows that
the “optimal” value of λ is very hard to find: in this example,
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Fig. 10 Quantitative influence of parameter λ, using images from the same dataset as that of Fig. 7, with μ = 1000 (Color figure online)

a high value of λ would diminish the RMSE in the face and
the hair (which are mostly red), because this would make
them uniform as expected (see Fig. 11, last rows). However,
a much lower value of λ is required in order to preserve
the thin shirt details, which mostly contain green and blue
components (see Fig. 11, first rows).

There is one situation where this tuning is much easier.
It is when the lighting is not fixed, but strongly varying.
As discussed in Sect. 3, the problem of jointly estimating
reflectance and lighting is then over-determined, which the-
oretically makes the regularization unnecessary. In Fig. 12,
we show the results obtained in the case where each image
is obtained under a different lighting. In that case, the thin
structures of the shirt are preserved, while shading on the
face is largely reduced, despite the choice of a very low reg-
ularization weight λ = 1. Note that we cannot use the limit
case λ = 0 because not all pixels have correspondences in all
images: there may thus be a few pixels for which the prob-
lem remains under-determined, and for which diffusion is
required. Overall, this experiment shows that, without any
prior knowledge on the lighting, the only way to avoid intro-
ducing an empirical prior on the reflectance, and thus its
tuning, is to actively control lighting during the acquisition
process. This means combining multi-view and photometric
stereo.

It happens that this problem is actively being addressed
by the computer vision community [30]. Interestingly, in
this research the focus is put on highly accurate geometry
estimation, and not so much on reflectance estimation (no
reflectance estimation result is shown). Therefore, it may
be an interesting future research direction to incorporate
our reflectance estimation framework in such multi-view,
multi-lighting approaches. Both highly accurate geometry
and reflectance could indeed be expected.

7 Conclusion and Perspectives

We have proposed a variational framework for estimating the
reflectance of a scene from a series of multi-view images.

We advocate a 2D-parameterization of reflectance, turning
the problem into that of converting the input images into
reflectance maps. Invoking a Bayesian rationale leads to a
variational model comprising a 	1-norm-based photometric
data term, a Potts regularizer and a multi-view consistency
constraint. For simplicity, both the latter are relaxed into
a total variation term and a 	1-norm term, respectively.
Numerical solving is carried out using an alternating majo-
rization-minimization algorithm. Empirical results on both
synthetic and real-world datasets demonstrate the interest of
considering multi-view images for reflectance estimation, as
it allows to benefit from prior knowledge of the geometry, to
improve robustness to specularities and to guarantee consis-
tency of the reflectance estimates.

However, the critical analysis of our results also high-
lighted some limitations and possible future research direc-
tions. For instance, avoiding the relaxation of the non-
smooth, non-convex regularization, seems to be necessary
in order to really ensure that the estimated reflectance maps
are piecewise-constant. In addition, the choice of parame-
terizing reflectance in the image (2D) domain is advocated
for reasons of numerical simplicity, yet it seems somewhat
more natural to work directly on the surface. (This would
avoid the multi-view consistency constraint.) However, this
would require turning our simple variational framework
into a more arduous optimization problem over a mani-
fold.

Finally, we could disambiguate the problem bymeasuring
upstream the incoming light, using, for instance, environ-
ment maps. Without prior measurement, it seems that the
only way to avoid resorting to an arbitrary prior for limiting
the arising ambiguities consists in actively controlling the
lighting (this would avoid resorting to spatial regularization).
Therefore, another extension of our work consists in estimat-
ing reflectance from multi-view, multi-lighting data, in the
spirit of multi-view photometric stereo techniques. However,
this would require appropriately modifying the SfM/MVS
pipeline, which relies on the constant brightness assump-
tion.
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Fig. 11 Qualitative influence of parameter λ, using images from the same dataset as that of Fig. 7, with μ = 1000 (Color figure online)
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Fig. 12 First row: three (out of m = 13) synthetic images computed
under varying lighting (which comes here from the right, from the front
and from the left, respectively). Second row: estimated reflectancemaps
using the proposed approach (with λ = 1 and μ = 1000). The thin

structures of the shirt are preserved, while shading on the face is largely
reduced. These results must be compared with those of the first row
in Fig. 11, obtained with the same value of λ but under fixed lighting
(Color figure online)
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