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Abstract
In this paper, we present a general framework for digital distance functions, defined as minimal cost paths, on the square grid.
Each path is a sequence of pixels, where any two consecutive pixels are adjacent and associated with a weight. The allowed
weights between any two adjacent pixels along a path are given by a weight sequence, which can hold an arbitrary number of
weights. We build on our previous results, where only two or three unique weights are considered, and present a framework
that allows any number of weights. We show that the rotational dependency can be very low when as few as three or four
unique weights are used. Moreover, by using n weights, the Euclidean distance can be perfectly obtained on the perimeter of
a square with side length 2n. A sufficient condition for weight sequences to provide metrics is proven.

Keywords Distance functions · Weight sequences · Neighborhood sequences · Chamfer distances · Approximation of
Euclidean distance

1 Introduction

In a digital space (given for example by the pixels on a com-
puter screen), not all properties of the Euclidean geometry
are fulfilled. This is mainly due to the discrete (as opposed to
continuous) structure of digital spaces. In the digital geom-
etry framework, a classical way to define distance functions
and metrics is by means of shortest paths or minimal cost
paths. By doing so, the distance between two points is sim-
ply the sum of weights along a given path. With appropriate,
efficient algorithms, this allows completely error-free, and
fast, computation of the distances in two and higher- dimen-
sional digital spaces [1,17,21].
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The digital approachwe follow,where connected paths are
used to define distance functions, is fundamentally different
from the approach when Euclidean distances are computed.
This is usually done by vector propagation [5,14], fastmarch-
ing [16], or by separable algorithms [2,4]. These algorithms
either result in errors (i.e., deviations from the metrics under
consideration due to approximation errors or deficiencies in
the algorithm definition) and/or they don’t generalize to so-
called constrained distance transform. See the discussion in
[18]. Therefore, we believe that it is important to develop
both the theory based on these digital distances and practical
algorithms for image processing that can effectively utilize
these distances.

The cityblock and chessboard distances are the two dig-
ital distances first described in the literature [15]. These
distance functions have high rotational dependency, but are
easy and efficient to compute. The theory of digital distances
has developed rapidly from the 1980s. The weighted (cham-
fer) distances [1], where the grid points together with costs
to local neighbors form a graph in which the minimal cost
path is the distance, are a well-known and often used con-
cept in image processing. Contrary toweighted distances, the
allowed steps may vary along the path with distances based
onneighborhood sequences fromapredefined set of steps [6],
for instance, by mixing the cityblock and chessboard neigh-
borhood. In [20,22], the concept of weighted distances is
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generalized by allowing the size of the neighborhood to vary
along the path. In this way, we get a distance function with
potentially lower rotational dependency compared to when
a fixed neighborhood is used. Recent results on Euclidean
distance approximation are found in [3,7,9].

In this paper, we extend the idea presented in [19], where
distances defined by three different local steps were consid-
ered. We are continuing the investigations of [13] and allow
using a fixed, but arbitrarily large, number of possible local
steps in the neighborhood sequence. Each of the allowed
steps use only the 8-neighborhood of the pixels, but with
different weights. Our main motivation is to provide a frame-
work for digital distance functions that have as low rotational
dependency as possible, which can be used to develop effi-
cient image processing tools. Here, this is obtained by finding
weight sequences that approximate the Euclidean distance.
Given a distance function, a distance transform is a trans-
form where each element in a set is assigned the distance
to the closest (as given by the distance function) element in
a complementary set. The result of a distance transform is
called a distance map. This tool is often used in image pro-
cessing and computer graphics [8]. In the digital geometry
setting, it is very natural to define distance functions bymini-
mal cost paths. A possible application of our results could be
by designing an algorithm for computing the distance map.

The structure of the paper is as follows. In the next section,
we present the basic definitions. In Sect. 3, some theoretical
results are detailed, e.g., a formula to compute the point-
to-point distance. In Sect. 4, the metric properties of these
distances are discussed. In Sect. 5, parameter optimization is
shown to obtain distances with low rotational dependency,
i.e., approximating the Euclidean distance in this sense.
Moreover, it is shown that the exact Euclidean distance can
be obtained on the perimeter of a square. Finally, conclusions
close the paper.

2 Definitions

In this section, we give the basic concepts and fix our nota-
tions. First some notions are recalled from the literature
mentioned earlier.

We denote the set of integers by Z and the set of nonneg-
ative integers by N, and the set of positive real numbers is
denoted by R+.

In this paper, we consider points of the digital two-
dimensional (square) grid, with integer coordinates, repre-
sented by Z

2. Of course, in image processing, each grid
point is associated with a picture element, pixel. In a city-
block (resp. chessboard) distance, distinct points with unit
difference in at most one (resp. two) of the coordinates have
unit distance. Here, we use the notion of 1- and 2-neighbors
in the following sense: Two grid points P1 = (x1, y1), P2 =

(x2, y2) ∈ Z
2 are ρ-neighbors, ρ ∈ {1, 2}, if

|x1 − x2| + |y1 − y2| ≤ ρ and

max {|x1 − x2|, |y1 − y2|} = 1. (1)

The points are strict ρ-neighbors if the equality in (1) is
attained. Two points are adjacent if they are ρ-neighbors for
some ρ ∈ {1, 2}.

From now on, we will use the notion of a path as follows:

Definition 1 (path) A path in a grid is a sequence of adjacent
grid points. A path� = (P0, P1, . . . , Pn) is a path of n steps
where for all i ∈ {1, 2, . . . , n}, Pi−1 and Pi are adjacent. The
path � connects P0 and Pn . We may also say that the path
starts from P0 and arrives to Pn , i.e., they are its startpoint
and endpoint, respectively.

Now we recall the distances defined by neighborhood
sequences [6,10].

Definition 2 (neighborhood sequence distance) A neighbor-
hood sequence (ns) B is a sequence B = (b(i))∞i=1 of
neighborhood relations, i.e., b(i) ∈ {1, 2} for all i .

Let P, Q ∈ Z
2, then a finite sequence of points

�(P, Q; B) of the form (P = P0, P1, . . . , Pm = Q), where
Pi−1, Pi ∈ Z

2 are b(i)-neighbors for 1 ≤ i ≤ m, is called
a B-path from P to Q, and m = |�(P, Q; B)| is the length
of the path.

Denote by �∗(P, Q; B) a shortest path (i.e., a B-path
with minimal length) from P to Q, and set d(P, Q; B) =
|�∗(P, Q; B)|. We call d(P, Q; B) the B-distance of P and
Q.

Notice that unit weights are associatedwith both cityblock
and chessboard steps; however, the neighborhood sequence
gives constraints on which type of steps could be used.

The shortest B-path between any two points can be com-
puted by a greedy algorithm (see, e.g., [10]). A formula to
compute B-distances can be found in [11,12] for the square
grid.

Anotherway to obtain low rotationally dependent distance
functions is to use a fixed neighborhood relation, but differ-
ent weights for the different types of steps. The so-obtained
weighted distances are also well known and widely used:

Definition 3 (weighted distance [1]) Let α, β ∈ R
+ be posi-

tive weights. Let P, Q ∈ Z
2 be two points. Consider a path

connecting P and Q, the steps to 1-neighbors have weight α
and the steps between strict 2-neighbors have weight β. The
(α, β)-weight of the path is the sumof theweights of its steps.
A path starting at P and arriving at Q is minimal weighted,
if there is no path connecting P and Q with less weight.
The (α, β)-weighted distance dα,β(P, Q) is the weight of
the minimal weighted path(s) connecting P and Q.
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Notice that in weight distances one can always use any
of the two possible steps; thus, any path can be considered.
Usually, the α ≤ β ≤ 2α condition is applied. The ratio of
the weights gives the rotational dependency of the distance
function. Therefore, when real number weights are used, α

is usually set to one.
Now, we recall a kind of mixture of the previous two types

of digital distances.

Definition 4 (weightedneighborhood sequencedistance [18])
Let γ ≥ 1 be a positive weight and B be a neighborhood
sequence. Let P, Q ∈ Z

2 be two points. Consider a B-path
connecting P and Q, where the steps to 1-neighbors have
unit weight, while the steps between strict 2-neighbors have
weight γ . The weight of the path is computed accordingly.
The γ -weighted B-distance dγ (P, Q; B) is the weight of the
minimal weighted B-path(s) connecting P and Q.

A more complex mixture allowing more flexibility is
recalled from [19] by extending the notion of neighbor-
hood sequences to three-neighbor weighted neighborhood
sequences.

Definition 5 (three-neighbor weighted neighborhood
sequence distance [19]) Let γ ∈ R

+ be a positive weight
and let B = (b(i))∞i=1 with b(i) ∈ {1, 2, γ }, for all i . B is
called a three-neighbor weighted neighborhood sequence.

Let P, Q ∈ Z
2, then the path � = (P = P0, P1, . . . , Pm

= Q) is a B-path if Pi−1, Pi are 1-neighbors if b(i) = 1 for
1 ≤ i ≤ m.

The weight of steps to strict 2-neighbors with b(i) = γ is
γ ; all other steps of � have unit weight. The weight of � is
computed accordingly. Finally, the three-neighbor weighted
neighborhood sequence distance of P, Q ∈ Z

2 is the weight
of the minimal weighted B-path(s) connecting P and Q.

Notice that the meaning of 1’s and 2’s is the same as in
Definition 2 (neighborhood sequence distances), i.e., the
allowed cityblock and chessboard steps, respectively, with
unit weights.

In this paper, we use a further generalization, the weight
(or chamfer) sequences, instead of neighborhood sequences.
The modified, more general description is as follows:

Definition 6 (weight sequence distance) Let m ∈ N, m ≥ 0
be the number of the used weights, and let S = {1,∞} ∪
{w1, . . . , wm} be the weight set including 1, the sign ∞ and
the used weights (wi ∈ R, wi > 1 for all i ∈ {1, . . . ,m}).

A weight sequence isW = (c(i))∞i=1, where c(i) ∈ S, for
all i ∈ N.

Let P, Q ∈ Z
2, then the weight of the path � =

(P = P0, P1, . . . , Pm = Q) is the sum of the weights of
its steps, where the weight of the j th step is specified as{
c( j), if the j th step is a step to a strict 2-neighbor;

1, otherwise.

The W -distance d(P, Q;W ) of P and Q is then defined
as the weight of the minimal weighted path connecting P
and Q.

Notice that all cityblock paths are valid for d(P, Q;W )

and have the sameweight as in the cityblock distance. There-
fore, d(P, Q;W ) is upper bounded by the cityblock distance.
When the ∞ sign in used W for some step i (c(i) = ∞), it
denotes an arbitrary large weight that prevents paths with a
strict 2-neighbor at step i to be minimal.

In a W -distance, by mixing the features of neighborhood
sequences and weighted distances, the cost of a move to a
1-neighbor is 1 in every step, and the cost of a move to a strict
2-neighbor is given by the actual element c( j) of the weight
sequence.

We should also highlight the difference of the new notion
shown in the previous definition and the earlier concepts.
The value 1 in the earlier concepts, e.g., in neighborhood
sequences B including three-neighbor weighted neighbor-
hood sequences (see Definitions 2 and 5), means that only a
step to a cityblock neighbor (1-neighbor) is allowed, whereas
a step to a diagonal neighbor (strict 2-neighbor) is forbid-
den. The sign ∞ is used to denote this constraint in weight
sequences (Definition 6). On the other side, in neighborhood
sequences value 2 refers for the possibility to use 2-steps
with a unit cost. This possibility is represented by value 1
in weight sequences, fitting to the new concept (the cost of
diagonal steps are shown in the weight sequence).

In this work, by the set S, we allowm+2 different neigh-
borhood relations (possible steps by various weights) in our
paths:

– a traditional 1-step is a step between 1-neighbors with
unit weights, the sign ∞ denote these steps in W (prac-
tically, strict 2-steps are not allowed, see Lemma 1);

– a traditional 2-step is a step between 2-neighbors with
unit weights, and they are denoted by value 1 in W ;

and if m > 0, then, by the used weights w1, . . . , wm the
further steps are as follows:

– weighted 2-steps: the steps between 1-neighbors with
unit weights, and between strict 2-neighbors with weight
wk (where 1 ≤ k ≤ m) with c(i) = wk for some i in W .

In this paper, the weight sequence W can contain m + 2
values, “weights”, according to a predefined set S, i.e.,W =
(c(i))∞i=1 where c(i) ∈ S.

The sum of the weights along the path can also be written
in a formal way:
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n∑
i=1

δi ,

where δi =
{
c(i), if Pi−1 and Pi are strict 2-neighbors;
1, otherwise.

When the weight sequence W is fixed, we use the term
W -path for paths having finite cost as defined by the weight
sequence W .

Lemma 1 Let P, Q ∈ Z
2, S be a weight set and W be a

weight sequence. If � is a minimal W-path between P and
Q, then it does not contain any steps to strict 2-neighbors by
any weight wi > 2.

Proof Let us assume, on the contrary, that � = (P, P1, . . . ,
Pj , Pj+1, . . . , Pn = Q) is a minimal path connecting P and
Q and it has a diagonal step (step to a strict 2-neighbor)
between Pj and Pj+1 such that c( j + 1) > 2. Let (x, y) =
Pj+1 − Pj be the “direction” of this step. (Obviously, |x | =
|y| = 1.) Then, let �′ be defined as the concatenation of

– the beginning sequence of the original path �:
(P, P1, . . . , Pj ),

– an x shifted sequence of the remaining part:
Pj+1 − (x, 0), Pj+2 − (x, 0), . . . , Pn − (x, 0),

– and finally, Q.

One can see that �′ is also a W -path connecting P and Q,
and it has one more steps than � has. This last step is a step
to a 1-neighbor; thus, it has a unit weight.

Now, the weight of � can be written as a sum of three
parts: the sum of weights of the first j steps, then c( j + 1),
and then the sum of the weights of the steps j + 2, . . . n.

The weights of �′ can also be computed: it has exactly
the same value for the first j steps since it is identical to
� up to that point. Now, it has a unit weight (from Pj to
Pj + (0, y) = Pj+1 − (x, 0)), then it has exactly the same
weights between the ( j + 2)-nd and nth steps as �, and
finally, one unit weight is added for the additional step.

Therefore, |�| − |�′| = c( j + 1) − 2 > 0. This contra-
dicts our assumption that�was a minimal weightedW -path
between P and Q. 	


This fact allows reducing our notation, the steps and also
the values in theweight sequenceW withweight∞ (together
with all values that are larger than 2) can be replaced by the
same number (and it could be any number that is larger than
2).Weuse the notation∞ for these values in this paper. Based
on this, we can say that in our paths only weights between 1
and 2 play important role.

Table 1 summarizes the possible steps of various paths
based on the above definitions.

3 Computing the Distance

We start this section by an example which highlights an
important property of the proposed distance function.

Example 1 Given the weight sequence W = (1, 1.9, 1.8, 1,
1.5, . . . ), the shortest W -path from (0, 0) to (2, 2) includes
two diagonal steps with weights 1+1.9 = 2.9. However, the
shortest W -paths from (0, 0) to (3, 3) is not a continuation
of the former path, but consists of a diagonal step to (1, 1)
with weight 1, then two consecutive 1-steps (to either (1, 2)
or (2, 1) and, then, to (2, 2)) and finally a diagonal step with
weight 1: in this way, the W -distance of (0, 0) and (3, 3) is
4. Comparing these shortest paths with four steps, one can
reach the point (3, 3) in three steps from (0, 0), but theweight
of these three diagonal steps 4.7 together.

The W -distance between (0, 0) and (2, 3) is 3.8 and is
given by the shortest path including a diagonal step (weight
1), a 1-step, and a diagonal step by weight 1.8.

By Example 1, one can see that a greedy algorithm cannot
be used to provide shortest paths. If a smaller weight appears
after a larger weight in W , it may be needed in the short-
est path depending on both the weight sequence and on the
difference of the coordinate values of the points.

Now we give a formula for computing the distance
between any two grid points. The formula is used for finding
optimal parameters in Sect. 5. Before the theorem, we define
a technical notation which will also be helpful later on.

Definition 7 Let aweight sequenceW = (c(i))∞i=1 (based on
a weight set S = {1,∞, w3, . . . , wm}) be given. Let m, n ∈
N such that n ≥ m. Then, I (n,m) contains the indices of the
smallest m weight values among the first n elements of W ,
i.e., among (c(1), . . . , c(n)).

Theorem 1 Let the weight sequence W = (c(i))∞i=1 (based
on a weight set S = {1,∞, w3, . . . , wm}) and the point
P(x, y) ∈ Z

2, where x ≥ y ≥ 0, be given. Then, the W-
distance of P from the Origin (0) is given by

d(0, (x, y);W )

= min
f ∈{0..y}

⎧⎨
⎩ x + y − 2 f +

∑
i∈I (x+y− f , f )

c(i)

∣∣∣∣∣∣ f ∈ Z,

0 ≤ f ≤ y

⎫⎬
⎭ . (2)

Proof The number of steps in a minimal weighted path from
the point 0(0, 0) to the point P(x, y) is between x and x + y,
since the former case is obtainedwhen y diagonal steps are in
the path and the latter case is obtained by using only 1-steps,
which are always allowed. In this latter case, the weight of
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the path is exactly x + y (each step is with a unit weight).
The weight of a path of the former case is given by x− y unit
weight 1-steps and y strict 2-steps. If the path starting at 0 and
arriving to P hasminimal weight, then the y smallest weights
of the first x elements of W are used. (However, this does
not guarantee that there are no W -paths between the points
with less weights, but larger number of steps.) Generally,
one needs to check the weight of the minimal weighted paths
between the points for each possible length (number of steps)
between x and x + y inclusively. Let f be the parameter
giving the number of steps to strict 2-neighbors in the path.
Then, f could be any integer between 0 (specifying path
length x+ y) and y (implying path length x). Having f steps
to strict 2-neighbors, the path connecting the Origin with P
needs x + y − 2 f steps to 1-neighbors, and thus, it contains
x + y − f steps (at least). To find the minimal weight for
paths with a given value of f , one needs to find the f smallest
weights among the first x + y − f elements of W , sum up
their values with x + y − 2 f . To obtain the W -distance, the
minimal such value is chosen for the possible values of f .
Thus, the formula of the theorem is proven. 	

Since the roles of the x- and y-coordinate are similar, and our
distance function is translation invariant, one can compute
the W -distance of any pair of points of Z2 by the previous
formula.

The proposed concept of path-based distances generalizes
several traditional distance functions. Proposition 1 gives the
connection toweighted distances, and Proposition 2 gives the
connection to neighborhood sequence distances.

Proposition 1 Let α, β ∈ R
+. Then, dα,β(P, Q) =

α · d(P, Q;W ) with the weight set S = {1,∞, w}, w = β
α
,

and W = (c(i))∞i=1 with c(i) = w for all i ∈ N.

Proof It is obvious by the definitions of these distances that
d(P, Q;W ) gives the traditional (α, β)-weighted distance
dα,β(P, Q). 	


Using zero additional weights, one can obtain exactly the
traditional distances based on neighborhood sequences:

Proposition 2 Let B = (b(i))∞i=1 be a neighborhood sequen-
ce. Then, we have the equality d(P, Q; B) = d(P, Q;W )

where S = {1,∞} and W = (c(i))∞i=1 with c(i) ={
1, if b(i) = 2; and

∞, if b(i) = 1.

Proof Let B = (b(i))∞i=1 and W be given according to the
theorem. Then, d(P, Q; B) = d(P, Q;W ) for any P, Q ∈
Z
2 since the shortest paths are identical in the two scenarios

(diagonal steps are either allowed by unit weights or they
cannot appear at the given position in a shortest path).

Since this relation between neighborhood sequences and
weight sequences containingonly elements of S is a bijection,
the converse also holds. 	


Remark 1 It is noted here that the weight sequence W =
(1)∞i=1 defines the chessboard distance, since steps to 2-
neighbors are always allowed with unit cost. The weight
sequenceW = (∞)∞i=1 defines the cityblock distance, since,
in this case, in any path with finite sum of weights only steps
to 1-neighbors may occur (and their cost is always a unit).

The following propositions, Propositions 3 and 4, show
that the previously presentedweightedneighborhood sequen-
ce distance ([18]) and three-neighborweightedneighborhood
sequence distances ([19]) are special cases of the proposed
distance functions.

Proposition 3 Let B = (b(i))∞i=1 be a neighborhood sequen-
ce and γ be a weight. We have dγ (P, Q; B) = d(P, Q;W )

with S = {1,∞, γ } and W = (c(i))∞i=1 with c(i) ={
γ, if b(i) = 2;
∞, if b(i) = 1.

Proof With S = {1,∞, γ } (i.e., having the additional weight
w = γ ) and W , the distances defined by w-weighted neigh-
borhood sequences are obtained, the shortest paths of that
scene coincide with the shortest paths based on the weight
sequenceW . Consequently, dγ (P, Q; B) = d(P, Q;W ) for
any P, Q ∈ Z

2.
By the condition γ �= 1, there is a bijection between γ ,

B and W , and thus, every W -distance in the above form
corresponds to a weighted neighborhood sequence distance.

	

Based on similar weight sets, we can also characterize the

three-neighbor weighted neighborhood sequence distances:

Proposition 4 Let γ be a positive weight, and B = (b(i))∞i=1
be a three-neighbor weighted neighborhood sequence with
b(i) ∈ {1, 2, γ } for every i ∈ N. Then, the distances defined
by three types of local steps, i.e., the three-neighbor weighted
neighborhood sequence distances can be computed as the
distance d(P, Q;W ) between and point pair P, Q ∈ Z

2

with the weight set S = {1,∞, γ } and W = (c(i))∞i=1 by

c(i) =

⎧⎪⎨
⎪⎩

∞, if b(i) = 1;
1, if b(i) = 2;
γ, if b(i) = γ.

Proof By using S = {1,∞, w} with w = γ and the weight
sequence W , the shortest paths and also the distances of the
two scenarios coincide. With the condition 1 < γ < 2, there
is also a bijection between these W -distances and the three-
neighbor weighted neighborhood sequence distances. 	


Table 1 summarizes the links between previously defined
distance functions and the proposed distance function, the
notation and the meaning of the different elements in the
weight sequence.
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Table 1 Various distances,
possible elements of the
(neighborhood or weight)
sequences and their meaning,
i.e., the weights of possible steps

Type of the distance Notation Weight of 1-step Weight of diagonal step

Neighborhood sequence: B-dist. b(i) = 1 1 Not allowed

(Definition 2) b(i) = 2 1 1

(α, β)-Weighted (Definition 3) – α β

γ -Weighted neighborhood b(i) = 1 1 Not allowed

Sequence distance (Definition 4) b(i) = 2 1 γ

Three-neighbor weighted b(i) = 1 1 Not allowed

Neighborhood sequence b(i) = 2 1 1

(Definition 5) b(i) = γ 1 γ

Weight sequence (Definition 6) c(i) ∈ S 1 c(i)

This means especially that if c(i) = 1 1 1

c(i) = ∞ 1 (Practically) not allowed

4 Metrical Properties

A metric is a (distance) function which satisfies the metric
properties. It is easy to find a weight sequence that generates
a distance not satisfying the metric conditions.

Recall that a distance function d is a metric if it satisfies
the following three properties:

– d(p, q) ≥ 0 for any point pair p, q, moreover d(p, q) =
0 if and only if p = q. (positive definiteness)

– d(p, q) = d(q, p) for any point pair p, q. (symmetry)
– d(p, q) + d(q, r) ≥ d(p, r) for any three points p, q, r .

(triangular inequality)

In the case of distances defined by weight sequences on
the square grid, the first two properties, namely the positive
definiteness and the symmetry, are always satisfied (one may
check the definitions and the results obtained in the previous
sections). However, the triangular inequality is problematic
in some cases. Let us see some examples.

Example 2 Let the weight sequence contain additional
weights {1.2, 1.3}. Theweight sequenceW = (1, 1.2, 1.3, ...)
define a non metrical W -distance: Let (−1,−1), (0, 0), and
(1, 1) be three points of the grid, then

d((−1,−1), (0, 0);W ) = 1, d((0, 0), (1, 1);W ) = 1,

d((−1,−1), (1, 1);W ) = 1 + 1.2 = 2.2.

Therefore, the triangular inequality fails for thisW -distance.

Example 3 Let the weight set be {1.2, 1.4, 1.8}. Further, let
W = (1.8, 1.2, 1.2, 1.4, 1.2, 1.8, 1.4, 1.2, ...). Then,

d((7, 6), (3, 10);W ) = 5.6, d((3, 10), (0, 12);W )

= 3.4, d((7, 6), (0, 12);W ) = 9.2,

but 5.6+3.4 = 9 < 9.2. Thus, the triangular inequality does
not hold for these three points for this W -distance.

To show some sufficient conditions, we first state the fol-
lowing technical lemma.

Lemma 2 Let us consider two weight sequences W1 =
(c1(i))∞i=1 and W2 = (c2(i))∞i=1 with the following property:
for every n,m ∈ N (m ≤ n)

∑
i∈I1(n,m)

c1(i) ≤
∑

i∈I2(n,m)

c2(i)

(where, according to Definition 7, |I1(n,m)| = |I2(n,m)| =
m and they contain the indices of the m smallest weights/
elements among the first n elements of W1 and W2, respec-
tively). Then, for any two points P, Q ∈ Z

2,

d(P, Q;W1) ≤ d(P, Q;W2).

Proof Let us assume, by contrary, that there are two points P
and Q of Z2 such that d(P, Q;W1) > d(P, Q;W2). Then,
let the W2-distance of P and Q be defined by a minimal
weighted path having n steps including m diagonal steps
(for some n,m ∈ N). In this case, actually d(P, Q;W2) =
n−m+∑

i∈I2(n,m) c2(i). By the condition of Lemma 2, one
can also construct a W1-path with n steps between P and Q
having m diagonal steps with cost n−m +∑

i∈I1(n,m) c1(i).
However, since

∑
i∈I1(n,m) c1(i) ≤ ∑

i∈I2(n,m) c2(i), the
cost of this path is not more than d(P, Q;W2). Therefore,
d(P, Q;W1) cannot be larger than d(P, Q;W2). The lemma
is proven by this contradiction. 	


Now, based on this result, we are able to provide a suffi-
cient condition for the weight sequence to define a distance
that is a metric.

Theorem 2 Let W be a weight sequence. If W contains the
weights in a non-increasing order, then it defines a metric.
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Proof We need to prove only the triangular inequality.
Let us assume, by contradiction, that there are three points
P, Q, R ∈ Z

2 such that d(P, Q;W ) + d(Q, R;W ) <

d(P, R;W ). Then, let us consider �P,Q as a shortest W -
path starting from P to Q. Let n1 be the number of its
steps. Let us consider also �Q,R as a shortest W -path start-
ing from Q to R. Let n2 be the number of its steps and m
be the number of its diagonal steps. Then, d(Q, R;W ) =
n2 − m + ∑

i∈I (n2,m) c(i). Further, consider the path �P,R

that is the extension of �P,Q by �′
Q,R which is the same

path (including the same steps to adjacent points) as �Q,R .
Clearly, �P,R it is a path from P to R. Let us analyze its
cost with the weight sequence W . It is clear that its first
part (n steps from P to Q) is exactly the same and uses the
same weights as �P,Q ; thus, its cost is d(P, Q;W ). Now,
let W ′ = (c′(i))∞i=1 = (c(i))∞i=n+1, i.e., it is the remaining
sequence after cutting the first n elements ofW out. Actually,
continuing �P,Q from the point Q we are at c(n + 1) in W ,
and actually, it is the same as c′(1). Continuing �P,Q by the
W ′-path, �′

Q,R from Q defines a W -path, especially, �P,R

from P . Since W contains the weights in a non-increasing
order, the condition of Lemma 2 holds for W and W ′, and
thus, the W ′-path connecting Q and R with the same steps
as �′

Q,R cannot have a larger cost than �Q,R has. Thus, the
sum of the whole W -path from P to R cannot have a larger
cost than the sum of the costs of�P,Q and�Q,R . It is contra-
dicting to our assumption that the triangular inequality fails;
thus, the theorem is proven. 	


5 Approximation of the Euclidean Distance

In this section, we give some results on the approximation of
the Euclidean distance. We find weight sequences that give a
small difference between the Euclidean distance dE (·, ·) and
the weight sequence distance d(·, ·;W ) between the point
0 and the point (x, y), where x ≥ y ≥ 0. See also [7].
The general case follows by symmetry as discussed in the
previous section about equation (2). As a technical result,
we show special cases when greedy shortest path algorithm
works.

Lemma 3 If the weight sequence W is non-decreasing and
all elements in W are smaller than or equal to 2, then the
distance value in equation (2) is given by

d(0, (x, y);W ) = x − y +
y∑

i=1

c(i)

Proof Since the lowest weights are the first in the weight
sequence, we have

min
f ∈{0,...,y}

⎧⎨
⎩x + y − 2 f +

∑
i∈I (x+y− f , f )

c(i)

⎫⎬
⎭

= min
f ∈{0,...,y}

⎧⎨
⎩x + y − 2 f +

f∑
i=1

c(i)

⎫⎬
⎭ ,

where the empty sum from i = 1 to i = 0 is counted as 0.
Since the weights are smaller than or equal to 2, the optimum
is attained for f = y, so

min
f ∈{0,...,y}

⎧⎨
⎩x + y − 2 f +

f∑
i=1

c(i)

⎫⎬
⎭ = x− y+

y∑
i=1

c(i). (3)

	

Now, we give a set of weights that can be used to obtain

error-free W -distance on the border points of a square.

Theorem 3 Given an integer x > 0, the Euclidean distance
values from (0, 0) to each point of the set {(x, y) ∈ Z

2, 0 ≤
y ≤ x} are given without errors by the weight sequence W =
(c(i))∞i=1 with c(i) =

(
1 + √

x2 + i2 − √
x2 + (i − 1)2

)
for 1 ≤ i ≤ x.

Proof All weights in the weight sequence are smaller than 2,
and the sequence is increasing, so by Lemma 3

d (0, (x, y);W ) = x − y +
y∑

i=1

c(i)

= x − y +
y∑

i=1

(
1 +

√
x2 + i2

−
√
x2 + (i − 1)2

)
= x − y +

√
x2 + y2 − (x − y)

= dE (0, (x, y)).

	

By the previous theorem, one can easily derive the follow-

ing consequences.

Corollary 1 Observing the weight sequence W defined in
Theorem 3, we can conclude the following facts.

1. The average of the x elements of the weight sequence W
is

√
2.

2. As x −→ ∞, in the limit the first element of the sequence
c(1) −→ 1 (c(1) > 1, but in the limit it goes to 1).
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3. As x −→ ∞, in the limit the last element of the sequence
c(x) −→ 1 + 1√

2
.

4.
∑k

i=1 c(i) = √
x2 + k2 + (k − x)

Remark 2 Since the order of the terms c(i) in the sum in (3)
is arbitrary, the distance value is invariant to the order of
the first y elements of the weight sequence. Consequently,
Theorem 3 holds for any permutation of the y first weights
in the weight sequence.

Since, by Remark 2 only the set of (the x) weights is
important to obtain the exact Euclidean distance at every
point on the perimeter of the square (obtained in x steps),
there are various ways to order these weights in a weight
sequence: some of them could bemore important than others.

– Having the x weights in increasing order, greedy shortest
path algorithm works inside the square.

– Having the weights in decreasing order, we have a met-
rical W -distance.

– A third option is to arrange them in away that the distance
values inside the square are close to the Euclidean one.
Here this is done by a greedy approach, having the first
element the one that is closest to

√
2, etc. (as we detail

in the next part, see Algorithm 1).

Given the number of weights in the weight set, Theo-
rem 3 gives a set of weights that optimally approximates the
Euclidean distance on the border of a square. In order to
obtain a close approximation of the Euclidean distance also
inside the square, the order of the weights is computed by
a greedy algorithm, Algorithm 1. We form the algorithm in
a general way, obtaining the best possible greedy approxi-
mation step by step for any predefined set of weights. The
input is a list of k weights that should be used in the (greedy)
approximation. It also works for weights obtained by Theo-
rem 3 (in this case k = x for the size of the square).

Note that in each pass of the for-loop in Algorithm 1,
the element in K that gives the minimum absolute sum is
computed. Since the summation index goes from 1 to i andK
contains k− i elements, the time complexity of the algorithm
is k · 1 + (k − 1) · 2 + (k − 2) · 3 + · · · + 2 · (k − 1) + 1 ·
k = �k

i=1(k − i + 1) · i . The dominating term is k3. The
time complexity is thus O(k3), where k is the length of the
sequence.

Algorithm 2 works similar to Algorithm 1, but the relative
difference is used instead of the absolute difference. The time
complexity of Algorithm 2 is the same as for Algorithm 1,
O(k3).

Given a square centered in (0, 0) (a chessboard disk of
radius k), for x = 0..k, the weight that minimizes the differ-
ence to the Euclidean distance in the next step is added to the
weight sequence. The weight sets obtained by Theorem 3,

Algorithm 1: Algorithm for computing greedy weight
sequence (w.r.t. absolute difference form the Euclidean
distance) from a list of weights (e.g., obtained by Theo-
rem 3.)
Input: A sequence of weights 1 ≤ c(i) < 2, i = 1, .., k.
Output: A sequence W ′ with greedy order of the weights.
Let K = {1, 2, . . . , k} and W ′ = (∞,∞, . . . );
foreach i = 1..k do

j ′ = argmin
j∈K

( ∑
l=1..i

∣∣dE (0, (i, l)) − d(0, (i, l);W ′′)
∣∣ ,

where c′′(m) =

⎧⎪⎨
⎪⎩
c′(m) for m < i

c( j) for m = i

∞ for m > i

⎞
⎟⎠;

c′(i) ← c( j ′);
K ← K \ { j ′};

Algorithm 2: Algorithm for computing greedy weight
sequence (w.r.t. relative difference from the Euclidean
distance) from a list of weights (e.g., obtained by Theo-
rem 3.)
Input: A sequence W of weights 1 ≤ c(i) < 2, i = 1, .., k.
Output: A sequence W ′ with greedy order of the weights.
Let K = {1, 2, . . . , k} and W ′ = (∞,∞, . . . );
foreach i = 1..k do

j ′ = argmin
j∈K

( ∑
l=1..i

∣∣dE (0, (i, l)) − d(0, (i, l);W ′′)
∣∣

dE (0, (i, l))
,

where c′′(m) =

⎧⎪⎨
⎪⎩
lc′(m) for m < i

c( j) for m = i

∞ for m > i

⎞
⎟⎠;

c′(i) ← c( j ′);
K ← K \ { j ′};

for increasing x , are listed in Table 2 for some small value of
x .

In the (greedy) Algorithm 1, the mean absolute difference
between dE (·, ·) and d(·, ·;W ) is minimized in each step.
With a small modification, the algorithm can be continued
outside of the square. Also if the error-free approximation is
not required on the border of the square, we may use some

Table 2 Optimal weight sequences (with rounded weights) obtained
by Theorem 3

# w1 w2 w3 w4 w5

1 1.4142

2 1.2361 1.5924

3 1.1623 1.4433 1.6371

4 1.1231 1.3490 1.5279 1.6569

5 1.0990 1.2861 1.4458 1.5722 1.6679

The first column shows the number of additional weights obtained by
Theorem 3
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Table 3 Greedy weight sequences obtained by the modified version of
Algorithm 1 using the weights in Table 2

# Weight sequence

1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

2 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1

3 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3

4 2, 3, 2, 1, 4, 3, 2, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1

5 3, 2, 4, 2, 3, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4

The sequences show the first 20 indices of the used weights (from
Table 2) in the corresponding weight sequence. The first column shows
the number of weights in the sequence obtained by Theorem 3

of the weights repetitively, i.e., by deleting the last line of
the algorithm we allow to reuse any elements later on, if
they provide the best greedy approximation in some next
steps. For a better explanation, let us consider the list of
weights obtained by Theorem 3 and shown in Table 2 up to
a radius 50. The sequences of weights obtained are listed in
Table 3 (for clarity, the table is limited to the 20 first weights
and displays their indices instead of their values). Figure 1
shows the distances up to 100 steps, and Figure 2 shows the

absolute difference with the Euclidean distance, and as one
can observe, they are really close to the Euclidean distances,
as the same distance points approximate theEuclidean circles
very well even in the case of two, three weights.

6 Conclusions

This paper introduces a framework for digital, path-baseddis-
tance functions, defined as minimal cost paths, on the square
grid.We showhow tooptimize parameters to approximate the
Euclidean distance on the grid points with small error, lead-
ing to a very low rotational dependency (actually, without
error on a border of a square). Note the fundamental dif-
ference with approaches that are not based on minimal cost
paths such as vector propagation [5,14] (errors are introduced
and constrained distance transform computation is very time-
consuming), fastmarching (where a differential equation, the
Eikonal equation, is approximated, giving approximate dis-
tance values) [16], or by separable algorithms (which are not
suited for constrained distance transform computation) [2,4].
The distance presented here is defined as the minimal cost

one weight two weights three weights

four weights five weights

Fig. 1 Distance maps from a single point using the weights and sequences in Tables 2 and 3. The color coded distance values are shown modulo 20
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one weight two weights three weights

four weights five weights

Fig. 2 Absolute difference between the distance maps in Fig. 1 and the Euclidean distance

path and can therefore be used, for example, to efficiently
compute distance maps without errors. In our future work,
we will design and analyze algorithms to compute distance
maps. Finding the globally optimal weight sequence of a
given length will also be an interesting future work.

We believe that the proposed distance function is poten-
tially useful in many other image processing algorithms, for
example for computing skeletons, or other algorithms where
the low rotational independency is required.

Acknowledgements Some part of this paper was presented in the con-
ference ISMM 2013: 11th International Symposium on Mathematical
Morphology, in Uppsala [13].
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