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Abstract
In this paper we present a new model for the generation of orientation preference maps in the primary visual cortex (V1),
considering both orientation and scale features. First we undertake to model the functional architecture of V1 by interpreting
it as a principal fiber bundle over the 2-dimensional retinal plane by introducing intrinsic variables orientation and scale. The
intrinsic variables constitute a fiber on each point of the retinal plane and the set of receptive profiles of simple cells is located
on the fiber. Each receptive profile on the fiber is mathematically interpreted as a rotated Gabor function derived from an
uncertainty principle. The visual stimulus is lifted in a 4-dimensional space, characterized by coordinate variables, position,
orientation and scale, through a linear filtering of the stimulus with Gabor functions. Orientation preference maps are then
obtained by mapping the orientation value found from the lifting of a noise stimulus onto the 2-dimensional retinal plane.
This corresponds to a Bargmann transform in the reducible representation of the SE(2) = R

2 × S1 group. A comparison
will be provided with a previous model based on the Bargmann transform in the irreducible representation of the SE(2)
group, outlining that the new model is more physiologically motivated. Then, we present simulation results related to the
construction of the orientation preference map by using Gabor filters with different scales and compare those results to the
relevant neurophysiological findings in the literature.
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1 Introduction

As it is well known the simple cells in the primary visual
cortex are organized in structures called orientation prefer-
ence maps. This special organization has been studied with
geometric instruments starting by the work of Petitot and
Tondut [29]. In that study the orientationmaps were obtained
as the superposition of randomly weighted orientation fields
corresponding to all possible orientation angles around the
pinwheels (see the geometric explanations of Petitot [27]
related to the pinwheels). A different model always based
only on orientation was introduced by Barbieri et al. [2,3].
In that paper the orientation preference structure was recov-
ered starting from the observation that its Fourier transform
is concentrated on an annulus. This model as the previous
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recalled one is based on properties apparently independent
of the other aspects of the cortical models. Additionally to
those studies, the models, in terms of its cortical orientation
and orientation-frequency selectivity, which were provided
by Bressloff and Cowan [7,9], and the model proposed for
the cortical spatiotemporal selective behavior by Barbieri et
al. [1] could be useful references for the reader.

In this article we present a newmodel for the generation of
the orientation preferencemaps, considering both orientation
and scale features. Hypercolumns of the simple cell recep-
tive profiles are the fundamental units of the set of receptive
profiles. They build a 2-dimensional subgroup of rotation–
dilation at each point (x, y) of the retinal plane M ⊂ R

2.
In other words the base variables are the spatial components
(x, y) ∈ M and the intrinsic variables are orientation and
scale parameters (θ, σ ) ∈ [0, π)×R

+. Having two intrinsic
variables in hand, we can either fix scale and obtain the ori-
entation map of the simple cells or we can employ a range of
scale values and obtain a multi-scale orientation map. In this
way the model integrates several visual features observed in
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neurophysiology, psychophysics and neuroimaging experi-
ments and provides a more precise orientation map.

The main novelty of our approach is that the orientation
map description is strongly related to the functionality of
the cortex and the simple cell responses in presence of a
visual stimulus. Indeed we start with a random stimulus I
on the retinal plane, and obtain the responses of the cells
through a linear filtering with translated, rotated and dilated
Gabor functions. Finally we employ integration of the out-
put over fiber and maximum selection in order to select the
prevalent orientation and scale. This whole procedure start-
ing with obtaining the simple cell responses and ending with
application of the integration over fiber and the maximum
selection over the full set of receptive profiles is called lifting.
Consequently we propose to obtain the orientation maps by
employing a lifting of noise stimulus through the functional
structure of the cortex. We will outline that this corresponds
to a Bargmann transform [4] in the reducible representation
of the SE(2) group, which is different than the case in [2]
where Barbieri et al. considered the irreducible representa-
tion. Hence our model is neural based.

The theoretical criterion underpinning the modeling we
propose in this paper relies on the so-called neurogeomet-
rical approach described by Citti and Sarti [11], Petitot and
Tondut [29], Sarti et al. [32]. Following this approach, pro-
cessing capabilities of sensorial cortices and particularly of
the visual cortex are modeled based on the geometrical struc-
ture of neural connectivity. Global and local symmetries of
the visual stimuli are inherited by the cortical structure that
presents their invariances (see Sanguinetti et al. [30]). Then
the structure is defined on group of invariances that are also
spaces, meaning Lie groups. Particularly the simple cells are
sensitive to local position and orientation features of stimuli,
which are elements of the roto-translation group SE(2). The
corresponding Lie algebra and its integral curves model neu-
ral connectivity between cells. Moreover, since the algebra is
not commutative, it is possible to pose an uncertainty princi-
ple, whose minimization gives rise to the shape of receptive
profiles of the simple cells. The model has been extended to
other variables such as scale by Sarti et al. [32], and to other
cell types such as complex cells sensitive to movement by
Barbieri et al. [1] and Cocci et al. [13]. Furthermore some
image processing applications employing scale and orienta-
tion information extracted from a given image via a suitable
wavelet transform were proposed in [35] by Sharma and
Duits. In [12,31], a neurogeometrical field theory has been
introduced by Sarti and Citti to model connectivity between
different cortices and it has been shown that harmonic anal-
ysis on the neurogeometry excited by the stimulus accounts
for the constitution of perceptual units, while in [34] semi-
otic forms have been obtained through the same principle by
Sarti and Piotrowski.

The orientation maps of V1 have been introduced in [2]
by Barbieri et al. as a Bargmann transform in the irreducible
representation of SE(2), while in the present article here a
model of the orientation maps is proposed in terms of the
reducible representation, that is more neurophysiologically
plausible. Then all the principal morphologies present in the
visual cortex are modeled in a compact way in the neuroge-
ometrical framework.

As a general consideration about the choice of the recep-
tive profile model, let us recall that receptive field models
consisting of cascades of linear filters and static nonlinear-
ities may be adequate to account for responses to simple
stimuli such as gratings and random checkerboards, but their
predictions of responses to complex stimuli such as nat-
ural scenes are only approximately correct. A variety of
mechanisms such as response normalization, gain controls,
cross-orientation suppression, intra-cortical modulation can
intervene to change radically the shape of the profile. Then
any static and linear model for the receptive profiles has to
be considered just as a very first approximation of the com-
plex behavior of a real dynamic receptive profile, which is
not perfectly described by any of the static wavelet frames.

For example derivatives or difference of Gaussian func-
tions are very good approximations of the behavior of
classical receptive profiles of the simple cells. In [26], Lin-
deberg shows that the functions of Gaussian derivatives
obtained from the extension of the family of rotationally
symmetric Gaussian kernels to the family of affine Gaussian
kernels are able tomodel closedness under affine image trans-
formations. This property is important in the case of image
deformations, in particular perspective deformations, which
are essential in 3Dperception.Thanks to the closedness under
affine transformations the Gaussian derivatives are able to
handle the perspective deformations (see the explanations of
Lindeberg in [26] for details). On the other hand, the Gabor
functions which we use in our model are for 2D perception
and they are restricted to the similarity group.

Lindeberg shows in [25, Section 4] that an offset term
appears throughout the axiomatic derivation of the Gaussian
derivatives as receptive field models. This offset term can be
used for compensating spatial shifts (translations) and time
delays of the kernels of the Gaussian derivatives in order
to avoid spatial disparities and provide time causality of the
kernels. In the case of the Gabor functions here, we are not
interested in the temporal behavior of the simple cell recep-
tive profiles and differently from the case of Lindeberg [25],
the offset term corresponds to a phase shift of the Gabor
function. It changes the shape of the Gabor function by intro-
ducing the phase shift to the wave content of the function
(see Fig. 1 where we present an example of a phase shifted
Gabor function). Therefore the Gabor functions are able to
model both asymmetric simple cells and even/odd symmetric
simple cells while the functions of the Gaussian derivatives
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Fig. 1 Real (or even, top row) and imaginary (or odd, bottom row) parts
of the Gabor filters. The figures on the left-hand side correspond to the
Gabor filters with no phase shift while the ones on the right hand side
correspond to the phase shifted Gabor filters with π

4

account only for the symmetric simple cells. On the other
hand it is true that the majority of the receptive profiles of
the simple cells in the primary visual cortex are even and odd
symmetric, and it is an open issue to evaluate the importance
to discard a minority of the asymmetric profiles.

In the specific model which we propose in this article, we
have used only the Gabor filters without any phase shift. In
this case the Gabors can be easily replaced with the deriva-
tives of Gaussians, without loss of generality. However the
choice we made based on the Gabor functions allows to
extend the model to the true distribution of the profiles in
the primary visual cortex (including the asymmetric recep-
tive profiles with the phase shifts) in a straightforward way.
In the works of Koenderink [22,23] and Lindeberg [26] the
reader can find more information about some other models
as well, which employ alternative choices of the receptive
profiles in terms of the Gaussian derivatives.

We test the model at different scales, in order to repre-
sent properties of orientation maps in different cortical areas
where the scale of the receptive profile changes. Our simula-
tion results are compared with neural experimental results. A
comparison will be provided with a previous model based on
the Bargmann transform in the irreducible representation of
the SE(2) group, outlining that the newmodel is more physi-
ologically motivated. Moreover we remark that it is possible
to extend the model in order that additional visual features
such as frequency and phase are taken into account.

In Sect. 2 we explain the receptive profiles of the simple
cells and describe the group structure with its geometrical
properties. Then we give explicitly the procedure of the con-
struction of cortical map in Sect. 3. Afterward, in Sect. 4, we

show that the Gabor functions are minimizers of an uncer-
tainty principle and the filtering with the Gabors can be
interpreted as a Bargmann transform in the reducible repre-
sentations. Then we provide the relation of the Bargmann
transform to the orientation map construction procedure
and we compare it to another method using the Bargmann
transform with the Gabor functions in the irreducible rep-
resentations on the Fourier domain. Finally, in Sect. 6 we
present the simulation results of themodel and compare them
to the experimental results given in the literature.

2 Receptive Profiles of Simple Cells

2.1 Receptive Fields and Receptive Profiles

The simple cells of visual areas evoke impulse responses to
stimulus applied on the retinal plane M ⊂ R

2. Every simple
cell is identified by its receptive field (RF) which is defined
as the domain of the retina to which the cell is sensitive and
connected through the retino-geniculo-cortical paths. Once
a RF is stimulated it evokes a spike response.

In classical sense a RF contains on and off regions,
i.e., positive and negative contrast regions, respectively. The
decomposition of RF into those regions depends on the
nature of the cell response given to light and dark lumi-
nance Dirac stimulations. The response is realized by the
simple cell receptive profile. Receptive profile (RP) of a
simple cell is defined on RF and it is simply the impulse
response of the cell. Conceptually it is the measurement of
the response of the corresponding cell to a stimulus at some
point (x, y) ∈ M . We denote the RP at the retinal position
(x, y) ∈ M with orientation θ ∈ [0, π) and scale σ ∈ R

+
by Ψ(x,y,θ,σ ) : M × [0, π) × R

+ → C. The simple cells of
the primary visual cortex are strongly oriented and they are
sensitive to several visual features, in particular to orientation
and scale. Their RPs are often interpreted as Gabor functions
[19] since the Gabor functions are mathematically conve-
nient for encoding such features as Daugman [15] explained
based on a minimum uncertainty condition. In the literature
other models employing alternative choices of RPs in terms
of Gaussian derivatives were proposed as well, following
the works of Koenderink [22,23] where he pointed out the
resemblance between the simple cell receptive profiles and
the kernels in terms of the Gaussian derivatives. The reader
can refer to Lindeberg [26] where he proposed a family of
functions in terms of the Gaussian derivatives as a natural
choice of the simple cell receptive profile with respect to
certain symmetry properties.
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2.2 The Set of Receptive Profiles

Once the retinal layer is activated by some visual stimulus
I (x0, y0) ∈ R, at the point (x0, y0) ∈ M the simple cells pro-
cess the retinal stimulus through their RPs which are denoted
by Ψ(x0,y0) where the subindex refers to the corresponding
spatial position on M at which Ψ is centered. Each RP at the
point (x0, y0) is dependent on a preferred orientation θ and a
scale σ ∈ R

+ (see Figs. 2 and 3). The set of RPs is obtained
through the translation to the point (x0, y0) and the rotation
by θ , i.e.,

T(x0,y0,θ,σ )(ξ, η) =
(
x0
y0

)
+ eσ

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

) (
ξ

η

)

=(x, y),
(1)

applied on the Gabor mother function

Ψ0(ξ, η) = e−(ξ2+η2)ei2η. (2)

The general expression of the Gabor functions obtained
from the mother function is given by

Ψ(x0,y0,θ,σ )(x, y) = Ψ0(T
−1
(x0,y0,θ,σ )(x, y)). (3)

Note that we find the transformation law of the group

G � {T(x0,y0,θ0,σ0) : (x0, y0, θ, σ ) ∈ R
2×[0, π)×R

+}, (4)

by applying the coordinate transform given by (1) succes-
sively as follows:

T(x1,y1,θ1,σ1)T(x0,y0,θ,σ )(ξ, η)

=
(
x1
y1

)
+ eσ1Rθ1

(
x0
y0

)
+ eσ1+σ Rθ1+θ

(
ξ

η

)

= T(x2,y2,θ2,σ2)(ξ, η),

(5)

where Rθ represents the rotation matrix and

σ2 = σ1 + σ, θ2 = θ1 + θ,(
x2
y2

)
=

(
x1
y1

)
+ eσ1Rθ1

(
x0
y0

)
.

(6)

We refer to the explanations provided by Sarti et al. in [32]
for more details.

2.3 Functional Connectivity of the Cortex

The hypercolumns are endowed with internal isotropic
short range connections which we specifically call verti-
cal connections. The vertical connections do not provide

Fig. 2 Real (even) part of rotated Gabor filter Ψ(x0,y0,θ,σ ) centered at
(x0, y0), with scale σ = 8 and θ = 0 (top left), θ = π

4 (top right),
θ = π

2 (middle left), θ = 3π
4 (middle right), θ = π (bottom). The

direction X3 is the image gradient direction while X1 is the tangent
direction

Fig. 3 Real (or even, left column) and imaginary (or odd, right column)
parts of the Gabor filters with different scales (top and bottom rows)

the inter-hypercolumnar interactions and without such inter-
connections, the hypercolumns located at different retinal
points (x0, y0) ∈ M would be isolated from each other. We
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know from the neurophysiological results (see the works of
Bosking et al. [6], Das and Gilbert [14]) that there are long
ranged, strongly anisotropic connections between the hyper-
columns. This second type of connections within the primary
visual cortex is called horizontal connections. The horizontal
connections play themain role in inter-columnar information
flow, i.e., contour integration and image inpainting.

Moreover Bosking et al. [6] observed that the horizontal
connections link preferentially the simple cells at differ-
ent spatial locations (x0, y0) ∈ M but corresponding to
the same orientation (approximately). In other words, the
horizontal connections characterize the contour integration
along the aligned curve fragments with approximately same
orientations, respecting the saliency (see the saliencydescrip-
tion of Wertheimer [39]) of the global structure obtained
through the integration. Contour integration in a salient way
is closely related to the existence of specific connectivities
within the primary visual cortex, which are named as associ-
ation fields by Field et al. [17]. The association fields confirm
the anisotropic behavior of the horizontal connections in the
psychophysical level.

In order to implement this functional connectivityweasso-
ciate with each receptive profile Ψ(x0,y0,θ,σ ) the following
1-form

ω(θ,σ ) = e−σ (− sin(θ)dx + cos(θ)dy), (7)

where dx, dy ∈ T ∗M represent the covector fields dual to
the vector fields ∂x , ∂y ∈ T M . The 1-form ω is the main
instrument describing the orientation selectivity of a simple
cell since it selects the direction along the vector field

X3 = eσ (− sin(θ)∂x + cos(θ)∂y), (8)

and the vector X3|(x0,y0,θ,σ ) at point (x0, y0) gives the image
gradient at that point corresponding to the receptive profile
Ψ(x0,y0,θ,σ ). The direction along X3 is associated with the
orientation angle which the simple cells at (x0, y0) are sen-
sitive to (see also Fig. 2). Furthermore, with the additional
exponential e−σ , the 1-form ω weights the contour fragment
at (x0, y0), lying orthogonal to X3, in such a way that the
fragment corresponding to the same scale as ω produces the
highest simple cell response magnitude. In short ω(θ,σ ) is the
main instrument which renders both orientation and scale
selectivity of the primary visual cortex simple cells.

Finally we find the horizontal left invariant vector fields
as

ker ω = span{X1, X2, X4}, (9)

where

X1 = eσ (cos(θ)∂x + sin(θ)∂y),

X2 = ∂θ , (10)

X4 = ∂σ .

Here we note that due to the fact that

[X1, X2] = −X3,

[X1, X4] = −X1,
(11)

the horizontal vector fields are non-commutative. Yet they
span the whole tangent bundle together with their commuta-
tors, i.e.,

TM = span{X1, X2, X4, [X1, X2]}. (12)

That is, the horizontal vector fields given by (10) fulfill the
Hörmander condition [20].

3 TheModel of Multi-scale OrientationMaps

In this section we present our model of orientation cortical
maps. As we explained in the introduction, we propose that
cortical maps are obtained via a two step procedure: First
the simple cells act on a random stimulus, and consequently
maximally activated orientation and scale are selected, pro-
ducing the cortical map.

The response given to a stimulus by a simple cell with the
orientation preference θ , the scale σ and located at (x0, y0) ∈
M is expressed by

O(θ,σ )(x0, y0) =
∫
M

I (x, y)Ψ(x0,y0,θ,σ )(x, y) dx dy. (13)

See Fig. 4 for a visualization of such outputs. For every retinal
point (x0, y0) a particular value of orientation is selected via
the integration on the fiber:

θ(x0, y0) = 1

2
arg

( π∫
0

Re
{
O(θ,σ )(x0, y0)

}
eiθdθ

)
. (14)

We considered here only the real part of the output but alter-
native choices are possible, for example the energy or the
imaginary part of the output. We refer to [33] for more infor-
mation about such choices.

Lindeberg, in [24], describes a scale selection technique
in terms of Gaussian derivatives normalized by scale. Basi-
cally the method finds extrema over scales corresponding
to normalized receptive field responses by scale. A similar
approach in our particular framework associated with Gabor
functions is considered and the scale selectivity is provided
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Fig. 4 Lifting with a fixed scale is applied to an image I and the full set
of simple set responses (outputs) O is obtained. The responses corre-
sponding to each horizontal layer associated with a certain orientation
angle is at the bottom

by the maximum of the output at the point (x0, y0) over the
scale fiber at the selected value of θ :

σ(x0, y0) = argmax
σ∈R+

(
Re

{
O(θ,σ )(x0, y0)

})
. (15)

Let us note that we employ the maximum selectivity given
in (15), for selecting the scale value, as Sarti et al. did in
[32], while we use the integration over fiber given in (14)
in order to find the orientation preference over the fiber at
the point (x0, y0) ∈ M . This procedure allows us to achieve
a more robust orientation selectivity. Here we assume that
generically there is a unique maximum, so that it is equiv-
alent the order in which we select θ and σ . Note that the
procedure described by (14) and (15) is done for every fixed
point (x0, y0) on the retinal plane and the selected orienta-
tions θ(x0, y0) and scales σ(x0, y0) are represented at the
corresponding fiber locations (x0, y0) ∈ M . In such a way
we obtain the multi-scale orientation map θ(x, y) that is rep-
resented in Fig. 11 with the same type of color map as in

Fig. 6 The orientation preference map taken from [6, Figure 1]. It was
obtained via a vector summation of the data recorded for each angle by
using optical imaging

the classical case Fig. 6. The overall procedure for obtaining
cortical maps is schematized in Fig. 5.

This procedure corresponds to the lifting of a general stim-
ulus I (x, y) provided by simple cells circuitry. We explicitly
note here that the cortical orientation maps will be obtained
by using the lifting of a random stimulus. This choice ismoti-
vated also by the fact that experimentally the cortical maps
arise in the early post-natal period in the absence of any
visual experience, just in the presence of an intrinsic ran-
dom basal activation (see the studies of Jegelka et al. [21],
Tanaka et al. [38], Bednar and Miikkulainen [5]). A refine-
ment of the orientation maps is performed subsequently by
activation patterns based on random waves (see the results
provided by Cang et al. [10], Stellwagen and Shatz [36]).

Note that convolution with a Gabor filter will provide
a smooth function. Indeed the Gabor is simply a Gaussian
function multiplied by a complex exponential. The resulting
function will then be a smooth function depending on the
variance of the Gaussian, which is the scale. Finally the ori-
entation selection will provide smooth functions, with values

Fig. 5 An image with white noise is filtered by the Gabor filters with
different scales. The integration over fiber and the maximum selectivity
on the integrated fiber values are applied on the real part of the filtering

result. The orientation preferencemap is obtained by assigning a certain
color to each orientation value
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in S1. It is well known that even the harmonic functions with
values in S1 develop vortices, which will the models for the
pinwheels.

It is natural to build feature cortical maps by means of
Gabor functions, since they are strictly related to all the
functional geometry. In fact we will see that they arise as
minimizers of the uncertainty principle in this setting.

4 OrientationMaps as Cortical Bargmann
Transforms

4.1 An Uncertainty Principle

Orientation maps have been constructed by Barbieri et al. in
[3] where an uncertainty principle related to the functional
geometry of the cortex and its non-commutative structure
were used.

The uncertainty principle in its general form always
applies in presence of two self-adjoint non-commutating vec-
tor fields P1 and P2. In our framework, as given by Folland
in [18], it is written as the following:

Proposition 1 Let us denote H an Hilbert space endowed
with the scalar product 〈. , .〉. Consider two self-adjoint vec-
tor fields P1 and P2 on H. Then the following inequality
holds:

|〈 f , [P1, P2] f 〉| ≤ 2‖P1 f ‖‖P2 f ‖, (16)

for all L2(R2) functions f in the domain of [P1, P2].
Proof Since P1 and P2 are self-adjoint, we can write that

〈 f , [P1, P2] f 〉 =〈 f , (P1P2 − P2P1) f 〉
= 〈P1 f , P2 f 〉 − 〈P2 f , P1 f 〉
= 2i Im{〈P1 f , P2 f 〉}.

(17)

We employ the Cauchy–Schwarz inequality and write:

〈 f , [P1, P2] f 〉 ≤ 2|〈P1 f , P2 f 〉| ≤ 2‖P1 f ‖‖P2 f ‖. (18)

��
The first inequality in (18) becomes an equality when

〈P1 f , P2 f 〉 is purely imaginary and the second one turns
into equality when P1 f and P2 f are linearly dependent. As
a consequence minima of the uncertainty inequality (i.e., for
that the inequality (16) turns into equality) satisfy the fol-
lowing equation

P1 f = iλP2 f . (19)

The condition P1 f = iλP2 with λ ∈ R gives the minimizers
which are called coherent states.

4.2 Gabors as Minimizers of the Uncertainty
Principle

We have seen that the Gabor functions are defined on the
2-dimensional retinal plane and generated by the action on a
mother filter of T−1

(x0,y0,θ,σ ) where T(x0,y0,θ,σ ) is defined in (1).

Accordingly the differential of T−1 sends the vector fields
X1 and X2 acting in the 4-dimensional manifold of variables
(x, y, θ, σ ) to new vector fields Y1 and Y2 defined on the
retinal plane as:

(dT−1)(X1) = ∂ξ ,

(dT−1)(X2) = η∂ξ − ξ∂η.
(20)

It is well known that Gabor filters are minimizers of the
uncertainty principle in the Heisenberg group, less known
is that they are indeed also coherent states related to the
non-commutating vector fields Y1 and Y2 induced by the
functional architecture of V1. As a result they satisfy the
analogue of (19). Precisely the Gabor functions of the type
Ψ(x0,y0,θ,σ ) given by (3) satisfy

Y1Ψ(x0,y0,θ,σ )(x, y) = −2ξΨ0(ξ, η),

Y2Ψ(x0,y0,θ,σ )(x, y) = −i2ξΨ0(ξ, η),
(21)

which fulfill (19) for λ = −1.

4.3 Interpretation of the Cortical Maps as a
Bargmann Transform of a Random Stimulus

Let us recall that the operator associated with the coherent
states is the Bargmann transform:

(BSE(2) I )(x, y, θ, σ ) := 〈Ψ(x0,y0,θ,σ ), I 〉L2(R2)

=
∫

R2

Ψ(x0,y0,θ,σ )(ξ, η)I (ξ, η)dξ, dη.

(22)

In particular, the response of simple cells, being defined
by (13) as the convolution with a Gabor coherent state, can
be interpreted as the Bargmann transform in the functional
architecture:

O(θ,σ )(x, y) = (BSE(2) I )(x, y, θ, σ ). (23)

As a consequence, the orientation maps are associated with
the Bargmann transform of a random stimulus.
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5 Comparison with Previous Models of the
Cortical Maps

5.1 Superposition of RandomWaves

One of the first models for the construction of the orientation
preferencemaps is proposed by Petitot in [27] where themap
is obtained through the superposition of randomly weighted
complex sinusoids

k=N∑
k=1

cke
i2π

(
x cos(2πk/N )+y sin(2πk/N )

)
, (24)

with N denoting the number of frequency samples andwhere
the coefficients ck ∈ [0, 1] are the white noise.

In this way the functional role of the Gabor functions as
receptive profiles is disregarded since the orientation map
is constructed via direct superimposition of the waves with
randomly generated magnitudes, avoiding that the Gabors
naturally process the stimulus by lifting it to the phase space
of the corresponding intrinsic variables. More specifically in
this procedure the complex sinusoid functions are not local-
ized while it is known from neurophysiological experiments
that the orientation selectivity is performed locally by the
simple cells (see for example the work of Field and Tolhurst
[16]).

5.2 The Bargmann Transform of the Irreducible
Representations

In themodel proposed by Barbieri et al. in [3], the orientation
map is built starting from the coherent states in the irreducible
representation.

Definition 1 The representation of a group G is a map Φ :
G → A(V ), from the groupG to the space of automorphisms
of a vector space V , such thatΦ is compatible with the group
law. The representation will be denoted by (Φ, V ), and it is
called irreducible if it has no proper group subrepresentation
(Φ,W ), where W is a subspace of V .

Taking the Fourier transform of the vector fields Y1 and
Y2 defined in (20), we obtain:

F(Y1 f ) = i z1 f̂ , F(Y2 f ) = (z2∂z1 − z1∂z2) f̂ . (25)

We can write those vector fields also in terms of the polar
coordinates (z1, z2) = (Ω cos(ϕ),Ω sin(ϕ)) with Ω ∈ R

+
and ϕ ∈ S1. In this case the fields become

Ŷ1 f̂ = iΩ cos(ϕ) f̂ , Ŷ2 f̂ = ∂ϕ f̂ . (26)

The vector fields Ŷ1 and Ŷ2 do not contain any radial
derivative and only depend on the angular direction in the

Fourier space. Therefore they act independently on every
circle, of arbitrary radius Ω . Then it is possible to restrict
the action of these vector fields to any circle with radius Ω

on the Fourier space separately (see the explanations of Sug-
iura [37] for details). This is the reason why the vector fields
Y1,Y2 on the whole space (in the Fourier domain as well) are
called reducible, while Ŷ1 and Ŷ2 which cannot be further
reduced once Ω is fixed, are called irreducible.

If wewrite the coherent state condition (19) on the Fourier
domain in terms of Ŷ1 and Ŷ2,

Ŷ1 f̂ = iλŶ2 f̂ , (27)

we find the coherent states

Ψ̂ Ω
(x0,y0,θ,σ )(ϕ) = Ψ̂(x0,y0,θ,σ )(Ω cos(ϕ),Ω sin(ϕ)), (28)

where Ψ̂(x0,y0,θ,σ ) is the Fourier transform of the Gabor fil-
ters, while Ψ̂ Ω

(x0,y0,θ,σ ) is a function of the angular variable,
defined on the circle of the radius Ω .

In [2,3] Barbieri et al. use the family of the coherent states
obtained for a fixed value of σ , and for a single value of Ω

Ψ̂ Ω
(x0,y0,θ). (29)

In perfect analogy with Eq. (13) the Bargmann transform
in these variables is expressed as the operator with the kernel
Ψ̂ Ω

(x0,y0,θ) as:

BΩg(x, y, θ) := 〈Ψ̂ Ω
(x0,y0,θ), g〉L2(S1)

=
2π∫
0

Ψ̂ Ω
(x0,y0,θ)(ϕ)g(ϕ)dϕ.

(30)

In [2,3], this transform is applied to awhite noise g defined
on the annulus (on the Fourier domain). For every point (x, y)
an orientation is selected by means of an integration analo-
gous to the one expressed in (14):

θ
Ω

(x, y) = 1

2
arg

( π∫
0

{
BΩg(x, y, θ)

}
eiθdθ

)
. (31)

In thisway theyfind anorientation preference at each point
(x, y)which depends on the fixed value ofΩ and they obtain
the orientation preference maps (with no scale parameters).

Although both our model and the model proposed in [2,
3] by Barbieri et al. make use of the idea of a Bargmann
transform they differ on three points.

Firstly our method employs the coherent states corre-
sponding to the reducible representations while the other one
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uses the states restricted to the irreducible representations in
the Fourier domain.

Secondly we start from a noise generated on the real
domain and apply the Bargmann transform, while the other
method introduces the noise in the Fourier domain on the irre-
ducible representations, and apply the Bargmann transform
in the Fourier space. The choice made in the present paper
here is physiologically more plausible since experimentally
the cortical maps can arise in the early post-natal period in
the absence of any external stimulus, just in the presence of
a random basal activation (see Bednar and Miikkulainen [5]
and Jegelka et al. [21]). The presentmodel has the potential to
provide a reasoning and an explanation of how the formation
of cortical maps occurs at the neurophysiological level.

The third main difference is that the present model can
also consider the scale selectivity while in the other model
the scale is fixed. More generally it is possible to extend the
present model in order to include other visual features by
using generalized Gabor functions.

6 Experiments

We consider a stimulus I (x, y) of 128× 128 pixels with the
random values generated from a uniform distribution over
[−1, 1] at each pixel.

We obtain the total set of simple cell responses via the
linear filtering of the test imagewith the rotated and translated
Gabor filter banks as described in (13) with different scale
values σ . Then we represent the selected orientation θ(x, y)
and σ(x, y), via (14) and (15), at every point (x, y) on the
128 × 128 image plane.

Previously in the literature it was reported from the phys-
iological experiments of Bosking [6] (see Fig. 6) that the
orientation preference map had certain characteristics (see
the explanations of Bressloff and Cowan [8], and Petitot
[12, p.27], [27, p.87]). To begin with, orientation preferences
on the map are distributed almost continuously across the
cortex and the pinwheel architecture is crystalline-like. In
other words there is a regular lattice of the pinwheels on the
orientation preference map with a certain spatial periodic-
ity. Furthermore the orientation map contains three types of
points as described by Petitot [27, p.87], namely: (a) Regu-
lar points around which the orientation iso-lines are parallel
(the zones with regular points are called linear zones), (b)
Singular points which are located at the center of the pin-
wheels (Those singularities might have positive or negative
chirality. That is, when we turn around a pinwheel in the
clockwise direction, the orientations turn in the clockwise
direction—positive chirality—or in the counter-clockwise
direction—negative chirality. The pinwheels represent oppo-
site chiralities when they are adjacent to each other), (c)
Saddle points at the center of regions where iso-orientation

Fig. 7 Orientation preference maps obtained through our model with
the scales σ = 16 (top) and σ = 24 (bottom), adjacent pinwheels
with opposite chiralities (points A), saddle points (points B) and linear
zones (points C) represented by a single color. White lines represent the
orientation correspondence at each point (Color figure online)

lines bifurcate (the case where two iso-orientation lines start
from the same pinwheel and arrive at opposite pinwheels).

We will see that in the present study, we are able to pro-
duce all the three kinds of points. In the first experiment we
consider different fixed scales and apply (13) and (14) to
obtain the orientation maps: The results are shown in Fig. 7,
where the orientation maps are visualized and the three kinds
of points are outlined.

Figure 8 shows the cross-correlation between the simu-
lated cortical maps where several picks are present and they
testify the crystalline structure of the map. Notice that the
periodicity of the peaks is linearly dependent on the scale of
the Gabor filters employed for the construction of the map.

The size of the pinwheel structure is also strictly correlated
with the scale of the Gabor filters, as shown in Fig. 9.
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Fig. 8 The results obtained by the Gabors of the scale values σ = 16
(left column) and σ = 24 (right column). Top: The orientation prefer-
ence maps, Second row: Orientation preference map cross-correlations.
The average of the vertical and horizontal axes of ellipses (orange) rep-
resenting the second peak values around the first peak corresponding
to the exact match due to no shift indicates the spatially periodic con-
figuration of the pinwheel grid structure of the orientation preference
maps. Third row: The cross-correlation values with respect to the shifts
in x direction along the profile line (orange dashed arrow in the second
row). Bottom: The cross-correlation valueswith respect to the shifts in y
direction along the profile line (green dashed arrow in the second row).
Finally the spatial shift corresponding to the second peaks for σ = 16
is found as 44 pixels while for σ = 24 it is 52 pixels approximately
(Color figure online)

Let us note that as one passes through V1–V2–V3 areas
of the cortex the sizes of the simple cells increase and the
lattice of the orientation map extends while the pinwheels
are preserved, as visualized on the top of Fig. 10. Our sim-

Fig. 9 The orientation maps obtained with the Gabors of the scales
σ = 4 (top left), σ = 8 (top right), σ = 12 (middle left), σ = 16
(middle right), σ = 20 (bottom left), σ = 24 (bottom right) in pixels

ulations are able to reproduce the same type of orientation
maps, which preserve the pinwheels through different cortex
layers, by simply changing the scale of the Gabor filter bank
as shown on the bottom of Fig. 10.

In the next series of experiments we will compute the
orientation maps by selecting at every point orientation and
scale by using the three Eqs. (13), (14) and (15). This case
is the closer one to the physiological situation of a normal
visual cortex,where cellswith different orientations and sizes
are present. In Fig. 11 the relevant simulation result of the
model is visualized, showing the orientation map rendering
both orientation and scale selectivity.

In the final experiment, which is given in Fig. 12, we used
the same procedure as in Fig. 11 but using three different sets
of scales and we obtained a result similar to Fig. 10. This
procedure is closer to the real receptive field composition of
the primary visual cortex.

123



910 Journal of Mathematical Imaging and Vision (2018) 60:900–912

Fig. 10 Top: The original neurophysiological results taken from [28,
Figure 37]. As one passes through V1–V2–V3 the sizes of the simple
cells increase and the lattice of the orientation map extends while the
pinwheels are preserved, Bottom: The simulation results obtained via
our model. The model is able to produce the same type of orientation
maps, which preserve the pinwheels through different cortex layers, by
simply changing the scale of the Gabor filter bank

7 Conclusion

In this paper we presented a new model for the generation of
orientation preferencemaps in the primary visual cortex, con-
sidering both orientation and scale features. We considered
modeling the functional architecture of the primary visual
cortex by taking into account orientation and scale features
and using a framework inspired by Sarti et al. [32]. Further-
more, we also provided the physical reasoning behind the
choice of the generalized Gabor function by showing that it
is a coherent state of the non-commutative framework corre-
sponding to the cortex functional architecture. The intrinsic
variables of orientation and scale constitute a fiber on each
point of the retinal plane and the set of receptive profiles of
simple cells is located on the fiber. The orientation preference
maps are then obtained simply as the lifting of a noise stimu-
lus by a set of Gabor filters, mapping the orientation value on
the 2-dimensional plane. This corresponds to the Bargmann
transform in the reducible representation of the SE(2) group

Fig. 11 Top: The orientation preference map obtained through our
model based on the procedure based on (13), (14) and (15) with scale set
{4, 4.5, 5, . . . 32} on which the maximum selectivity over the scale set
is applied. Bottom: The corresponding scalemapwhere each color indi-
cates a certain scale value found by (15) and the black curves represent
the iso-orientation lines (Color figure online)

Fig. 12 The orientation preference maps obtained through our model
using the procedure based on (13), (14) and (15) with the scale sets
{4, 4.5, 5, . . . 8} for V1, {4, 4.5, 5, . . . 16} for V2 and {4, 4.5, 5, . . . 32}
for V3
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which is followed by a maximum response selection proce-
dure. A comparison has been providedwith a previousmodel
based on the Bargmann transform in the irreducible repre-
sentation of the SE(2) group, outlining that the new model is
more physiologically motivated. From the simulation results
it appears that this technique is able to reproduce the cortical
maps of different areas with morphological characteristics
comparable to the experimental data. A clear advantage of
the method consists also in its versatility since a number of
different features could be considered, such as frequency and
phase. Further studies will be conducted in this direction in
the close future.
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