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Abstract
We present a PDE-based approach for finding optimal paths for the Reeds–Shepp car. In our model we minimize a (data-
driven) functional involving both curvature and length penalization, with several generalizations. Our approach encompasses
the two- and three-dimensional variants of this model, state-dependent costs, and moreover, the possibility of removing the
reverse gear of the vehicle. We prove both global and local controllability results of the models. Via eikonal equations on
the manifold R

d × S
d−1 we compute distance maps w.r.t. highly anisotropic Finsler metrics, which approximate the singular

(quasi)-distances underlying the model. This is achieved using a fast-marching (FM) method, building on Mirebeau (Numer
Math 126(3):515–557, 2013; SIAMJNumerAnal 52(4):1573–1599, 2014). The FMmethod is based on specific discretization
stencils which are adapted to the preferred directions of the Finsler metric and obey a generalized acuteness property. The
shortest paths can be found with a gradient descent method on the distance map, which we formalize in a theorem. We
justify the use of our approximating metrics by proving convergence results. Our curve optimization model in R

d × S
d−1

with data-driven cost allows to extract complex tubular structures from medical images, e.g., crossings, and incomplete data
due to occlusions or low contrast. Our work extends the results of Sanguinetti et al. (Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications LNCS 9423, 2015) on numerical sub-Riemannian eikonal equations and the
Reeds–Shepp car to 3D, with comparisons to exact solutions by Duits et al. (J Dyn Control Syst 22(4):771–805, 2016).
Numerical experiments show the high potential of our method in two applications: vessel tracking in retinal images for the
case d = 2 and brain connectivity measures from diffusion-weighted MRI data for the case d = 3, extending the work of
Bekkers et al. (SIAM J Imaging Sci 8(4):2740–2770, 2015). We demonstrate how the new model without reverse gear better
handles bifurcations.
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1 Introduction

Shortest paths in position and orientation space are central in
this paper. Dubins describes in [21] the problem of finding
shortest paths for a car in the plane between initial and final
points and direction, with a penalization on the radius of
curvature, for a car that has no reverse gear. Reeds and Shepp
consider in [50] the same problem, but then for a car that does
have the possibility for backward motion. In both papers, the
focus lies on describing and proving the general shape of
the optimal paths, without giving explicit solutions for the
shortest paths.
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Fig. 1 Top: a car can only move in its current orientation or
change its current orientation. In other words, when the path γ (t) =
(x(t), y(t), θ(t)) is considered as indicated in the left figure, the tangent
γ̇ (t) is restricted to the span of (cos θ(t), sin θ(t), 0) and (0, 0, 1), of
which the green plane on the right is an example. Bottom: the meaning
of shortest path between points in an image is determined by a com-
bination of a cost computed from the data, the restriction above and a
curvature penalization. The path optimization problem is formulated on
the position-orientation domain such as in the image on the right. The
cost for moving through the orange parts is lower than elsewhere (Color
figure online)

This can be considered a curve optimization problem in
the spaceR

2×(R/2πZ), equippedwith the natural Euclidean
metric but only among curves γ (t) = (x(t), y(t), θ(t))
subject to the constraint that (ẋ(t), ẏ(t)) is proportional to
(cos θ(t), sin θ(t)). Formulating the problem this way, it
becomes one of the simplest examples of sub-Riemannian
(SR) geometry: the tangent vector γ̇ (t) is constrained to
remain in the span of (cos θ(t), sin θ(t), 0) and (0, 0, 1), see
Fig. 1. The SR curve optimization problem and the properties
of its geodesics in R

2 × S
1 have been studied and applied

in image analysis by [2,11,16,22,37,48], and in particular
for modeling the Reeds–Shepp car in [10,44,52], whereas
the latter presented a complete and optimal synthesis for the
geometric control problem on R

2 × S
1 with uniform cost.

Properties of SR geodesics in R
d × S

d−1 with d = 3 have
been studied in [25] and for general d in [24]. Apart from the
Reeds–Shepp car problem, there are other examples relating
optimal control theory and SR geometry, see for example the
books by Agrachev and Sachkov [2] and Montgomery [45].
Applications in robotics and visualmodeling of SR geometry
and control theory can be found in, e.g., [56].

On the left in Fig. 2, we show an example of an optimal
path between two points in R

2 × S
1. The projection on R

2

of this curve has two parts where the car moves in reverse
(the red parts of the line), resulting in two cusps. From the

perspective of image analysis applications this is undesirable
and it is a valid question what the optimal paths are if cusps
and reverse gear are not allowed. In this paper, similar to
the difference between the Dubins car and the Reeds–Shepp
car, we also consider this variant: it can be accounted for by
requiring that the spatial propagation is forward. This vari-
ant falls outside the SR framework and requires asymmetric
Finsler geometry instead.

Furthermore, we would like to extend the Finsler met-
ric using two data-driven factors that can vary with position
and orientation. This can be used to compute shortest paths
for a car, where for example road conditions and obsta-
cles are taken into account. In [8] it is shown this approach
is useful for tracking vessels in retinal images. Likewise,
the 3D variant of the problem provides a basis for algo-
rithms for blood vessel detection in 3D magnetic resonance
angiography (MRA) data or detection of shortest paths and
quantification of structural connectivity in 5D diffusion-
weighted magnetic resonance imaging (MRI) data of the
brain.

1.1 A Distance Function and the Corresponding
Shortest Paths onR

d × S
d−1

We fix the dimension d ∈ {2, 3}, and let M := R
d × S

d−1
be the 2d − 1-dimensional manifold of positions and ori-
entations. We use a Finsler metric on the tangent bundle of
M, F : T (M) → [0,+∞], of which specific properties are
discussed later, to define a geometry on M. Any such Finsler
metric F induces a measure of length LengthF on the class
of paths with Lipschitz regularity, defined as1

LengthF (γ ) :=
∫ 1

0
F(γ (t), γ̇ (t)) dt,

with the convention γ̇ (t) := d
dt γ (t). The path is said to be

normalized w.r.t. F iff F(γ (t), γ̇ (t)) = LengthF (γ ) for all
t ∈ [0, 1]. Any Lipschitz continuous path of finite length can
be normalized by a suitable reparameterization. Finally, the
quasi-distance dF : M ×M → [0,+∞] is defined for all
p,q ∈ M by

dF (p,q) := inf{LengthF (γ ) | γ ∈ Γ , γ (0) = p,

γ (1) = q}, (1)

with Γ := Lip([0, 1], M). Normalized minimizers of (1) are
called minimizing geodesics from p to qw.r.t.F . For certain

1 In contrast to previous works [8,11,22,25,36] we parameterize such
that the time integration stays on [0, 1], and t > 0 is not a priori
reserved (unless explicitly stated otherwise) for arc length parameteri-
zation (which satisfies Fγ (t)(γ̇ (t)) = 1).
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Fig. 2 Top: example of a shortest path with (left) and without (right)
reverse gear in R

2 × S and its projection on R
2. The black arrows indi-

cate the begin and end condition in the plane, corresponding to the blue
dots in R

2 × S. The paths in the lifted space are smooth, but vertical
tangents appear in both cases. In the left figure, the projection of the path
has two cusps, and the first and last part of the path is traversed back-

ward (the red parts). On the right, backward motion is not possible.
Instead, according to our model, the shortest path is a concatenation
of an in-place rotation (green), a SR geodesic and again an in-place
rotation. Bottom: corresponding control sets as defined in (7) for the
allowed velocities at each position and orientation, with BF0 on the left
and BF+

0
on the right (Color figure online)

pairs (p,q) these minimizers may not be unique, and these
points are often of interest, see for example [9,44].

Definition 1 (Maxwell point) Let pS ∈ M be a fixed
point source and γ ∈ Γ a geodesic connecting pS with
q ∈ M, q �= pS . Then q is a Maxwell point if there exists
another extremal path γ̃ ∈ Γ connecting pS and q, with
LengthF (γ ) = LengthF (γ̃ ). If q is the first point (distinct
from pS) on γ where such γ̃ exists, then q is called the first
Maxwell point. The curves γ, γ̃ lose global optimality after
the first Maxwell point.

Remark 1 (Terminology) We use the common terminology
of ‘Finsler metric’ for F , although it is also called ‘Finsler
function’, ‘Finsler norm’ or ‘Finsler structure’, and despite
the fact that F is not a metric (distance) in the classical
sense. The Finsler metric F induces the quasi-distance dF
as defined in (1). If F(p, ṗ) = F(p,−ṗ) for all p ∈ M and
tangent vectors ṗ ∈ Tp(M), then dF is a true metric, satis-
fying dF (p,q) = dF (q,p) for all p,q ∈ M. However, to
avoid confusion of the word metric, we will only refer to dF
as a distance or quasi-distance. If the ‘Finsler metric’ F is
induced by a metric tensor field G on Riemannian manifold
(M,G), then one has F(p, ṗ) = √G|p (ṗ, ṗ).

Throughout the document, we use the words path and
curve synonymously. When we consider formal curve opti-
mization problem (1), we speak of geodesics for the station-
ary curves. Such stationary curves are locally minimizing. A

global minimizer of (1) is referred to as minimizing geodesic
or minimizer.

1.2 Geometry of the Reeds–SheppModel

We introduce the Finsler metric F0 underlying the Reeds–
Shepp car model and the Finsler metricF+0 corresponding to
the variant without reverse gear. Let (p, ṗ) ∈ T (M) be a pair
consisting of a point p ∈ M and a tangent vector ṗ ∈ Tp(M)

at this point. The physical and angular components of a point
p ∈ M are denoted by x ∈ R

d and n ∈ S
d−1, and this

convention carries over to the tangent:

p = (x,n), ṗ = (ẋ, ṅ) ∈ Tp(M).

We say that ẋ is proportional to n, that we write as ẋ ∝ n,
iff there exists a λ ∈ R such that ẋ = λn. Define

F0(p, ṗ)2 :=
{
C21 (p)|ẋ · n|2 + C22 (p)‖ṅ‖2 if ẋ ∝ n,

+∞ otherwise.

(2)

F+0 (p, ṗ)2 :=

⎧⎪⎨
⎪⎩
C21 (p)|ẋ · n|2 + C22 (p)‖ṅ‖2 if ẋ ∝ n and

ẋ · n ≥ 0,

+∞ otherwise.

(3)
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Here ‖·‖ denotes the norm and ‘·’ the usual inner product on
the Euclidean spaceR

d . The functions C1 and C2 are assumed
to be continuous on M and uniformly bounded from below
by a positive constant δ > 0. In applications, C1 and C2 are
chosen so as to favor paths which remain close to regions of
interest, e.g., along blood vessels in retinal images, see Fig. 1.
Note that their physical units are distinct: if one wishes dF
to have the dimension [T ] of a travel time, then C−11 is a
physical, (strictly) spatial velocity [Length][T ]−1, and C−12
is an angular velocity [Rad][T ]−1. For simplicity one often
sets C1 = ξC2, where ξ−1 > 0 is a unit of spatial length. The
special case C1(p) = ξC2(p) = ξ for all p ∈ M is referred
to as the uniform cost case.

1.3 The Eikonal Equation and the Fast-Marching
Algorithm

We compute the distance map to a point source on a volume
using the relation to eikonal equations. Let pS ∈ M be an
arbitrary source point, and let U be the associated distance
function

U (p) := dF (pS,p). (4)

ThenU is the unique viscosity solution [18,19] to the eikonal
PDE:
{
F∗(p, dU (p)) = 1 for all p ∈ M\{pS},
U (pS) = 0.

(5)

Here F∗ is the dual metric of F and dU is the differential of
the distance mapU . However, for these relations to hold, and
for numerical discretization to be practical, F should be at
least continuous.2 We therefore propose in Sect. 2.3 for both
F0 and F+0 an approximating metric that we denote by Fε

andF+ε , respectively, that are continuous and converge toF0

and F+0 as ε → 0. The approximating metrics correspond
to a highly anisotropic Riemannian and Finslerian metric,
rather than a sub-Riemannian or sub-Finslerian metric. The
metric Fε is in line with previous approximations [8,16,53]
for the case d = 2.

We design a monotone and causal discretization scheme
for static Hamilton–Jacobi PDE (5), which allows to apply
an efficient, single-pass fast-marching algorithm [59]. Let us
emphasize that designing a causal discretization scheme for
(5) is non-trivial, because its local connectivity needs to obey
an acuteness property [55,61] depending on the geometry
defined by F . We provide constructions for the metrics Fε

or F+ε of interest, based on the earlier works [40,41].

2 From a theoretical standpoint, one may rely on the notion of discon-
tinuous viscosity solution [7]. But this concept is outside of the scope
of this paper, and in addition, it forbids the use of a singleton {pS} as
the target set.

1.4 Shortest Paths andMinimal Distances in Medical
Images

The application of the Hamilton–Jacobi framework for find-
ing shortest paths has been shown to be useful for vessel
tracking in retinal images [8], see Fig. 3 (top, right). The
computational advantage of the fast-marching solver over the
numerical method in [8] in this setting was demonstrated by
Sanguinetti et al. [53]. A related approach using fast march-
ing with elastica functionals can be found in [14,15]. The
sub-Riemannian approach by Bekkers et al. [8] concerns
the two-dimensional Reeds–Shepp car model with reverse
gear, where 2D grayscale images are first lifted to an orienta-
tion score [23] defined on the higher-dimensional manifold
R
2×S

1. There, the combination of the sub-Riemannian met-
ric, the cost function derived from the orientation score, and
the numerical anisotropic fast-marching solver, provided a
solid approach to accurately track vessels in challenging sets
of images.

In the previous works [8,9] the clear advantage of sub-
Riemannian geometrical models over isotropic Riemannian
models onR

2×S
1 has been shown with many experiments.3

In this work we will show similar benefits for our sub-
Riemannian tracking in R

3 × S
2. In general, regardless of

the choice of image dimension d ∈ {2, 3}, one has that our
extension of the Hamilton–Jacobi framework from the con-
ventional base manifold of position space only (i.e., R

d ) to
the base manifold of positions and orientations (i.e., R

d ×
S

d−1) generically deals with the ‘leakage problem’ where
wavefronts leak at crossings in the conventional eikonal
frameworks acting directly in the image domain. See Fig. 4
where our solution to the ‘leakage problem’ is illustrated for
d = 2.

Regarding image analysis applications, we propose to use
the same strategy of sub-Riemannian and Finslerian track-
ing above the extended base manifold R

3 × S
2 of positions

and orientations for fiber tracking and structural connectiv-
ity in brain white matter in diffusion-weighted MRI data.
For diffusion-weighted MRI images, a signal related to the
amount of diffusion of water molecules is measured, which
in the case of neuroimages is considered to reflect the struc-
tural connectivity in brain white matter. The images can in
a natural way be considered to have domain Ω ⊂ R

3 × S
2.

Figure 3 (bottom) illustrates such images. On the left we use
a glyph visualization that shows a surface for each grid point,
where the distance from the surface to the corresponding grid
point x is proportional to the data value U (x,n) and the col-
oring is related to the orientation n ∈ S

2. As such the dMRI

3 For vessel tracking experiments that show the benefit of the sub-
Riemannian approach (R2 × S

1, dF0 ) in [8] see: http://epubs.siam.org/doi/

suppl/10.1137/15M1018460.
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Fig. 3 Challenges and applications. Top row: the case d = 2, with a
toy problem for finding the shortest way with or without reverse gear
(blue and red, respectively) to the exit in Centre Pompidou (top left)
and a vessel tracking problem in a retinal image. Bottom row: the case
d = 3, connectivity in (simulated) dMRI data. Left: visualization of a

dataset with two crossing bundles without torsion, with a glyph visual-
ization of the data in R

3 × S
2 and a magnification of one such glyph,

indicating two main fiber directions. Right: the spatial configuration in
R
3 of bundles with torsion in an artificial dataset on R

3 × S
2 (Color

figure online)

data already provide a distribution on R
3 × S

2 and do not
require an ‘orientation score’ as depicted in Figs. 1 and 4.

A large number of tractography methods exist that are
designed to estimate/approximate the fiber paths in the brain
based on dMRI data. Most of these methods construct tracks
that locally follow the structure of the data, see, e.g., [20,58]
or references in [34]. More related to our approach are
geodesic methods that have the advantage that they mini-
mize a functional, and thereby are less sensitive to noise and
provide a certain measure of connectivity between regions.
These methods can be based on diffusion tensors in com-
bination with Riemannian geometry on position space, e.g.,
[30,33,35].One can alsomake use of themore general Finsler
geodesic tracking to include directionality [38,39] and use
high angular resolution data (HARDI), examples of which
can be found in [5,54]. Recently, a promising method has
been proposed, based on geodesics on the full position and
orientation space using a data-adaptive Riemannian metric
[47]. We also work on this joint space of positions and ori-
entations, but use either Riemannian or asymmetric Finsler
metrics that are highly anisotropic that we solve by a numer-
ical fast-marching method that is able to deal with this high
anisotropy. We show on artificial datasets how our method
can be employed to give shortest paths between two regions
w.r.t the imposed Finsler metric and that these paths correctly
follow the bundle structure.

1.5 Contributions and Outline

The extension to 3D of the Reeds–Shepp car model and the
adaptation to model shortest paths for cars that cannot move
backward are new and provide an interesting collection of
new theoretical and practical results:

– In Theorem 1 we show that the Reeds–Shepp model is
globally and locally controllable, and that the Reeds–
Shepp model without reverse gear is globally but not
locally controllable. Hence, the distance map loses con-
tinuity.

– We introduce regularizations Fε and F+ε of the Finsler
metrics F0 and F+0 , which make our numerical dis-
cretization possible.We show that both the corresponding
distances converge to dF0 and dF+

0
as ε → 0 and the

minimizing curves converge to the ones for ε = 0, see
Theorem 2.

– We present and prove for d = 2 and uniform cost a
theorem that describes the occurrence of cusps for the
sub-Riemannianmodel usingF0, and that usingF+0 leads
to geodesics that are a concatenation of purely angular
motion, a sub-Riemannian geodesic without cusps and
again a purely angular motion. We call the positions
where in-place rotation (or purely angular motion) takes
place keypoints. For uniform cost, we show that the only

123



Journal of Mathematical Imaging and Vision (2018) 60:816–848 821

Fig. 4 Top: an orientation score [23,32] provides a complete overview
of how the image is decomposed out of local orientations. It is a method
that enlarges the image domain from R

d to R
d × S

d−1 (here d = 2).
Bottom: conventional geodesic wavefront propagation in images (in
red) typically leaks at crossings, whereas wavefront propagation in ori-
entation scores (in green) does not suffer from this complication. A

minimum intensity projection over orientation gives optimal fronts in
the image. The cost for moving through the orange parts is lower than
elsewhere and is computed from the orientation score, see, e.g., [8].
The ‘leakage problem’ is gone both for propagating symmetric sub-
Riemannian spheres (left), and it is also gone for propagation of
asymmetric Finsler spheres (right) (Color figure online)

possible keypoints are the begin and endpoints, and for
many end conditions we can describe how this happens.
The precise theoretical statement and proof are found in
Theorem 3.

– Furthermore, we show in Theorem 4 how the geodesics
can be obtained from the distance map, for a general
Finsler metric, and in the more specific cases that we use
in this paper. For our cases of interest, we show that back-
tracking of geodesics is either done via a single intrinsic
gradient descent (for the models with reverse gear) or via
two intrinsic gradient descents (for the model without
reverse gear).

– For our numerical experiments we make use of a fast-
marching implementation, for d = 2 introduced in
[41]. In Section 6 we give a summary of the numeri-
cal approach for d = 3, but a detailed discussion of the
implementation and an evaluation of the accuracy of the
method are beyond the scope of this paper andwill follow

in future work. For d = 2, we show an extensive compar-
ison between the models with and without reverse gear
for uniform cost, to illustrate the useful principle of the
keypoints and to show the qualitative difference between
the two models. In examples with non-uniform cost, see
for example the top row of Fig. 3, we show that the model
places the keypoints optimally at corners/bifurcations in
the data,where the in-place rotation forms a natural,auto-
matic ‘re-initialization’ of the tracking.
For d = 3, we give several examples to show the influ-
ence of the model parameters, in particular the cost
parameter. The examples indicate that the method ade-
quately deals with crossing or kissing structures.

Outline In Sect. 2, we give a detailed overview of the theo-
retical results of the paper. Theorems 1, 3 and 4 are discussed
and proven in Sects. 3, 4 and 5, respectively. The reader who
is primarily interested in the application of the methods may
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choose to skip these three sections. The proof of Theorem 2
is given in ‘Appendix A’ section. We discuss the numerics
briefly in Sect. 6. Section 7 contains all experimental results.
Conclusion and discussion follow in Sect. 8. For an overview
of notations, ‘Appendix D’ section may be helpful.

2 Main Results

In this section, we state formally the mathematical results
announced in Sect. 1. Some preliminaries regarding the dis-
tance function are introduced in the section below. Results
regarding the exact Reeds–Shepp car models are gathered
in Sect. 2.2. The description of the approximate models and
the related convergence results appears in Sect. 2.3. Analy-
sis of special interest points (cusps and keypoints) is done
in Sect. 2.4. Results on the eikonal equation and subsequent
backtracking of minimizing geodesics via intrinsic gradients
are presented in Sect. 2.5.

2.1 Preliminaries on the (Quasi-)Distance Function
and Underlying Geometry

Geometries on the manifold of states M = R
d × S

d−1
are defined by means of Finsler metrics which are func-
tions F : T (M) → [0,+∞]. On each tangent space,
the metric should be 1-homogeneous, convex and quanti-
tatively non-degenerate with a uniform constant δ > 0: for
all p = (x,n) ∈ M, ṗ, ṗ0, ṗ1 ∈ Tp(M) and λ ≥ 0:

F(p, λṗ) = λF(p, ṗ),

F(p, ṗ0 + ṗ1) ≤ F(p, ṗ0)+ F(p, ṗ1),

F(p, ṗ) ≥ δ
√
‖ẋ‖2 + ‖ṅ‖2. (6)

A weak regularity property is required as well, see the
next remark. The induced distance dF , defined in (1), obeys
dF (p,q) = 0 iff p = q and obeys the triangle inequality.
However, unlike a regular distance, dF needs not be finite,
or continuous, or symmetric in its arguments. Note that F0

andF+0 as defined in (2) and (3), respectively, indeed satisfy
the properties in (6).

Remark 2 In contrast to the more common definition of
Finsler metrics, we will not assume the Finsler metric to
be smooth on T (M) \ (M× {0}) but use a weaker condition
instead. Following [13], we require that the sets

BF (p) := {ṗ ∈ TpM |F(p, ṗ) ≤ 1} (7)

are closed and vary continuouslywith respect to the pointp ∈
M in the sense of the Hausdorff distance. The sets BF (p) are
illustrated in Fig. 2 for the models of interest. The condition
implies that a shortest path exists from p to q ∈ M whenever

dF (p,q) is finite, and is used to prove convergence results
in ‘Appendix A’ section.

A common technique in optimal control theory is to
reformulate the shortest path problem defining the distance
dF (p,q) into a time optimal control problem. That is, for
p ∈ [1,∞] one has by Hölder’s (in)equality, time repa-
rameterization, and by 1-homogeneity of F in its 2nd entry,
that:

dF (p,q) (8)

= inf

{
1∫
0
F(γ (t), γ̇ (t)) dt | γ ∈ Γ , γ (0) = p, γ (1) = q

}

= inf

{
(
1∫
0
|F(γ (t), γ̇ (t))|p dt)

1
p|γ ∈ Γ , γ (0) = p, γ (1) = q

}

= inf {T ≥ 0 | ∃γ ∈ ΓT , γ (0) = p,

γ (T ) = q,∀t∈[0,T ] γ̇ (t) ∈ BF (γ (t))
}
, (9)

where ΓT := Lip([0, T ], M), and with BF (p) as defined in
(7). The latter reformulation is used in ‘Appendix A’ section
to prove convergence results via closedness of controllable
paths and Arzela–Ascoli’s theorem, based on a general result
originally applied to Euler elastica curves in [13].

In the special case F = F0 the geodesics are SR
geodesics, where F0 is obtained by the square root of
quadratic form associated with a SR metric G0|p (·, ·) =
F0(p, ·)2 on a SRmanifold (M,�,G0), where� ⊂ T (M) is
a strict subset of allowable tangent vectors that comes along
with the horizontality constraint

ẋ(t) = (ẋ(t) · n(t))n(t), ∀t ∈ [0, 1], (10)

that arises from (2). For details on the case d = 2 see [11,52],
for d = 3 see [25].

Finally, we note that for the uniform cost case (ξ−1C1 =
C2 = 1), the problem is covariant with respect to rotations
and translations. For the data-driven case, such covariance is
only obtained when simultaneously rotating the data-driven
cost factors C1, C2. Therefore, only in the uniform cost case,
for d = 2, 3, we shall use a reference point (‘the origin’)
e ∈ R

d × S
d−1. To adhere to common conventions we

use

e = (0, a) ∈ R
d × S

d−1, with

a := (1, 0)T if d = 2 and

a := (0, 0, 1)T if d = 3.

(11)

2.2 Controllability of the Reeds–SheppModel

A model (M, dF ) is globally controllable if the distance dF
takes finite values on M ×M; in other words, a car can go
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from any place on the manifold to any other place in finite
time. In Theorem 1 we show that this is indeed the case
for F = F0 and F = F+0 , given in (2) and (3). Local
controllability is satisfied when dF satisfies a certain con-
tinuity requirement: if p→ q ∈ (M, ‖·‖), with ‖·‖ denoting
the standard (flat) Euclidean norm on M = R

d × S
d−1, we

must have dF (p,q) → 0. We prove in Theorem 1 that the
metric space (M, dF0) is locally controllable, but the quasi-
metric space (M, dF+

0
) is not. Indeed the SR Reeds–Shepp

car can achieve sideways motions by alternating the forward
and reverse gear with slight direction changes, whereas the
model without reverse gear lacks this possibility. For com-
pleteness, the theorem contains a standard (rough) estimate
of the distance near the source (due to well-known estimates
[16,31,49,57]).

Furthermore, we prove existence of minimizers for the
Reeds–Shepp model without reverse gear. Existence results
of minimizers of the model with reverse gear (the SR model)
already exist, by the Chow–Rashevsky theorem and Filippov
theorems [2].

Theorem 1 ((Local) controllability properties) Minimizers
exist for both the classical Reeds–Shepp model and for the
Reeds–Shepp model without reverse gear. Both models are
globally controllable.

– The Reeds–Shepp model without reverse gear is not
locally controllable, since

lim sup
p′→p

dF+
0
(p,p′) ≥ 2πδ, for all p ∈ M. (12)

If the cost C2 = δ is constant on M, then this inequality
is sharp:

lim sup
p′→p

dF+
0
(p,p′) = lim

μ↓0 dF+
0
((x,n), (x−μn,n)) = 2πδ.

(13)

– The sub-Riemannian Reeds–Shepp model is locally con-
trollable, since

dF0(p,p′) = O
(
C2(p)‖n − n′‖ +√

C2(p)C1(p)‖x − x′‖
)

as p′ = (x′,n′) → p = (x,n). (14)

For a proof see Sect. 3.

2.3 A Continuous Approximation for the
Reeds–Shepp Geometry

We introduce approximationsFε andF+ε of the Finsler met-
rics F0 and F+0 , depending on a small parameter 0 < ε ≤ 1,

which are continuous and in particular take only finite val-
ues. This is a prerequisite for our numerical methods. Both
approximations penalize the deviation from the constraints
of collinearity ẋ ∝ n, and in addition, F+ε penalizes nega-
tivity of the scalar product ẋ · n, appearing in (2) and (3).
For that purpose, we introduce some additional notation: for
ẋ ∈ R

d and n ∈ S
d−1 we define

‖ẋ ∧ n‖2 := ‖ẋ‖2 − |ẋ · n|2,
(ẋ · n)− := min{0, ẋ · n}, (ẋ · n)+ := max{ẋ · n, 0}.

(15)

These are, respectively, the norm of the orthogonal pro-
jection4 of ẋ onto the plane orthogonal to n and the negative
and positive parts of their scalar product. The two metrics
Fε,F+ε : T (M) → R+ are defined for each 0 < ε ≤ 1, as
follows: for (p, ṗ) ∈ T (M)with components p = (x,n) and
ṗ = (ẋ, ṅ) we define

Fε(p, ṗ)2 := C1(p)2(|ẋ · n|2 + ε−2‖ẋ ∧ n‖2)+
C2(p)2‖ṅ‖2, (16)

F+ε (p, ṗ)2 := C1(p)2(|ẋ · n|2 + ε−2‖ẋ ∧ n‖2 +
(ε−2 − 1)(ẋ · n)2−)+ C2(p)2‖ṅ‖2 (17)

= C1(p)2((ẋ · n)2+ + ε−2‖ẋ ∧ n‖2 +
ε−2(ẋ · n)2−) + C2(p)2‖ṅ‖2. (18)

SeeFig. 5 for a visualization of a level set of bothmetrics in
R
2×S

1. Note thatFε is a Riemannian metric onM (with the
same smoothness as the cost functions C2, C1), and thatF+ε is
neither Riemannian nor smooth due to the term (ẋ ·n)−. One
clearly has the pointwise convergence Fε(p, ṗ)→ F0(p, ṗ)

as ε → 0, and likewise F+ε (p, ṗ) → F+0 (p, ṗ). The use of
Fε and F+ε is further justified by the following convergence
result.

Theorem 2 (Convergence of the approximativemodels to the
exact models) One has the pointwise convergence: for any
p,q ∈ M

dFε
(p,q) → dF0(p,q),

dF+
ε
(p,q) → dF+

0
(p,q),

as ε → 0.

Consider for each ε > 0 a minimizing path γ ∗ε from p to
q, with respect to the metric Fε, parameterized at constant
speed

Fε(γ
∗
ε (t), γ̇ ∗ε (t)) = dFε

(p,q), ∀t ∈ [0, 1].

4 The quantity ‖ẋ∧n‖ is also the norm of the wedge product of ẋ and n,
but defining it this way would require introducing some algebra which
is not needed in the rest of this paper.
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Fig. 5 Level sets for d = 2 of the (approximating) metrics
Fε(0, (ẋ, ẏ, θ̇ )) = 1 (left) and F+ε (0, (ẋ, ẏ, θ̇ )) = 1 (right), with
ε = 0.2 (top) and ε = 0 (bottom). In this example, C2(0) = 2C1(0)

Assume that there is a unique shortest path γ ∗ from p to q
with respect to the sub-Riemannian distance dF0 (in other
words q is not within the cut locus of p), parameterized at
constant speed:

F0(γ
∗(t), γ̇ ∗(t)) = dF0(p,q), ∀t ∈ [0, 1].

Then γ ∗ε → γ ∗ as ε → 0, uniformly on [0, 1]. Likewise
replacing Fε with F+ε for all ε ≥ 0.

The proof, presented in ‘Appendix A’ section, is based on
a general result originally applied to the Euler elastica curves
in [13]. Combining Theorem 2 with the local controllability
properties established in Theorem 1, one obtains that dFε

→
dF0 locally uniformly on M×M, and that the convergence
dF+

ε
→ dF+

0
is only pointwise.

Remark 3 If there exists a family of minimizing geodesics
(γ ∗i )i∈I from p to q with respect to F0 (resp. F+0 ), then
one can show that for any sequence εn → 0 one can find
a subsequence and an index i ∈ I such that γ ∗εϕ(n)

→ γ ∗i
uniformly as n →∞.

2.4 Points of Interest in Spatial Projections of
Geodesics for the Uniform Cost Case: Cusps
Versus Keypoints

Next we provide a theorem that tells us in each of the
models/metric spaces (M, dF0), (M, dFε

) and (M, dF+
0
),

(M, dF+
ε
), with C1 = C2 = 1 and d = 2 where cusps occur

in spatial projections of geodesics or where keypoints with
in-place rotations take place. Recall Fig. 2 for a geometric
illustration of the specific behavior of the path at such points.

In Theorem 3, we provide an analysis of the occurrence of
these points for the uniform cost case.

Note that for vessel tracking (or fiber tracking) applica-
tions, cusps are not wanted as they are unnatural for vessels
(or fibers), whereas keypoints are only desirable at bifur-
cations of vessels. In the data-driven case, the practical
advantage of the forward-only model resulting in key-
points instead of cusps can indeed be observed (see, e.g.,
Figs. 13, 14).

Definition 2 (Cusp) A cusp point x(t0) on a spatial projection
of a (SR) geodesic t �→ (x(t),n(t)) in M is a point where

ũ(t0) = 0, and ˙̃u(t0) �= 0,
where ũ(t) := n(t) · ẋ(t) for all t .

(19)

That is, a cusp point is a point where the spatial control
aligned with n(t0) vanishes and switches sign locally.

Although this definition explains the notion of a cusp geo-
metrically (as can be observed in Figs. 2, 6), it contains a
redundant part for the relevant case of interest: the second
condition automatically follows when considering the SR
geodesics in (M, dF0). The following lemma gives a char-
acterization of a cusp point in terms of the distance function
along a curve.

Lemma 1 Consider a SR geodesic γ = (x,n) : [0, 1] →
(M, dF0), parameterized at constant speed, and which phys-
ical position x(·) is not identically constant. Denote pS :=
γ (0) and U (·) := dF0(pS, ·). Let t0 ∈ (0, 1) be such that U
is differentiable at γ (t0) = (x(t0),n(t0)). Then

x(t0) is a cusp point ⇔ n(t0) · ẋ(t0) = 0

⇔ n(t0) · ∇Rd U (x(t0),n(t0)) = 0.
(20)

The proof can be found in ‘Appendix C’ section.

Definition 3 (Keypoint) A point x̃ on the spatial projection
of a geodesic γ (·) = (x(·),n(·)) in M is a keypoint of γ

if there exist t0 < t1, such that x(t) = x̃ and ṅ(t) �= 0 for
all t ∈ [t0, t1], i.e., a point where an in-place rotation takes
place.

Definition 4 Wedefine the setR ⊂ M to be all endpoints that
can be reached with a geodesic γ ∗ : [0, 1] → M in (M, dF0)

whose spatial control ũ(t) stays positive for all t ∈ [0, 1].
Remark 4 The word ‘geodesic’ in this definition can (in the
case d = 2) be replaced by ‘globally minimizing geodesic’
[11]. For a definition in terms of the exponential map of
a geometrical control problem Pcurve, see, e.g., [22,24], in
which the samepositivity condition for ũ is imposed. Figure 7
shows more precisely what this set looks like for d = 2 [22],
in particular, that it is contained in the half-spacea·x ≥ 0, and
for d = 3 [24]. We extend these results with the following
theorem.
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Fig. 6 Illustration of cusps in SR (ε = 0) geodesics (possibly non-
optimal) in M = R

d × S
d−1. Left: cusps in spatial projections x(·)

of SR geodesics γ (·) = (x(·),n(·)) for d = 2, right: cusps (red dots)

appearing in spatial projections of SR geodesics for d = 3. In the 3D
case we indicate the corresponding rotations Rn1 via a local 3D frame
(Color figure online)

Theorem 3 (Cusps and Keypoints) Let ε > 0, d = 2, C1 =
C2 = 1. Then,

– in (M, dF0) cusps are present in spatial projections of
almost every optimal SR geodesics when their times t
are extended on the real line (until they lose optimality).
The straight lines connecting specific boundary points
p = (x,n) and q = (x+ λn,n) with λ ∈ R are the only
exceptions.

– in (M, dF+
ε
) and (M, dFε

) and (M, dF+
0
) no cusps

appear in spatial projections of geodesics.

Furthermore,

– in (M, dF0), (M, dFε
) and (M, dF+

ε
) keypoints only

occur with vertical geodesics (moving only angularly).
– in (M, dF+

0
) keypoints only occur at the endpoints of

shortest paths.

A minimizing geodesic γ+ in (M, dF+
0
) departing from e =

(0, 0, 0) and ending in p = (x, y, θ) has

(A) no keypoint if p ∈ R,
(B) a keypoint in (0, 0) if x < 0,
(C) a keypoint only in (x, y) if5

(C1) p ∈ R
c

and x ≥ 2,
(C2) p ∈ R

c
and 0 ≤ x < 2 and

|y| ≤ −i x E
(

iarcsinh
(

x√
4−x2

)
, x2−4

x2

)
, where

5 HereR
c = M\R denotes the complement of the closureR ofR and

E(z, m) = ∫ z
0

√
1− m sin2 v dv.

E(z, m) denotes the Elliptic integral of the second
kind.

Remark 5 In caseA, γ+ is aminimizing geodesic in (M, dF0)

as well. In case B, γ+ departs from a cusp. In case C, γ+ is a
concatenation of a minimizing geodesic in (M, dF0) and an
in-place rotation. For other endpoints (x, y, θ) for geodesics
departing from ewith 0 ≤ x < 2, other than the ones reported
in C2 it is not immediately clear what happens, due to [22,
Theorem 9]. Also points with x < 0 may have keypoints at
the end as well. See Fig. 8 where various cases of minimizing
geodesics in (M, dF+

0
) are depicted.

Remark 6 See [27, Fig. 6] to see the smoothing effect of tak-
ing ε small but nonzeroon the cusps ofnon-optimal geodesics
in (M, dFε

) and keypoints in (M, dF+
ε
).

2.5 The Eikonal PDE Formalism

As briefly discussed in Sect. 1.3, continuous metrics like Fε

and F+ε for any ε > 0 allow to use the standard theory of
viscosity solutions of eikonal PDEs and thus to design prov-
able and efficient numerical schemes for the computation of
distance maps and minimizing geodesics. More precisely,
consider a continuous Finsler metric F ∈ C0(T (M), R

+),
and define the dual F∗ on the co-tangent bundle as follows:
for all (p, p̂) ∈ T ∗(M)

F∗(p, p̂) := sup
ṗ∈TpM\{0}

〈p̂, ṗ〉
F(p, ṗ)

. (21)

The distance map U = dF (pS, ·) from a given source
point pS ∈ M is the unique solution, in the sense of viscosity
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Fig. 7 The setR of endpoints reachable from the origin e [recall (11)]
via SR geodesics whose spatial projections do not exhibit cusps has
been studied for the case d = 2 (left) and for the case d = 3 (right). For
d = 2 it is contained in x ≥ 0, and for d = 3 it is contained in z ≥ 0.
The boundary of this set contains endpoints of geodesics departing at
a cusp (in red) or endpoints of geodesics ending in a cusp (in blue). If
an endpoint (x,n) is placed outside R (e.g., the green points above),

then following the approach in Theorem 4, depending on its initial spa-
tial location it first connects to a blue point (x,nnew) via a spherical
geodesic end and then connects to the origin e via a SR geodesic. Then
it has a keypoint at the endpoint. For other locations of spatial locations
(orange points), the geodesic has the keypoint in the origin, or even at
both boundaries, cf. Fig. 8 (Color figure online)

Fig. 8 Shortest paths for d = 2 using the Finsler metrics F0 (blue)
and F+0 (red), with point source pS = (0, 0, 0) and varying end con-
ditions. Row A: p = (0, 0.8, πn/4). Row B: p = (0.8, 0.8, πn/4).
Row C: p = (−0.8, 0, πn/4). Here n = 1, . . . , 8, corresponding to the
columns. When there are two minimizing geodesics, both are drawn.
Circles around the begin or endpoint indicate in-place rotation of the

red curve at that point. We see that whenever the blue geodesic has a
cusp, the red geodesic has at least one in-place rotation (keypoint). This
numerically supports our statements in Theorem 3 considering cusps
and keypoints. For high accuracywe applied the relatively slow iterative
PDE approach [8] on a 101×101×64-grid inM to compute dF0 (p,pS)

and dF+
0
(p,pS), see [27, Appendix B] (Color figure online)
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solutions, of the staticHamilton Jacobi equation:U (pS) = 0,
and for all p ∈ M

F∗(p, dU (p)) = 1. (22)

Furthermore, if γ is a minimizing geodesic from pS to
some p ∈ M, then it obeys the ordinary differential equation
(ODE):

{
γ̇ (t) = L dp̂F∗(γ (t), dU (γ (t))), L := dF (pS,p)

γ (0) = pS, γ (1) = p.
(23)

for any t ∈ [0, 1] such that the differentiability of U and
F∗ holds at the required points. The proof of ODE (23) is
for completeness derived in Proposition 4 of ‘Appendix B’
section, where we also discuss in Remark 14 the com-
mon alternative formalism based on the Hamiltonian. We
denoted bydp̂F∗ the differential of the dual FinslermetricF∗
with respect to the second variable p̂; hence, dp̂F∗(p, p̂) ∈
T ∗∗p (M) ∼= Tp(M) is indeed a tangent vector to M, for all
(p, p̂) ∈ T ∗M.

In the rest of this section, we specialize (22) and (23)
to the Finsler metrics Fε and F+ε . Our first result provides
explicit expressions for the dual Finsler metrics (required for
the eikonal equation).

Proposition 1 For any 0 < ε ≤ 1, the duals to the approx-
imating Finsler metrics Fε and F+ε are: for all (p, p̂) ∈
T ∗(M), with p = (x,n) and p̂ = (x̂, n̂)

F∗ε (p, p̂)2 = (C2(p))−2‖n̂‖2 + (C1(p))−2(|x̂ · n|2
+ ε2‖x̂ ∧ n‖2)

F+∗ε (p, p̂)2 = (C2(p))−2‖n̂‖2 + (C1(p))−2(|x̂ · n|2
+ ε2‖x̂ ∧ n‖2 − (1− ε2)(x̂ · n)2−)

= (C2(p))−2‖n̂‖2 + (C1(p))−2((x̂ · n)2+
+ ε2(x̂ · n)2− + ε2‖x̂ ∧ n‖2)

(24)

In order to relate Finslerian HJB equation (22) and back-
tracking equation (23) to some more classical Riemannian
counterparts, we introduce two Riemannian metric tensor
fields on M. The first is defined as the polarization of the
norm Fε(p, ·)

Gp;ε(ṗ, ṗ) = |Fε(p, ṗ)|2
= C21 (p)((ẋ · n)2 + ε−2‖ẋ ∧ n‖2)

+ C22 (p)‖ṅ‖2,
(25)

where ṗ = (ẋ, ṅ), and then one can also rely on gradient
fields p �→ G−1p;εdU (p) relative to this metric tensor. This
has benefits if it comes to geometric understanding of the
eikonal equation and its tracking. Even in the analysis of

the non-symmetric case—where one does not have a single
metric tensor—this notion plays a role, as we will see in the
next main theorem. To this end, in the non-symmetric case,
we shall rely on a second spatially isotropic metric tensor
given by:

G̃p;ε(ṗ, ṗ) := C21(p) ε−2 ‖ẋ‖2 + C22(p)‖ṅ‖2. (26)

We denote by ∇Sd−1 the gradient operator on S
d−1 with

respect to the inner product induced by the embedding
S

d−1 ⊂ R
d and by ∇Rd the canonical gradient operator on

R
d .

Corollary 1 Let ε ≥ 0. Then eikonal PDE (5) for the case
(M,Fε) takes the form

√
‖∇

Sd−1U (p)‖2
C2
2 (p)

+ ε2‖∇
Rd U (p)‖2+(1−ε2)| n·∇

Rd U (p) |2
C2
1 (p)

= 1,

⇔
Gp;ε

∣∣
p

(
G−1p;εdU (p) ,G−1p;εdU (p)

)
= 1.

Eikonal PDE (5) for the case (M,F+ε ) now takes the explicit
form:

√√√√√√
‖∇

Sd−1U+(p)‖2
C2
2 (p)

+
ε2‖∇

Rd U+(p)‖2+(1−ε2)| (n·∇
Rd U+(p) )+ |2

C2
1 (p)

= 1

⇔⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Gp;ε
∣∣
p

(
G−1p;εdU+(p) ,G−1p;εdU+(p)

)
= 1,

if p ∈ M+ := {p ∈ M | n · ∇Rd U+(p) > 0},
G̃p;ε

∣∣
p

(
G̃−1p;εdU+(p) , G̃−1p;εdU+(p)

)
= 1,

if p ∈ M− := {p ∈ M | n · ∇Rd U+(p) < 0}.

for those p ∈ M+ ∪M− where U+ is differentiable.6

The proof of Proposition 1 and Corollary 1 can be found
in Sect. 5.

We finally specialize geodesic ODE (23) to the models of
interest. Note that for the model (M, dF+

ε
), the backtracking

switches between qualitatively distinct modes, respectively,
almost sub-Riemannian and almost purely angular, in the
spirit of Theorem 3. Given ε > 0 and n ∈ S

d−1 let Dε
n denote

the d×d symmetric positive definite matrix with eigenvalue
1 in the direction n and eigenvalue ε2 in the orthogonal direc-
tions :

Dε
n := n⊗ n + ε2(Id−n⊗ n). (27)

Theorem 4 (Backtracking) Let 0 < ε < 1. Let pS ∈ M be a
source point. Let U (p) := dFε

(p,ps), U+(p) := dF+
ε
(p,ps)

6 On ∂M± distance function U+ is not differentiable.
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be distance maps from ps , w.r.t. the Finsler metric Fε, and
F+ε . Let γ, γ+ : [0, 1] → M be normalized geodesics of
length L starting at ps in (M, dFε

) resp. (M, dF+
ε
). Let time

t ∈ [0, 1].
For the Riemannian approximation paths of the Reeds–

Shepp car we have, provided that U is differentiable at
γ (t) = (x(t),n(t)), that

γ̇ (t) = L G−1
γ (t);εdU (γ (t))
⇔{

ṅ(t) = L C2(γ (t))−1 ∇Sd−1U (γ (t)),
ẋ(t) = L C1(γ (t))−1 Dε

n(t)∇Rd U (γ (t)).

(28)

For the approximation paths of the car without reverse
gear we have, provided that U+ is differentiable at γ+(t) =
(x+(t),n+(t)), that

γ̇+(t) = L

{
G−1

γ+(t);εdU+(γ+(t)) if γ+(t) ∈ M+,

G̃−1
γ+(t);εdU+(γ+(t)) if γ+(t) ∈ M−,

(29)

with G̃p;ε(ṗ, ṗ) given by (26), with disjoint Riemannian man-
ifold splitting M = M+ ∪ M− ∪ ∂M±. Manifold M+ is
equipped with metric tensor Gε, M− is equipped with metric
tensor G̃ε and

∂M± := M+\M+ = M−\M− (30)

denotes the transition surface (surface of keypoints).

Remark 7 General abstract formula (29) reflects that the
backtracking in (M,F+) is a combined gradient descent flow
on the distancemapU+ on a splitting ofM into two (symmet-
ric) Riemannian manifolds. Its explicit form (likewise (28))
is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṅ+(t) = L C2(γ+(t))−1 ∇Sd−1U+(γ+(t)),

ẋ+(t) = L

⎧⎪⎪⎨
⎪⎪⎩

C1(γ+(t))−1 Dε
n(t)∇Rd U+(γ+(t))

if γ+(t) ∈ M+,

ε2 C1(γ+(t))−1 ∇Rd U+(γ+(t))
if γ+(t) ∈ M−,

(31)

Note that for the (less useful) isotropic case ε = 1, F1 and
F+1 coincide and geodesics consist of straight lines x(·) in
R

d and great circles n(·) in S
d that do not influence each

other.

Remark 8 In Theorem 4, we assumed distance maps U and
U+ to be differentiable along the path,which is not always the
case. In points where the distance map is not differentiable,
one can take any subgradient in the subdifferential ∂U (p)

in order to identify Maxwell points (and Maxwell strata). In
particular, in SRgeometry, the set of pointswhere the squared
distance function (dF0(·, e))2 is smooth is open and dense
in any compact subset of M, see [1, Theorem 11.15]. The

points where it is non-smooth are rare and meaningful: they
are either first Maxwell points, conjugate points or abnormal
points. The last type does not appear here, because we have
a 2-bracket generating distribution, see, e.g., [25, Remark
4] and [1, Chap. 20.5.1.]. At points in the closure of the first
Maxwell set, two geodesically equidistant wavefronts collide
for the first time, see for example [8, Fig.3, Theorem 3.2] for
the case d = 2 and C = C1 = C2 = 1. See also Fig. 8, where
for some end conditions 2 optimally backtracked geodesics
end with the same length in such a first Maxwell point. The
conjugate points are points where local optimality is lost, for
a precise definition see, e.g., [1, Definition 8.43].

Remark 9 Recall the convergence result fromTheorem2, and
the non-local-controllability for the model (M, dF+

0
). From

this we see that the convergence holds pointwise but not uni-
formly. (Otherwise the limit distance dF+

0
was continuous.)

Nevertheless the shortest paths converge strongly as ε ↓ 0,
andwe see that the spatial velocity tends to 0 in (31) if ε ↓ 0 if
γ ∗ε (t) ∈ M−. In the SR case ε = 0, the gradient flows them-
selves fit continuously and the interface ∂M± is reached with
ẋ · n = 0 (and ẋ = 0).

Theorem 4 can be extended to the SR case:

Corollary 2 (SR backtracking) Let the cost C1, C2 be smooth,
let the source pS ∈ M and p �= pS ∈ M be such that they can
be connected by a unique smooth minimizer γ ∗ε in (M,Fε)

and γ ∗0 in (M,F0), such that γ ∗ε (t) is not a conjugate point
for all t ∈ [0, 1] and all sufficiently small ε > 0, say ε < ε0,
for some ε0 > 0. Then defining U0 : q ∈ M �→ dFε

(ps,q)

one has

γ̇ ∗0 (t) = U0(p)G−1
γ ∗0 (t);0 dU0(γ

∗
0 (t)), t ∈ [0, 1],

assuming U0 is differentiable at γ ∗0 (t). In addition U0 satis-
fies the SR eikonal equation:

√
Gp;0

(
G−1p;0dU0(p),G−1p;0dU0(p)

)
= 1.

Proof From our assumptions on p and γ ∗ε (t) for ε < ε0, we
have, recall Remark 8, that (Uε(·))2 is differentiable at γ ∗ε (t)
for all 0 ≤ t ≤ 1 and 0 ≤ ε < ε0. This implies that Uε is
differentiable at {γ ∗ε (t) | 0 < t ≤ 1}, for all 0 < ε < ε0.

FromTheorem2wehavepointwise convergenceUε(p) →
U0(p) and uniform convergence γ ∗ε → γ ∗0 as ε ↓ 0. More-
over, as γ ∗ε and γ ∗0 are solutions of the canonical ODEs of
Pontryagin’s maximum principle, the trajectories are contin-
uously depending on ε > 0 and so are the derivatives γ̇ ∗ε . As
a result, we can apply backtracking Theorem 4 for ε > 0 and
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take the limits:

γ̇ ∗0 (t) = lim
ε↓0 γ̇ ∗ε (t)

Theorem 4= lim
ε↓0 Uε(p) (G−1

γ ∗ε (t);εdUε)(γ
∗
ε (t))

= U0(p)

(
lim
ε↓0 G

−1
γ ∗ε (t);ε

)(
lim
ε↓0(dUε(γ

∗
ε (t)))

)

Theorem 2= U0(p)G−1
γ ∗0 (t);0(dU0)(γ

∗
0 (t)).

(32)

Furthermore,

1 = lim
ε↓0

√
Gp;ε

(
G−1p;εdUε(p),G−1p;εdUε(p)

)

=
√
Gp;0

(
G−1p;0dU0(p),G−1p;0dU0(p)

)

where we recall Corollary 1. Here due to our assumptions,
Uε and U0 are both differentiable at p. Note that the limit for
the inverse metric G−1p,ε as ε ↓ 0 exists, recall Corollary 1. ��

Now that we stated our 4 main theoretical results we will
prove them in the subsequent sections (and ‘Appendix A’
section).

3 Controllability Properties: Proof of
Theorem 1 andMaxwell Points in (M,dF+

0
)

(Global controllability) The two considered Reeds–Shepp
models (M, dF0) and (M, dF+

0
) are globally controllable, in

the sense that the distances dF0 and dF+
0
take finite values

on M × M. This easily follows from the observation that
any path x : [0, 1] → R

d , which time derivative ẋ := dx
dt

is Lipschitz and non-vanishing, can be lifted into a path γ :
[0, 1] → M of finite length w.r.t. F0 and F+0 , defined by
γ (t) := (x(t), ẋ(t)/‖ẋ(t)‖) for all t ∈ [0, 1]. The fact that
the infimumin (1) is actually aminimumforF = F+0 follows
by Corollary 3 in ‘Appendix A’ section and (9), and the fact
that the quasi-distances take finite values.

(Local controllability) In order to show that the model
(M, dF+

0
) is not locally controllable, we need the following

lemma.

Lemma 2 Let n : [0, π ] → S
d−1 be strictly 1-Lipschitz.

Then
∫ π

0 n(0) · n(t) dt > 0. Let n : R → S
d−1 be strictly

1-Lipschitz and 2π -periodic. Then all points n(t) lay in a
common strict hemisphere. In particular 0 /∈ Hull{n(t) | t ∈
[0, 2π ]}.

Proof The Lipschitzness assumption implies n(0) · n(t) >

cos(t) for all t ∈ (0, π ] so ∫ π

0 n(0) · n(t) dt > 0.

Letn : R → S
d−1 be strictly 1-Lipschitz and2π -periodic.

Set M := ∫ 2π
0 n(t) dt . Then for any t0 ∈ [0, 2π ] one has by

the two assumptions

n(t0) ·M =
π∫

0

n(t0) · n(t0 + t) dt

+
π∫

0

n(t0) · n(t0 − t) dt > 0,

so for all t0, we have n(t0) ∈ {n ∈ S
d−1 | n ·M > 0}. ��

Now statements (12) and (13) on the non-local-
controllability of (M, dF+

0
) are shown in two steps.

Step 1: we show in the case of a constant cost function
C2 = δ one has lim sup

p′→p
dF+

0
(p,p′) ≤ 2πδ, for any p ∈ M.

Indeed, one can design an admissible curve in (M,F+0 ) as
the concatenationof an in-place rotation, a straight line and an
in-place rotation. The length of the straight line isO(‖p′−p‖)
and vanishes when p′ → p, and the in-place rotations each
have maximum cost πδ.

Step 2: we prove the lower bound lim
μ↓0 dF+

0
((x,n), (x −

μn,n)) ≥ 2πδ, for any (x,n) ∈ M. This and the above-
established upper bound implies the required result. As
C1, C2 ≥ δ, we can restrict ourselves to the case of uni-
form cost C1 = C2 = δ = 1 and just show equality (13), as
estimate (12) follows by scaling with δ.

Consider a Lipschitz regular path γ (t) = (x(t),n(t)),
with ẋ ∝ n and ẋ · n ≥ 0, from (x,n) to (x − μn,n). Then

0 = μn +
∫ 1

0
ẋ(t)dt = μn(0)+

∫ 1

0
‖ẋ(t)‖n(t)dt,

so 0 ∈ Hull{n(t); 0 ≤ t ≤ 1}. Let m : [0, 1] → S
d−1 be a

constant speed parameterization of n. Let m̃ : R → S
d−1 be

defined by m̃(2π t) = m(t) for all t ∈ [0, 2π ] and extended
by 2π -periodicity. If m̃(·) were strictly 1-Lipschitz, then by
Lemma 2 we would get 0 /∈ Hull{m̃(t) | t ∈ [0, 2π ]} =
Hull{n(t) | t ∈ [0, 1]} and a contradiction.Hence there exists
a t0 ∈ R such that ‖ ˙̃m(t0)‖ ≥ 1 and via the constant speed
parameterization assumption we get the required coercivity:

1 ≤ ‖ ˙̃m(t0)‖ = 1

2π

∫ 1

0
‖ṅ(t)‖ dt ⇒

∫ 1

0
F+0 (γ (t), γ̇ (t)) dt ≥

∫ 1

0
C2(γ (t)) ‖ṅ(t)‖ dt ≥ 2πδ.

To prove local controllability of the model (M, dF0), we
apply the logarithmic approximation for weighted subco-
ercive operators on Lie groups, cf. [57] applied to the Lie
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Fig. 9 The development of spheres centered around e = (0, 0, 0)
with increasing radius R. A The normal SR spheres on M given by
{p ∈ M | dF0 (p, e) = R} where the folds reflect the 1st Maxwell sets
[8,52]. B The SR spheres with identification of antipodal points given
by

{
p ∈ M | min{ dF0 (p, e), dF0 (p+ (0, 0, π), e) } = R

}
with addi-

tional folds (1st Maxwell sets) due to π -symmetry. C The asymmetric
Finsler norm spheres given by {p ∈ M | dF+

0
(p, e) = R} visualized

from two perspectives with extra folds (1st Maxwell sets) at the back
(−μ, 0, 0). The black dots indicate points with two folds. In the case
of B, this is a Maxwell point with 4 geodesics merging. In the case of
C, this is just the origin itself reached from behind at R = 2π , recall
Lemma 3. Although not depicted here, if the radius R > 2π the origin
becomes an interior point of the corresponding ball

group SE(d) = R
d

� SO(d), in which the space of posi-
tions and orientations is placed via a Lie group quotient
SE(d)/({0} × SO(d − 1)). One obtains a sharp estimate,7

where the weights of allowable (horizontal) vector fields are
1, whereas the remaining spatial vector fields orthogonal to
n·∇Rd get weight 2, as they follow by a single commutator of
allowable vector fields, see, e.g., [24,25]. Relaxing all spatial
weights to 2 and continuity of costs C1, C2, yields (14). ��

Remark 10 In view of the above one might expect that the
point (x − μn,n) is reached by a geodesic that consists of
a concatenation of 1. an in-place rotation by π , 2. a straight
line, 3. an in-place rotation by π . However, this is not the
case as can be observed in the very lower left corner in Fig. 8,
where the two minimizing red curves show a very different
behavior. This is explained by the next lemma.

Lemma 3 Let μ > 0, and C1 = C2 = δ. Let Rθ denote the
(counter-clockwise) rotation matrix about the origin by angle
θ . The endpoint (x − μn,n) for each μ ≥ 0 is a Maxwell
point w.r.t. (x,n), since there are two minimizing geodesics
in (M, dF+

0
) that are a concatenation

7 For specific sharp estimates for d = 3, in the context of heat-kernels
estimation, see [49, ch.5.1].

1. an in-place rotation from (x,n) to (x,R± π
2
n),

2. a full U-curve, see [44], departing from and ending in a
cusp from (x,R± π

2
n) to (x − μn,R∓ π

2
n),

3. an in-place rotation from (x − μn,R∓ π
2
n) to

(x − μn,n).

We have the limit lim
μ↓0 dF+

0
((x,n), (x − μn,n)) = 2πδ.

Proof See [27]. ��

Remark 11 Consider the case d = 2, C1 = C2 = δ, and
source point pS = (x,n) = e = (0, 0, θ = 0). The end-
points (x − μn,n) = (−μ, 0, 0), with μ > 0 sufficiently
small, are 1st Maxwell points in (M, dF+

0
) where geodesi-

cally equidistant wavefronts departing from the source point
collide for the first time, see Fig. 9C. The distance mapping
d+F0

(pS, ·) is not continuous, but the asymmetric distance
spheres

SR := {p ∈ M | d+F0
(pS,p) = R}

are connected and compact, and they collide at R = 2π in
such a way that the origin ps becomes an interior point in the
asymmetric balls of radius R > 2π .
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4 Cusps and Keypoints: Proof of Theorem 3

In this section we provide a proof of Theorem 3 on the occur-
rence of cusps and keypoints. For the uniform cost case
C1 = C2 = 1 for d = 2, our curve optimization prob-
lem (1) (M, dF0) in consideration boils down to a standard
left-invariant curve optimization in the roto-translation group
SE(2) = R

2
� SO(2). As we will apply tools from previ-

ous works [10,11,22,52], we will make use of the following
notations for expansion8 of velocity and momentum in the
left-invariant (co)-frame:

⎧⎨
⎩
A1 := cos θ ∂x + sin θ ∂y,

A2 := − sin θ ∂x + cos θ ∂y,

A3 := ∂θ ,⎧⎨
⎩

ω1 := cos θ dx + sin θ dy,

ω2 := − sin θ dx + cos θ dy,

ω3 := dθ,

γ̇ (t) =
3∑

i=1
ui (t) Ai |γ (t) ∈ Tγ (t)(M),

p̂(t) =
3∑

i=1
p̂i (t) ωi

∣∣
γ (t) ∈ T ∗γ (t)(M),

(33)

where the indexing of the left-invariant frame is different
here, in order to stick to the ordering (x, y, θ) applied in
this article. Note that for the case ε = 0 admissible smooth
curves γ in (M, dF0) satisfy the horizontality constraint
γ̇ (t) ∈ Span{A1|γ (t) , A3|γ (t)}.
Proof of the statements regarding cusps

– We can describe our curve optimization problem (1)
using aHamiltonian formalism,withHamiltonian H(p̂) =
1
2

(
p̂21 + p̂23

) = 1
2 [44]. By Pontryagin’s maximum

principle, geodesics adhere to the following Hamilton
equations:

⎧⎨
⎩

ṗ1 = u1 = p̂1,
ṗ2 = u2 = 0,
ṗ3 = u3 = p̂3,

,

⎧⎪⎨
⎪⎩

d p̂1
dt = p̂2 p̂3,

d p̂2
dt = − p̂1 p̂3,

d p̂3
dt = − p̂1 p̂2.

(34)

For fixed initial momentum p̂(0), this uniquely determines a
SR geodesic. Moreover, SR geodesics are contained within
the (co-adjoint) orbits

( p̂1(t))
2 + ( p̂2(t))

2 = ( p̂1(0))
2 + ( p̂2(0))

2. (35)

The parameter t in system (34) is SR arc length, but by
reparameterizing (possible as long as u1 does not change
sign) to spatial arc length parameter s, with ds

dt = p̂1, we get

8 Note that we use upper indices for the control’s (velocity components)
as they are contravariant.

a partially linear system. Combining (34) and (35), we find
orbits in the (hyperbolic) phase portrait induced by

{
p̂′2(s) = − p̂3

p̂′3(s) = − p̂2
⇒
{

p̂2(s) = p̂2(0) cosh s − p̂3(0) sinh s

p̂3(s) = − p̂2(0) sinh s + p̂3(0) cosh s.

Hence | p̂3(s)| = 1 always has a solution for some finite
(possibly negative) s, except when p̂2(0) = p̂3(0) = 0, in
which case the solutions are straight lines. Preservation of the
Hamiltonian then implies p̂1(s) = u1(s) = ũ(s) = 0. We
conclude that every SR geodesic (with unconstrained time
t ∈ R) in (M, dF0) which is not a straight line admits a cusp.

– We now consider (M, dFε
), ε > 0. To have a cusp, we

need p̂1(t) = p̂2(t) = 0 for some t ∈ R. Co-adjoint orbit
condition (35) then implies that p̂1(t) = p̂2(t) = 0 for
all t , corresponding to a vertical geodesic that has purely
angular momentum and no cusp. The same argument
holds for (M, dF+

ε
). In (M, dF+

0
) we have the condition

that u1 ≥ 0; hence, by definition it can never switch sign
and all geodesics are cuspless.

Proof of the statements regarding keypoints

– For the cases (M, dFε
) and (M, dF+

ε
) with ε > 0 we

can use the same line of arguments as above. Also here
both spatial controls have to vanish, resulting in verti-
cal geodesics. The spatial projection of such curves is
a single keypoint. For (M, dF0) we rely on the result
that SR geodesics are analytical, and therefore if the con-
trol u1(t) = 0 for some open time interval (t0, t1), then
u1(t) = 0 for all t ∈ R, again corresponding to purely
angular motion.

– Geodesics in (M, dF+
0
) can have keypoints only at the

boundaries. Suppose a geodesic γ : [0, 1] → M in
(M, dF+

0
) has an internal keypoint, with a corner of angle

δ > 0, at internal time T1 ∈ (0, 1). Then one can create a
local shortcut with a straight line segment connecting two
sufficiently close points before and after the corner with
two in-place rotations whose angles add up to δ. With a
suitable mollifier this shortcut can be approximated by a
curve in Γ . For details see similar arguments in [11].

Next we explain the cases (A), (B) and (C), where we fix
initial point γ (0) = e = (0, 0, 0).

(A) Suppose that the endpoint p = (x, y, θ) ∈ R and x ≥ 0.
Thenp can alreadybe reachedby ageodesic in (M, dF0 ),
and the positivity constraint (i.e., no reverse gear), which
can only increase length, becomes obsolete.

(B) Now suppose the endpoint p = (x, y, θ) lays in the
half-space x < 0. Then by the half-space property of
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geodesics in (M, dF0), cf. [22, Theorem 7], the geodesic
in (M, dF+

0
) must have a keypoint. By the preceding

keypoints can only be located at the boundaries. If it
takes place at the endpoint only, then still the constraint
x < 0 is not satisfied; thereby, it must take place at the
origin.

(C) In those cases the endpoint p lays outside the connected
cone of reachable angles, which are by [22, Theorem 9]
bounded (for those endpoints) by geodesics ending in a
cusp (so not endpoints of geodesics starting at a cusp).
So for those points,minimizing geodesicswill firstmove
by an in-place rotation (along a spherical geodesic) until
it hits the cusp surface ∂R, after which it is traced back
to the origin by a regular geodesic with strictly positive
spatial control inside the volume R.

5 Eikonal Equations and Backtracking: Proof
of Proposition 1, Corollary 1 and
Theorem 4

First we shall prove Proposition 1, regarding the duals of Fε

and F+ε , and Corollary 1, providing explicit expressions for
the corresponding eikonal equations. To this end we need a
basic lemma on computing dual norms on R

n , where later
we will set n = 2d − 1 = dim(M).

Lemma 4 Let w ∈ R
n and let M ∈ R

n×n be symmetric,
positive definite. Define the norm FM,w : Rn → R

+ by

FM,w(v) =
√

(Mv, v)+ (w, v)2−.

Then its dual norm F∗M,w : (Rn)∗ → R
+ equals

F∗M,w(v̂) =
√

(v̂, M̂ v̂)+ (v̂, ŵ)2+, (36)

with M̂ = (M + w⊗ w)−1 and ŵ = M−1w√
1+(w,M−1w)

.

Proof For n = 1 the result is readily verified, and for w = 0
the result is classical. We next turn to the special case M =
Id, and w = (w1, 0Rn−1) is zero except maybe for its first
coordinate w1. Thus for any v = (v1, v2) ∈ R

n = R×R
n−1

one has the splitting

FM,w(v1, v2)2 =
(
|v1|2 + (w1v1)

2−
)
+ ‖v2‖2

:=F1(v1)
2 + F2(v2)2.

(37)

Using the compatibility of norm duality with such splittings,
and the special cases n = 1 and w = 0 mentioned above, we
obtain

(F∗M,w(v̂1, v̂2))2 = (F∗1 (v̂1))
2 + (F∗2 (v̂2))2

= |v̂1|2 + (w1v̂1)
2+

1+ |w1|2 + ‖v̂2‖2,

which is exactly of form (36). The general case for arbitrary
w and symmetric positive definite M follows from affine
invariance. Indeed let A be an invertible n × n matrix, and
let M ′ = ATM A and w′ = ATw. Let F = FM,w and F ′ =
FM ′,w′ , so that F ′(v) = F(Av) for all v ∈ R

n . Let F∗,
M̂ , ŵ and F ′∗, M̂ ′, ŵ′, be, respectively, the dual norms and
the matrices defined by the explicit formulas above. Then
denoting B := (AT)−1 one has by the definition of dual
norms that F ′∗(v̂) = F∗(Bv̂) for all v̂ ∈ R

n and by the
explicit formulas M̂ ′ = BTM̂ B, w′ = BTw. Thus, F∗ =
F∗M,w holds if and only if F ′∗ = F∗M ′,w′ . Since for any M,w,
there exists a linear change of variables A such that M ′ = Id
andw′ is zero except maybe for its first coordinate, the proof
is complete. ��

Now Proposition 1 follows from Lemma 4 by writing out
the dual norm, using for each p ∈ M:

Mp = (C1(p))2(Dε
n)
−1 ⊕ (C2(p))2 Id and

wp =
{C1(p)

√
ε−2 − 1 (n, 0), for F+ε ,

0, for Fε,

(38)

with Dε
n as in (27). Corollary 1 then follows by setting the

momentum covector p̂ = dU (p) equal to the derivative of
the value function evaluated at p.

Now thatwe have derived the eikonal equations, we obtain
backtracking Theorem 4 by Proposition 4 in ‘Appendix B’
section, which shows us that level sets of solutions of the
eikonal equations are geodesically equidistant surfaces and
that geodesics are found by an intrinsic gradient descent.

However, to obtain the explicit backtracking formulas
we differentiate the Hamiltonian, rather than the dual met-
ric, which is equivalent thanks to (57) (in Remark 14
in ‘Appendix B’ section). We focus below on the model
(M, dF+

ε
)without reverse gear, since the other case is similar.

Let p ∈ M, let F := F+ε (p, ·), and let p̂ = (x̂, n̂) ∈ T ∗p (M).
Then differentiating w.r.t. n̂ we obtain

dn̂F∗(x̂, n̂)2 = C2(p)−2 dn̂‖n̂‖2 = 2 C2(p)−2n̂,

where ‖·‖ is the Riemannian metric induced by the embed-
ding S

d−1 ⊂ R
d . Differentiating w.r.t. x̂ we obtain

dx̂F∗(x̂, n̂)2 = C1(p)−2 dx̂(x̂ · Dε
nx̂ − (1− ε2)(x̂ · n)2−)

= 2 C1(p)−2
{

Dε
nx̂ if x̂ · n ≥ 0,

ε2 Id x̂ if x̂ · n ≤ 0.
(39)

Announced result (31), which is equivalent to its more
concise abstract form (28), follows by choosing x̂ :=
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∇Rd U (γ (t)) and n̂ := ∇Sd−1U (γ (t)) and a basic re-scaling
[0, L] ∈ t �→ t/L ∈ [0, 1]. ��
Remark 12 The computation of the dual norms can be sim-
plified by expressing velocity (entering the Finsler metric)
andmomentum (entering the dual metric) in a (left-invariant)
local, orthogonal, moving frame of reference, attached to the
point p = (x,n) ∈ M:

ṗ =
2d−1∑
i=1

ui Ai |p , p̂ =
2d−1∑
i=1

p̂i ωi
∣∣∣
p

(40)

where a moving frame of reference is chosen such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ud = ũ = n · ẋ,
d−1∑
i=1

(ui )2 = ‖ẋ‖2 − (n · ẋ)2,
d−1∑
i=1

(ud+i )2 = ‖ṅ‖2,

inducing a corresponding dual frame {ωi
∣∣
p} via

〈ωi
∣∣∣
p
, A j

∣∣
p〉 = δi

j , for all i, j = 1, . . . , 2d − 1. (41)

w.r.t. the left-invariant frame the matrices Dε
n, Mp as in (38)

and M̂p all become diagonal matrices, and the dual can be
computed straightforwardly. Furthermore, in this formula-
tion we can see from the expression for the dual (F+0 )∗, i.e.,
in the limit ε ↓ 0, that the positive spatial control ud con-
straint results in a positive momentum p̂d constraint:

(F+0 )∗(p, p̂) =
√√√√ ( p̂d)2+

C21(p)
+ 1

C22 (p)

2d−1∑
i=d+1

( p̂i )2. (42)

Therefore the eikonal equation in the positive control
model (M, dF+

0
) is simply given by

√
‖∇Sd−1U (p)‖2

C22(p)
+ ((n · ∇Rd U (p))+)2

C21(p)
= 1 (43)

6 Discretization of the Eikonal PDEs

6.1 Causal Operators and the Fast-Marching
Algorithm

The fast-marching algorithm is an efficient numericalmethod
[59] for numerically solving static first-order Hamilton–
Jacobi–Bellman (or simply eikonal) PDE (5) which char-
acterizes the distance map U to a fixed source point pS. Fast

marching is tightly connected with Dijkstra’s algorithm on
graphs, and in particular it shares theO(K N ln N ) complex-
ity, where N = #(X) is the cardinality of the discrete domain
X ⊂ M, X " pS, and K is the average number of neighbors
for each point. Both fast-marching and Dijkstra’s algorithms
can be regarded as specialized solvers of nonlinear fixed point
systems of equationsΛu = u, where the unknown u ∈ R

X is
a discretemap representing the front arrival times, which rely
on the a-priori assumption that the operatorΛ : RX → R

X is
causal (and monotone, but this second assumption is not dis-
cussed here). Causality informally means that the estimated
front arrival time Λu(p) at a point p ∈ X depends on the
given arrival times u(q), q ∈ X , prior to Λu(p), but not on
the simultaneous or the future ones. Formally, one requires
that for any u, v ∈ R

X , t ∈ R:

If u<t = v<t then (Λu)≤t = (Λv)≤t ,

where u<t (p) :=
{

u(p) if u(p) < t,

+∞ otherwise,

(44)

and v<t , (Λu)≤t and (Λv)≤t are defined similarly.
A semi-Lagrangian scheme We implemented two dis-

cretizations of eikonal equation (5) which benefit from
the causality property. The first one is a semi-Lagrangian
scheme, inspired by Bellman’s optimality principle which
informally states that any subpolicy of an optimal policy is
an optimal policy. Formally, letF be a Finsler metric, and let
U := dF (·,pS) be defined as the distance to a given source
point pS. Then for any p ∈ M and any neighborhood V of p
not containing pS one has the property

U (p) := min
q∈∂V

dF (p,q)+U (q). (45)

In the spirit of [55,59]wediscretize (45) by introducing for
each interior p ∈ X\{pS} a small polygonal neighborhood
V (p), which vertices belong to the discrete point set X . The
nonlinear operator Λ is defined as

Λu(p) := min{q1,...,qn}
facet of ∂V (p)

min
ξ∈Ξ

F
(
p,

n∑
i=1

ξiqi − p

)

+
n∑

i=1
ξi u(qi ),

(46)

where Ξ = {ξ ∈ R
n+;

∑n
i=1 ξi = 1}. In other words, the

boundary point q ∈ ∂V (p) in (45) is represented in (46) by
the barycentric sum q = ∑n

i=1 ξiqi , the distance dF (p,q)

is approximated with the norm F(p,q − p), and the value
U (q) is approximated with the interpolation

∑n
i=1 ξi u(qi ).

We refer to [55,61] for proofs of convergence and for the
following essential property: operator (46) obeys causality
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Fig. 10 Left: stencil used for the metric Fε on R
2 × S

1, ε = 0.1,
obeying the generalized acuteness property required for Bellman-type
discretization (46). See also the control sets in Fig. 2. Center: likewise

with F+ε , ε = 0.1. Right: coarse discretization of S
2 with 162 vertices,

used in some experiments posed on R
3 × S

2. Some acute stencils (in
the classical Euclidean sense) shown in color (Color figure online)

Fig. 11 Left: slice in R
3 of control sets (7) forFε on R

3×S
2, ε = 0.2,

for different orientations of n. Stencils obeying the generalized acute-
ness property required for Bellman-type discretizations (46). Right:

slice in R
3 of the control sets for F+ε , ε = 0.2. Offsets used for finite

differences discretization (49), for four distinct orientations n

property (44) iff the chosen stencil V (p) obeys the following
generalized acuteness property: for any q,q′ in a common
facet of V (p), one has

〈dp̂F(p,q− p),q′ − p〉 ≥ 0.

For the construction of such stencils V (p), p ∈ X , we rely on
the previous works [40,41] and on the following observation:
the metricsFε andF+ε associated with the Reeds–Shepp car
models can be decomposed as

F(p, (ẋ, ṅ))2 = F1(p, ẋ)2 + F2(p, ṅ)2, (47)

which allows to build the stencils V (p) for F by combining,
as discussed in [41, p. 9], some lower-dimensional stencils
V1(p) and V2(p) built independently for the spatial x ∈ R

d

and spherical n ∈ S
d−1 variables.

We discretize S
1 uniformly, with the standard choice of

stencil.We discretize S
2 by refining uniformly the faces of an

icosahedron and projecting their vertices onto the sphere (as
performed by the Mathematica® Geodesate function). The
resulting triangulation only features acute interior angles, in
the classical Euclidean sense, and thus provides adequate

stencils since in our applications F2(p, ṅ) = C2(p)‖ṅ‖ is
proportional to the Euclidean norm, see Fig. 10.We typically
use 60 discretization points for S

1 and from 200 to 2000
points for S

2.
We discretize R

d using the Cartesian grid hZ
d , where

h > 0 is the discretization scale. The norm Fε,1(p, ẋ) =
C1(p)

√
ẋT (Dε

n)
−1ẋ, recall the notation in (47), that is

induced by the approximate Finsler metric Fε on the physi-
cal variables in R

d , is of Riemannian type and is strongly
anisotropic. In dimension d ≤ 3, this is the adequate
setting for the adaptive stencils of [41], built using dis-
crete geometry tools known as lattice basis reduction. The

norm F+ε,1(p, ẋ) = C1(p)

√
ẋT (Dε

n)
−1ẋ + (ε−2 − 1)(n, x)2−

induced by F+ε on R
d is Finslerian (i.e., non-Riemannian)

and strongly anisotropic. In dimension d = 2, this is the ade-
quate setting for the adaptive stencils of [40], built using an
arithmetic object known as the Stern–Brocot tree.
Direct approximation of the Hamiltonian A new approach,
not semi-Lagrangian, had to be developed for the Finslermet-
ric F+ε in dimension d = 3 due to our failure to construct
viable (i.e., with a reasonably small number of reasonably
small vertices) stencils obeying the generalized acuteness
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property in this case, see Fig. 11. For manuscript size rea-
sons, we only describe it informally and postpone proofs of
convergence for future work.

Let n ∈ S
2 and let ε > 0 be fixed. Then one can find

nonnegative weights and integral vectors (ρi ,wi ) ∈ (R+ ×
Z
3)6, such that for all v ∈ R

3

∑
1≤i≤6

ρi (wi · v)2 = (n · v)2 + ε2‖n × v‖2. (48)

A simple and efficient construction of (ρi ,wi )
6
i=1, relying

on the concept of obtuse superbase of a lattice, is in [29]
described and used to discretize anisotropic diffusion PDEs.
One may furthermore assume that (n,wi ) ≥ 0 for all 1 ≤
i ≤ 6, up to replacing wi with its opposite. Then

∑
1≤i≤6 ρi (wi · v)2+ ≈ (n · v)2+,

(n · ∇R3U (p))2+ ≈
1

h2
∑6

i=1 ρi (U (x,n)−U (x − hwi ,n))2+,

(49)

up to, respectively, an O(ε2)‖v‖2 and O(ε2 + h) error. Fol-
lowing [51], we design a similar upwind discretization of the
angular part of the metric

‖∇S2U (p)‖2 ≈ (δθU (p))2 + 1

sin2 θ
(δϕU (p))2, (50)

where δθU (p), and likewise δϕU (p), is defined as

δθU (p) := 1

h
max{0,U (x,n)−U (x,n(θ + h, ϕ)),

U (x,n)−U (x,n(θ − h, ϕ))}.

We denoted by n(θ, ϕ) := (sin θ cosϕ, sin θ sin ϕ, cos θ)

the parameterization of S
2 by Euler angles (θ, ϕ) ∈ [0, π ]×

[0, 2π ]. Combining (49) and (50), one obtains an approx-
imation of F+∗0 (p, dU (p))2, within O(ε2 + r(ε)h) error
for smooth U , denoted FεU (p). We denoted by r(ε) :=
max6i=1 |wi | the norm of the largest offset appearing in
(48), since these clearly depend on ε. Importantly, FεU (p)

only depends on positive parts of finite differences (U (p)−
U (q))+; hence, the system FεU (p) = 1 can be solved using
the fast-marching algorithm, as shown in [51]. The conver-
gence analysis of this discretization, as the grid scale h and
tolerance ε tend to zero suitably, is postponed for futurework,
see [42,43].

Note that this approach could also be applied in dimen-
sion d = 2, and to the symmetric model (M, dFε

) featuring
a reverse gear. We present only a single assessment of the
numerical performance of our method, see Fig. 12. We
compare numerically obtained shortest paths with exact SR
geodesics for a small number of endpoints that correspond
to various types of curves. For fair end conditions (a, b,

Fig. 12 Comparison of spatial projections on R
3 of exact sub-

Riemannian geodesics in (R3 × S
2, dF0 ) (black curves) [25] and

our numerical approximation (colored curves), with ξ = 1/64 and
ε = .1, for five different end conditions (a = ((0, 0, 60), (0, 0, 1)),
b = ((6.4, 6.4, 60), (0, 0, 1)), c = ((−60, 0, 60), (−1, 0, 0)), d =
((0, 60, 60), 1/

√
6(−1, 2, 1)), e = ((60, 60, 10), (0, 0,−1)). The

color indicates the error with the exact sub-Riemannian geodesics
(Color figure online)

c) the numerical curves are close to the exact curves. For
very challenging end conditions inducing torsion (d) or
extreme curvature (e) the curves are further from the exact
SR geodesics. An extensive evaluation of the performance of
the numerics is left for future work.

7 Applications

To show the potential of anisotropic fast marching for path
tracing in 2D and 3D (medical) images we performed exper-
iments on each of the datasets in Fig. 3:

– a 2D toy example using a map of Centre Pompidou,
– a 2D retinal image,
– two synthetic diffusion-weighted magnetic resonance
imaging (dMRI) datasets, with different bundle configu-
rations.

We use the 2Ddatasets to point out the difference in results
when using the metric Fε and F+ε and to explain the role of
the keypoints when using F+ε that occur instead of (possibly
unwanted) cusps.

On the synthetic dMRI datasets we present the first appli-
cation of our methods to this type of data. We present how
a cost function can be extracted from the data, and how this
leads to correct tracking of bundles, similar to the 2D case.
The benefits of anisotropic metrics compared to isotropic
metrics are demonstrated by performing backtracking for
various model parameter variations.

The experiments were performed using an anisotropic FM
implementation written in C++, for d = 2 described in
[41]. Implementation details for d = 3 will be described

123



836 Journal of Mathematical Imaging and Vision (2018) 60:816–848

Fig. 13 Comparison between the shortest paths from end points (black)
to one of the exits (green) in a model map of Centre Pompidou, for cars
with (left, blue lines) and without (right, red lines) reverse gear. The
yellow arrows indicate the orientation of the curve. The background

colors show the distances at each position, minimized over the orienta-
tion.White points left indicate the cusps, and white points right indicate
the (automatically placed) keypoints where in-place rotations take place
(Color figure online)

in future work. Mathematica 11.0 (Wolfram Research, Inc.,
Champaign, IL) was used for further data analysis, applying
Wolfram LibraryLink (Wolfram Research, Inc., Champaign,
IL) to interface with the FM library.

7.1 Applications in 2D

7.1.1 Shortest Path to the Exit in Centre Pompidou

To illustrate the difference between themodelswith andwith-
out reverse gear and to show the role of the keypoints for
non-uniform cost, we use a map of Centre Pompidou as a 2D
image, see Fig. 13. The walls (in black) have infinite cost,
everywhere else the cost is 1.We place endpoints (black dots)
in various places of themuseum and look for the shortest path
from those points to one of the two exits, regardless of the
end orientation. Since there are now two exits, say at p0 and
p1, the distance U (p) of any point p ∈ M to one of the exits
is given by

UF (p) = min{dF (p0,p), dF (p1,p)}. (51)

We use a resolution of Nx × Ny × No = 706× 441× 60.
The cost in this example is only dependent on position, but
constant in the orientation. Moreover, we use C1 = C2 and
ε = 1/10.

On the left of Fig. 13 we see optimal paths (in blue)
obtained using the FinslermetricF = Fε. The fast-marching
algorithm successfully connects all endpoints to one of the
exits. Some of the geodesics have cusps, indicated with white
points, resulting in backward motion on (a part of) the curve.
The colors show the distance UFε

as above, at each position
minimized over the orientations.

On the right, the optimal paths using the asymmetric
Finsler metric F = F+ε are shown in red. The curves no
longer exhibit cusps, but have in-place rotations (white dots)
instead. These keypoints occur in this example on corners of
walls. (Due to the fact that ε is small but nonzero, there can

still be small sideways motion.) The shortest paths for this
model are successions of sub-Riemannian geodesics and of
in-place rotations, which can be regarded as reinitializations
of the former: the orientation is adapted until an orientation
is found from which the path can continue in an optimal
sub-Riemannian way.

We stress that the fast-marching algorithm has no spe-
cial treatment for keypoints, which are only detected in a
postprocessing step. We observe that keypoints are automat-
ically positioned at positions where it makes sense to have
an in-place rotation. Small differences in the distance maps
between UFε

left and UF+
ε
right can be observed: the con-

strained model usually has a slightly higher cost right around
corners.

7.1.2 Vessel Tracking in Retinal Images

Another application is vessel tracking in retinal images, for
which the model with reverse gear and the fast-marching
algorithm have shown to be useful in [8,53]. Although the
algorithm works fast and led to successful vessel segmenta-
tion in many cases, in some cases, in particular bifurcations
of vessels, cusps occur. Figure 14 shows one such exam-
ple on the left. The image has resolution Nx × Ny × No =
121×114×64. The cost is constructed as in [8]: the image is
first lifted using cake wavelets [23], resulting in an image on
R
2 × S

1. For the lifting and for the computation of the cost
function from the lifted image,we rely on their parameter set-
tings. We use C1 = ξC2, with ξ = 0.02 (top) and ξ = 0.04,
and ε = 0.1. The orientations of the end conditions A, B
and C (white arrows) are chosen tangent to the vessel, where
we considered both the forward case and the backward case.
The vessel with end condition C is particularly challenging,
since it comes across a bifurcation. For the tracking of this
vessel, we indicated the orientation with yellow arrows.

The unconstrained model (M, dFε
), corresponding to the

blue tracks on the left half of Fig. 14, gives a correct ves-
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Fig. 14 Left: SR geodesics (in blue) in (M, dFε ) with given bound-
ary conditions (both forward and backward). Right: SR geodesics (in
red) in (M, dF+

ε
)with the same boundary conditions.We recognize one

end-condition case where on the left we get a cusp, whereas on the right
we have a keypoint (with in-place rotation) precisely at the bifurcation
(Color figure online)

sel tracking for the forward end conditions of A and B, for
both values of ξ . This is obviously the better choice than the
backward cases. However, for end condition C, neither the
forward or backward with neither values of ξ gives a ves-
sel tracking without cusps. On the other hand, if we use the
constrained model (M, dF+

ε
), we obtain an in-place rotation

or keypoint in the neighborhood of the bifurcation. Typically
a higher value of ξ brings these points closer to the bifur-
cation. Taking the backward end conditions in combination
with this model, we see in some cases that end locations are
first passed by the vessel tracking algorithm, until it reaches
a point where in-place rotation is cheaper, and then returns
to the end position.

7.2 Application to Diffusion-WeightedMRI Data

DW-MRI is a magnetic resonance technique for noninvasive
measurement of water diffusion in fibrous tissues [46]. In
the brain, diffusion is less constrained parallel to white mat-
ter fibers (or axons) than perpendicular to them, allowing us
to infer the paths of these fibers. The diffusion measurements
are distributions (y,n) �→ U (y,n)within themanifoldM for
d = 3. From these measurements a fiber orientation distribu-
tion (FOD) can be created, yielding a probability of finding
a fiber at a certain position and orientation [60].

Backtracking is performed through forward Euler integra-
tion of the backtracking PDE involving the intrinsic gradient,
following Theorem 4 and Eqs. (28) and (31). The spa-
tial derivative was implemented as a first-order Gaussian
derivative. The angular derivatives are implemented by a
first-order spherical harmonic derivative. The latter has the
key advantage that in a spherical harmonic basis exact ana-
lytic computations can be done. Here, one must rely on

two-fold recursions in [28, Lemma 2 & 4], so that the poles
due to a standard Euler angle parameterization of S

2 do not
appear in exact recursions of Legendre polynomials!

If data-driven factors C1 and C2 come in a spherical
sampling or if one wants to work in a spherical sam-
pling (e.g., higher-order tessellation of the icosahedron)
in a fast-marching method, then one can easily perform
the pseudo-inverse of the discrete inverse spherical har-
monic transform, where one typically keeps the number
of spherical harmonics very close to the number of spher-
ical sampling points, so that maximum accuracy order is
maintained for computing angular derivatives in the intrinsic
gradient descent of Theorem 4.

7.2.1 Construction of the Cost Function

The synthetic dMRIdata are createdbygenerating/simulating
a fiber orientation density (FOD) of a desired structure. There
are sophisticated methods for this, e.g., [12,17], but evalua-
tion on phantom data constructed with these tools is left for
future work. Here we use a basic but practical method on
two simple configurations of bundles in R

3, the ones on the
bottom row in Fig. 3. In each voxel inside a bundle, we place
a spherical δ-distribution, with the peak in the orientation of
the bundle. We convolve each δ-distribution with an FOD
kernel that was extracted from real dMRI data and is related
to the dMRI signal measured in a voxel with just a single
orientation of fibers. Spherical rotation of the FOD kernel is
done in the spherical harmonics domain by use of theWigner
D-matrix to prevent interpolation issues. We compose from
all distributions an FOD function W : M → R

+. This func-
tion evaluates to high values in positions/orientations that are
inside and aligned with the bundle structure.
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Fig. 15 Comparison of the results of backtracking on a 2D plane in
a synthetic dMRI dataset on M = R

3 × S
2. In case A the default

parameters for σ , ξ and ε are applied resulting in a global minimiz-
ing geodesic (left) and its corresponding distance map (right). Case B
reflects the influence of the data term σ . Case C reflects the isotropic
Riemannian case. Case D reflects a high cost for moving spatially and

results in curves that resemble a piecewise linear curve. The distance
map is illustrated using a glyph visualization in which the size of the
glyph corresponds to exp(−dFε (ps ,pe)/s)p , with p = s = 3, where
ps is the seed location, pe is a location on a glyph, and s and p are
chosen based on visualization clarity

We use the FOD W to define the cost function 1
1+σ

≤ C ≤
1 via

C(p) = 1

1+ σ

∣∣∣ W+(p)
‖W+‖∞

∣∣∣p

where σ ≥ 0, p ∈ N, with ‖·‖∞ the sup-norm and W+(p) =
max{0, W (p)}. The cost function C induces the following
spatial and angular cost functions (C1, C2):

C1(p) = ξC(p), C2(p) = C(p).

The implementation of non-uniform cost is comparable to
the application of vessel tracking in retinal images in d = 2
by Bekkers et al. [8].

7.2.2 Influence of Model Parameters

The first synthetic dataset consists of a curved and a straight
bundle (tube), which cross at two locations as shown in
Fig. 15. The experiments using metric Fε demonstrate the
effect of the model parameters on the geodesic backtraced
from the bottom-left to the seed location at the bottom-right
of the curved bundle. A distance map is computed for param-
eter configuration A (Fig. 15, right) in which suitable values
are used for the data term σ , and the fast-marching param-
eters ξ and ε. Furthermore, fixed values are used for data
sharpening p = 3, spatial smoothing σ s = 0.5, forward

Euler integration step size δt = 0.04 and a gridscale of 1.
By use of these parameters the global minimizing geodesic
(Fig. 15A, left) is shown to take the longer, curved route.
In parameter configuration B the data term σ is lowered,
which creates a geodesic that is primarily steered by inter-
nal curve-dependent costs and is shown to take the shortcut
route (Fig. 15B). Setting ε = 1 in configuration C leads to a
Riemannian case where the geodesic resembles a piecewise
linear curve. In configuration D the relative cost of spatial
movement relative to angular movement is high, leading to
geodesics with shortcuts.

We conclude that configuration A with a relatively strong
data term, large bending stiffness (ξ−1 = 10) and a nearly
SR geometry (ε = 0.1) avoids unwanted shortcuts.

7.2.3 Positive Control Constraint

For the application of FM in dMRI data it is desirable that the
resulting geodesic is not overly sensitive to the boundary con-
ditions, i.e., the placement and orientation of the geodesic tip.
Furthermore, since neural fibers do not form cusps, these are
undesirable in the backtracking results. In Fig. 16 the back-
tracking results are shown for the cases without reverse gear
F+ε (top) and the model with reverse gear Fε (bottom). The
distance map for F+ε was computed by the iterative method
implementing the forward Reeds–Shepp car, while for Fε

the FM method was used.
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Fig. 16 Backtracking of
minimizing geodesics of the
model (M, dF+

ε
) without

reverse gear (top) and the model
with reverse gear (M, dFε )

(bottom) using the model
parameters of configuration A
(σ = 3.0, ξ = 0.1 and ε = 0.1)
for various end conditions

Fig. 17 Left: 3D configuration of bundles and a visualization of part of
the synthetic dMRI data.Middle: backtracking of geodesics in (M, dFε )

from several points inside the curves to endpoints of the bundle is suc-

cessful when using ε = 0.1. Right: when using ε = 1, the dominant
red bundle can cause the paths from the green bundle to deviate from
the correct structure

We conclude that without the positive control constraint,
small changes in tip orientation cause large variations in the
traced geodesic in the metric space (M, dFε

), whereas the
traced geodesic in the quasi-metric space (M, dF+

ε
) is both

more stable and more reasonable.

7.2.4 Robustness to Neighboring Structures

A pitfall of methods that provide globally minimizing curves
using a data term is that dominant structures in the data
attract many of the curves, much like the highway usually
has the preference for cars rather than local roads. This phe-
nomenon is to a certain extent unwanted in our applications,

andwe illustratewith the following example that it can be cir-
cumvented using a sub-Riemannian instead of Riemannian
metric. We use the dataset as introduced in Fig. 3. It con-
sists of one bundle that has torsion (green) and that crosses
with another bundle (blue), and a third bundle (red) that is
parallel with the first in one part. The cost in these bundles
is constructed in the same way as above, but now the cost
in the red bundle is twice as low as in the other bundles.
A small part of the data is visualized on the left of Fig. 17.
These data are used to construct the cost function as explained
above.

The resolution of the data is Nx × Ny × Nz × No =
32 × 32 × 32 × 162. Again we use C1 = ξC2 = C, with
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ξ = 0.1. To have comparable parameters as in the previous
experiment, despite increasing the amplitude in one of the
bundles by a factor 2, we choose to construct the cost using
parameter p = 3, and σ = 3 · 2p = 24. From various
positions inside the green, blue and red bundle, the shortest
paths to the end of the bundles computed by the FMalgorithm
nicely follow the shape of the actual bundles,whenwe choose
ε = .1 small, corresponding to an almost SR geodesic. This
is precisely what prevents the geodesic in the green bundle
to drift into the (much cheaper) red bundle. We show on the
right in Fig. 17 that choosing ε = 1, corresponding to having
an isotropic Riemannian metric, this unwanted behavior can
easily occur.

We conclude that the SR geodesics in (M = R
3×S

2, dFε
)

with ε $ 1 are less attracted to parallel, dominant structures
than isotropic Riemannian geodesics.

8 Conclusion and Discussion

We have extended the existing methodology for modeling
and solving the problemof finding optimal paths for aReeds–
Shepp car to 3D and to a case without reverse gear. We have
shown that the use of the constrained model leads to more
meaningful shortest paths in some cases and that the exten-
sion to 3D has opened up the possibility for tractography in
dMRI data.

Instead of using a hard constraint on the curvature as in the
original paper by Reeds and Shepp [50], we used symmetric
and asymmetric Finsler metrics. We have introduced these
metrics, F0 and F+0 , for d = 2, 3, such that they allow for
curves that have a spatial displacement proportional to the
orientation, with a positive proportionality constant in the
case of F+0 .

We have captured theoretically some of the nature of the
distance maps and geodesics following from the new con-
strained model. We have shown in Theorem 1 that both
models are globally controllable, but only the unconstrained
model is also locally controllable.

The sub-Riemannian and sub-Finslerian nature is difficult
to capture numerically. To this end, we introduced approxi-
matingFinslermetricsFε andF+ε that do allow for numerical
approaches. We have shown in Theorem 2 that as ε → 0, the
distance map converges pointwise and the geodesics con-
verge uniformly, implying that for sufficiently small ε we
indeed have a reasonable approximation of the ε = 0 case.

We have analyzed cusps in the metric space (M, dF0) and
keypoints in the quasi-metric space (M, dF+

0
) which occur

on the interface surface ∂M± given by (30). The analysis, for
uniform costs, is summarized in Theorem 3. We have shown
that cusps are absent in (M, dFε

) for ε > 0 and that keypoints
in (M, dF+

0
) occur only on the boundary, and we provided

analysis on how this happens. In Theorem 4 we have shown
howminimizing geodesics in (M, dFε

) and (M, dF+
ε
) can be

obtained from the distance maps with an intrinsic gradient
descent method.

To obtain solutions for the distance maps and optimal
paths, we used a fast-marching method. By formulating an
equivalent problem to the minimization problem for optimal
paths in the form of an eikonal equation, the FM method
can be used using specific discretization schemes. We briefly
compared the numerical solutions using Fε with ε $ 1 with
the exact sub-Riemannian geodesics in SE(2) with uniform
cost, which showed sufficient accuracy for not too extreme
begin and end conditions.

To show the use of our method in image analysis, we have
tested it on two 2D problems and two 3D problems. All four
experiments confirm that the combination of the eikonal PDE
formulation, the fast-marching method and the construction
of the non-uniform cost from the images, results in geodesics
that follow the desired paths. From the experiment on an
image of Centre Pompidou, with constant, finite cost every-
where except for the walls, it followed that instead of having
cusps when using the Finsler metric Fε, we get keypoints
(in-place rotations) when using F+ε . These keypoints turn
out to be located on logical places in the image. On the 2D
retinal image we showed that the Finsler metric F+ε gives
a new tool for tackling vessel tracking through bifurcations.
We see that keypoints appear close to the bifurcation, leading
to paths that more correctly follow the data.

The basic experiments on 3D show advantages of the
model (M, dFε

) with 0 < ε $ 1 over the model (M, dF1)

in the sense that the minimizing geodesics better follow
the curvilinear structure and deal with crossings and nearby
parallel bundles (even if torsion is present). Furthermore,
we have shown the advantage of model (M, dF+

ε
) with

0 < ε $ 1, compared to (M, dFε
) in terms of stability,

with keypoints instead of cusps.
The strong performance of the Reeds–Shepp car model in

2D vessel tracking and positive first results on artificial dMRI
data, encourages us to pursue a more quantitative assessment
of the performance in both 3D vessel tracking problems and
in actual dMRI data. Such 3D vessel tracking problems are
encountered in, for example magnetic resonance angiogra-
phy. In future work we will elaborate on the implementation
and evaluation of the fast-marching and the iterative PDE
implementation of [27, Appendix B]. Furthermore, we aim
to integrate locally adaptive frames [26] into the Finsler met-
rics Fε, F+ε , for a more adaptive vessel/fiber tracking.
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A Well-Posedness and Convergence of the
Reeds–SheppModels

We introduce in ‘Appendix A.1’ section some general ele-
ments of control theory, which are specialized in ‘Appendix
A.2’ section to the Reeds–Shepp models and their approxi-
mations.

A.1 Closedness of Controllable Paths

In this section, we introduce the notion of an admissible path
γ with respect to some controls B. We state in Theorem 5
a closedness result, slightly generalizing the one from [13],
from which we deduce in Corollaries 3 and 4 an existence
and a convergence result for a minimum time optimal control
problem. The first ingredient of this approach is the notion
of Hausdorff distance on a metric space.

Definition 5 Given a metric space E, we let K(E) be the
collection of non-empty compact subsets of E. The distance
function dA : E → R+ and the Hausdorff distanceH(A, B),
where A, B ∈ K(E), are defined, respectively, by

dA(x) := inf
y∈A

d(x, y), H(A, B) := max

{
sup
x∈B

dA(x), sup
x∈A

dB(x)

}
.

In the following, we fix a closed set X, contained in an
Euclidean vector spaceE, or in a complete Riemannian man-
ifold M. In the applications considered in this paper, X is of
the form X0×S

d−1, where X0 ⊂ R
d is some image domain,

see Fig. 14, or the set of accessible points in a map (which
excludes the walls), see Fig. 13. The embedding space can
be the vector space E = R

d × R
d , which is an acceptable

but rather extrinsic point of view, or the Riemannian mani-
fold M = R

d × S
d−1, equipped with the metric Gε for some

arbitrary but fixed ε > 0, see (25).
We equip the collection of all Lipschitz paths Γ :=

Lip([0, 1], X)with the topology of uniform convergence.We
will make use of Ascoli’s lemma [3,4], which states that any
uniformly bounded and equicontinuous sequence of paths
admits a converging subsequence. In our case the paths are
Lipschitz with a common Lipschitz constant.

Definition 6 Given a normed vector space V , we denote by
C(V ) ⊂ K(V ) the collection of non-empty compact subsets
of V , which are convex and contained in the unit ball.

Remark 13 The restriction to convex subsets is essential. For
a uniformly converging sequence of Lipschitz functions γn :
[0, 1] → M with limit γ∗, with γ̇n(t) ∈ K for a.e. t ∈ [0, 1]
and K a compact set, we can deduce that γ̇∗ ∈ Hull(K), for
a.e. t ∈ [0, 1]. The convexity then guarantees that γ̇∗ ∈ K =
Hull(K).

Definition 7 A family of controlsB on the setX is an element
of the set B defined by

– If X ⊂ E an Euclidean vector space, then
B := C0(X,C(E)).

– If X ⊂ M a Riemannian manifold, then
B := {B ∈ C0(X,K(T M)) | ∀p ∈ X, B(p) ∈
C(TpM)}.

In both cases, B is equipped with the topology of locally
uniform convergence.

Definition 8 A path γ is TB-admissible, where γ ∈ Γ , T ∈
R+ and B ∈ B, iff for almost every t ∈ [0, 1]

γ̇ (t) ∈ TB(γ (t)).

We denoted T B := {T v | v ∈ B}, where T ∈ R+ and
B is a subset of a vector space. Note the potential conflict
of notation with the tangent space T M to the embedding
manifold M, which should be clear from context. If a path
γ is TB-admissible for some controls B ∈ B, then it must
be T -Lipschitz. The following result slightly extends, for our
convenience, Corollary A.5 in [13].

Theorem 5 The set {(γ, T ,B) ∈ Γ × R+ ×B | γ is TB −
admissible } is closed.

Proof Let (γn, Tn,Bn) be sequences of paths, times and
controls converging to (γ∞, T∞,B∞), and such that γn is
TnBn-admissible for all n ≥ 0. Since the paths γn are con-
verging as n →∞, they lay in a common compact subset X′
of the closed domain X, recall Remark 13. As a result, the
restricted controls B′n := (Bn|X′) are uniformly converging
as n → ∞. In the case where X ⊂ E a Euclidean space,
applying Corollary A.5 in [13] to the sequence (γn, TnB′n)

we obtain that γ∞ is T∞B∞-admissible as announced.
In the case where X ⊂ M a Riemannian manifold, an

additional proof ingredient is required. Let M
′ be an open

neighborhood of X
′ with compact closure in M, and let I :

M
′ → E be an embedding (i.e., an injective immersion)

with bounded distortion of the manifold M
′ into a Euclidean

space E of sufficiently high dimension, which by Whitney’s
embedding theorem is known to exist. Define the set X

′′ :=
I(X′), the paths γ ′′n := I ◦ γn , and controls B′′n(I(p)) :=
dI(p,Bn(p)) for allp ∈ X

′ and n ∈ N∪{∞}. Applying again
Corollary A.5 in [13] we obtain that γ ′′∞ is T∞B′′∞ admissible
and hence that γ∞ is T∞B∞-admissible as announced. ��
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In linewith identity (9),we rely on the following definition
where we rescale the time interval to [0, 1].
Definition 9 For any B ∈ B, p,q ∈ X, we let

TB(p,q) := inf{T ≥ 0 | ∃γ ∈ Γ , γ (0) = p, γ (1) = q,

and γ is TB-admissible}.
(52)

Corollary 3 IfB ∈ B, p,q ∈ X are such that TB(p,q) <∞,
then inf. (52) is attained.

Proof Let T := TB(p,q), and for each 0 < ε ≤ 1 let γε

be a (T + ε)B-admissible path from p to q, which is thus
(T + 1)-Lipschitz. By Arzela–Ascoli’s lemma [3,4] there
exists a converging sequence of paths γεn → γ0 as n →∞.
The limit path γ0 is TB-admissible by Theorem 5, and the
result follows. ��
Corollary 4 For all ε ∈ [0, 1] let Bε ∈ B. Assume that Bε →
B0 as ε → 0, and that Bε(p) ⊃ B0(p) for all ε ≥ 0, p ∈ X.
Then

TBε
(p,q) → TB0(p,q), as ε → 0.

Let Tε := TBε
(p,q) for each ε ≥ 0. Assume in addition that

there exists a unique T0B0-admissible path γ0 from p to q,
and for each ε > 0 denote by γε an arbitrary path from p to
q which is (ε + Tε)Bε admissible. Then γε → γ0 as ε → 0.

Proof The inclusion Bε(p) ⊂ B0(p), ∀p ∈ M, implies the
inequality Tε ≤ T0, for all ε ≥ 0. Denoting T∗ := lim sup Tε

as ε → 0, we thus observe that T∗ ≤ T0. For the reverse
inequality T∗ ≥ T0, we apply Arzela–Ascoli lemma to the
family of paths (γε)0<ε≤1 which are (T0 + 1)-Lipschitz by
construction, and obtain a converging subsequence of paths
γεn → γ∗. Theorem 5 implies the admissibility of γ∗ with
respect to the controls T∗B0. Thus T∗ ≥ T0 but since T∗ ≤ T0,
we must have T∗ = T0, and γ∗ = γ0 by the uniqueness
assumption. The result follows. ��

More generally, if infimum (52) is realized by a family
(γi )i∈I of paths, then for any sequence εn → 0 one can find
a subsequence such that γεϕ(n)

→ γi as n → ∞ for some
i ∈ I .

A.2 Specialization to the Reeds–SheppModels

We begin this section by recalling, and slightly generalizing,
the notion of Finsler metric introduced in Sect. 2.2. We then
prove that the Reeds–Shepp metrics F0 and F+0 are indeed
Finsler metrics in this sense.

Definition 10 A metric on a complete Riemannian manifold
M is a mapF : T M → [0,+∞]. With respect to the second

variable, it must be 1-homogeneous, convex and bounded
below by δ‖·‖, where δ is a positive constant. In terms of
regularity, the sets BF (p) := {ṗ ∈ TpM | F(p, ṗ) ≤ 1}
must be closed and depend continuously on p ∈ M with
respect to the Hausdorff distance on T M.

The next proposition is due to (9).

Proposition 2 With the notations of Definition 10, the sets
p ∈ M �→ BF (p) form a family of controls on (M, δ‖·‖). In
addition for all p,q ∈ M

dF (p,q) = TBF (p,q).

Proposition 3 The Reeds–Shepp metrics (Fε)0≤ε≤1 and
(F+ε )0≤ε≤1 are indeed metrics in the sense of Definition 10,
for any ε ∈ [0, 1]. The associated controlsBε := BFε

,B+ε :=
BF+

ε
depend continuously on the parameter ε ∈ [0, 1], and

satisfy the inclusions Bε(p) ⊂ Bε′(p) and B+ε (p) ⊂ B+
ε′ (p)

for any p ∈ M and 0 ≤ ε ≤ ε′ ≤ 1.

Proposition 3 allows to apply the results of ‘Appendix
A.1’ section to the Reeds–Shepp metrics. Theorem 2 then
directly follows from Corollary 4. The only remaining non-
trivial claim in Proposition 3 is the continuity of the controls
onM, recall Definition 7, and their convergence Bε → B0 as
ε → 0, as required in Corollary 4. These two properties are
implied by the continuity on [0, 1] ×M, that we next prove,
of the following maps

[0, 1] ×M " (ε,p) → Bε(p) ∈ C(TpM),

[0, 1] ×M " (ε,p) → B+ε (p) ∈ C(TpM),
(53)

with C(TpM) defined in Definition 6 and equipped with the
Hausdorff distance.

Lemma 5 Let B be a compact subset of a metric space E,
and let ϕ ∈ C0(B, E). Then

H(B, ϕ(B)) ≤ sup
x∈B

d(x, ϕ(x)).

This basic lemma, stated without proof, is used in the next
lemma toobtain an explicit estimate of theHausdorff distance
between the controls sets of the Reeds–Shepp models.

Lemma 6 Let n1,n2 ∈ S
d−1, let a1, a2, b1, b2 ≥ 1 and let

ε1, ε2 ∈ [0, 1]. For each i ∈ {1, 2}, let Bi be the collection
of all (ẋ, ṅ) ∈ R

d × R
d obeying

ṅ · ni = 0,{
a2

i ‖ṅ‖2 + b2i

(
|ẋ · ni |2 + ε−2i ‖ẋ ∧ ni‖2

)
≤ 1, εi > 0

a2
i ‖ṅ‖2 + b2i |ẋ · ni |2 ≤ 1 and ẋ ∧ ni = 0, εi = 0.

Then H(B1, B2) ≤ |a−11 − a−12 | + |b−11 − b−12 |
+√

2(1− n1 · n2)+ |ε1 − ε2|.
(54)
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The same estimate holds for the sets B+i , i ∈ {1, 2}, defined
by the inequalities

ṅ · ni = 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2
i ‖ṅ‖2 + b2i

(
(ẋ · ni )

2+ + ε−2i (‖ẋ ∧ ni‖2 + (ẋ · ni )
2−)
)
≤ 1,

if εi > 0,
a2

i ‖ṅ‖2 + b2i (ẋ · ni )
2+ ≤ 1 and ẋ ∧ ni = 0, ẋ · ni ≥ 0,

if εi = 0.

Proof It suffices to establish announced estimate (54) when
the tuples (ai , bi ,ni , εi ), i ∈ {1, 2}, differ by a single element
of the four, and then to use the subadditivity of the Hausdorff
distance. In each case we apply Lemma 5 to a well-chosen
surjective map ϕ : B1 → B2 (resp. ϕ+ : B+1 → B+2 ).

– Case a1 �= a2. Assume w.l.o.g. that a1 < ∞, and
observe that for all (ẋ, ṅ) ∈ B1 one has a1‖ẋ‖ ≤ 1,
hence ‖a1ẋ/a2 − ẋ‖ ≤ |a−11 − a−12 |. Choose ϕ(ẋ, ṅ) :=
(a1ẋ/a2, ṅ).

– Case b1 �= b2. As above, with ϕ(ẋ, ṅ) := (ẋ, b1ṅ/b2),
yielding upper bound |b−11 − b−12 |.

– Case n1 �= n2. Let R be the rotation of R
d which

maps n1 onto n2, in such a way that it maps the space
orthogonal to the plane Span(n1,n2) onto itself. A sim-
ple calculation yields ‖R − Id ‖ = 2 sin[ 12 cos−1(n1 ·
n2)] = √

2(1− n1 · n2). The result follows by choos-
ing ϕ(ẋ, ṅ) := (Rẋ, Rṅ), so that ‖ϕ(ẋ, ṅ) − (ẋ, ṅ)‖ ≤
‖R− Id ‖√‖ṅ‖2 + ‖ẋ‖2 ≤ ‖R− Id ‖ for all (ẋ, ṅ) ∈ B1

as announced.
– Case ε1 �= ε2. Assume w.l.o.g. that ε1 > 0, and consider

the orthogonal projections

P1(ẋ) := (ẋ · n1)n1 P⊥1 (ẋ) := (Id− P1)(ẋ).

Note that P⊥1 (ẋ) ≤ ε1 if (ẋ, ṅ) ∈ B1, and that ‖ẋ‖ ≤ ε1
if (ẋ, ṅ) ∈ B+1 and ẋ · n1 ≤ 0. The result follows by
choosing

ϕ(ẋ, ṅ) :=
(

P1(ẋ)+ ε2

ε1
P⊥1 (ẋ), ṅ

)
,

ϕ+(ẋ, ṅ) :=
{

ϕ(ẋ, ṅ) if ẋ · n1 ≥ 0,

( ε2
ε1
ẋ, ṅ) otherwise.

��

Proof of Proposition 3 Since working with Hausdorff dis-
tances on the abstract tangent bundle T M is not very
practical, we make use of the canonical embedding I :
R

d × S
d−1 → R

d × R
d of the manifold M into the

Euclidean vector space R
2d given by (x,n) �→ (x,n), which

has bounded distortion. It suffices to prove the continuity
of the image of the control sets (ε,p) → dI(p,BFε

(p))

(resp. likewise with F+ε ) by the tangent maps to this embed-
ding, which follows by Lemma 6. Indeed the lemma shows
that

((ε1,p1) → (ε2,p2)) (⇒ (H(BFε1
, BFε2

)→ 0),

and it includes the spherical constraint via the velocity con-
straint ṅ · ni = d

dt (n(t) · n(t))|t=0 = 0 for a smooth curve
γ (t) = (x(t),n(t)) passing through γ (0) = (xi ,ni ). ��

B Backtracking of Geodesics in (M,dF )

This section is devoted to a generic ingredient in the proof
of Theorem 4, regarding backtracking of Geodesics in the
(quasi)-metric space (M, dF ) in general. Although these
results are standard in Finsler geometry, we aim to provide a
concise overview.

Lemma 7 Let F be an asymmetric norm on a vector space
E, and assume that F∗ is differentiable at p̂ ∈ E

∗. Then

F(dF∗(p̂)) = 1, 〈p̂, dF∗(p̂)〉 = F∗(p̂).

Proof The 1st claim follows by differentiation of F∗

F∗(p̂) = sup
ṗ∈E\{0}

〈p̂, ṗ〉
F(ṗ)

= max
F(ṗ)=1〈p̂, ṗ〉.

The 2nd claim is Euler’s formula for homogeneous functions.
��

Proposition 4 Let pS,pT ∈ M, let γ be a minimizing
geodesic from pS to pT w.r.t. a continuous metric F and
let t ∈ [0, 1]. Assume that the distance map U from pS is
differentiable at γ (t), and that the dual metric F∗ is differ-
entiable w.r.t. the second variable at (γ (t), dU (γ (t))). Then
γ is differentiable at time t and with L := dF (pS,pT)

γ̇ (t) = L dp̂F∗(γ (t), dU (γ (t))), γ (0) = pS, γ (1) = pT .

(55)

Proof The path γ has constant speed L , and t �→ U (γ (t))
increases linearly from 0 to L on it. Let t ∈ [0, 1] be as in
the statement of the proposition, and let

Γ̇ (t) := lim
n→∞(γ (t + εn)− γ (t))/εn

for some sequence εn → 0. Then

F(γ (t), Γ̇ (t)) = L and 〈dU (γ (t)), Γ̇ (t)〉 = L.
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For typographic simplicity let us denote p := γ (t), ṗ :=
Γ̇ (t), F = F(p, ·) and F∗ := F∗(p, ·). By Lemma 7 and
eikonal equation (5), the vector q̇ = dF∗(dU (p)) obeys

F(q̇) = F(dF∗(dU (p))) = 1,

〈dU (p), q̇〉 = 〈dU (p), dF∗(dU (p))〉 = F∗(dU (p)) = 1.

Note that the duality-bracket/norm inequality is saturated
by 〈dU (p), q̇〉 = 1 = F∗(dU (p))F(q̇), and that the assumed
differentiability of the dual norm F∗ at the point p̂ = dU (p)

implies the strict convexity of the primal norm F (up to 1-
homogeneity) at the point dF∗(p̂) = q̇. Hence q̇ is the unique
solution to the system ‘F∗(q̇) = 1 and 〈dU (p), q̇〉 = 1,’ and
therefore Γ̇ = Lq̇. This implies the differentiability of γ at
time t and announced equality (55). ��
Remark 14 (Lagrangians and Hamiltonians) Given an arbi-
trary Finsler metric F on M, its half-square L := 1

2F2 :
T (M) → [0,+∞] is usually called the Lagrangian. Short-
est path problem (1) can be reformulated in terms of the
Lagrangian, thanks to the Cauchy–Schwartz’s inequality
which gives

dF (p,q)2 = inf

{∫ 1

0
F(γ (t), γ̇ (t))2dt | γ ∈ Lip([0, 1], M),

γ (0) = p, γ (1) = q} . (56)

A path γ is a minimizer of (56) iff it is simultaneously
normalized and a minimizer of (1). The Hamiltonian H is
the Legendre–Fenchel transform of its Lagrangian L w.r.t.
the second variable; hence, H = 1

2 (F∗)2 (for details see
[6, ch.14.8]). The eikonal equation can thus be rephrased in
terms of the Hamiltonian:

F∗(p, dU (p)) = 1 ⇔ H(p, dU (p)) = 1

2
.

TheHamiltonian can also be used to reformulate the back-
tracking ODE of geodesics, thanks to the following identity
which follows from the eikonal equation: for any p ∈ M

dp̂H(p, dU (p)) = F∗(p, dU (p)) dp̂F∗(p, dU (p))

= dp̂F∗(p, dU (p)).
(57)

In geometric control theory this Hamiltonian is often
referred to the ‘fixed time Hamiltonian of the action func-
tional,’ cf. [2,8,52], and is typically used [44] in the Pontrya-
gin maximum principle [2] for (sub-)Riemannian geodesics.

CCharacterizationofCusps:ProofofLemma1

Consider Lemma 1. The structure of this lemma is a ⇔
b ⇔ c. The implication a ⇒ b is trivial. The equivalence
b ⇔ c follows by Theorems 2 and 4. The implication b ⇒ a
remains.

Suppose the d-th spatial control aligned with n(t0), recall
(19), vanishes: ũ(t0) = 0. Now we show by contradiction
that in this case ˙̃u(t0) �= 0. Suppose ũ(t0) = ˙̃u(t0) = 0.

Then by application of the PMP (Pontryagin’s maximum
principle), similar to [8, Appendix A], [24]) and coer-
civity/invertibility of the SR-metric tensor G0|γ (t0), recall
(25), constrained to the horizontal part of the tangent space
�|γ (t) = {(p0 = (x0,n0), ṗ0 = (ẋ0, ṅ0)) ∈ T (M) | n0 ≡
ẋ0}, that the (analytic) spatial control variable ũ = C−21 λ̃ van-
ishes for all times. (For d = 2 this is directly deduced from
the pendulum phase portrait [44] in momentum space.) This
leaves only purely angular momentum and motion, contra-
dicting ẋ(·) �= 0 in Lemma 1.

Next we verify ũ(t0) = ˙̃u(t0) = 0 ⇒ ˙̃
λ(t0) = 0 =

λ̃(t0). By the chain rule for differentiation (applied to the d-
th spatial momentum component λ̃(t) = 〈λ(t), (n(t), 0)〉):

d
dt λ̃(t)

∣∣∣
t=t0

= d
dt (C1(γ (t)))−2ũ(t)

∣∣
t=t0

= d
dt (C1(γ (t)))−2

∣∣
t=t0

ũ(t0)+
d
dt (C1(γ (t)))−2

∣∣
t=t0

˙̃u(t0) = 0.

We deduce from PMP’s Hamiltonian equations (cf. [24]) that

˙̃
λ(t0) = λ̃(t0) = 0⇒ λ̃(·) = 0⇒ ũ(·) = 0.

D Table of Notations

See Table 1.
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Table 1 Symbols used throughout the paper, their brief explanation and references to where they appear, or where they are defined/first appear

Symbol Explanation References

R
d , x Position space with vectors x = (x1, . . . , xd )T Sections 1.1, 1.2, . . .

S
d−1,n Angular space, S

d−1 = {n ∈ R
d | ||n|| = 1} Sections 1.1, 1.2, . . .

a Reference axis. For d = 2, a = (1, 0)T , for d = 3,
a = (0, 0, 1)T

Eq. (11), Remark 4

M, p Manifold M = R
d × S

d−1, with p = (x,n) ∈ M Section 1.1, . . .

T (M), T ∗(M),
Tp(M)

Tangent bundle T (M) = {(p, ṗ) | p ∈ M, ṗ ∈ Tp(M)}, and
cotangent bundle T ∗(M), with tangent space Tp(M)

Sections 1.1, 2.5, 1.2, . . .

Γ , γ Space Γ = Lip([0, 1], M) of admissible curves, with
t �→ γ (t) = (x(t),n(t))

Eq. (1), . . .

F , F∗, F0, F+0 , Fε ,
F+ε , (Fε)

∗, (F+ε )∗
Finsler metric F defined on M, its dual F∗ : T ∗(M)→ R the
models with and without reverse gear F0, F+0 , their
approximations Fε , F+ε and their duals

Section 1.1, Eqs. (2), (3),
(5), (6), (16), (17),
Proposition 1, . . .

dF , U Distance function dF (p,q) for p,q ∈ M, and
U (p) = dF (pS,p) for a fixed source pS ∈ M

Eqs. (1), (4), . . .

ε Anisotropy parameter in the metric, ε = 0 corresponds to the
sub-Riemannian manifold case

Eqs. (16), (17), Fig. 5, …

∝ We write ẋ ∝ n when ẋ = λn for some λ ∈ R Eqs. (2), (3), Sect. 2.3,
Theorem 1,

C1, C2, ξ External cost Ci : M → R
+, analytic and strictly bounded from

below, and ξ > 0 to balance the cost of spatial motion relative
to angular motion, when we choose C1 = ξC2

Section 1.2, . . .

B, BF Set of controlsB, and the set of admissible controls
BF (p) = {ṗ ∈ Tp(M)|F(p, ṗ) ≤ 1)}

Figure 2, Eq. (7), (9),
‘Appendix A’ section

a Reference axis. For d = 2, a = (1, 0)T , for d = 3,
a = (0, 0, 1)T

Eq. (11), Remark 4

(·)−, (·)+ (·)− = min(·, 0), (·)+ = max(·, 0) Eqs. (15), …

R, R̄, R̄c Subset R ∈ M of endpoints that are reached by cuspless
geodesics, the closure R̄ and its complement R̄c

Definition 4, Remark 4,
Theorem 3, Sect. 4

Ai , ωi Left-invariant frame Ai and the dual frame ωi Section 4, Eqs. (40), (41),
Remark 12

ui , p̂i , ũ Controls (velocity components) ui , momentum components p̂i
and the special spatial ũ

Definition 2, (33), …

Gp,ε , G̃p,ε Metric tensors Gp,ε, G̃p,ε : Tp(M)× Tp(M)→ R
+ Eqs. (25), (26)

∇, G−1p,εd, G̃−1p,εd Standard gradient ∇ = (∇Rd ,∇Sd−1 ), the intrinsic gradient
G−1p,εd of the manifold (M+, dFε ) and G̃−1p,εd the intrinsic
gradient of (M−, dF+

ε
)

Corollary 1, Theorem 4,
Remark 31,

FM,w, F∗
M̂,ŵ

Norm FM,w : Rn → R
+ and dual norm F∗

M̂,ŵ
: (Rn)∗ → R

+ Lemma 4

X , X Discrete subset X of R
d , and image support X ⊂ M Section 6, ‘Appendix A’

section

Dε
n Symmetric positive definite matrix

Dε
n = n⊗ n + ε2(Id−n⊗ n)

Eqs. (27), (28), …

M+, M−, ∂M± M+ = {p ∈ M | 〈dU+(p),n〉 > 0},
M− = {p ∈ M | 〈dU+(p),n〉 < 0} and their boundary

Corollary 1, Theorem 4

Nx , Ny, Nz, No Resolution in spatial/angular coordinates Section 7

σ, p Parameters σ > 0, p ∈ N of the cost function C Section 7

The dots in the Reference column indicate that they are used frequently
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