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Abstract
Human perception involvesmany features like contours, shapes, textures, and colors to name a few.Whereas several geometric
models for contours, shapes and textures perception have been proposed, the geometry of color perception has received very
little attention, possibly due to the fact that our perception of colors is still not fully understood. Nonetheless, there exists a class
of mathematical models, gathered under the name Retinex, which aim at modeling the color perception of an image, which
are inspired by psychophysical/physiological knowledge about color perception, and which can geometrically be viewed as
the averaging of perceptual distances between image pixels. Some of the Retinex models turn out to be associated with an
efficient image processing technique for the correction of camera output images. The aim of this paper is to show that this
image processing technique can be improved by including more properties of the human visual system. To that purpose,
we first present a generalization of the perceptual distance between image pixels by considering the parallel transport map
associated with a covariant derivative on a vector bundle, from which can be derived a new image processing model for color
images correction. Then, we show that the family of covariant derivatives constructed in Batard and Sochen (J Math Imaging
Vis 48(3):517–543 2014) can model some color appearance phenomena related to brightness perception. Finally, we conduct
experiments in which we show that the image processing techniques induced by these covariant derivatives outperform the
original approach.

Keywords Differential geometry ·Variational model · Contrast enhancement · Brightness perception ·Human visual system ·
Retinex

1 Introduction

1.1 Geometry of Brightness Perception and Image
Processing

Due to physical and technological limitations of the acqui-
sition process of a real-world scene by a digital camera, the
output image is a degraded version of the original scene.
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Processing the camera output image so that it reproduces the
appearanceof the original real-world scene is a very challeng-
ing task that requires the understanding of both the camera
image processing pipeline and the way the human visual sys-
tem (HVS) processes the light it captures. This problem has
been addressed since digital imaging has come up in the early
1960s and is still a open problem, which is partly due to the
complexity of the human visual system. We refer the reader
to [7] for more details.

The Retinex theory of Land and McCann [19] was a
seminal contribution in modeling the color appearance of
a scene. Based on the well-known “Mondrian” experiments,
the authors developed an algorithm to reach that goal.

Since then, many Retinex formulations have been pro-
posed in order to improve the results of the original algorithm
and extend it to more complex scenes (see, e.g., [6,20,33,34]
for more details about Retinex theory, Retinex formulations,
and their connections with vision).
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From a geometrical point of view, several Retinex for-
mulations can be described as follows: The perceived color
of an image at a pixel location is the averaging of the per-
ceived difference between the given pixel value and other
pixel values in the image domain, the perceived difference
between two pixel values being determined by the integration
of a perceived gradient along a path joining the two pix-
els. This interpretation suggests that the key point in order
to determine the color appearance of a scene is to define
accurately its perceived gradient. In several Retinex formu-
lations, the perceived gradient is related to Weber’s law in
psychophysics, which is a key observation for the general-
ization of the Retinex formulations we propose in this paper.

One of the properties of the HVS that plays a key role in
the perception of the colors of a scene is its ability of adap-
tation to the lighting conditions, called color constancy, and
which ensures that the perception of the colors of a scene
remain relatively constant under a relighting (see, e.g., [13]
for a review on color constancy). Georgiev [14] argues that
this ability of the HVS could be related to an invariance prop-
erty of the perceived gradientwith respect to relighting. Then,
equipping the set of lighting transformationswith a Lie group
structureG, this invariance propertymakes the perceived gra-
dient behave as a covariant derivative, which makes a color
image u : Ω ⊂ R

2 −→ R
3 be modeled as a section of a G-

associated vector bundle of rank 3 over Ω . Note that there is
another view in perception which states that color constancy
does not derive from neighborhood interactions as it occurs
in Retinex formulations, but from statistical correlations of
the perceived scene [15].

Bertalmío et al. [6] proposed a kernel-based Retinex
(KBR) formulation that has several advantages with respect
to basic Retinex implementations based on paths: its compu-
tational complexity is much lower and it is less affected by
artifacts, noise, or haloes. Moreover, they showed that KBR
is closely related to a variational model for color image cor-
rection [5] that encodes some properties of the HVS. Indeed,
by performing local contrast enhancement, which is a well-
known property of the HVS, the model improves the visual
quality of the image. Moreover, by coupling local contrast
enhancement with visual adaptation, themodel is able to per-
form, under some assumptions on the image, color constancy
by removing the color cast of the image. In a more recent
work, Palma-Amestoy et al. [23] added an extra property
of the HVS to the variational model, i.e., a gamma com-
pression, which is an alternative to Weber’s law to modeling
brightness perception, and which is related to Steven’s law
in psychophysics [29]. Adding a gamma compression to the
model makes the local contrast enhancement be stronger in
dark areas than in the bright ones, which is a desirable prop-
erty when dealing with underexposed images.

Brightness perception has also been incorporated in a
denoising model by Shen [27], who replaced the Euclidean

gradient in the Rudin–Osher–Fatemi model [26] by the
so-called Weber contrast that encodes Weber’s law. A con-
sequence of Weber’s law is that color variations, and noise
in particular, are more visible in dark areas than in the bright
ones, which makes the model denoise in a greater extent the
dark areas of the image.

Finally, we proposed in [1] a geometrical generalization
of the Euclidean variational model introduced in [5] to vector
bundles, by making use of the parallel transport map asso-
ciated with a covariant derivative. We obtained a new image
processing model whose behavior depends on the covariant
derivative involved. Nonetheless, no connection between this
new variational model and color perception has been estab-
lished and this is actually one of the goals of this paper, whose
contribution is detailed in the following section.

1.2 Contribution

The contribution of this paper is threefold: First, we show
in Sect. 3 that the variational model we constructed in
[1] is connected to the Retinex theory of color perception,
which validates the model, at least theoretically, to perform-
ing image processing inspired by vision. Then, we show in
Sects. 4, 5 that the class of optimal covariant derivatives con-
structed in Batard and Sochen [2] that are parametrized by
Lie group representations, can encode some color appearance
phenomena related to color brightness, which suggests that
the HVS perceives color brightness in an optimal manner.
Finally, we analyze in Sect. 6 the properties of the varia-
tional model constructed in [1] induced by these covariant
derivatives and we show on experiments in Sect. 7 that it
provides image processing techniques that outperform the
perceptually inspired Euclidean model developed in [5].

More generally, this paper can be viewed as an investi-
gation upon the capacity of Lie group representations and
covariant derivatives to model color perception and to match
psychophysical/physiological data as well as to generate
image processing algorithms that improve the visual qual-
ity of camera output images.

In more detail, the contribution of this paper is the follow-
ing.

1.2.1 Establishment of a Connection Between a Variational
Model for Image Processing Based on Covariant
Derivatives and the Retinex Theory

In Sect. 3.1, we propose a geometrical reinterpretation of the
original Retinex formulation of Land and McCann [19] and
the KBR formulation Bertalmío et al. [6], which exhibits the
concept of perceptual gradient of an image.

In Sect. 3.2, we follow the approach of Georgiev [14] and
consider covariant derivatives as a model for the perceptual
gradient of an image, from which we generalize the original
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Retinex andKBR formulations. The proposed generalization
makes the parallel transport map associated with a covariant
derivative determine the perceptual difference between two
pixel values. Then, we show that the mathematical properties
of the parallel transport map match with some properties
of the HVS. Indeed, the parallel transport map makes the
perceptual difference between two pixel values depend on
the colors between the pixel locations, and it is well known
that the perceptual difference between two areas on an image
depends on the image content. Moreover, a nonflat covariant
derivative makes the corresponding parallel transport map
depend on the curve joining two points, which suggests that
the perceptual difference between two pixel values depends
on the selected path followed by the eye joining the two
pixel locations, as illustrated in Fig. 2. To the best of our
knowledge, the connection between the curve dependency
of the parallel transport map and human vision has never
been proposed.

In [6], the authors established a connection between KBR
and the contrast enhancementmodel introduced in [5]. In this
paper, we follow this approach and establish a connection
between the proposed generalization of KBR approach and
the contrast enhancement model we introduced in [1]. This
point is developed in Sect. 3.3.

1.2.2 Analysis of a Class of Covariant Derivatives Encoding
Properties of the HVS

Georgiev [14] encoded pixel transformations under relight-
ing with the Lie group D+∗

3 of 3×3 strictly positive diagonal
matrices, and constructed a covariant derivative that satisfies
an invariance propertywith respect to the action of this group,
which turns out to be related toWeber’s law. In this paper, we
extend this approach in the sense that we consider more Lie
group representations acting on a three-dimensional space
and by considering an optimal covariant derivative associated
with each group representation. Indeed, besides the group
D+∗
3 aforementioned, we consider group representations of

SO(2) and SO(3) on R
3, and the corresponding optimal

covariant derivatives are the ones constructed in Batard and
Sochen [2] and that are image dependent. This point is devel-
oped in Sects. 4 and 5.
The main geometric object we study throughout this paper
is the curvature of a covariant derivative, as the former pro-
vides fundamental information about the latter. For instance,
the connection 1-form of a flat covariant derivative, i.e., a
covariant derivative whose curvature is zero, vanishes with
respect to some moving frame, from which follows that the
covariant derivative corresponds to the standard differential
operator when expressed in this moving frame. By studying
the curvature of the optimal covariant derivatives constructed
in [2], the main results we obtain are the following.

The standard representation of the group D+∗
3 on R

3. The
optimal covariant derivative induced by this representation
is parametrized by α = (α1, α2, α3) ∈ (R+∗)3, and we show
that it is flat for any value of α. Then, assuming that the space
of the representation is a trichromatic color space (e.g., LMS
or RGB), the group representation encodes pixel transforma-
tion under relighting as aforementioned.

At the limit value (α1, α2, α3) = (0, 0, 0), we show that
the optimal connection 1-form encodes Weber’s law, as in
the original Retinex and KBR formulations.

We show that there exists a value of the parameter α for
which the connection 1-form associated with the optimal
covariant derivative encodes Weber–Fechner’s law in vision,
which is a refinement of Weber’s law. As a consequence,
the corresponding Retinex formulation shall provide a more
accurate expression for the color perception of an image
than the Retinex formulations aforementioned as these latter
encode (the less accurate) Weber’s law. Moreover, assuming
that the observed scene has a limited dynamic range (which
is the case when observing an image on a standard display
device), the three types of cones in the retina have response
that follows Weber–Fechner’s law (see, e.g., [12] and refer-
ences therein for more details), which makes this connection
1-form be physiologically plausible as well.

At the limit value (α1, α2, α3) = (+∞,+∞,+∞),
the optimal connection 1-form vanishes, meaning that the
optimal covariant derivative is nothing but the standard
derivative.
Representations of SO(2) on R

3. The representations of
SO(2) on R

3 are parametrized by the set of planes in R
3,

and a representation contains all the rotations that leave a
given plane invariant. For a given representation, the opti-
mal covariant derivative is parametrized by α ∈ R

+∗. We
show that the optimal covariant derivative is flat for any
image only at the limit values α ∈ {0,+∞}. Then, assum-
ing that the space of the representation is a trichromatic
color space equipped with the Euclidean scalar product, we
show that there exists a representation of SO(2) that encodes
hue changes, which implies that the representation implicitly
encodes the color space change from a trichromatic space to
an opponent space of the form intensity-chrominance.

For the limit value α = 0, we show that the moving frame
in which the connection 1-form vanishes splits the inten-
sity and chrominance information, and exhibits the hue field
introduced by Ben-Shahar et al. [4], which is physiologically
implemented in the visual cortex.

Assuming that α ∈ R
+∗, we show the existence of condi-

tions on the image for which the covariant derivative is flat.
More precisely, we show that the covariant derivative is flat
if all the pixel values belong to a circle centered at the origin
in the plane left invariant under the group representation. We
deduce an explicit expression of the parallel transport map
along a curve joining two pixels if the pixel values belong to
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such a circle along the curve. This result provides us more
insight into the behavior of the covariant derivative.

Finally, at the limit value α = +∞, the connection 1-form
vanishes.
The standard representation of SO(3) on R

3. The optimal
covariant derivative is parametrized by α ∈ R

+∗, and we
show that the covariant derivative is flat for any image only
for the limit values α ∈ {0,+∞}.

Assuming thatα = 0 and the space of the representation is
the CIE L∗a∗b∗ color space, we show that, for a well-chosen
vector bundle metric, the covariant derivative encodes the
differential of the “color brightness,” defined by Fairchild
and Pirrotta [11], this latter being a refinement of the standard
brightness L∗, as it takes into account the visual effect called
the Helmholtz–Kohlrausch (H–K) effect, which states that
the brightness of a color object depends on both its standard
brightness L∗ and its chrominance information a∗, b∗.

Assuming that α ∈ R
+∗, we show the existence of condi-

tions on the image for which the covariant derivative is flat:
It is flat if all the pixel values belong to a circle centered in
0, i.e., to a geodesic of the sphere S2. We deduce an explicit
expression of the parallel transport map along a curve joining
two pixels if the pixel values belong to some geodesic of S2

along the curve. As in the SO(2) case, this result provides us
more insight into the behavior of the covariant derivative.

As for the previous groups studied, the connection 1-form
vanishes at the limit value α = +∞.
The standard representation of SO(3) × D+∗

3 on R
3. Based

on the flatness properties of the covariant derivatives induced
by the groups D+∗

3 and SO(3) aforementioned, we construct
a flat covariant derivative associated with the standard repre-
sentation of SO(3) ×D+∗

3 on R
3. More precisely, denoting

by G1 the moving frame in which the optimal connection 1-
form associated with D+∗

3 for α ∈ R
+∗ vanishes, and by G2

the moving frame in which the optimal connection 1-form
associated with SO(3) for α = 0 vanishes, we consider the
covariant derivativewhose connection 1-form vanishes in the
moving frame G2G1. This construction makes the covariant
derivative be flat, but it does not guarantee that it is opti-
mal, i.e., is a solution of a variational problem involving the
standard representation of SO(3) ×D+∗

3 on R
3.

1.2.3 Analysis and Implementation of a Class of Variational
Models Performing Color Images Correction

In Sects. 6, 7, we consider the variational model constructed
in [1] endowed with the different covariant derivatives ana-
lyzed in Sects. 4, 5. The study of the flatness property of
the covariant derivatives and the construction of the moving
frames in which the connection 1-forms of the flat ones van-
ish enables to get an insight into the behavior of the model.
Indeed, the variational model induced by a flat covariant
derivative can bewritten, up to amoving frame change, as the

vectorial extension of the channel-wise model of Bertalmío
et al. [5] that we proposed in [3]. This allows a much faster
implementation of the algorithm as there is no need to com-
pute the parallel transport map.

More precisely, we obtain the following results.
The standard representation of the group D+∗

3 on R
3. We

show that the model induced by the optimal covariant deriva-
tive yields a local contrast enhancement model that enhances
more the dark than the bright areas of the image unless we
consider the limit value α = (+∞,+∞,+∞) that makes
themodel enhance both areas in a similar extent. This result is
coherentwith the results in Sects. 4 and 5,wherewe show that
the connection 1-form encodesWeber’s law for α = (0, 0, 0)
and Weber–Fechner’s law for some α ∈ (R+∗)3. This is a
desirable property when dealing with underexposed images.
Moreover, we show that the model provides better results
when it encodes Weber–Fechner’s law than when it encodes
Weber’s law.
Representations of SO(2) on R

3. Assuming that α = 0, we
show that the variational model consists in enhancing the
local contrast of the intensity and chroma components of the
image while preserving its hue.

The analysis of the behavior of the variationalmodel in the
case α ∈ R

+∗ is less trivial as this value makes the covariant
derivative be not flat. However, we show that the value α can
serve as a parameter of regularization of the hue variations,
which can be useful in some situations as the hue is very
noisy at low intensity values for instance.

For α = ∞, the model is nothing but the Euclidean model
in [3].
The standard representation of SO(3) on R

3. Assuming that
α = 0 and the vector bundle is equipped with a well-chosen
metric, the variational model induced by the optimal covari-
ant derivative consists in enhancing the local contrast of the
color brightness (according to the definition of Fairchild and
Pirrotta [11]) of the original image, and we show that the
model satisfies two properties. First, it preserves the hue
of the original image, which is a desirable property when
enhancing the contrast of some images (see, e.g., [22,24]
for other hue preserving contrast enhancement models). We
show on experiments that this model creates less color arti-
facts than the model [5].

As in the case of the group SO(2) aforementioned, the fact
that the covariant derivative is not flat for α ∈ R

+∗ makes
the behavior of the model much more difficult to analyze.
However, we show that the value α can serve as a parameter
of regularization of the hue variations and in a more accurate
way than in the SO(2) case.

Finally, for α = +∞, we obtain the Euclidean model in
[3].
The standard representation of SO(3) × D+∗

3 on R
3.

The covariant derivative aforementioned associated with
the group representation of SO(3) ×D+∗

3 on R
3 has been
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constructed in order for the subsequent variational model to
combine the properties of the variational models induced by
the optimal covariant derivatives associated with the group
D+∗
3 for awell-chosenα ∈ D+∗

3 and SO(3) forα = 0. Exper-
iments show that the model does combine theses properties:
It enhances more the local contrast of the image in the dark
areas than in the bright ones, and it preserves the hue of the
original image.Moreover, it preserves the saturation, defined
as the ratio of chroma to intensity, of the original image.Com-
paring the three models on underexposed images shows that
the best results are obtained with the model combining the
two optimal covariant derivatives.

2 Definitions and Notations

2.1 On the Curvature Tensor and the Parallel
Transport Map

One of the main geometric objects we consider in this paper
is the curvature tensor. In this section, we recall its definition
and its relation with the parallel transport map on a vector
bundle. We refer the reader to [17] and ([2], Appendix A) for
more details about the geometry of fiber bundles.

Let G be a Lie group and g its Lie algebra, P be a prin-
cipal G-bundle over a manifold M and πP : P −→ M the
projection map. We denote by Px � G the fiber over x ∈ M ,
i.e., the set {π−1

P (x)}, and by Γ (P) the set of smooth sec-
tions of P . In what follows, we denote by (P, πP , M,G) the
principal G-bundle P .

Let ρ : G −→ GL(Rn) be a group representation of G on
R
n . We denote by Eρ the G-associated bundle P ×ρ R

n , and
by P(Eρ) = P ×ρ End(Rn) the bundle of moving frames
of Eρ .

Given a manifold X , we denote by T X its tangent bundle,
T ∗X its cotangent bundle, and by

∧2 T ∗X the bundle of
differential 2-forms of X .

Definition 1 (Curvature of a connection on a principal bun-
dle) Let ω ∈ Γ (T ∗P ⊗ g) be a connection 1-form on
a principal bundle (P, πP , M,G). The curvature 2-form
F(ω) ∈ Γ (

∧2 T ∗P ⊗ g) of ω is defined by

F(ω) := dω + 1

2
[ω,ω] (1)

where d stands for the exterior derivative and [·, ·] the wedge
product of Lie algebra-valued forms.

The connection 1-form ω on P induces a connection 1-form
ωρ ∈ Γ (T ∗P ⊗ End(Rn)) on P(Eρ) given by

ωρ = ρ∗(−ω)

and the curvature 2-form F(w) on P induces a curvature
2-form F(ωρ) ∈ Γ (

∧2 T ∗P ⊗ End(Rn)) on P(Eρ) given
by

F(ωρ) = ρ∗(−F(ω))

where ρ∗ : g −→ End(Rn) is the Lie algebra representation
associated with ρ.

Definition 2 (Flat connection) The connection 1-form ω is
called flat if F(ω) ≡ 0.
We say that a covariant derivative is flat if the corresponding
connection 1-form is flat.

Unlike the connection 1-forms, the curvature 2-forms are
transformed in a tensorial way with respect to the action ofG
on the fibers of P . Indeed, given s ∈ Γ (P), g ∈ C∞(Ω,G)

and denoting by · the action of G on the fibers of P , we have

F|g·s = g−1F|sg.

Hence, in order to show that a connection is flat, it is sufficient
to show that it vanishes along a section of P .

Given s ∈ Γ (P), the connection 1-form ω can be pull
down on the base manifold M as a 1-form s∗ω ∈ Γ (T ∗M ⊗
g), also called a connection 1-form, and it transforms in the
following manner under the action of G

(g · s)∗ω = g−1dg + g−1(s∗ω)g

for g ∈ C∞(Ω,G). The connection one-form s∗ω deter-
mines a connection one-form Aρ := ρ∗(−s∗ω) ∈ Γ (T ∗M⊗
End(Rn)) that transforms in the following manner under the
action of G on P

ρ∗(−(g · s)∗ω) = G−1dG + G−1ρ∗(−s∗ω)G (2)

where G ∈ Γ (P(Eρ)) is the moving frame of Eρ given by
G = ρ(g).
From the pulldown of ω on the base manifold M through
the section s, we can define a curvature 2-form F(A) ∈
Γ (
∧2 T ∗M ⊗ g) on M , as

F(A) := d A + 1

2
[A, A] (3)

and the corresponding curvature 2-form
F(Aρ) ∈ Γ (

∧2 T ∗M ⊗ End(Rn)) is given by

F(Aρ) = ρ∗(−F(A)). (4)

Given a covariant derivative ∇ = d + ωρ on the vec-
tor bundle Eρ , the corresponding parallel transport map is
defined as follows.
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Definition 3 (Parallel transport) Let γ : I ⊂ R −→ M be a
smooth curve. The parallel transport associated with∇ along
the curve γ is the map τt1,t2,γ : Eγ (t1) −→ Eγ (t2) such that
τt1,t2,γ (u0) is the solution of the differential equation

{∇
γ ′(t) u(γ (t)) = 0 ∀t ∈ [t1, t2]
u(γ (t1)) = u0

(5)

Finally, it follows from the results aforementioned that the
parallel transportmap associatedwith aflat connectionwrites
as the Identity map in themoving frame G ∈ P(Eρ) in which
it vanishes, and consequently does not depend on the curve
(in a homotopy class) joining the points.

2.2 Nonlocal Total Variation on aVector Bundle and
Its Dual Formulation

The construction of the solutions of the variational model we
consider in this paper and their numerical implementation
requires the use of several notions that we introduced in [1]
and that we recall in this section.

Let E be a vector bundle of rank n over a manifold M
equipped with a positive definite metric h. We denote by
πE : E −→ M the projection map, by Ex � R

n the fiber
over x ∈ M , i.e., the set {π−1

E (x)}, and by Γ (E) the set
of smooth sections of E . We denote by pr1(E) the vector
bundle over M × M induced by the projection

M × M −→ M
pr1 : (x, y) −→ x

In other words

pr1(E) = {(x, y, p) ∈ M × M × E/ x = πE (p)}. (6)

Definition 4 (Nonlocal covariant derivative) The nonlocal
covariant derivative associated with a covariant derivative
∇ = d + ω on E is an operator
∇NL

w : Γ (E) −→ Γ (pr1(E)) of the form

∇NL
w u : (x, y) −→ w(x, y)

(
τ0,T ,γy,x u(y) − u(x)

)
(7)

where γy,x is a curve joining y and x of length T , andw : M×
M −→ R

+∗ is a smooth symmetric function.

The positive definite metric h on E induces a L2 scalar prod-
uct 〈 , 〉 on Γ (pr1(E)) defined by

〈η1, η2〉 :=
∫

M×M
(η1(x, y), η2(x, y))h(x) dx dy

where ( , )h(x) denotes the scalar product in Ex with respect
to h, from which derive the L p norm on Γ (pr1(E)) defined
by

‖η‖L p :=
(∫

M×M
‖η(x, y)‖p

h(x) dx dy

)1/p

where ‖ ‖h(x) denotes the norm in Ex with respect to h, and
the space L p(pr1(E)) as the completion of Γ (pr1(E)) in
this norm.

Finally, we define the space

WNL
w,1,p := {u ∈ L p(E),∇NL

w u ∈ L p(pr1(E))}.

Definition 5 (Adjoint of nonlocal covariant derivative) The
adjoint of a nonlocal covariant derivative ∇NL

w induced by
a covariant derivative ∇ compatible with a positive definite
metric h is the operator
∇NL

w
∗ : Γ (pr1(E)) −→ Γ (E) satisfying

〈∇NL
w u, η〉 = (u,∇NL

w

∗
η)

∀ u ∈ Γ (E), ∀η ∈ Γ (pr1(E)), where ( , ) is the L2 scalar
product on Γ (E) induced by h.

Proposition 1 The operator ∇NL
w

∗
is defined by

∇NL
w

∗
η : x−→

∫

M
w(x, y)

(
τ0,T ,γy,x η(y, x) − η(x, y)

)
dy.

(8)

Proof See [1]. ��
Definition 6 (Nonlocal vector bundle total variation of inte-
grable sections) Let u ∈ L1(E) andw : M×M −→ R

+∗ be
a smooth symmetric function, we define the nonlocal vector
bundle total variation V BT V NL

w (u) of u as the quantity

V BT V NL
w (u) = sup

ξ∈K1

(∫

M
(u, ξ)h dM

)

(9)

where Kw,a is the closure in L2(E) of the set Kw,a defined
by

Kw,a := {∇NL
w

∗
η : η ∈ Γ (pr1(E)), ‖η(x, y)‖h(x)

≤ a ∀x, y ∈ M}. (10)

We denote by BV NL
w (E) the set of sections u ∈ L1(E) such

that V BT V NL
w (u) < +∞.

Proposition 2 Assuming that u ∈ WNL
w,1,1(E), we have

V BT V NL
w (u) = ‖∇NL

w u‖L1 , (11)

the second term corresponding to the L1 norm of the distance
(32).

Proof See [1]. ��
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3 A Variational Model Encoding Properties
of the HVS

3.1 Geometrical Interpretation of Existing Retinex
Formulations

In this section, we begin with a brief review on Retinex for-
mulations, following the classification of Bertalmío et al. [6]
who distinguish two categories: one-dimensional and two-
dimensional Retinex formulations. We detail the expressions
of two contributions: the original Retinex formulation of
Land and McCann [19] that belongs to the first category,
and the KBR formulation of Bertalmío et al. [6] that belongs
to the second one. Then, we propose an expression that gen-
eralizes both formulations.

3.1.1 One-Dimensional Retinex Formulations

In the Retinex formulation of Land and McCann, the per-
ceived color L(x) = (L1(x), L2(x), L3(x)) of an image
u = (u1, u2, u3) expressed in the RGB color space at the
pixel location x can be written

Lk(x) = 1

N

N∑

i=1

di f f (uk(x), uk(yi )), k = 1, 2, 3, (12)

where

di f f (uk(x), uk(yi )) =
T−1∑

t=0

Θε log
uk(γyi ,x (t + 1))

uk(γyi ,x (t))

with Θε(.) =
⎧
⎨

⎩

. if |.| ≥ ε

0 otherwise

for N randomly distributed pixels yi satisfying uk(yi ) ≥
uk(x) and γyi ,x piecewise linear random paths joining yi
and x subdivided into T points γyi ,x (0), . . . , γyi ,x (T ), with
γyi ,x (0) = yi and γyi ,x (T ) = x , and such that

uk(γyi ,x (0)) = max
t∈{0...T } u

k(γyi ,x (t)). (13)

Condition (13) means that, along the path γyi ,x , the image uk

reaches its highest value at the pixel location yi .
The parameter ε serves as a threshold that guarantees that
small intensity changes are not taken into account in the
computation of the perceived color. Whereas the use of the
threshold enables to disregard changes due to noise in the
computation, it can also affect its accuracy as small gradi-
ents can indicate objects boundaries as well, especially when
dealing with natural images.

The use of random paths provides a good trade-off
between an accurate and a fast scan of the image content.
The choice of linear piecewise paths in order to scan the
image content is due to the particular geometry of the piece-
wise constant pictures that have been used in the seminal
experiments conducted by Land and McCann. However, it
turns out that linear piecewise paths are not adapted to nat-
ural images in the sense that many paths would be required
in order to produce a noise-free output, and this affects the
filtering time. Since then, the choice of using linear piece-
wise paths has been widely questioned and several more
recent Retinex formulations have incorporated more com-
putationally efficient paths, e.g., Marini and Rizzi [21] use
Brownian paths, whereas Cooper and Baqai [9] use double
spirals. However, as pointed out by Bertalmío et al. [6], none
of these approaches has been able to prevent the formation
of noise and artifacts, suggesting that this is an intrinsic lim-
itation of one-dimensional approaches.

3.1.2 Two-Dimensional Retinex Formulations

A two-dimensional Retinex formulation has been introduced
by Horn [16], who reformulated the Retinex as a Poisson
equation. This seminal approach has led to many two-
dimensional Retinex formulations (see, e.g., [6,20,34] for
more details). Among them, the KBR approach of Bertalmío
et al. [6] is inspired by the mathematical formulation of
Retinex proposed by Provenzi et al. [25]. In its general form,
KBR is given by

Lk(x) =
∑

y:uk (y)≥uk (x)

w(x, y) g

(
uk(x)

uk(y)

)

+
∑

y:uk (y)<uk (x)

w(x, y)

where g : ]0, 1] −→]0, 1] is a strictly increasing function,
and where w is a positive, symmetric and normalized ker-
nel. In the experiments they conducted, the authors chose
g(r) = A log(r) + 1 for some constant A, and w related
to the Gaussian kernel. By this choice of the function g, we
have

Lk(x) =
∑

y:uk (y)≥uk (x)

w(x, y)

[

A log

(
uk(x)

uk(y)

)

+ 1

]

+
∑

y:uk (y)<uk (x)

w(x, y)

= 1 +
∑

y:uk (y)≥uk (x)

w(x, y) A log

(
uk(x)

uk(y)

)

123



856 Journal of Mathematical Imaging and Vision (2018) 60:849–881

=
∑

y:uk (y)≥uk (x)

w(x, y)

[

A log

(
uk(x)

uk(y)

)

+ 1
∑

y:uk (y)≥uk (x) w(x, y)

]

(14)

Finally, let us point out that we can rewrite (14) as

Lk(x) =
∑

y:uk (y)≥uk (x)

w(x, y)
T−1∑

t=0

[
A [ log(uk(γy,x (t + 1))

− log(uk(γy,x (t)) ] + 1

T
∑

y:uk (y)≥uk (x) w(x, y)

]

(15)

where the curve γy,x joining y and x is subdivided into
T points γy,x (0), . . . , γy,x (T ), with γy,x (0) = y and
γy,x (T ) = x .
As mentioned in the introduction, the KBR formulation has
several advantages with respect to the original one: Its com-
putational complexity is much lower and it is less affected
by artifacts, noise, or haloes.

3.1.3 Reinterpreting Retinex Formulations

The two Retinex formulations aforementioned involve a dis-
cretization of ∇ log(uk), where ∇ is the Euclidean gradient,
as the difference

log(uk(γy,x (t + 1))) − log(uk(γy,x (t)))

is the discrete counterpart of

〈
∇ log(uk)(γy,x (t)),

.
γy,x (t)

〉
,

and we claim that ∇ log(uk) can be interpreted as an esti-
mation of the perceptual gradient of an image according to
Weber’s law in vision.

Indeed, given a uniform background I, Weber’s law states
that the following equality holds

δ I
I = c, (16)

where δI is the minimum intensity increment of I to which
the human sensitivity distinguish I and I + δI, and c is a
constant.
Hence, Weber’s law shows that the human sensitivity to an
intensity increment depends on the intensity of the back-
ground. In particular, it shows that human perception is more
sensitive to intensity changes in dark backgrounds than in
the bright ones. Then, formula (16) can be used to determine
equal increments of the perceived brightness B as

δ I
I = c δB (17)

fromwhich derives a formula for the perceived brightness by
integrating equality (17), i.e.,

B = 1

c
log I + b0 (18)

where b0 is a constant.
Finally, we obtain an estimation b of the perceived bright-

ness of a color image u from formula (18), given by

bk = 1

ck
log uk + bk0. (19)

From formula (19), we deduce that (1/ck)∇ log uk estimates
the gradient of the perceived brightness of a color image
according to Weber’s law, as we have

∇bk = 1

ck
∇ log uk . (20)

As a consequence, the Retinex formulations aforemen-
tioned can be interpreted as follows: The perceived color
L(x) at the pixel location x of a color image u : Ω ⊂
R
2 −→ R

3 is the channel-wise averagingMof the perceived
difference di f f (uk(x), uk(y)) between the pixel intensity
uk(x) and some other pixel intensities uk(y) in the image
domain Ω , the perceived difference being given by the inte-
gration along a path γy,x joining the two pixels of a quantity
f (∇ log uk) approximating the estimation (20) of the gradi-
ent of the perceived brightness. In the continuous setting, it
gives

Lk(x) = M{di f f (uk(x), uk(y)); y ∈ Ω ′ ⊂ Ω} (21)

with

di f f (uk(x), uk(y))=
∫ T

0
f (〈∇ log uk(γy,x (t)),

.
γy,x (t)〉) dt .

(22)

For the original Retinex formulation (12), we have

– Ω ′ = {N randomlydistributed pixels y such thatuk(y) ≥
uk(x) and such that for each y there exists a random
piecewise linear path γy,x joining y and x and such that
the restriction of uk along γy,x reaches its highest value
at y.}

– f : r −→ Θε r

– M = 1

N

∑N
i=1.

For the KBR formulation (15), we have:
– Ω ′= {pixels y such that uk(y) ≥ uk(x)}
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– f : r −→ A r + h with

h = 1

T
∑

y∈Ω ′ w(x, y)
.

– M = ∑
y∈Ω ′ w(x, y).

3.2 Extension of Retinex Formulations with
Covariant Derivatives

3.2.1 Limits of the Retinex Formulations

Formulae (21), (22) show that the gradient of the perceived
brightness is at the core of Retinex formulations. However,
we claim that the original Retinex formulation (12) and the
KBRone (15) suffer from, at least theoretically, several draw-
backs in order to reproduce accurately the perceived color
image.
First, we showed at the end of the previous section that the
estimation of the perceived gradient used in these formu-
lations does not match with the psychophysical estimation
(1/ck)∇ log uk in (20). Moreover, this latter assumes that
Weber’s law holds, but it is well known that Weber’s law
fails at low intensity levels, and we claim that the formulae
can then be improved by replacing (1/ck)∇ log(uk) with a
more accurate representation of the perceptual gradient, e.g.,
by taking into account more accurate psychophysical and
physiological data.

Secondly, one of the main properties of the HVS that any
algorithm devoted to reproduce the perceived color image
should take into account is color constancy, i.e., the ability
of the HVS to perceive colors almost independently of the
lighting of the scene. Whereas existing Retinex formulations
succeed in reproducing this ability under particular lighting
conditions and properties of the scene, it is not clear that they
are able to reproduce it in all cases, especially when natural
scenes are involved.

3.2.2 Georgiev’s Reinterpretation of the Perceived Gradient
of an Image

Georgiev [14] argues that the ability of the HVS to adapt its
perception of scenes to lighting conditions could be related to
an invariance property of the perceived gradient with respect
to relighting.

Indeed, he suggests that this latter is transformed as the
pixel intensities are under a change in lighting conditions,
the relighting being mathematically represented by a 3 × 3
diagonal strictly positive matrix field G acting on the pixel
intensities expressed in a trichromatic color space (e.g., LMS
or RGB). When the relighting is constant over the image
domain, i.e., when G is constant, the standard gradient can
serve as a definition of the perceived gradient as the stan-

dard differential operator d satisfies d(Gu) = Gdu (we
have replaced log u by u for simplification). However, it
fails to model invariance under nonconstant relighting, as
the standard derivative takes into account the variation of the
relighting (d(Gu) = dGu + Gdu). On the other hand, as
pointed out by Georgiev, a covariant derivative ∇u of a sec-
tion u satisfies an invariance property with respect to a frame
change. Indeed, under the frame change given by G−1, the
following transformations hold

{
u −→ Gu
ω −→ G dG−1 + GωG−1.

Hence, the expression of the covariant derivative of u in the
frame G−1 is given by

∇(G u) = dG u + G du + (G dG−1 + G ωG−1)Gu
= G du + Gωu

= G∇u,

meaning that the covariant derivative of a section follows the
same transformation rule as the section under a frame change.
Based on this observation, Georgiev proposes to model the
perceived gradient of an image as a covariant derivative,
which makes perceived gradients satisfy the same invariance
property as the pixel values under a relighting.

3.2.3 The Proposed Extension of the Retinex Formulations

It follows from the analysis performed in Sect. 3.2.2 that a
color image u : Ω ⊂ R

2 −→ R
3 can be considered as a

section of a G-associated vector bundle of rank 3 over Ω .
When the Lie group G is the set D+∗

3 of 3x3 diagonal strictly
positive matrices, this construction makes a light change be
represented by a moving frame change in the vector bundle.

Based on the limitations of the current Retinex formu-
lations mentioned in Sect. 3.2.1, we propose to replace
f (∇ log), where ∇ is the Euclidean gradient operator, by
a covariant derivative ∇ in formula (22), which gives

di f f (u(x), u(y)) =
∫ T

0
∇ ·

γ y,x (t)
u(γy,x (t)) dt (23)

where γy,x is a curve joining y and x of length T , fromwhich
we obtain a new formula for the perceived color image

L(x) = M
(∫ T

0
∇ ·

γ y,x (t)
u(γy,x (t)) dt

)

(24)

whereM is an averaging operator (not necessarily channel-
wise anymore).

The quantity (23) corresponds to

τ0,T ,γy,x u(y) − u(x)
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Fig. 1 Color appearance phenomena show that the perceptual differ-
ence between two pixel values does not necessarily correspond to their
value difference

where τ denotes the parallel transport map associated with
∇ (see formula (5)).

The introduction of a covariant derivative in formula (23)
raises the question of the path dependency of the percep-
tual difference between two pixel values. To the best of our
knowledge, this problem has not been addressed so far.

The dependency of the parallel transport map with respect
to the curve joining two points is determined by the curva-
ture of the covariant derivative (see formula (1)). Indeed, if
the covariant derivative is flat, then the parallel transport is
independent (in a homotopy class) of the curve joining the
points, and expression (23) can be simplified as

di f f (u(x), u(y)) = G(x)G−1(y)u(y) − u(x) (25)

whereG is themoving frame inwhich the covariant derivative
vanishes.
With respect to the moving frame change from the standard
one to G, the quantity G(x)G−1(y)u(y) − u(x) rewrites

G−1(y)u(y) − G−1(x)u(x). (26)

The fact that G in (26) varies with the pixel location is
actually coherent with a lot of color appearance phenom-
ena that make the perceived difference between the colors
at two different pixel locations do not correspond to their
difference u(x) − u(y), whatever the color space in which
the colors are represented is, i.e., whatever the transforma-
tion f (u(x)) − f (u(y)) (e.g., f = log). Figure 1 shows
an example of color appearance phenomena where the per-
ceived difference between u(x) and u(y) is not zero even if
u(x) = u(y).

Figure 2a shows that this perceptual difference is indepen-
dent of the path γ 1

y,x or γ 2
y,x joining y and x the eye follows,

Fig. 2 The perceptual difference between two pixel intensities may
depend on the path joining the two pixels the eye is following. a Path
independency of the perceptual difference between two pixel values. b
Path dependency of the perceptual difference between two pixel values

which suggests the use of a flat covariant derivative to com-
pute perceptual differences in Fig. 1. The path dependency
of the parallel transport map associated with a nonflat covari-
ant derivative suggests that the perceived difference between
two pixel values depends on the colors lying on a selected
path joining them, which seems to be coherent with human
perception as illustrated in Fig. 2b, where the perceptual dif-
ference between u(x) and u(y) depends on the path joining
x and y. Indeed, according to the path γ 1

y,x , the perceptual
difference is 0 and corresponds actually to the difference of
their pixel values. On the other hand, when the eye follows
the path γ 2

y,x , it perceives the same difference as shown in
Fig. 1.

Nonetheless, this analysis raises the problem of the choice
of the curves γy,x in formula (23) that wewill discuss inmore
detail in the next section.
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3.3 From Retinex Formulations to Variational
Models for Image Processing

3.3.1 Bertalmío et al.’s Variational Model

The original Retinex (12) and KBR (15) formulations suffer
from two main drawbacks when applied as algorithms to
correcting camera output images.

First, they are not idempotent, which implies that the algo-
rithms may have to be employed several times in order to
provide the desired results, but the number of iterations can
hardly be automatized, which made Bertalmío et al. [6] pro-
pose to replace the KBR algorithm by a PDE that involves
both KBR and the image u0 to be processed

∂uk

∂t
(x) = −uk(x) + Lk(x) − λ(uk(x) − uk0(x)). (27)

The PDE (27) provides an algorithm that performs KBR
iteratively but allows to control the output of the algorithm
through the parameter λ > 0.

Secondly, they both increase the pixel intensities, mean-
ing that they cannot correct overexposed images. To solve
that issue, Bertalmío et al. [6] suggested to modify the KBR
formulation (15) by anti-symmetrizing it.

Finally, combining these two modifications of KBR leads
to a PDE of the form

∂uk

∂t
(x) = − λ(uk(x) − u0(x)) − β(uk(x) − 1/2)

+ 2
∫

Ω

w(x, y)Sα(uk(x) − uk(y)) dy, (28)

where Sα is a differentiable function approximating

f : z −→
⎧
⎨

⎩

−1 if z < 0
0 if z = 0
1 if z > 0

and β > 0 is a parameter.
In [6], the approximation is based on Chebyshev polyno-

mials. In a more recent work [24], a more stable approxima-
tion has been proposed based on Bernstein polynomials.

The PDE (28) turns out to be the gradient descent of a
differentiable approximation of the variational problem

uk = argmin
uk

λ

2

∫

Ω

(
uk(x) − uk0(x)

)2
dx

+ β

2

∫

Ω

(
uk(x) − 1/2

)2
dx

−
∫

Ω×Ω

w(x, y) |uk(y) − uk(x)| dx dy. (29)

The second term of the energy (29) is related to the gray-
world hypothesis in visual adaptation (see [23] and references
therein formore details). The third termperforms (local) con-
trast enhancement. Both the second and third terms enable to
significantly reduce the color cast of the initial image u0, i.e.,
they tend to make the model (29) perform color constancy.

The aim of the model (29) is to construct an image, given
by a solution u of the model that provides a better represen-
tation of the scene captured by the camera than the camera
output image u0. Ideally, the image u would be perceived on
a screen as the original scene is perceived with the naked eye.

Finally, note that the model is equivalent to

uk = argmin
uk

λ + β

2

∫

Ω

(

uk(x)− 1

λ + β
(λuk0(x) + β

1

2
)

)2

dx

−
∫

Ω×Ω

w(x, y) |uk(y) − uk(x)| dx dy.
(30)

3.3.2 The Proposed Variational Model

Following the connection established in [6] between theKBR
formulation (15) and the variational model (29), we derive
the following variational model from the generalization of
KBR (24)

u = argmin
u

λ + β

2

∫

Ω

∥
∥
∥
∥u(x) − 1

λ + β
(λu0(x) + βv0)

∥
∥
∥
∥

2

h(x)
dx

−
∫

Ω×Ω

w(x, y) dτ (u(x), u(y)) dx dy (31)

where v0 is the section of coordinates (1/2, 1/2, 1/2) in the
standard frame, and the term dτ is defined by

dτ (u(x), u(y)) = ‖τ0,T ,γy,x u(y) − u(x)‖h(x) (32)

for some metric h that we interpret as a perceptual distance
between the pixels u(x) and u(y). In particular, if the covari-
ant derivative is compatible with the metric h, the perceptual
distance (32) is invariant with respect to a moving frame
change.

Finally, let us discuss the choice of the kernel w in (31)
and the curve γy,x in (32). In [23], the authors consider w

as a Gaussian kernel and rely this choice with perception, by
taking into account the fact that the strength of “chromatic
induction” between two different areas of a scene decreases
with their Euclidean distance. This perceptual interpretation
of the Euclidean distance between two pixel locations makes
us consider in the experiments performed in this paper the
straight line as the curve γy,x joining y and x . Note that
in most of the experiments we present in Sect. 7, we con-
sider flat covariant derivatives, meaning that the term (32)
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is independent of the chosen curve γy,x . The more complex
case of path-dependent perceptual difference, as illustrated
in Fig. 2(b), will be discussed in further work.

As in the Euclidean case (29), the solution u of the pro-
posed model (31) provides a more accurate representation
of the scene captured by the camera than the camera output
image u0. Moreover, for a well-chosen covariant derivative,
the analysis performed in Sect. 3.2 predicts that it should
provide a better representation of the scene than the solution
of the Euclidean model as well.

4 A Class of Covariant Derivatives
Parametrized by Lie Group
Representations

In Sect. 3, we constructed a variational model (31) for color
image correction that involves covariant derivatives on a G-
associated vector bundle of rank 3, but no explicit covariant
derivative was suggested. In Sect. 4, 5, we construct and
analyze a class of covariant derivatives, and relate them to
some properties of the HVS.

4.1 AVariational Problem for the Construction of
Optimal Connection 1-Forms

A covariant derivative on a G-associated vector bundle is
completely determined by a g-valued connection 1-form. In
what follows, we remind the reader of the construction of
optimal connection 1-forms in [2], which is inspired by the
Beltrami framework in [28].

The key observation that led to the proposed construction
of optimal connection 1-forms was the following. Under the
identification between a section S of a G-associated vector
bundle and aG-equivariant function fS on the corresponding
principal G-bundle, we have the following correspondence

d
Xh

fS ←→ ∇X S

where X is a tangent vector field on the base manifold, Xh

denotes its horizontal lift with respect to a horizontal distri-
bution on the principal G-bundle (see illustration in Fig. 3),
and ∇ is the covariant derivative induced by the horizontal
distribution.

Hence, a geometry of color perception, which is given
by a covariant derivative on a G-associated vector bundle
according to the analysis performed in Sect. 3, is determined
by a horizontal distribution of rank 2 on aG-principal bundle,
where G is a Lie group acting on a color space.

Let I = (I 1, . . . , I n) : Ω ⊂ R
2 −→ R

n be an n-channel
image where Ω is open that we express as a vector-valued
function in the standard basis (e1, . . . , en) of R

n , i.e., we set
I = I 1e1 + · · · I nen . Let (ρ,G) be a group representation

Fig. 3 Horizontal distribution HP on a G-principal bundle P over M
(up) and the induced horizontal lift of a tangent vector field on M at
three points x1, x2, x3 (down)

on R
n where G is of dimension d and is equipped with a

Riemannian metric B. Let (P, πP ,Ω,G) be the principal
G-bundle where P = Ω ×G and πP : Ω ×G −→ Ω is the
standard projection. Let V P be the vertical bundle of P and
HP be a horizontal bundle of P .

We assume that P is equipped with a Riemannian metric
Q1 constructed as follows: Let ( f1, f2) be an orthonormal
frame of TΩ with respect to the Euclidean metric on Ω .
Let ( f h1 , f h2 ) be the horizontal lift of ( f1, f2) on T P with
respect to HP . Let (X1, . . . , Xd) be an orthonormal basis of
TeG = g with respect to B. Let (Xv

1 , . . . , X
v
d) be the frame

of V P , defined for i = 1, . . . , d by

Xv
i (p) =

(
d

dt
p · exp(t Xi )

)

|t=0

Then, considering the metric Q1 on P given by the Identity
matrix field Id+2 in the frame ( f h1 , f h2 , Xv

1 , . . . , X
v
d) of T P

turns (P, Q1) into a Riemannian manifold.
We consider a second Riemannian metric on P of the

form I2 ⊕B in the frame ( f1, f2, Xv
1 , . . . , X

v
d) , from which
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we derive a Riemannian metric Q2 on P × R
n of the form

I2 ⊕ B ⊕ κ In , in the frame
( f1, f2, Xv

1 , . . . , X
v
d , e1, . . . , en), with κ > 0.

Let J be the (ρ,G)-equivariant function on P given by

P −→ R
n

J : (x, g) −→ ρ(g)−1 I (x)
(33)

and ϕ its graph, i.e.,

P −→ P × R
n

ϕ : (x, g) −→ (x, g, J (x, g))
(34)

Then ϕ can be viewed as an embedding of the Rieman-
nian manifold (P, Q1) into the Riemannian manifold (P ×
R
n, Q2), and we consider its Dirichlet energy X(ϕ) along

the section s of P defined by s(x) = (x, e), which is given
by

X(ϕ) =
∫

s
Q1

μν ∂ϕi

∂xμ

∂ϕ j

∂xν

Q2i j dΩ (35)

where (x1, x2) denotes the cartesian coordinates system of
Ω .

Finally, minimizing the energy (35) with respect to the
horizontal distribution HP along s, and denoting by Hopt

s P
the solution, we obtain the restriction along s of an optimal
connection 1-form ωopt

Hopt
s P =: ker ωopt

|s ,

and the pulldown Aopt of wopt with respect to s on M given
by

Aopt := s∗ωopt. (36)

Then the connection 1-form Aopt determines the connection
1-form on the associated vector bundle P ×ρ R

n given by
ρ∗(−Aopt) in the moving frame of P ×ρ R

n induced by s,
i.e., the standard frame (e1, . . . , en) of R

n .
In what follows, we compute and give the explicit expres-

sions of the connection 1-forms Aopt (36) and ρ∗(−Aopt) for
different group representations (ρ,G), and establish connec-
tions with vision.

4.2 The Standard Representation of the GroupR
+∗

onR
n

4.2.1 Explicit Expression of the Optimal Connection 1-Form

Denoting bya the standard parametrization of the groupR
+∗,

and equipping it with the metric B given by the constant δ in
the standard frame ∂/∂a, we obtain

Aopt =
∑n

k=1 I k d I k

δ/κ +∑n
k=1 (I k)2

⊗ ∂/∂a (37)

Then, the corresponding connection 1-form in the associated
bundle P ×ρ R

n is given by

ρ∗(−Aopt) = −
∑n

k=1 I k d I k

δ/κ +∑n
k=1 (I k)2

In (38)

in the frame (e1, . . . , en).

4.2.2 The Optimal Connection 1-Form for n = 1 and Its
Relation with Weber–Fechner’s Law in Vision

Under the change of variables J := I 2, the connection 1-
form (37) for n = 1 writes

Aopt = 1

2

d J

δ/κ + J
⊗ ∂/∂a, (39)

and the quantity

d J

δ/κ + J

in (39) encodes Weber–Fechner’s law in psychophysics.
Indeed, this law, named after the german physicians E. H.
Weber and G. Fechner, relates the actual change in a light
stimuli and the perceived change. It has been formulated by
Fechner, based on a psychophysical experiment conducted
earlier byWeber, and is actually a refinement of Weber’s law
(16) in the sense that it ismore accurate for intensity valuesJ
close to 0. More precisely, given an uniform background of
intensity J , Weber–Fechner’s law claims that the following
equality holds

δJ
m + J = c (40)

where δJ is the minimum intensity increment ofJ to which
the human sensitivity distinguish J and J + δJ , c is a
constant, m > 0 is a quantity often interpreted as internal
noise in the visual mechanism (its value will be discussed in
Sect. 7.2.3).

Weber–Fechner’s law holds for light intensities, while I
represents pixel values. However, when displaying I on a
screen, the light intensity reaching the eye is known to be
approximatively I 2.2 assuming that I ∈ [0, 1]. Hence, for I
being a gray-level image, we claim that the quantity

I d I

δ/κ + I 2
, (41)
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for δ/κ = m, is an approximation of the perceptual gradient
of I (under the identification between the differential and the
gradient of a function) that is more accurate than the quantity

d I

I

that appears in Retinex formulations (see Sect. 3.1.3), as this
latter is derived from (the less accurate)Weber’s law and acts
on pixel values and not on light intensities.

4.3 The Standard Representation of the Group D+∗
3

onR
3

4.3.1 Explicit Expression of the Optimal Connection 1-Form

Denoting by (a1, a2, a3) the standard parametrization of
the group D+∗

3 , and equipping it with the metric B given
by the diagonal matrix of three strictly positive constant
diag(δ1, δ2, δ3) in the standard frame
(∂/∂a1, ∂/∂a2, ∂/∂a3), we obtain

Aopt =
3∑

k=1

I k d I k

δk/κ + (I k)2
⊗ ∂/∂ak . (42)

Then, the corresponding connection 1-form in the associated
bundle P ×ρ R

3 is given by

ρ∗(−Aopt) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− I 1 d I 1

δ1/κ + (I 1)2
0 0

0 − I 2 d I 2

δ2/κ + (I 2)2
0

0 0 − I 3 d I 3

δ3/κ + (I 3)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(43)

in the frame (e1, e2, e3).

4.3.2 The Optimal Connection 1-Form and Its Relation with
Weber–Fechner’s Law in Color Vision

Under the change of variables

(J 1, J 2, J 3) := ((I 1)
2
, (I 2)

2
, (I 3)

2
),

the connection 1-form (42) writes

Aopt =
3∑

k=1

1

2

d Jk

δk/κ + J k
⊗ ∂/∂ak, (44)

and the triplet

(
d J 1

δ1/κ + J 1
,

d J 2

δ2/κ + J 2
,

d J 3

δ3/κ + J 3

)

(45)

in (44) encodes Weber–Fechner’s law in color.
Indeed, for color images, a natural question concerns the
choice of the color space in which the image I has to be
expressed. It is known that the three types of cones in the
retina (S (short) cones, M (medium) cones, and L (large)
cones) have a response that follows Weber–Fechner’s law
with respect to the light intensity reaching the eye (assuming
that the scene has not a high dynamic range [12]). It sug-
gests that the right color space to consider must be related
to the trichromatic theory of colors (also known as Young–
Helmholtz theory), which states that the LMS cones are
responsible for the color vision in the sense that each of them
is sensitive to a different wavelength and that each color can
be reproduced as a combination of these three wavelengths.
Hence, the color space RGB is a good candidate, as the
S resp. M resp. L cones have their peak response in the
blue resp. green resp. red wavelength (see, e.g., [7] for more
details). However, each type of cone has a different value
for the constant c in (40), which implies that the quantity m
varies with k and the identification (δ1/κ, δ2/κ, δ3/κ) : =
(m1,m2,m3) makes the connection 1-form (42) be a good
candidate to model the perceptual gradient of a color image.
(The values (m1,m2,m3) will be discussed in Sect. 7.2.3.)

4.4 Explicit Expression of the Connection 1-Form for
the Standard Representation of SO(2) onR

2

Parametrizing SO(2) by an angle θ , and equipping it with the
metric B given by a strictly positive constant δ in the frame
∂/∂θ , we obtain

Aopt = (I 1d I 2 − I 2 d I 1)

δ/κ + [(I 1)2 + (I 2)2] ⊗ ∂/∂θ. (46)

Then, the induced connection 1-form on P ×ρ R
2 is given

by

ρ∗(−Aopt)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
(I 1d I 2 − I 2 d I 1)

δ/κ + [(I 1)2 + (I 2)2]

− (I 1d I 2 − I 2 d I 1)

δ/κ + [(I 1)2 + (I 2)2] 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(47)

in the frame (e1, e2).
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In polar coordinates, i.e., writing I 1 = r cosϕ, I 2 = r sin ϕ

, the connection 1-form (47) writes

ρ∗(−Aopt) =

⎛

⎜
⎜
⎜
⎜
⎝

0
r2

δ/κ + r2
dϕ

− r2

δ/κ + r2
dϕ 0

⎞

⎟
⎟
⎟
⎟
⎠

. (48)

4.5 Representations of SO(2) onR
3

4.5.1 Explicit Expression of the Connection 1-Form for a
Representation of SO(2) onR

3

A group representation ρ of SO(2) on R
3 is parametrized

by the plane P in R
3 left invariant by the set of rotations

ρ(SO(2)), and we denote it by ρP .
Geometric algebra [10] is a powerful tool to represent

geometric objects with algebraic expressions, and a plane P
in R

3 equipped with the basis (e1, e2, e3) is determined by a
bivector γ12 e1e2 + γ13 e1e3 + γ23 e2e3, where γ 2

12 + γ 2
13 +

γ 2
23 = 1.
Parametrizing SO(2) by an angle θ , and equipping it with

the metric B given by a strictly positive constant δ in the
frame ∂/∂θ , we obtain

Aopt =
(

(−γ12 I 2 − γ13 I 3) d I 1

den
+ (γ12 I 1 − γ23 I 3) d I 2

den

+ (γ13 I 1 + γ23 I 2) d I 3

den

)

⊗ ∂/∂θ (49)

where

den = δ/κ +
[
(γ12 I

2 + γ13 I
3)

2 + (γ12 I
1 − γ23 I

3)
2

+(γ13 I
1 + γ23 I

2)
2
]
. (50)

Writing the 1-form Aopt as A1 ⊗ ∂/∂θ , the induced con-
nection 1-form on P ×ρP R

3 is given by

ρP∗ (−Aopt) = −A1

⎛

⎝
0 −γ12 −γ13

γ12 0 −γ23
γ13 γ23 0

⎞

⎠ (51)

in the frame (e1, e2, e3).
Let F = ( f1, f2, f3) be the orthonormal frame of R

3

where f2, f3 ∈ P , given by the matrix

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−γ13
γ12 + γ23

f

1 − γ13(γ13 − γ12 + γ23)

f

γ12
γ13 − γ23

f

1 − γ12(γ12 − γ23 − γ13)

f

γ23
γ12 + γ13

f

−1 + γ23(γ23 + γ13 − γ12)

f

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(52)

in the frame (e1, e2, e3), where

f = √
2 + 2 (γ12γ13 + γ12γ23 − γ13γ23).

Then, the expression of the connection 1-form
ρP∗ (−Aopt) in the frame F is F−1ρP∗ (−Aopt)F , which
gives

⎛

⎝
0 0 0
0 0 A1

0 −A1 0

⎞

⎠ . (53)

Moreover, we can show that A1 can be rewritten as

A1 = F−1(I )2 d F−1(I )3 − F−1(I )3 d F−1(I )2

δ/κ + ‖(F−1(I )2,F−1(I )3)‖2
. (54)

We then observe that the connection 1-form (53) is related
to the connection 1-form (47) where (I 1, I 2) is replaced
by the projection of (I 1, I 2, I 3) on the plane P , i.e., by
(F−1(I )2,F−1(I )3).
Finally, writing (I 1, I 2, I 3) = (a, r cosϕ, r sin ϕ) in the
frame F , the connection 1-form (53) can be reformulated
as

ρ∗(−Aopt) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0

0 0
r2

δ/κ + r2
dϕ

0 − r2

δ/κ + r2
dϕ 0

⎞

⎟
⎟
⎟
⎟
⎠
. (55)

4.5.2 Relation with Vision: From Trichromacy to Opponency
and Hue Change

As mentioned above, Weber’s and Weber–Fechner’s laws
are related to the trichromatic theory of color vision. Color
opponency is another theory of color vision that is actually
complementary to the trichromatic theory in the sense that it
appears at a later stage in the visual pathway. More precisely,
whereas the trichromatic theory appears at the retina level,
experiments show that the three types of cones and their sig-
nals are then transformed in the brain into color opponent
mechanisms that have been detected in the lateral genicu-
late nucleus and the visual cortex. The three opponencies
that are physiologically implemented are of the form: white–
black, red–green, blue–yellow, and the transformation from
the LMS space to the opponency space O1O2O3 is given by
the 3 × 3 matrix

⎛

⎝
O1

O2

O3

⎞

⎠ =
⎛

⎝
1/

√
3 1/

√
3 1/

√
3

1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 −2/

√
6

⎞

⎠

⎛

⎝
L
M
S

⎞

⎠ (56)
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The transformation matrix (56) corresponds to expressing
the signal in the basis (52) parametrized by γ12 = −γ13 =
γ23 = 1/

√
3. Note that the matrix (56) is special orthogonal

and makes the white–black, red–green, and yellow–blue axis
be orthogonal to each others.

Given a color O1O2O3 obtained by the transformation
(56) where the LMS space has been replaced by the RGB
space, its component O1 corresponds to the intensity of
the color, up to a multiplication by the constant

√
3. The

opponency color space also exhibits a key notion in color
vision, the hue H (see, e.g., [4]), which is defined as
H = arctan(O3/O2). Finally, the chroma C of the color

is C =
√
O2
2 + O2

3 .
We deduce that the group representation of SO(2) on the

RGB color space, seen as a subspace of R
3, parametrized by

γ12 = −γ13 = γ23 = 1/
√
3 encodes color transformations

that preserve the intensity and chroma, but modify the hue.

4.6 Explicit Expression of the Connection 1-Form for
the Standard Representation of SO(3) onR

3

Parametrizing SO(3) by the Euler angles (θ1, θ2, θ3), and
equipping it with the metric B given by

⎛

⎝
δ 0 δ sin θ2
0 δ 0

δ sin θ2 0 δ

⎞

⎠

in the frame (∂/∂θ1, ∂/∂θ2, ∂/∂θ3) where δ > 0, we obtain

Aopt = − (I 1d I 2 − I 2d I 1)

δ/κ + ‖I‖2 ⊗ ∂/∂θ3

+ (I 1d I 3 − I 3d I 1)

δ/κ + ‖I‖2 ⊗ ∂/∂θ2

− (I 2d I 3 − I 3d I 2)

δ/κ + ‖I‖2 ⊗ ∂/∂θ1. (57)

Then, the induced connection 1-form on P ×ρ R
3 is given

in the frame (e1, e2, e3) by

ρ∗(−Aopt)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
(I 1d I 2 − I 2d I 1)

δ/κ + ‖I‖2
(I 1d I 3 − I 3d I 1)

δ/κ + ‖I‖2

− (I 1d I 2 − I 2d I 1)

δ/κ + ‖I‖2 0
(I 2d I 3 − I 3d I 2)

δ/κ + ‖I‖2

− (I 1d I 3 − I 3d I 1)

δ/κ + ‖I‖2 − (I 2d I 3 − I 3d I 2)

δ/κ + ‖I‖2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(58)

In spherical coordinates, i.e.,writing I 1 = r sin θ cosϕ, I 2 =
r sin θ sin ϕ, I 3 = r cos θ , the connection 1-form (58)
writes

r2

δ/κ + r2
×
⎡

⎣sin2 θ dϕ

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠

+(cos θ sin θ sin ϕ dϕ − cosϕ dθ)

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠

−(cos θ sin θ cosϕ dϕ − sin ϕ dθ)

⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠

⎤

⎦.

(59)

5 Flatness Property of the Constructed
Covariant Derivatives and a NewOne

In this section, we give the expressions of the curvature 2-
forms F(Aopt) of the connection 1-forms Aopt in (37), (42),
(46), (49), (57). Then, we give some conditions on the param-
eter δ/κ and the image I such that the curvature 2-forms
vanish, and from which we determine the moving frames G
in which the corresponding connection 1-forms in the asso-
ciated bundles P ×ρ R

n vanish.

5.1 The Standard Representation ofR
+∗ onR

n

This is a trivial case as we have the following result.

Proposition 3 The curvature of the connection 1-form Aopt

in formula (37) is 0.

Proof As R
+∗ is commutative, the term [Aopt, Aopt ] in the

expression of the curvature 2-form (see formula (3)) vanishes
and the curvature 2-form F(Aopt) corresponds tod Aopt. Then
a straightforward computation gives d Aopt = 0. ��
In the following proposition, we determine a set of moving
frames in which the corresponding connection 1-form in the
associated bundle P ×ρ R

n vanishes.

Proposition 4 The connection 1-form (38) vanishes in the
frames whose matrix representations are

μ

√
√
√
√δ/κ +

n∑

k=1

(I k)2 In (60)

in the frame (e1, . . . , en), for μ > 0.

Proof Let G be a moving frame defined in (60). From the
change frame formula of a connection 1-form (see expression
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(2)), a straightforward computation shows that the connec-
tion 1-form (38) is 0 in the moving frame G. ��

5.2 The Standard Representation of D+∗
3 onR

3

This is a trivial case and we have the following result.

Proposition 5 The curvature of the connection 1-form Aopt

given by formula (42) is 0.

Proof The proof is the same as the one of Prop. 3. ��
In the following proposition, we determine a set of moving
frames in which the corresponding connection 1-form in the
associated bundle P ×ρ R

3 vanishes.

Proposition 6 The connection 1-form (43) vanishes in the
frames whose matrix representations are

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ

√

δ1/κ + (I 1)2 0 0

0 μ

√

δ2/κ + (I 2)2 0

0 0 μ

√

δ3/κ + (I 3)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(61)

in the frame (e1, e2, e3), for μ > 0.

Proof The proof is the same as the one of Prop. 4. ��

5.3 The Standard Representation of SO(2) onR
2

5.3.1 The General Case

Unlike the covariant derivatives induced by the standard rep-
resentations of R

+∗ on R
n (37) and D+∗

3 on R
3 (42), the

covariant derivative induced by the standard representation
of SO(2) on R

2 (46) is not necessarily flat, as shown in the
following proposition.

Proposition 7 The connection 1-form Aopt in (46) vanishes
if and only if δ/κ ∈ {0,∞} or d I 1 ∧ d I 2 = 0.

Proof As thegroupSO(2) is commutative, the term [Aopt, Aopt ]
vanishes and the curvature F(Aopt) of Aopt corresponds to
d Aopt (see formula (3)) . Then, computing d Aopt gives

d Aopt = 2 δ/κ

[δ/κ + ‖I‖2]2
d I 1 ∧ d I 2 ⊗ ∂/∂θ. (62)

��
In the polar form, the curvature writes

d Aopt = 2 δ/κ

(δ/κ + r2)2
r dr ∧ dϕ ⊗ ∂/∂θ. (63)

Remark The quantity d I 1∧d I 2 corresponds to the Jacobian
of the function (I 1, I 2). Assuming that δ/κ /∈ {0,∞}, it fol-
lows from the theorem of Sard that the curvature F(Aopt)

vanishes on Ω if and only if there exists F such that
F(I 1(x), I 2(x)) = 0 ∀x ∈ Ω .

The matrix representation of a smooth orthonormal mov-
ing frame G of P ×ρ R

2 is of the form

⎛

⎝
cosα − sin α

sin α cosα

⎞

⎠ (64)

in the standard frame (e1, e2), for some α ∈ C∞(Ω).
By the frame change formula (2), the connection 1-form (48)
is given by

⎛

⎜
⎜
⎜
⎜
⎝

0 −dα + r2

δ/κ + r2
dϕ

dα − r2

δ/κ + r2
dϕ 0

⎞

⎟
⎟
⎟
⎟
⎠

. (65)

in the moving frame G (64).
In what follows, we study some cases where the curvature

2-form given by (62) and (63) vanishes.

5.3.2 The limit cases δ/κ ∈ {0,∞}

Assuming that δ/κ = 0, it follows from (65) that the moving
frame in which the connection 1-form in P ×ρ R

2 vanishes
is

⎛

⎝
cosϕ − sin ϕ

sin ϕ cosϕ

⎞

⎠ .

Formula (62) also shows that the connection 1-form (46) is
flat for δ/κ = ∞. In this case, the connection 1-form in
P ×ρ R

2 vanishes in the standard frame (e1, e2).

5.3.3 The Case r or ϕ is Constant

The case dϕ = 0 is trivial as the connection 1-form in P ×ρ

R
2 vanishes in the standard frame (e1, e2) (see expression

(48)).
For dr = 0, we deduce from formula (65) that the moving

frame G in which the connection 1-form vanishes satisfies

α = r2

δ/κ + r2
ϕ,

123



866 Journal of Mathematical Imaging and Vision (2018) 60:849–881

i.e., the matrix representation of G is

⎛

⎜
⎜
⎜
⎜
⎝

cos

(
r2

δ/κ + r2
ϕ

)

− sin

(
r2

δ/κ + r2
ϕ

)

sin

(
r2

δ/κ + r2
ϕ

)

cos

(
r2

δ/κ + r2
ϕ

)

⎞

⎟
⎟
⎟
⎟
⎠

(66)

in the standard frame (e1, e2).

5.4 Representations of SO(2) onR
3

5.4.1 The General Case

The flatness property of the covariant derivative associated
with the connection 1-form (49), given by a representation
of SO(2) on R

3, is induced by the flatness property of the
covariant derivative associated with connection 1-form (46),
given by the standard representation of SO(2) on R

2. Indeed,
we have the following result.

Proposition 8 The curvature 2-formof the connection1-form
(49) vanishes if and only if δ/κ ∈ {0,∞} or d F−1(I )2 ∧
d F−1(I )3 = 0.

Proof Asmentioned in Sect. 2.1, a curvature 2-form is trans-
formed in a tensorial way with respect to a frame change.
Hence, the curvature 2-form F(Aopt) (49), where Aopt =
s∗ωopt, vanishes if there exists g ∈ C∞(Ω; SO(3)) such
that F((g · s)∗ωopt) = 0 vanishes. Then, Prop. 8 is a conse-
quence of formulae (53), (54) and Prop. 7. ��
In what follows, we study some cases where the curvature
2-form vanishes. To that purpose, we write I of the form
(a, r cosϕ, r sin ϕ) in the frame F (52).

5.4.2 The Limit Cases δ/κ ∈ {0,∞}

We deduce from Sect. 5.3.2 that the connection 1-form given
by (51) vanishes in the frameF for δ/κ = ∞, and it vanishes
in the moving frame whose matrix representation is

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0

0 cosϕ − sin ϕ

0 sin ϕ cosϕ

⎞

⎟
⎟
⎟
⎟
⎠

in the frame F for δ/κ = 0.

5.4.3 The Case r or ϕ is Constant

We deduce from Sect. 5.3.3 that the connection 1-form given
by (51) vanishes in the frame F for d ϕ = 0, and it vanishes

in the moving frame whose matrix representation is given
by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 cos

(
r2

δ/κ + r2
ϕ

)

− sin

(
r2

δ/κ + r2
ϕ

)

0 sin

(
r2

δ/κ + r2
ϕ

)

cos

(
r2

δ/κ + r2
ϕ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(67)

in the frame F for dr = 0.

5.4.4 Relation with Hue Maps in Vision

We consider the representation parametrized by

γ12 = −γ13 = γ23 = 1/
√
3

in the RGB color space.
Then, for δ/κ = 0, the connection 1-form (51) vanishes

in the moving frame G given by

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 cos H − sin H

0 sin H cos H

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(68)

in the frame (52), where H is the hue of the image I . Then,
connections with vision and neuroscience can be established.
Indeed, under the splitting intensity–chrominance, the mov-
ing frame (68) exhibits the moving frame

⎛

⎝
cos H − sin H

sin H cos H

⎞

⎠ (69)

in the chrominance plane, which corresponds to the hue field,
also called hue maps, introduced by Ben-Shahar and Zucker
[4], motivated by the key role of the hue in color vision from
both physiological and psychophysical viewpoints. Indeed,
on the one hand, neurophysiological findings “imply the exis-
tence of neural structures that explicitly encode the hue” and
“neurophysiological evidence of huemaps is nowemerging.”
On the other hand, the hue provides fundamental informa-
tion about edges of objects in a scene and can then be useful
to describe properties of the HVS that are related to edge
detection like filling-in phenomena and color constancy.
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5.5 The Standard Representation of SO(3) onR
3

5.5.1 Explicit Expression of the Curvature

As in the cases of the representations of SO(2) onR
2 andR

3,
the covariant derivative induced by the standard representa-
tion of SO(3) on R

3 is not necessarily flat. Indeed, we have
the following result.

Proposition 9 The curvature of the connection 1-form (57)
vanishes if and only if δ/κ ∈ {0,∞} or

d I 1 ∧ d I 2 = d I 1 ∧ d I 3 = d I 2 ∧ d I 3 = 0.

Proof Unlike R
+∗ and SO(2), the group SO(3) is not com-

mutative. Hence, the curvature of the connection 1-form Aopt

(57) is F(Aopt) : = d Aopt + [Aopt , Aopt], which gives

F(Aopt) = 2 δ/κ
(
δ/κ + ‖I‖2)2

[
d I 1 ∧ d I 2 ⊗ ∂/∂θ3

+d I 1 ∧ d I 3 ⊗ ∂/∂θ2

+d I 2 ∧ d I 3 ⊗ ∂/∂θ1

]
. (70)

��
Assuming that δ/κ /∈ {0,∞}, we deduce from the SO(2)
case that the curvature vanishes on Ω if and only if there
exist three functions F12, F13, F23 such that

F12(I
1, I 2) = F13(I

1, I 3) = F23(I
2, I 3) ≡ 0.

In spherical coordinates, i.e.,writing I 1 = r cosϕ sin θ , I 2 =
r sin ϕ sin θ , I 3 = r cos θ , the curvature 2-form writes

F(Aopt) = 2 δ/κ

(δ/κ + r2)2
×

[
(r sin2 θ dr ∧ dϕ + r2 cos θ sin θ dθ ∧ dϕ) ⊗ ∂/∂θ3

+(−r cosϕ dr ∧ dθ + r cos θ sin θ sin ϕ dr ∧ dϕ

− r2 sin2 θ sin ϕ dθ ∧ dϕ) ⊗ ∂/∂θ2

+(−r sin ϕ dr ∧ dθ − r cos θ sin θ cosϕ dr ∧ dϕ

+r2 sin2 θ cosϕ dθ ∧ dϕ) ⊗ ∂/∂θ1

]
. (71)

In what follows, we study some cases where the covariant
derivative is flat and determine the moving frames in which
the connection 1-form vanishes.
The limit cases δ/κ ∈ {0,∞}. The case δ/κ = ∞ is trivial
as formula (58) shows that the connection 1-form vanishes
in the standard frame (e1, e2, e3). For δ/κ = 0, we have the
following result.

Proposition 10 The connection 1-form (59) vanishes in the
moving frames of the form (106).

Proof Computing G−1dG + G−1ρ∗(−Aopt)G for G of the
form (106) and ρ∗(−Aopt) in (59) gives 0. ��

The cases dϕ = dθ = 0. These are trivial cases as
the connection 1-form (59) vanishes in the standard frame
(e1, e2, e3).
The case dr = 0. Unlike the SO(2) case in Sect. 5.3, we
observe in (71) that the covariant derivative is not necessarily
flat when dr = 0. However, we show in Prop. 11 that the
covariant derivative is flat if the pixel values of the image I
belongs to a geodesic of S2r , the sphere of radius r in R

3, and
we give an explicit expression of a moving frame in which
the connection 1-form vanishes.

Recall that the geodesics of S2r are the circles of radius r
and center (0, 0, 0). A geodesic c of S2r is then of the form

c(t) = r cos(t) u + r sin(t) n × u

where n = (cos θ sin β, sin θ sin β, cosβ)T is normal to the
circle and u = (sin θ,− cos θ, 0)T is normal to n.
It follows that I = (I 1, I 2, I 3) is of the form

⎧
⎨

⎩

I 1 = r cos ϕ sin θ + r sin ϕ cos θ cosβ

I 2 = −r cos ϕ cos θ + r sin ϕ cosβ sin θ

I 3 = −r sin ϕ sin β

(72)

on S2r , for ϕ ∈ C1(Ω).
We have the following result.

Proposition 11 The covariant derivative induced by the con-
nection 1-form (59) with I of the form (72) is flat. Moreover,
the connection 1-form vanishes in the moving frame whose
matrix representationG is given by formula (107) in the frame
(e1, e2, e3), where

α = r2

δ/κ + r2
ϕ

Proof Under the assumption that the connection 1-form (59)
is induced by I of the form (72), straightforward computa-
tions show that

d I 1 ∧ d I 2 = d I 1 ∧ d I 3 = d I 2 ∧ d I 3 = 0

which implies that F(Aopt) = 0 according to (70).
Then, the matrix representation ρ∗(−Aopt) of the connec-

tion 1-form is of the form

r2

δ/κ + r2

⎛

⎜
⎜
⎜
⎜
⎝

0 cosβ dϕ − sin θ sin β dϕ

− cosβ dϕ 0 cos θ sin β dϕ

sin θ sin β dϕ − cos θ sin β dϕ 0

⎞

⎟
⎟
⎟
⎟
⎠
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in the standard frame (e1, e2, e3). Finally, applying the frame
change formulaG−1dG+G−1ρ∗(−Aopt)GwithG of the form
(107) gives 0. ��

5.5.2 Relation with the Helmholtz–Kohlrausch Effect in
Vision

The Helmholtz–Kohlrausch EffectA consequence of Weber’s
and Weber–Fechner’s laws is formulae to approximating the
perceived brightness of an image. However, there exist some
brightness perception phenomena that these two laws cannot
explain, as the Helmholtz–Kohlrausch (H–K) effect. The H–
K effect shows that the brightness of a color depends not
only on its luminance component, but on the chrominance
information (chroma, hue) as well.

In the spaceCIE L∗a∗b∗, Fairchild andPirrotta [11] devel-
oped a formula for the perceived brightness that takes into
account theH–Keffect and thatmatcheswith psychophysical
experiments. Denoting by L∗ the lightness, C∗ the chroma,
and H∗ the hue components of a color, they define the per-
ceived brightness L∗∗ as

L∗∗ = L∗ + ζC∗ (73)

where

ζ := (2.5 − 0.0025L∗)
(

0.116

∣
∣
∣
∣ sin

(
H∗ − 90

2

)∣
∣
∣
∣+ 0.085

)

.

From formula (73), we observe two properties of the H–K
effect:
1. For given lightness and hue, the brightness of a color is
proportional to the chroma. Figure 4 shows the extreme case,
i.e., where chromatic colors (i.e., chroma differs from 0) of
same lightness but different chrominance are compared to the
achromatic color (i.e., chroma equals 0) of same lightness.
2. For given lightness and chroma, the brightness of a color
varieswith its hue. For instance, bluish colors appear brighter
than the yellowish ones, as illustrated in Fig. 5.

Fig. 4 Helmholtz–Kohlrausch effect: chromatic colors appear brighter
than achromatic colors

Fig. 5 Helmholtz–Kohlrausch effect: brightness perception varies the
hue. Graphs taken from [11]

Expressing the H–K Effect in the Vector Bundle ContextThe
perceived brightness (73) can be interpreted as the l1 norm of
the vector (L∗, ζ C∗)T . In order to interpret it as a geometric
quantity in the vector bundle context, we replace the l1 norm
of the vector (L∗, ζ C∗)T by its l2 norm that can be written as
the l2 norm of the vector (L∗,C∗) with respect to the scalar
product

(
1 0
0 ζ 2

)

We claim that this replacement does not affect the accuracy
of the description of the perceived brightness as the l1 and l2
norms are equivalent.

Expressing I with itsCIE L∗a∗b∗ coordinates, andwriting
I = L∗e1 + a∗e2 + b∗e3, its perceived brightness can then
be interpreted as its norm with respect to the vector bundle
metric given by

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0

0 ζ 2 0

0 0 ζ 2

⎞

⎟
⎟
⎟
⎟
⎠

(74)

in the frame (e1, e2, e3), or equivalently its Euclidean norm
in the moving frame (e1, e2/ζ, e3/ζ ).

Finally, we showed in Sect. 5.5.1 that the connection 1-
form is flat and vanishes in the frames G of the form (106)
for δ/κ = 0, where (r , ϕ, θ) corresponds to the spherical
coordinates of the image I , and a straightforward compu-
tation gives G−1 I = (r , 0, 0)T . Then, assuming that I is
expressed with its CIE L∗a∗b∗ coordinates (L∗, a∗, b∗) in
the frame (e1, e2, e3) equipped with the metric (74), we have
r =

√
L∗2 + ζ 2C∗2, which corresponds to the (l2 counter-

part of the) color brightness L∗∗ (73).
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6 Analysis of the Variational Problem
Induced by the Constructed Covariant
Derivatives and a NewOne

In this section, we analyze the variationalmodel (31) induced
by the connection 1-forms (43), (51), (58), where we suppose
that the image I , from which the connection 1-forms are
constructed, is the initial image u0. Moreover, we assume
that the parameter β in (31) is 0, as we aim at analyzing
the effect of the variational model on the original image u0.
Finally, we construct a new connection 1-form that derives
from (43) and (58) and analyze the subsequent variational
model.

6.1 On the Solutions of the Variational Model

We study the existence and uniqueness of the solutions of
the variational problem (31) for β = 0, which is not straight-
forward due to the nonconvexity of the variational problem.
To that purpose, we follow the standard approach in convex
analysis, by considering a dual formulation of the variational
problem.

Indeed, we encode the L1 norm of the distance (32) as
a generalization of the nonlocal total variation on a vector
bundle, as shown in (11). Then, we obtain the following vari-
ational problem

argmin
u∈L2∩BV NL

w (E)

λ

2
‖u − u0‖2L2 − V BT V NL

w (u). (75)

We showed in [1] the existence of solution(s) in the dis-
crete case, whose expression is (are)

u = u0 − argmax
u∗∈Kw,1/λ

∥
∥
∥u0 − u∗

∥
∥
∥
2

L2
(76)

where the set Kw,1/λ is defined in formula (10). However,
due to the nonconvexity of the problem (76), the uniqueness
of the solutions is not guaranteed.

We pointed out in Sect. 3.3 that the perceptual distances
(32) are invariant with respect to a moving frame change,
provided that the covariant derivative is compatible with
the vector bundle metric. Hence, the variational model (31)
induced by a flat covariant derivative compatible with the
vector bundle metric can be formulated as

u = G
(

argmin
u

λ

2

∫

Ω

‖u(x) − G−1 u0(x)‖2 dx

−
∫

Ω×Ω

w(x, y)‖u(x) − u(y)‖ dx dy
)

(77)

where G is the orthonormal moving frame in which the con-
nection 1-form vanishes.

The variational model in (77) is the Euclidean restriction
of the model (31) that we studied in [3]. Then, the expression
of the solutions of the model (77) in the discrete case is

u = u0 − G argmax
u∗∈K 0

w,1/λ

‖G−1u0 − u∗‖L2 (78)

where K 0
w,1/λ is the Euclidean restriction of the convex set

Kw,1/λ defined in (10).

6.2 The Standard Representation of D+∗
3 onR

3

Weshowed in the previous section that the connection 1-form
(43) can be identified with minus the perceptual gradient of
a color image according to Weber–Fechner’s law. Based on
this observation, we consider from now on the connection 1-
form given by minus the connection 1-form (43). Assuming
that it is constructed from u0, it gives

ρ∗(Aopt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u10 du
1
0

δ1/κ + (u10)
2 0 0

0
u20 du

2
0

δ2/κ + (u20)
2 0

0 0
u30 du

3
0

δ3/κ + (u30)
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(79)

in the frame (e1, e2, e3).
A straightforward computation shows that the correspond-

ing covariant derivative is flat as well and that it vanishes in
moving frames of the form

G = diag

⎛

⎝

⎧
⎨

⎩

1

μ

√

δk/κ + (uk0)
2

⎫
⎬

⎭
, k = 1, 2, 3

⎞

⎠ (80)

in the standard frame (e1, e2, e3) for μ > 0. Moreover, it is
compatible with metrics of the form

h = diag
({

μ2
[
δk/κ + (uk0)

2
]}

, k = 1, 2, 3
)

(81)

in the standard frame (e1, e2, e3), which means that the gen-
eralized distance (32) on u0 can be written
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dτ (u0(x), u0(y)) = μ

[
3∑

k=1

(√

δk/κ + (uk0(y))
2
uk0(y)

−
√

δk/κ + (uk0(x))
2
uk0(x)

)]1/2
(82)

Finally, the variational model (31) induced by the connection
1-form (79) can be written in the form (77), and the solutions
u in the form (78).

6.3 The Set of Representations of SO(2) onR
3

We consider the variational model (31) associated with
the connection 1-form (51) induced by the representation
parametrized by

γ12 = −γ13 = γ23 = 1/
√
3 (83)

in the RGB color space.
The case δ/κ ∈ {0,∞}. For δ/κ = ∞, the connection 1-form
(51) vanishes in the standard frame (e1, e2, e3), meaning that
the variational model (31) is nothing but the Euclideanmodel
we introduced in [3], and which is the vectorial extension of
the model (29).
For δ/κ = 0, G being the moving frame in which the con-
nection 1-form (51) vanishes, and assuming that the space
of the representation is the RGB color space, a straightfor-
ward computation gives G−1u0 = (O10,C0, 0) where O10

encodes the intensity component of u0 and C0 stands for its
chroma component (see Sect. 4.5.2 for details). Then, it gives

dτ (u0(x), u0(y)) =
√

(O10(x) − O10(y))
2 + (C0(x) − C0(y))2

We deduce from (77) that the solutions of the model (31) are
of the form

u = (O1,C cos H0,C sin H0)

in the frame F (52), where

(O1,C) = argmin
(O1,C)

λ

2

∫

Ω

[(O1,C)(x) − (O10,C0)(x)]2 dx

−
∫

Ω×Ω

w(x, y) ‖(O1,C)(x) − (O1,C)(y)‖ dx dy
(84)

Hence, the variational model (31) preserves the hue H0 of
the original image u0 and consists in modifying the local
contrasts of its intensity and chroma C0 components by pro-
cessing the vector-valued function (O10,C0).

The general case δ/κ �= {0,∞} In the general case, the
connection 1-form is given by formula (55) in the frame (52)
when assuming polar coordinates in the plane left invariant
by the rotations. By the representation of SO(2) we consider
in this section (83), the differential 1-form

r2

δ/κ + r2
dϕ

in (55) can be viewed as a regularization of the variations of
the hue component H0 of u0, the amount of the regularization
depending on the chroma C0 of u0 and the constant δ/κ .
Indeed, the angle ϕ corresponds to H0 and r to C0.

More precisely, for δ/κ well chosen, the variations of the
hue are highly reduced for colors with small chroma values
(the quantityC2

0/(δ/κ+ C2
0 ) is small), and almost unchanged

for colors with high chroma value (the quantity C2
0/(δ/κ +

C2
0 ) is close to 1). Reducing the variations of the hue at low

chroma values can be very useful for image processing tasks
as the hue component is noisy for low chroma values, and
especially for low intensity values.

We showed in Sect. 5.4.3 that the covariant derivative is
flat if r is constant. Then, assuming that r is constant along
the straight line joining the points y and x , we have

dτ (u0(x), u0(y)) = ‖G−1(x)u0(x) − G−1(y)u0(y)‖

where G is of the form (67) for (r , ϕ) = (C0, H0). It gives

dτ (u0(x), u0(y)) =
[
(O10(x) − O10(y))

2+

C0
2
(

2 − 2 cos

[
δ/κ

δ/κ + C0
2 (H0(x) − H0(y))

])]1/2
(85)

Then, we observe that dτ (u0(x), u0(y)) = 0 if and only if
u0(x) = u0(y). Moreover, the weight of the component hue
H0 is determined by the chroma C0. In particular, we have

lim
C0→∞ dτ (u0(x), u0(y)) =

√

(O10(x) − O10(y))2 (86)

We deduce that the model (31) tends to preserve regions of
constant intensity and chroma assuming that this latter is high
enough.

6.4 The Standard Representation of SO(3) onR
3

The limit casesδ/κ ∈ {0,∞} We showed in Sect. 5.5 that the
covariant derivative induced by the connection 1-form (58)
is flat if δ/κ ∈ {0,∞}.

For δ/κ = ∞, the connection 1-form vanishes in the stan-
dard Euclidean frame (e1, e2, e3), from which follows that
the generalized distance (32) is nothing but the Euclidean
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distance ‖u(x)−u(y)‖ between u(x) and u(y), and the inter-
pretation of this quantity greatly depends on the color space
in which the original image u0 is expressed. In particular,
assuming that u0 is expressed in its CIE L∗a∗b∗ coordinates,
the Euclidean distance is an approximation of the percep-
tual distance between u(x) and u(y) by definition of the CIE
L∗a∗b∗ color space. As a consequence, the variational model
(31) can be interpreted as enhancing an approximation of the
local perceived contrast of the original image u0.
For δ/κ = 0, and assuming that u0 is expressed with its
CIE L∗a∗b∗ coordinates in the frame (e1, e2, e3) equipped
with the metric (74), we showed in Sect. 5.5.2 that G−1u0 =
(L∗∗

0 , 0, 0), where G is the moving frame in which the con-
nection 1-form vanishes.

As a consequence, the generalized distance (32) on u0 is
nothing but the color brightness difference, i.e.,

dτ (u0(x), u0(y)) = |L∗∗
0 (x) − L∗∗

0 (y)|.

We deduce from (77) that the solutions u of the variational
model (31) are of the form

u = (L∗∗ cosϕ0 sin θ0, L
∗∗ sin ϕ0 sin θ0, L

∗∗ cos θ0) (87)

where

L∗∗ = argmin
L∗∗

λ

2

∫

Ω

(L∗∗(x) − L∗∗
0 (x))2

−
∫

Ω×Ω

w(x, y)|L∗∗(x) − L∗∗(y)| dx dy
(88)

i.e., L∗∗ is solution of the Euclidean model (29).
Hence, the variational model (31) consists in enhancing

the local contrast of the color brightness (according to the
definition of Fairchild and Pirrotta [11]) of the original u0.
Moreover, we deduce from expression (87) that the varia-
tional model preserves the hue H∗

0 of the original image,
as u corresponds a scaled version of u0 and a straight-
forward computation shows that the hue is invariant with
respect to scalings, and the frame changes from (e1, e2, e3)
to (e1, e2/ζ, e3/ζ ) and its inverse preserves the hue.

The general caseδ/κ /∈ {0,∞} In spherical coordinates, the
expression of the connection 1-form is given in (59), which
can be viewed as a regularization of the variations of the
angular components θ0, ϕ0 of the original image u0. As the
angular components determine the hue of a color, we deduce
that, as in the SO(2) case, the connection 1-form is a regu-
larization of the variations of the hue H∗

0 of u0. Nonetheless,
unlike the SO(2) case, the amount of the regularization is not
determined by the chroma of u0, but rather by its brightness

L∗∗
0 (i.e., the radius r0). More precisely, for δ/κ well cho-

sen, the variations of the hue are highly reduced for colors
with small brightness values (the quantity r20/(δ/κ + r20 ) is
small), and almost unchanged for colors with high brightness
values (the quantity r20/(δ/κ + r20 ) is close to 1). Regulariz-
ing the hue variations at low brightness values is very useful
for image processing tasks as the hue component is noisy in
dark areas.

We showed in Sect. 5.5 that the covariant derivative is flat
if the values of u0 belong to a geodesic of a sphere in R

3,
and the moving frame G in which it vanishes is of the form
(107). A straightforward computation gives

G−1u0 =
(

r0 cos

(
δ/κ

δ/κ + r20
ϕ0

)

, r0 sin

(
δ/κ

δ/κ + r20
ϕ0

)

, 0

)T

.

Then, assuming that the covariant derivative is flat along the
straight line joining y and x , we have

dτ (u0(x), u0(y)) =

r0

√
√
√
√2 − 2 cos

[
δ/κ

δ/κ + r20
(ϕ0(x) − ϕ0(y))

]

and

lim
r0→∞ dτ (u0(x), u0(y)) = 0,

from which we deduce that the variational model (31) tends
to preserve the regions whose colors belong to geodesics of
large radii in R

3.

6.5 A New Connection 1-Form Associated with the
Standard Representation of SO(3)× D+∗

3 onR
3

Based on the analysis of the connection 1-forms induced by
the standard representation of D+∗

3 on R
3 (79) and the stan-

dard representation of SO(3) onR
3 (58), and the properties of

the subsequent variational models, we construct a new con-
nection 1-form associated with the standard representation
of the group SO(3) ×D+∗

3 on R
3 in order for the subsequent

variational model to satisfy the properties of both variational
models.

More precisely, the proposed connection 1-form derives
from the following two observations:
(i) The connection 1-form (79) models Weber–Fechner’s
law on color images expressed in the RGB color space (see
Sect. 4.3.2).
(ii) For δ/κ = 0, the variationalmodel induced by connection
1-form (58) preserves the hue of the original image u0 (see

123



872 Journal of Mathematical Imaging and Vision (2018) 60:849–881

Sect. 6.4). Note that this analysis has been performed assum-
ing that the image is expressed in the CIE L∗a∗b∗ color space
equipped with the metric (74), but the same conclusion holds
in the RGB color space equipped with the Euclidean metric
where the hue is the one of the HSI color space. Actually,
in the RGB color space equipped with the Euclidean met-
ric, the model would satisfy the extra property of preserving
the saturation, defined as the ration chroma/intensity, of the
original image.

In order to construct a connection 1-form that yields a
variational model that encodes both properties, we take into
account the fact that both covariant derivatives are flat, mean-
ing that their connection 1-forms vanish in some moving
frames. Then, the desired connection 1-form is defined as
the connection 1-form vanishing in the frame given by the
matrix field of the form

G = G(SO3,u0) × G
(D+∗

3 ,G−1
(SO3,u0)

u0)
(89)

in the frame (e1, e2, e3), whereG(SO3,u0) is themoving frame
in which the connection 1-form (58) constructed from u0
vanishes and which is given by (106), and G

(D+∗
3 ,G−1

(SO3,u0)
u0)

is the moving frame in which the connection 1-form (79)
constructed from G−1

(SO3,u0)
u0 vanishes. It gives

G
(D+∗

3 ,G−1
(SO3,u0)

u0)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ

√
δ1/κ + r20 0 0

0 μ

√
δ2/κ + r20 0

0 0 μ

√
δ3/κ + r20

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (90)

Finally, we have

G−1(u0) =
(

μ r0

√
δ1/κ + r20 , 0, 0

)T

and we deduce that the solutions of the model (31) induced
by this connection 1-form are of the form

u = (r cosϕ0 sin θ0, r sin ϕ0 sin θ0, r cos θ0) (91)

where r is of the form (78) with

u0 = r0

√

δ/κ + (r0)2

and

G = 1/

(

μ

√

δ/κ + (r0)2
)

.

As expected, we deduce from expression (91) that the hue
and the saturation of u0 are preserved as they are invariant
with respect to scalings, while a contrast enhancement that
follows Weber–Fechner’s law has been applied to r0.

7 Experiments

7.1 On the Numerical Implementation

7.1.1 Numerical Scheme to Reach the Solutions of the
Variational Model

As in Sect. 6, we assume that the parameter β in the varia-
tional problem (31) is 0. In the discrete setting, it is of the
form

min
u∈X G(u) − F(A u) (92)

where A : X −→ Y is a linear operator between two
finite-dimensional vector spaces, and possessing an adjoint
operator A∗.
Then, as demonstrated in [30], the problem (92) has the fol-
lowing dual formulation

min
u∈X∗ (F ◦ A)∗(u) − G∗(u) (93)

which is equivalent to

min
η∈Y ∗ F∗(η) − G∗(A∗η) (94)

by definition of F .
Hence, the solutions u and η of the primal (92) and dual (94)
problems are linked by the following formulae

Au ∈ ∂F∗(η∗) (95)

A∗η∗ ∈ ∂G(u) (96)

Our proposal is then to adapt the Arrow–Hurwicz approach
with fixed step sizes presented in [8] to equations (95) and
(96). It gives the following iterative scheme.
∗ Initialization: Choose τ, σ > 0 s.t. τσ‖A‖2 < 4, and
(u0, η0) ∈ L2(E) × Γ (pr1(E)).
∗ Iterations (n ≥ 0): Update ut , ηt as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηt+1 = ηt + σ∇NL
w ut

max
(
1, ‖ηt + σ∇NL

w ut‖h
)

ut+1 = 1

1 + λτ

[
λτ u0 +

(
ut + τ∇NL

w
∗
ηt+1

)]
(97)
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The stopping criteria of the iterative scheme (97), foru0 being
a n-channel image, are

1

n |Ω| ‖ut+1 − ut‖L2 < 0.001.

Due to the nonconvexity of the model (31), the convergence
of the numerical scheme (97) is not theoretically guaranteed.
However, we would like to point out that, with the fixed
parameters τ = σ = 0.1, it converged in all the experiments
we conducted and that we implemented in C++.

Finally, the computation time greatly depends on the flat-
ness of the covariant derivative∇. Indeed, for a flat covariant
derivative, there is noneedof computing the parallel transport
map in the operators∇NL

w and∇NL
w

∗
in (97) as the variational

problem restricts to the Euclidean model with respect to the
moving frame in which the connection 1-form vanishes. But
still, even if the covariant derivative is flat, the computational
time is high due to the nonlocality of themodel. The proposed
strategy to reduce the computational time consists in replac-
ing the Gaussian kernel in the operators ∇NL

w and ∇NL
w

∗
by

a kernel of the form

w(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|Ω ′| if y ∈ Ω ′

0 otherwise

(98)

where Ω ′ ⊂ Ω is a square domain containing x . Then, the
computational time of the iterative scheme (97) depends on
the size of the domain Ω ′.

7.1.2 Numerical Computation of the Parallel Transport Map

Assuming that the covariant derivative ∇ is not flat, there
exists no moving frame in which the connection 1-form ω

vanishes, i.e., in which the corresponding parallel transport
map is the Identitymap. In such a case, the computation of the
operators∇NL

w and∇NL
w

∗
in (97) requires the computation of

the parallel transport map by solving differential equations
of the form

∇.
γ (t) u(γ (t)) = 0 (99)

i.e.,

du(γ (t)) = −ω(
.
γ (t))(u(γ (t))) (100)

Our proposal is then to make use of an explicit Euler scheme

u(γ (tn+1)) = u(γ (tn)) − dt ω(
.
γ (tn))(u(γ (tn))) (101)

to solve (100) numerically.
The numerical accuracy of the scheme (101) depends on:

(i) The step dt , which is related to the discretization of the
straight lines γ .
(ii) The way we approximate ω at the points γ (tn) of the
discrete lines, as they do not necessarily correspond to pixel
locations, which are the points where ω is constructed.
Let (x1, x2) and (y1, y2) be two points in Ω corresponding
to pixel locations, i.e., x1, x2, y1, y2 ∈ N. We compute the
parallel transport of u(y1, y2) along the straight line γy,x
joining (y1, y2) and (x1, x2) in the following manner:
(i) We discretize γ with max(|y1 − x1|, |y2 − x2|) points. It
gives

dt = 1

max(|y1 − x1|, |y2 − x2|)
√

(y1 − x1)2 + (y2 − x2)2

and

γ (tn) =
(

y1 − n
(y1 − x1)

max(|y1 − x1|, |y2 − x2|) ,

y2 − n
(y2 − x2)

max(|y1 − x1|, |y2 − x2|)
)

(ii) We approximate the coefficients

ωi j (
.
γ (tn))(γ (tn)) : = .

γ1(tn)Υ
j
1i (γ (tn)) + .

γ2(tn)Υ
j
2i (γ (tn))

of the matrix ω(
.
γ (tn)) at the point γ (tn), for i, j = 1, · · · , 3

and n = 0, · · · ,max(|y1 − x1|, |y2 − x2|) in (101) as

(y1 − x1)

max(|y1 − x1|, |y2 − x2|)Υ
j
1i (R(γ (tn)))+

(y2 − x2)

max(|y1 − x1|, |y2 − x2|)Υ
j
2i (R(γ (tn)))

where R(γ (tn)) denotes the rounding of each coordinate of
γ (tn) to its nearest integer. In other words, we approximate
the symbols Υ

j
kl , k = 1, 2, of the connection 1-form ω at the

points γ (tn) by Υ
j
kl(γ̃ (tn)) where γ̃ (tn) is the closest point

to γ (tn) that corresponds to a pixel location.

7.2 Analysis of the Results

We test the model (31) with the covariant derivatives induced
by the connection 1-forms (79), (58), and the connection 1-
form that is derived from these two ones that we describe in
Sect. 6.5.

7.2.1 On the Choice of the Parameters and Its
Consequences on the Behavior of the Model

Taking β = 0 greatly affects the color constancy property of
the model.
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Then, the behavior of the local contrast enhancement
model (31) is determined by the parameter λ and by the rel-
ative size of the domain Ω ′ in (98) with respect to the size of
the image domain Ω . We showed on experiments conducted
in [1] that relative small domain sizes privilege texture and
noise enhancement, while relative large domain sizes privi-
lege contrast enhancement. In all the experiments conducted
in this paper, we consider Ω ′ as a 40 × 40 window, which
makes the model enhance mainly the contrast as the input
images are medium sized images.

Then, the intensity of the enhancement is inversely pro-
portional to the value of the parameter λ.

7.2.2 Evaluation of the Results

We compare the different results visually and by analyz-
ing their behaviors with respect to the intensity, chroma and
hue components in the HSI color space. More precisely,
we compute the mean local contrast (MLC) of the intensity
component ui

MLC(ui ) = 1

|Ω|
∑

x∈Ω

∑

y∈Ω

w(x, y)|ui (x) − ui (y)| (102)

and chroma component uc

MLC(uc) = 1

|Ω|
∑

x∈Ω

∑

y∈Ω

w(x, y)|uc(x) − uc(y)| (103)

of the output images u, and we compute the hue shift (HS)
of u, i.e., the mean hue difference with respect to the original
image u0

HS(u) = 1

|Ω|
∑

x∈Ω

d◦(H(u)(x), H(u0)(x)) (104)

where d◦ is the angular distance.

7.2.3 The Standard Representation of D+∗
3 onR

3

The model (31) induced by the connection 1-form (79) is
parametrized by four scalars: the parameters
δ1/κ, δ2/κ, δ3/κ of the connection 1-form, and the parameter
μ of the moving frame (80) in which the connection 1-form
vanishes. Following the analysis performed in Sect. 4.3.2,
we replace the constant δk/κ by mk in Weber–Fechner’s law
(40) for each channel k. In order to get an explicit expression
of the constant mk , we follow the approach of Ferradans et
al. [12], where Weber–Fechner’s law has been applied in the
context of tone mapping.

Given a color image I representing light intensity, Fer-
radans et al. determine the constant mk as follows. First,

they compute the background intensity Ik
b of the one-channel

image Ik as

Ik
b = median(Ik)0.5 × mean(Ik)0.5

Then, inspired by the data presented by Valeton and van Nor-
ren [31], they estimate the semisaturation constant Ik

s , which
represents the light level at which the photoreceptor response
is half maximal, by

log10 Ik
s = log10 Ik

b − 0.37
(
4 + log10 Ik

b

)
+ 1.9

Finally, based on results that are presented by Wyszecki and
Stiles [32], they compute mk as

mk = 10−1.2 Ik
s (105)

We observe in formula (105) that the constant mk is
actually image content dependent. In our context, the light
intensity of original image uk0 is approximated by the image

(uk0)
2
. Hence, we compute the constantmk in (105) replacing

Ik by (uk0)
2
, k = 1, 2, 3.

In Figs. 6 and 7, we show some results of the proposed
model (31) induced by the connection 1-form (79), where
we test different values of the parameters δk/κ . More pre-

cisely, we test δk/κ = mk with Ik = (uk0)
2
in formula (105)

in order to encode Weber–Fechner’s law and we also test
δk/κ = 0 in order to encode Weber’s law. Regarding this
latter, we actually choose δk/κ = 10−6 in order to avoid
division by 0. We express the original image u0 in the RGB
color space asWeber’s andWeber–Fechner’s laws are related
to the trichromatic theory of colors (see Sect. 4.3.2). Finally,
the parameter λ in (31) has been set to 0.1 and the parameter
μ of the moving frame (80) has been empirically set to 700
in Fig. 6 and 1200 in Fig. 7. We compare these models with
the model of Bertalmío et al. (29) tested with λ = 0.1 and
β = 0. Note that, unlike the approach of the authors who use
a differentiable approximation of the model (29) and then
reach a solution through the corresponding gradient descent
(see [5]), we compute the solution of the original model (29)
through the proposed numerical scheme (97) restricted to the
Euclidean channel-wise case.

We observe in both Figs. 6 and 7 that the proposed mod-
els (31) induced by the connection 1-forms encodingWeber’s
and Weber–Fechner’s laws have a behavior that follows the
properties of these laws as they enhance more the contrast in
the dark regions than in the bright ones, while the Euclidean
model treats dark and bright regions in the same manner.
Indeed, recall that these laws state that the HVS is more sen-
sitive to light changes in dark areas than in the bright ones. In
particular, we observe that the noise in the sky (brighter area
of the image) has beenmuch less enhanced than in Euclidean
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Fig. 6 Contrast enhancement of top left image. Top right: result given by the Euclidean model (29). Bottom row: Results given by the model (31)
induced by the connection 1-form (79) encoding Weber’s law (left) and Weber–Fechner’s law (45) (right)

case.We also observe that the model induced byWeber’s law
enhancesmore the contrast in dark areas than the one induced
byWeber–Fechner’s law, but at the cost of an increase in hue
shift (see Tables 1 and 2), and the increase in noise and color
artifacts (see Fig. 7). It is coherent with the fact that Weber’s
law is known to fail at intensity values close to 0.

7.2.4 The Standard Representation of SO(3) onR
3

The connection 1-form (58) is parametrized by the constant
δ/κ .
The limit case δ/κ = 0: Enhancement of the local contrast
of the color brightness. In Fig. 8, we show the result of the
proposed model (31) induced by the connection 1-form (58)
for δ/κ = 0, and where the original image u0 is expressed
in its CIE L∗a∗b∗ coordinates, and the frame (e1, e2, e3)
is equipped with the vector bundle metric (74) so that the
distance (32) encodes the color brightness (73) difference.
The parameter λ in (31) has been set to 0.2.

We compare themodel (31) to the channel-wise Euclidean
model (29) where the original image u0 is expressed in its
RGB and its CIE L∗a∗b∗ coordinates for β = 0. In order to
make the visual comparisons fair, we select the parameter λ

in (29) such that theMLCs of the intensity components of the

output images are comparable. Table 3 shows that they are
comparable when the model (29) is tested with λ = 0.075 in
the RGB coordinates andλ = 0.2 in the L∗a∗b∗ coordinates.

According to the results in Fig. 8, the model (31) provides
the best results as it generates less hue shift, which is con-
firmed by the results in Table 3, and less color artifacts as we
can observe in the sky or in the close-up images in Fig. 8.

Comparisonof the results for different values ofδ/κ . In Table
4, we compute the mean over the whole Kodak database
[18] (24 images) of the three measures MLC intensity, MLC
chroma and HS, for the output images of the model (31)
for λ = 0.1, and tested with the connection 1-form (58)
for three different values of the parameter δ/κ : 0, 1,+∞.
Unlike the previous experiments, the model is tested in the
RGB color space equipped with the Euclidean metric. The
results reveal that theMLCsof the intensity (102) and chroma
(103) components have opposite behaviorswith respect to the
value of δ/κ . Indeed, theMLC of the intensity decreases with
the value of δ/κ , whereas the MLC of the chroma increases
with δ/κ . Moreover, we observe that the HS increases with
δ/κ . For δ/κ = 0, we showed theoretically that the model
preserves the hue of the original image, meaning that the
mean HS of 1.02◦ can be interpreted as numerical errors. It
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Fig. 7 Contrast enhancement of top left image. Top right: result given by the Euclidean model (29). Bottom row: Results given by the model (31)
induced by the connection 1-form (79) encoding Weber’s law (left) and Weber–Fechner’s law (45) (right)

Table 1 Contrast enhancement
of the top left image in Fig. 6

MLC intensity MLC chroma Hue shift (in ◦)

Original image 5.60 2.16

The model (31) with Weber’s law 12.64 6.87 20.14

The model (31) with Weber–Fechner’s law 10.77 5.66 16.45

The Euclidean model (29) 12.61 7.63 24.39

Table 2 Contrast enhancement
of the top left image in Fig. 7

MLC intensity MLC chroma Hue shift (in ◦)

Original image 9.67 2.38

The model (31) with Weber’s law 21.66 6.42 29.69

The model (31) with Weber–Fechner’s law 14.63 2.96 13.94

The Euclidean model (29) 16.62 4.17 20.14

is alsoworth noting that the behaviorswehave justmentioned
can actually beobserved in (almost) all the 24 images. Indeed,
the MLC of the intensity decreases in 20 of the 24 images
(in the 4 other images, it does not decrease because the MLC
of the intensity for δ/κ = +∞ is higher than the one for
δ/κ = 1), theMLC of the chroma increases in the 24 images,
and the HS increases in 23 of the 24 images. (In the other
image, it does not increase because the HS for δ/κ = 1 is
higher than the one for δ/κ = +∞).

Finally, we claim that the parameter value that provides
the best results depends greatly on the user’s preferences.

Whereas there exists a consensus about the fact that the HS
has to be avoided, there is no consensus about what should
be the ratio of enhancement of intensity to enhancement of
chroma.

7.2.5 The Standard Representation of SO(3)×D+∗
3 onR

3.

In Figs. 9 and 10, we test the model (31) induced by the
connection 1-form associated with the group SO(3) ×D+∗

3
described in Sect. 6.5. The model is parametrized by the
scalar numbers μ and δ1/κ that determine the moving frame
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Fig. 8 Contrast enhancement of top left image. Result given by the
Euclidean model (29) in the RGB color space (top right) and in the
L∗a∗b∗ color space (second row, left column). Result given by the
model (31) induced by the connection 1-form (58) with the metric (74)
encoding theHelmholtz–Kohlrausch effect (73)—last three rows: close-

ups of the images on the top two rows. From left to right: original image,
Euclidean model (29) in the RGB and L∗a∗b∗ color spaces, the model
(31) induced by the connection 1-form (58) with the metric (74) encod-
ing the Helmholtz–Kohlrausch effect (73)
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Fig. 9 Contrast enhancement of top left image with the model (31) induced by three different connection 1-forms. Top right: the connection 1-form
(79). Bottom left: the connection 1-form (58). Bottom right: the connection 1-form concatenating (79) and (58)

Table 3 Contrast enhancement
of the top left image in Fig. 8

MLC intensity MLC chroma Hue shift (in ◦)

Original image 18.07 13.75

The model (31) with the
metric (74)

30.55 17.68 0.80

The Euclidean model (29)
in the L∗a∗b∗ color space

31.05 20.02 13.61

The Euclidean model (29)
in the RGB color space

30.34 18.61 9.59

Table 4 Contrast enhancement
of Kodak database images [18]

MLC intensity MLC chroma Hue shift

δ = 0 (Flat connection) 32.22 14.62 1.02

δ/κ = 1 (Nonflat connection) 32.04 15.70 6.34

δ = +∞ (Flat connection) 31.96 17.00 9.26

(90) in which the connection 1-form vanishes. The original
image u0 is expressed in the RGB color space, and the model
is tested with μ = 0.005, δ1/κ = 1 in Fig. 9 and μ =
0.0001, δ1/κ = 0.1 in Fig. 10. We compare the results to the
ones obtained by considering the model (31) induced by the
connection 1-form (79) tested with the same value for μ and
δ1/κ and with δ1/κ = δ2/κ = δ3/κ , as well as the model

(31) induced by the connection 1-form (58). All the models
have been tested with λ = 0.1.

We observe that the model induced by the connection 1-
form constructed in Sect. 6.5 provides the best results, and it
fulfills the desired properties that motivated its construction
in Sect. 6.5. Indeed, it enables to correct the defects produced
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Fig. 10 Contrast enhancement of top left image with the model (31) induced by three different connection 1-forms. Top right: the connection
1-form (79). Bottom left: the connection 1-form (58). Bottom right: the connection 1-form concatenating (79) and (58)

Table 5 Contrast enhancement of the top left image in Fig. 9

MLC intensity MLC chroma Hue shift (in ◦)

Original image 5.60 2.16

The model (31) induced by the connection 1-form (79) 10.90 6.44 19.34

The model (31) induced by the connection 1-form (58) 9.28 2.69 0.53

The model (31) induced by the concatenation of (79) and (58) 11.04 3.09 0.50

by the model induced by (79) and (58) while keeping their
desired properties.

More precisely, the model induced by (79) enhances the
local contrast in a greater extent in the dark areas than in the
bright ones, which is a desirable property when processing
underexposed images. However, we observe that it produces
color artifacts in the dark areas as well, and that (colored)
noise appears in the sky. These two defects arise since the
model does not preserve the hue of the original image (see
Tables 5, 6).

These defects do not appear when testing the model with
(58), which is hue preserving. (The hue shift that appears in
the last two rows in Table 6 is due to the fact that the hue
component gets very noisy in the very dark areas.) However,
noise has been enhanced in the sky and the contrast in the dark
areas has not been much enhanced, as the model processes
dark and bright areas in the same extent.

8 Conclusion

In this paper, we investigated the capacity of Lie group repre-
sentations and covariant derivatives tomodel some properties
of the human visual system, with a special focus on bright-
ness perception. We showed that some color appearance
phenomena, i.e., Weber’s and Weber–Fechner’s laws as well
as the Helmholtz–Kohlrausch effect can be modeled through
covariant derivatives that are solutions of a variational prob-
lem parametrized by a scalar number and by a Lie group
representation.This result suggests that the humanvisual sys-
temperceives color brightness in an optimalmanner.Another
interesting consequence is that the different color appearance
phenomena aforementioned only differ by parameters of a
single variational problem.

By incorporating these covariant derivatives into a vari-
ational model for image processing related to the Retinex
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Table 6 Contrast enhancement of the top left image in Fig. 10

MLC intensity MLC chroma Hue shift (in ◦)

Original image 9.67 2.38

The model (31) induced by the connection 1-form (79) 14.22 3.48 19.73

The model (31) induced by the connection 1-form (58) 13.51 2.57 7.86

The model (31) induced by the concatenation of (79) and (58) 14.37 2.79 9.28

theory of color perception, we showed on some examples
that the images can be visually improved, the behavior of the
model being determined by the property of the color appear-
ance phenomena modeled by the covariant derivative.

Finally, following the idea that increasing the accuracy
of the properties of the human visual system incorporated
in an image processing technique will increase the visual
quality of the output image, further work will be devoted
to first construct a covariant derivative that encodes both
Weber–Fechner’s law and the Helmholtz–Kohlrausch effect,
and then to incorporate more properties of the human visual
system.

Acknowledgements The authors thank the anonymous reviewers for
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Appendix: Expressions of SomeMoving
Frames

⎛

⎜
⎜
⎜
⎜
⎝

cosϕ sin θ −g11 sin ϕ − g21 cos θ cosϕ −g12 sin ϕ − g22 cos θ cosϕ

sin ϕ sin θ g11 cosϕ − g21 sin ϕ cos θ g12 cosϕ − g22 sin ϕ cos θ

cos θ g21 sin θ g22 sin θ

⎞

⎟
⎟
⎟
⎟
⎠

(106)

with g11, g12, g21, g22 ∈ C1(Ω) satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g211 + g221 = 1
g212 + g222 = 1

g11g12 + g21g22 = 0
g11 dg12 + g21 dg22 = cos θ dϕ

⎛

⎜
⎜
⎜
⎜
⎝

sin θ cosα + cos θ cosβ sin α − sin θ sin α + cos θ cosβ cosα cos θ sin β

− cos θ cosα + cosβ sin θ sin α cos θ sin α + cosβ sin θ cosα sin θ sin β

− sin β sin α − sin β cosα cosβ

⎞

⎟
⎟
⎟
⎟
⎠

(107)
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