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Abstract
In this work, we address the problem of analyzing video sequences by representing meaningful local space–time neighbor-
hoods. We propose a mathematical model to describe relevant points as local singularities of a 3D signal, and we show that
these local patterns can be nicely highlighted by the 3D shearlet transform, which is at the root of our work. Based on this
mathematical framework, we derive an algorithm to represent space–time points which is very effective in analyzing video
sequences. In particular, we show how points of the same nature have a very similar representation, allowing us to compute
different space–time primitives for a video sequence in an unsupervised way.

Keywords Shearlet transform · 2D + T signal analysis · Space–time local primitives

1 Introduction

Spatial local keypoints and appropriate local descriptors have
been extensively considered in image processing and com-
puter vision, and they have been successfully studied on a
variety of multi-scale models [28,29]. They have then been
applied to image matching or to the higher level image clas-
sification problem, often in conjunction with appropriately
designed global descriptors.

In the past decade, the video processing scenario has
been characterized by a growing interest toward the so-called
space–time interest points which incorporate appearance as
well as dynamic local information. From the pioneeringwork
of Laptev [27], who proposed a reformulation of Harris cor-
ners [15] for the space–time, soon followed by alternative and
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possibly richer approaches [6,16,31,35,36], we have appreci-
ated the power of these key points as low level building blocks
for motion analysis and action recognition. An exhaustive
overview of related state of the art can be found in [4], see
also [37].

Space–time interest points are usually associated with the
concept of points characterized by some special behavior
both in space and in time (e.g., nonsmooth in both directions).
Thus, the classical computational framework startswith a key
point detection stage, often in conjunction with an appropri-
ate key point descriptor [17,26,32,33]. Generally, keypoints
are detected by looking for singularities both in space and
in time [27]. In this paper, we argue that in the space–time
domain there is a richer set of information to be exploited:
different interesting local primitives can be observed and
associated with an appropriate meaning in space and time.
These primitives also include interesting spatial structures
(spatial corners or edges) moving smoothly or smooth sur-
faces undergoing significant velocity changes.

Themathematical frameworkwe consider is the one of the
shearlets [25]. Among the multiresolution image representa-
tions, shearlets emerge by their ability to efficiently capture
anisotropic features [18], to provide an optimal sparse rep-
resentation [11,21], to detect singularities [14,22] and to be
stable against noise and blurring [2,9]. For further details,
implementations and references, see [20]. The effectiveness
of shearlets is supported by a well-established mathemat-
ical theory [3], and it is tested in many applications in
image processing by providing efficient algorithms [7,8,20].
Shearlets have seldom been applied to spatio-temporal data,
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with the exception of shearlet-based video denoising and
inpainting [24]—see also [30], comparing shearlet-based
performances on video enhancement and denoising tasks
with previously existing techniques.

In this work, we exploit different properties of shearlets.
In particular, we focus on the ability of shearlet coefficients to
detect the wavefront set of a signal both in 2D [18] and in the
3D settings [12,23], by directly encoding meaningful direc-
tional informations, as, for example, the normal direction at
each point of a surface singularity. From the computational
viewpoint, we adopt 3D shearlets implemented in ShearLab
(see http://www.shearlab.org/).

The contribution of the paper is twofold. On the theoret-
ical side, we propose a toy mathematical model to describe
some of the significant properties of the complex behavior
of a real video sequence. We consider a rigid compact 2D
region that, by moving in time, generates a 2D + T volume
V . The spatial–temporal points are now associated with the
wavefront set of the 3D “cartoon-like” signal [23]

f (x, y, t) =
{
1 (x, y, t) ∈ V

0 (x, y, t) /∈ V .

We show that the corresponding shearlet coefficients pro-
vide a clear signature of different spatial-temporal primitives.
Clearly, our model does not capture the full complexity of a
real video sequence, for instance, it does not deal with occlu-
sions, but it provides an important insight of what happens
in the real world by highlighting the kind of spatio-temporal
primitive each space–time point belongs to.

Motived by our theoretical framework, we propose an
algorithm to represent key points highlighting their appear-
ance and dynamic properties. First, we consider the 3D
shearlet transform of a video sequence. Then, we derive a
shearlet-based rotation-invariant representation of each point
with respect to its space–time neighborhood at a fixed scale.
This representation describes the behavior of the signal in the
neighborhood and helps us discriminating among different
type of points. We discuss how this representation does not
vary too much on sets of known spatial and spatio-temporal
key points such as edges, corners and space–time interest
points [27].We also show how to identify themain primitives
in a video signal, by adopting an unsupervised approach and
clustering points to obtain the most significant space–time
primitives within the signal.

The real video sequencesweuse to discuss our findings are
taken from theChalearn (che vuoi [10]) and theKTH (boxing,
handwaving and walking [32]) datasets, while synthetic data
have been generated in-house.

This paper is organized as follows. Section 2 reviews
shearlets on 2D + T signals. Section 3 introduces the con-
cept of spatio-temporal primitives. In Sect. 4, we describe

our approach to represent points in their space–time neigh-
borhood and discuss the expressiveness of the representation
on both synthetic and real data. Section 5 discusses the results
we obtainwhen clustering pointswith respect to the proposed
representation. Section 6 is left to a conclusive discussion.

2 The 3D Shearlet Frame

In this section,webriefly review the construction of the shear-
let frame for 2D + T signals. We follow the presentation in
[19], which is a standard reference for the proofs and other
informations.

We first set the notation. We denote by L2 the Hilbert
space of functions f :R3 → C such that∫
R3

| f (x, y, t)|2 dx dy dt < +∞,

where dxdydt is theLebesguemeasure ofR3, by‖ f ‖ the cor-
responding norm and by

〈
f , f ′〉 the scalar product between

two functions f , f ′ ∈ L2. Given an element f ∈ L2, we
denote by f̂ its Fourier transform, i.e.,

f̂ (ξ1, ξ2, ξ3) =
∫
R3

f (x, y, t)e−2π i(ξ1x+ξ2 y+ξ3t)dx dy dt,

provided that f is integrable, too.
We recall that a frame for L2 is a family {ψi }i∈I of func-

tions such that each ψi is in L2 and

A ‖ f ‖2 ≤
∑
i∈I

|〈 f , ψi 〉|2 ≤ B ‖ f ‖2 ∀ f ∈ L2,

where A, B are positive constants, called frame bounds. The
shearlet frame FSH is defined in terms of four different sub-
families labeled by the index � = 0, . . . , 3 as it follows.

The first family

FSH,0 =
{
ϕm | m ∈ Z

3
}

,

associated with the index � = 0 takes care of the low fre-
quencies cube

P0 =
{
(ξ1, ξ2, ξ3) ∈ R̂

3 | |ξ1| ≤ 1, |ξ2| ≤ 1, |ξ3| ≤ 1
}

and it is given by

ϕm(x, y, t) = ϕ(x − cm1, y − cm2, t − cm3),

wherem = (m1,m2,m3) ∈ Z
3 labels the translations, c > 0

is a step size, and

ϕ(x, y, t) = φ1(x)φ1(y)φ1(t),

where φ1 is a 1D-scaling function.
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Fig. 1 Three pyramids P1,P2 and P3, with displayed in black the area belonging to the positive part of the corresponding symmetry axis and in
red the one related to its negative part (Color figure online)

The other three families are associated with the high fre-
quency domain. Each of them corresponds to the pyramid
whose symmetry axis is one of the cartesian axes ξ1, ξ2, ξ3
in the Fourier domain, see Fig. 1. For example, for � = 1 the
pyramid is

P1 =
{
(ξ1, ξ2, ξ3) ∈ R̂

3 | |ξ1| > 1,

∣∣∣∣ξ2ξ1
∣∣∣∣ ≤ 1,

∣∣∣∣ξ3ξ1
∣∣∣∣ ≤ 1

}
,

and similarly for the other two pyramids.
Fixed � = 1, 2, 3, each

FSH,� =
{
ψ�, j,k,m | j ∈ N, k ∈ K j ,m ∈ Z

3
}

,

where

K j =
{
k = (k1, k2) ∈ Z

2,max{ |k1|, |k2| } ≤ �2 j/2�
}

, (1)

is defined in terms of parabolic dilations

A1, j =
⎛
⎜⎝2 j 0 0

0 2 j/2 0
0 0 2 j/2

⎞
⎟⎠ , A2, j =

⎛
⎜⎝2 j/2 0 0

0 2 j 0
0 0 2 j/2

⎞
⎟⎠ ,

A3, j =
⎛
⎜⎝2 j/2 0 0

0 2 j/2 0
0 0 2 j

⎞
⎟⎠ ,

where the index j refers to the dyadic scale (note that j = 0
corresponds to the coarsest scale), and shearings

S1,k =
⎛
⎝1 k1 k2
0 1 0
0 0 1

⎞
⎠ , S2,k =

⎛
⎝ 1 0 0
k1 1 k2
0 0 1

⎞
⎠ ,

S3,k =
⎛
⎝ 1 0 0
0 1 0
k1 k2 1

⎞
⎠ ,

where the index k = (k1, k2) ∈ K j controls the shearing
and runs over the indexes K j defined in (1). Explicitly, the
functions ψ�, j,k,m are given by

ψ�, j,k,m(x, y, t) = 2 jψ�

(
S�,k A�, j

(
x−c1m1
y−c2m2
t−c3m3

))
, (2)

where for � = 1, c1 = c and c2 = c3 = ĉ, where ĉ is another
step size (for � = 2, 3 the values of c1, c2, c3 are interchanged
accordingly) and the parameter m = (m1,m2,m3) ∈ Z

3

labels the translations, as for the family FSH,0. Follow-
ing [24], the generating function ψ1 is of the form

ψ̂1(ξ1, ξ2, ξ3) = ψ̂1(ξ1)

(
P

(
ξ1

2
, ξ2

)
φ̂1(ξ2)

)

×
(
P

(
ξ1

2
, ξ3

)
φ̂1(ξ3)

)
, (3)

where P is suitable polynomial 2D Fan filter [5], ψ1 is the
1D wavelet function associated with the scaling function φ1

defining the family {ϕm}. Similar equations hold for � = 2, 3
by interchanging the role of ξ1, ξ2 and ξ3. We observe that to
obtain a frame it is necessary to assume some technical con-
dition on the smoothness ofφ1 and on the vanishingmomenta
of ψ1, see [20].

The shearlet transform of a signal f ∈ L2 is given by

SH[ f ](�, j, k,m) =
{

〈 f , ϕm〉 if � = 0〈
f , ψ�, j,k,m

〉
if � = 1, 2, 3,

where j ∈ N, k ∈ K j , m ∈ Z
3. We stress the fact that, as

shown in (1), the number of shearing parametersK j depends
on j . In the experiments, we use the digital implementation
described in [24], which is based on the well-known relation
between the pair (φ1, ψ1) and the quadraturemirror filter pair
(h, g), i.e.,

φ1(x) = √
2

∑
n∈Z

h(n)φ1(2x − n) (4)

ψ1(x) = √
2

∑
n∈Z

g(n)φ1(2x − n). (5)

where h is a 1D low-pass filter and g is the corresponding
high-pass filter.

Furthermore, a maximum number J of scales is consid-
ered and it assumed that the signal f at the finest scale is
given by
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Fig. 2 Coefficients analysis on a 3D surface (see text). a A section of
a surface parallel to the yt plane. b A plot representing the coefficients
varying at different shearings, on the x axis there are the indexes corre-
sponding to all the shearings inK j for the pyramidP1 where the central

peak corresponds to the shearing vector k = (0, 0). c The coefficients
decay for neighboring points along the surface normal (red line) (Color
figure online)

f (x, y, t) =
∑
m∈Z3

f J ,m 23J/2φ1(2
J x − cm1)

×φ1(2
J y − cm2)φ1(2

J t − cm3).

so that f J ,m � f (cm12−J , cm22−J , cm32−J ) since φ1 is
well localized around the origin. The digital shearlet trans-
form depends on the number of scales J + 1, the directional
Fan filter P in (3) and the low-pass filter h associated with
the scaling function φ1 by (4).

Our algorithm is based on the following nice property
of the shearlet coefficients. As shown in [12,13,23] if the
signal f is locally regular in a neighborhood of m, then
SH[ f ](�, j, k,m) has a fast decay when j goes to infin-
ity for any � �= 0 and k ∈ K j . Suppose now that f has a
surface singularity at cm with normal vector (1, n1, n2) ∈
P1 and set k∗ = (�2 j/2n1�, �2 j/2n2�). If � = 2, 3, then
SH[ f ](�, j, k,m) has a fast decay for any k ∈ K j , whereas
if � = 1 we have the same good behavior only if k �= k∗,
whereas if k = k∗ the shearlet coefficients have a slow decay
(a similar result holds if the normal direction of the surface
singularity belongs to the other two pyramids). This behavior
of the shearlet coefficients allows to associate to any shear-
ing vector k = (k1, k2) a direction (without orientation)
parametrized by two angles, latitude and longitude, α and
β. Thus, the direction associated with k is given by

(cosα cosβ, cosα sin β, sin α) α, β ∈
[
−π

2
,
π

2

]
. (6)

The correspondence explicitly depends on � and, for the
first pyramid, it is given by

tan α = 2− j/2k2√
1 + 2− j k21

tan β = 2− j/2k1 α, β ∈
[
−π

4
,
π

4

]
.

The above formula shows that the ability to resolve differ-
ent directions strongly depends on the number of available
shearings inK j . In particular, at coarsest scales we detect the
normal direction of singularity surfaces at a low resolution.

Through a simple example, we illustrate the above behav-
ior. We consider a black cube, and we fix a point of a side
of the cube parallel to the yt plane. We compute the shearlet
coefficients moving along the normal direction outside the
cube. The behavior is shown in Fig. 2 where in the first col-
umn we show a xt-section of the cube at a given t . In the
second column, we plot the value of the shearlet coefficients
at the point on the surface in the first pyramid P1. We show
the coefficients associated with the grid of directions repre-
sented by the shearings in K j , unrolling them along the x
axis. In this example, k1, k2 ∈ {−2, 1, 0, 1, 2} and the value
12 in Fig. 2b corresponds to k1 = k2 = 0, as expected. The
coefficients of the other pyramids contain negligible values
∼ 10−16. In the third column,we fix the shearing correspond-
ing to the peak and see how the coefficients evolve bymoving
along the normal direction corresponding to the red line in
Fig. 2a. The coefficients decay as we move away from the
discontinuity, giving us an empirical evidence of the appro-
priateness of 3D shearlets in localizing interest points.

Figure 3 shows a similar analysis on a 3D edge produced
by two surfaces, one parallel to plane xt and the other parallel
to plane yt . In this case, we identify two significant peaks in
two different pyramids (the main peaks in Fig. 2b, e.

Within every pyramid (P1 for Fig. 3a–c andP3 for Fig. 3d–
f), we see a behavior similar to the case of the 3D surface
(Fig. 2b). However, the secondary peaks have higher val-
ues, for the spatio-temporal neighborhood around the point
has a richer behavior. These peaks are also due to the fact
that we visualize two-dimensional information (the shearlet
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Fig. 3 Coefficients analysis on a 3D edge (see text). a, d A section
of the edge parallel to xy plane, where we highlight the two normal
vectors. b, e The coefficients varying at different shearings in the two

meaningful pyramids P1 and P3 where both central peaks correspond
to the shearing vector k = (0, 0). c, f The decay of coefficients for
neighboring points along the corresponding normal directions

coefficients associated with a 2D grid of directions) as a 1D
function; thus, they appear to be distant on the 1D unrolled
function.

The plots we show in this section have been obtained
thanks to the a priori information we have on the normal
direction which is in general not available in real data. This
issue will be addressed in the following sections, where we
identify a representation procedure applicable in the general
case.

3 Spatio-Temporal Primitives

Clearly, a video is a temporal sequence of 2D spatial images
and it can be regarded as a 2D + T signal that fits the above
theoretical framework.

In this context, 2D spatial discontinuities in an image, such
as edges and corners, generate different space–timebehaviors
as the image evolve in time.Moreover, the temporal evolution
of a given point in the image is continuous, but may undergo

a loss of regularity in correspondence of velocity changes.
Therefore, if we analyze the behavior of the signal in space–
time, we may observe different types of primitives (see also
Fig. 4):

– Spatio-temporal surfaces, caused by 2D edges with a
smooth velocity spanning surfaces in space–time.

– Spatio-temporal edges either caused by 2D corners mov-
ing smoothly or by 2D edges undergoing a velocity
change. These two primitives could be discriminated by
detecting the orientation of the 3D edge, see Fig. 4b, c.

– Spatio-temporal corners or vertices causedby2Dcorners
undergoing a velocity change.

These spatio-temporal primitives are easily associated
with classical 3D features: surfaces, edges and vertices and
can be analyzed by adapting 3D signal representation mod-
els. It should be observed, though, that 2D+ T features have
a very specific nature that characterizes them beyond their
three-dimensional structure. For instance, we could further
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Fig. 4 Spatio-temporal primitives which can take place in the space–
time domain, by considering how the image in the background of each
one of these moves over time: a A 2D edge moving smoothly spawns
a spatio-temporal surface, b A 2D edge undergoing a velocity change,

thus producing a 3D edge, cA2D corner moving smoothly also produc-
ing a 3D edge, d A 2D corner undergoing a velocity change providing
a 3D vertex

cluster these primitives in still and moving entities (corre-
sponding to different orientations in the 2D+ T space). Also,
the third component (time) has a different intrinsic scale, and
very precise constraints since spatial features do not disap-
pear all of a sudden and time can only proceed forward. In
the reminder of the paper, we refer to 2D edges when consid-
ering image discontinuities and 3D or spatio-temporal edges
when discussing the behavior in space–time. As for corners,
we will refer to 2D corners in space and to vertices or 3D
corners in space–time.

Wenowobserve that thanks to the sensitivity to singularity
and orientation of shearlets wemay identify different spatial-
temporal primitives. To better understand the relationship
between coefficients and primitives, we start by considering
a toymodel for a space region evolving over time.We assume
that the region of interest is a rigid planar body C moving in
the time interval [0, T ]. We further assume that the boundary
ofC can be parametrized at the initial time t = 0 by the simple
closed curve

γ (s) = x(s)i + y(s)j s ∈ [0, L],

where L is the length of the boundary, s is the arc length
oriented and the curve is oriented so that the interior of the
body is on the left side, see Fig. 5. We denote by i and j
to be the canonical unit vectors of the x-axis and y-axis,
respectively. Since the body is rigid, the time evolution of
each point γ (s) is given by

γ (s, t) = r(t) + R(t)(γ (s) − r(0)) = x(s, t) i + y(s, t) j,

where r(t) is the time evolution of the center of mass of
the body and R(t) is the time-dependent rotation around the
center of mass. The evolution of the body in time describes
a 3D volume whose boundary is the surface parametrized by

σ(s, t) = x(s, t) i + y(s, t) j + t k s ∈ [0, L], t ∈ [0, T ],

where k is the canonical unit vector of the t-axis.
We now compute the normal vector to the surface at

spatial–temporal point σ(s, t)

Fig. 5 A body at time t with the main relevant geometrical and dynam-
ical quantities

N (s, t) = ∂σ

∂s
(s, t) × ∂σ

∂t
(s, t) = det

⎡
⎢⎣

i j k
∂x
∂s (s, t)

∂ y
∂s (s, t) 0

∂x
∂t (s, t)

∂ y
∂t (s, t) 1

⎤
⎥⎦

= n(s, t) + τ(s, t) × v(s, t)

where

τ(s, t) = ∂x

∂s
(s, t)i + ∂ y

∂s
(s, t)j

n(s, t) = ∂ y

∂s
(s, t)i − ∂x

∂s
(s, t)j

v(s, t) = ∂x

∂t
(s, t)i + ∂ y

∂t
(s, t)j

are the tangent and normal external unit vectors to the bound-
ary of C at spatial point (x(s, t), y(s, t)) and v(s, t) is the
corresponding velocity, where all of them are regarded as 3D
vectors. Since s is the arc length, the tangent vector τ(s, t) has
norm 1 and n(s, t) corresponds to the external normal unit
vector since it is obtained by clockwise rotating the tangent
vector τ(s, t) by π/2, see Fig. 5.

Let us consider the following four basic setups or behav-
iors:

1. The boundary is smooth, so that both τ(s, t) and n(s, t)
are smooth, and the velocity is always smooth. Then, the
surface parametrized by σ is everywhere smooth and in
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Fig. 6 Space–time features in real data. Top: the tip of a foot changing
direction at the end of a step produces a spatio-temporal corner; middle:
the tip of a fist in the extension phase of a punching action produces a

spatio-temporal edge; bottom: the side of an arm translating as a person
is walking leads to a spatio-temporal surface

each point there is a tangent plane whose normal vector
is given by N (s, t), (see Fig. 4a); if the velocity is zero,
then the normal vector N is simply given by n. Here we
expect a single coefficient to have an high value, exactly
the one directed along the surface normal.

2. The boundary is smooth, so that both τ(s, t) and n(s, t)
are smooth, but the velocity at time t = t0 is not regular.
Hence, the two surfaces

{σ(s, t) | s ∈ [0, L], t ∈ [0, t0]} and

{σ(s, t) | s ∈ [0, L], t ∈ [t0, T ]}

create a 3D edge in the plane t = t0 and N (s, t) is discon-
tinuous at t = t0 for all s ∈ [0, L] with sharp variation
given by

�N (s, t0) = τ(s, t0) × �v(s, t0) ∀s ∈ [0, 1],

where� f is the jump of f (with respect the second vari-
able) at t0, i.e.,

� f (s, t0) = lim
t→t+0

f (s, t) − lim
t→t−0

f (s, t),

and�N (s, t0) has a nonzero component only along the t-
axis and lives on the 3Dedge (seeFig. 4b). In this case, the
shearlet coefficients would include two maximum values
associated with the two surfaces.

3. The velocity is smooth, but (x(s0), y(s0)) is a 2D corner
of the boundary; then, the two surfaces

{σ(s, t) | s ∈ [0, s0], t ∈ [0, T ]} and

{σ(s, t) | s ∈ [s0, L], t ∈ [0, T ]}

create a 3D edge parametrized by the temporal evolution
of the 2D corner (x(s0), y(s0)). Hence, N (s, t) is discon-
tinuous at s0 for all t ∈ [0, T ] with sharp variation given
by

�N (s0, t) = �n(s0, t) + �τ(s0, t) × v(s0, t)

∀t ∈ [0, T ],

where �N (s0, t) is the jump of N (with respect the first
variable) at s0 and it has two contributions: the former is
in the xy-plane and the latter along the t-axis. As above
the vector �N (s0, t) lives on the 3D edge (see Fig. 4c).
Again, the shearlet coefficients would include two max-
imum values associated with the two surfaces.

4. The boundary has a 2D corner at point (x(s0), y(s0)),
and there is a change of velocity at time t = t0 lighter
in the direction or in the speed. At the spatial–temporal
point (x(s0, t0), y(s0, t0), t0), there is a vertex, which is
the junction of the four surfaces

S1 = {σ(s, t) | s ∈ [0, s0], t ∈ [0, t0]}
S2 = {σ(s, t) | s ∈ [s0, L], t ∈ [0, t0]}
S3 = {σ(s, t) | s ∈ [0, s0], t ∈ [t0, T ]}
S4 = {σ(s, t) | s ∈ [s0, L], t ∈ [t0, T ]},

where S1 has a 3D edge in common with S2 and it has
a 3D edge in common with S3 (and a similar relation
for the other three surfaces). At the vertex, there are four
normal vectors (see Fig. 4d).

This toy model may be adapted to real data, as we will see
in the next sections.We start by observing examples of differ-
ent local behaviors within video sequences. In Fig. 6 (top),
we may observe the evolution of the tip of a foot chang-
ing direction at the end of a step; this behavior produces a
spatio-temporal corner or vertex. In the center of the figure,
we analyze the tip of a fist in the extension phase of a punch-
ing action, producing a spatio-temporal (or 3D) edge. Finally,
at the bottom, we may observe the side of an arm translating
as a person is walking, producing a spatio-temporal surface.

4 Enhancing Space–Time Features with
Shearlets

In this section, we propose a method to represent local
spatio-temporal information provided by shearlets in order
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Fig. 7 Main steps of the
2D + T signal representation
procedure. For each space–time
point m̂: aWe compute matrices
C1,C2 and C3, bWe create the
object C which includes the
space–time coefficients of the
point neighborhood, (c, d) We
map subsets of elements (i.e.,
shearlet coefficients) of C to
different parts of a vector and (e)
We obtain the representation for
our point (Color figure online)

to enhance different types of discontinuities of a 2D + T
signal.

4.1 TheMethod

We consider a spatial temporal point m̂ = (x̂, ŷ, t̂) for the
fixed scale ĵ and the subset of shearings

K =
{
k = (k1, k2) | k1, k2 = −�2 ĵ/2�, . . . , �2 ĵ/2�

}
,

where M = 2�2 ĵ/2� + 1 is the cardinality of K, where we
suppressed the dependence on ĵ from K and M . The proce-
dure we carry out in the discrete case is depicted in Fig. 7 and
consists of two parts, which we describe in the following. In
the first part, wemerge the coefficients obtained from the dif-
ferent pyramids; in the second one,we derive a representation
for the point neighborhood considered. This representation
should be meaningful of a specific space–time primitive.

4.1.1 Reorganize the Coefficients of a Point Neighborhood

(a) We reorganize the information provided by SH[ f ](�, ĵ,
k, m̂) in three M × M matrices, each one associated
with a pyramid �= 1, 2, 3, where each entry is related
to a specific shearing: C�(r , c) = SH[ f ](�, ĵ, krc, m̂)

with � = 1, 2, 3, where r , c = 1, . . . , M and krc is the
corresponding shearing inK j defined in (1). As usual in
this kind on analysis, we discard the informations related
to the shearlet coefficients in the low frequency pyramid
� = 0 since they are related to the smoothness of the
signal. Figure 7a shows the three matrices for a specific
space–time point.

(b) Wemerge the threematrices in a single one, by recombin-
ing them relatively to the maximum shearlet coefficient
(the central element of the column depicted in Fig. 7b).
For a given scale j and a fixed set of shearings K, the
central element of C corresponds to kmax, the shear-
ing corresponding to the coefficient with the maximum
value in the set SH[ f ](�, ĵ, k, m̂), with � ∈ {1, 2, 3} and

k ∈ K j . The eight values ofC around the center (the blue
ring in Fig. 7c) correspond to the value associated with
the first 8-neighborhoods of kmax. These shearing can be
in one of the three cones, and hence, the corresponding
values are the entries of one of the three matrices C1,C2

and C3. This tiling procedure is repeated to cover to full
index setK j . This property is needed to obtain a rotation-
invariant representation in the next steps of this pipeline,
since the values in C are redistributed similarly when
considering two similar spatio-temporal primitives, even
if they are oriented differently in the space–time domain.
The matrix C models how the shearlet coefficients vary
in a neighborhood of the direction where there is the
maximum variation, and it is built in a way so that coef-
ficients which are referred to shearings which are close
one to the other end up being close in C. We will see
how different kinds of spatio-temporal elements can be
associated with different kinds of local variations in C.

4.1.2 Compute a Compact Rotation-Invariant
Representation

(a) We group the available shearings in subsets s̄i , accord-
ing to the following rule: s̄0 = {kmax} and s̄i will contain
the shearings in the ith ring of values from kmax in C
(as highlighted in Fig. 7c). We extract the values cor-
responding to the coefficients for s̄1 (by looking at the
8-neighborhood of kmax), then we consider the adjacent
outer ring (that is, the 24-neighborhood without its 8-
neighborhood) to have the coefficients corresponding to
s̄2, and so on (Fig. 7d, e). By construction, the elements
ofC are grouped in subsets, each of them associatedwith
a ring, and the first and last element of each subset are
closed each other. For the subsets s̄i for i > 2 not all
the coefficients are selected, this is due to the way the
object C is built. Selecting all elements would introduce
redundancy in the representation; hence, only some parts
of them are considered to build it.

(b) We build a vector concatenating the values of the coef-
ficients corresponding to each set as it follows. We first
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define coeff s̄i to be the set of coefficients associated with
each shearings subset s̄i :

coeff s̄0 = SH[ f ](�kmax , ĵ, kmax, m̂)

coeff s̄i =
{
SH[ f ](�s̄i , ĵ, ks̄i , m̂), ks̄i ∈ s̄i

}
,

where �kmax is the pyramid associated with the shearing
kmax and where �s̄i represents the pyramid associated
with each shearing ks̄i . Then, we set

D(m̂) = coeff �
s̄0 coeff �

s̄1 coeff �
s̄2 . . . ;

where� denotes the concatenation between vectors. The
size of the representation is strictly dependent on the
number M of shearings, and it depends on the chosen
scale, as we introduced previously.

At this point, the object D(m̂) entangles the relations
between the direction of maximum variation smax for a given
point m̂ and the directions corresponding to the other shear-
ings k �= smax.

4.2 Expressiveness of Coefficients

We analyze the space–time neighborhood coefficients C for
different types of points. First, we consider a simple synthetic
sequence, with a dark square on a white background. At the
beginning of the sequence, the square is still; then, at frame
64 it starts translating upwith constant speed until frame 108,
when the square stops again until the end of the sequence.
To avoid boundary problems, the sequence is composed of
white frames before frame number 20 and after frame num-
ber 108. Figure 8a–c shows a selection of meaningful frames
in the synthetic sequence, while Fig. 8d–f shows the vol-
ume we may obtain by stacking the video frames (and in
particular the square silhouette) one on top of the other. In
this synthetic example, we easily identify three types spatio-
temporal features, clearly visible on the 3D shape: surface
points, 3D edges and vertices; in (d–f) we show manually
selected points. Figure 8g–i shows average C computed on
space–time point neighborhood of all the marked points of
a given type. In spite of averaging, the 3D visualization we
present highlights the neighborhood structure and allows us
to show how C allows us to distinguish between different
kinds of spatio-temporal structures. This speaks in favor of
the expressiveness of 3D shearlet coefficients for the local
space–time analysis we are considering.

At this point, an observation is in order. In the case of
surfaces,we identify only onemeaningful peak aroundwhich
we reorganize the other (negligible) contributions. Instead,
in the case of 3D edges and 3D corners, C presents a more
peaks than expected. In the case of 3D edges, we would

expect two peaks, but in the construction of C, the second
peak is replicated, due to the complexity of the point and the
periodicity of the matrix C on each subset associated with
the different rings. A similar behavior is already observed in
Fig. 3.

Furthermore, with respect to the theory, the 3D vertex
in Fig. 8f corresponds to the intersection of three surfaces,
instead of four. This is due to the fact that we are dealing
with a synthetic image with blank frames below the frame
20. The 3D vertices at frame 64 are at the intersection of four
surfaces, as expected; however, two of them are coplanar, so
that we have only three distinct normal directions.

Figure 9 shows that the space–time neighborhood coeffi-
cientsC have a similar behavior in real data. It highlights two
points of a real image sequence, an edge (in blue) and a cor-
ner (in red). The behavior of the neighborhood coefficients
is coherent with what previously discussed.

As a further evidence, we analyze the average C over sets
of key points automatically detected by well-known algo-
rithms in image processing and computer vision.We consider
two spatial features, edges [1] and corners [34] and a space–
time feature, STIP [27].

Edges Figure 10 shows the average coefficients of all edge
points obtained by the Canny detector applied to a
2D frame extracted fromvideo sequence. It is worth
noting that since the our algorithm also detects cor-
ner points and moving edges, the 3D visualization
also includes small lateral peaks.

Corners Figure 11 shows the behavior of corner points,
automatically detected by the classical Harris algo-
rithm. In this case, we report the visualization for
the subset of still and moving corners, which are
more distinctive as expected, since our represen-
tation takes into account space–time information,
while Harris corner detector does not.

STIP Figure 12 shows the average descriptor for the
points detected as Laptev STIPs on a different
image frame. It is well known that STIP detector
identifies very few points, meaningful both in space
and in time. The choice of this specific image frame
has been done considering the limitations of the
detection algorithm, which performs particularly
well only in the presence of very sharp space–time
variations. This is clearly identified by the behav-
ior of the neighborhood coefficients; indeed, we
observe peaks both in space and in time directions.

5 Identifying Coherent Groups of Points

So far we have discussed the behavior of 3D shearlet coef-
ficients in the space–time neighborhood of a point or a set
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Fig. 8 a–c Sample frames of the synthetic video sequence. d–fManually selected points on the 2D + T surface (g–i) and corresponding averageC

Fig. 9 Example of visualization in 3D of the result of the process, for these example we selected a static spatial Edge (the blue circle) and a static
spatial corner (the red circle), which are characterized by two different behaviors of change. a Selected points, b Edge and c Corner (Color figure
online)
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Fig. 10 a Frame points automatically extracted by Canny edge detector and b A 3D visualization of C Averaged on all the edge points

Fig. 11 Harris corners. a Still Harris corners b and the shape visualization of their average descriptor. c Moving Harris corners (d) and the shape
visualization of their average descriptor

of previously detected points. Here we discuss how we can
group sets of points by similarity, with the goal of identifying
automatically different types of space–time primitives.

We fix a frame in a video sequence, we compute the
shearlet coefficients of a suitable temporal neighborhood
of the frame, and we apply our algorithm to assign the
local representation D to each point of the given frame.
Hence, we cluster the points with a k-means algorithm in

p clusters and we consider the clusters centroids as an unsu-
pervised estimate of our space–time primitives of the video
frame.

Figure 13 shows the results obtained for different choices
of p. The sequence is acquired by a still camera and repre-
sents a subject boxing in the air. The frame we selected to
present the results represents the exact moment in which the
subject is inverting the direction of movement of his arm—
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Fig. 12 Laptev STIPs and a 3D visualization of C Averaged on all the edge points

Fig. 13 Clusters of space–time primitives for different choices of p (best seen in pdf). a Frame, b p = 2, c p = 3, d p = 4, e p = 5, f p = 6, g
p = 7 and h p = 8

as shown in Fig. 12. Let us briefly comment the results for
different choices of p, which highlight space–time points at
different granularities:

– p = 2: the first partition obtained creates two groups,
a set of points containing almost all the points in the
sequence without a significant local change neither in
space nor in time (background points and those belonging
to the inner part of the body of the subject) and another
one containing points which are undergoing some spatio-
temporal change.

– p = 3: the clustering process better separates the points
belonging to the background and those related to the
shape of the subject, without additionally differentiating
these points. Background is divided in two parts, depend-
ing on the texture.

– p = 4: the additional cluster allows us to separate points
that belong to spatio-temporal elements with a higher

dynamics, for example, the arm of the subject boxing in
the air.

– p = 5: a new cluster does not provide significant
changes.

– p = 6: different elements are now separated in a very
nice way, the edges belonging to the arm are grouped in
a separate cluster w.r.t. the edges belonging to the back
and the legs, also, it is possible to see how points which
look like spatial corners are grouped together (in the yel-
low cluster), without any differentiation regarding their
spatio-temporal behavior.

– p = 7: no additional information.
– p = 8: the points colored in white represent the last

cluster added within this trial, we can see how these ele-
ments could correspond to spatial corners with particular
dynamics (the fist is inverting direction, the corners join-
ing the arm to the head and to the chest undergo some
changes, and the front tip of the jacket ismovingwhile the
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Fig. 14 Points belonging to the different eight clusters calculated on a
frame of the boxing sequence (see text). a Cluster # 1 from p = 8, b
Cluster # 2 from p = 8, c Cluster # 3 from p = 8, d Cluster # 4 from

p = 8, e Cluster # 5 from p = 8, f Cluster # 6 from p = 8, g Cluster #
7 from p = 8 and h Cluster # 8 from p = 8

subject is punching). These points are also highlighted
in Fig. 14h, and the corresponding average C is high-
lighted in Fig. 15h. Their similarity with the STIP points
in Fig. 12 is apparent.

This result highlights many nice properties of our descriptor:
the separations of all the points of the image frame into dif-
ferent sets, with respect to their spatio-temporal behavior, is
obtained thanks to a space–time continuity of the representa-
tion inherited by the shearlet transform; as p grows we may
identify an interesting nested structure; even in an entirely
unsupervised approach most of the points clusters automat-
ically detected can be associated with known feature points,
such as edges or corners.

As a last observation, we discuss whether the estimated
space–time clusters are persistent among different video
frames and different video. The intuition is that the answer
should be negative since the estimated space–time primitives
are learnt by a short temporal observation, and thus, differ-
ent primitives may be present or not. To this purpose, we
compare sets of primitives estimated on different frames and

compare them through the Euclidean distance, building sim-
ilarity matrices. Note that, in every matrix, the entries of the
two sets have been reordered so that to keep the values corre-
sponding to the best similarity obtained along the diagonal,
and that the assignment of the entries of the two centroids sets
has been carried on by means of the Hungarian algorithm.
Figure 16 shows the self-similarity within a set of space–time
primitives. We consider this example as a baseline observa-
tion, showing how the primitives are somewhat redundant
(this is visible by the block structure of the matrix that shows
how different primitives are similar to one another). If we
compare centroids obtained at different frames of the same
sequence (Fig. 17), we observe again a very similar domi-
nant diagonal, possibly due to the fact we are observing a
periodic action. If we compare video frames from different
type of actions, we obtain noisier similarity matrices. Fig-
ure 18 compares a boxing frame with a handwaving frame;
in this case, the dominant diagonal is still present, show-
ing that each primitive has at least a counterpart on the other
frame. In fact, the two actions, even if they are quite different,
have many things in common: they are upper body actions,
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Fig. 15 3D visualization of the C objects related to the centroids of the clusters shown in Fig. 14a–g. a C for cluster # 1, b C for cluster # 2, c C
for cluster # 3, d C for cluster # 4, e C for cluster # 5, f C for cluster # 6, g C for cluster # 7 and h C for cluster # 8

Fig. 16 Self-similarity matrix for a video frame of the boxing sequence. a Frame, b Clusters and c Self-similarity
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Fig. 17 Similarity matrix between two video frames of the boxing sequence (the reference frame is shown in Fig. 16). a Frame, b Clusters and c
Similarity

Fig. 18 Similarity matrix between a video frame of the boxing sequence (Fig. 16) and a frame of the handwaving sequence. a Frame, b Clusters
and c Similarity

Fig. 19 Similarity matrix between a video frame of the boxing sequence (Fig. 16) and a frame of the walking sequence. a Frame, b Clusters and c
Similarity

with abrupt changes of direction and are executed at a similar
pace; thus, we expected them to share at least a subset of very
similar spatio-temporal primitives. Finally, Fig. 19 compares
the boxing with a walking frame, two very different types of
dynamics, as confirmed by the noisy similarity matrix we
obtain.

6 Conclusions

In this paper, we discussed how to analyze space–time sig-
nals, or more specifically video sequences, in the framework

of shearlets. The goal of our work was to evaluate the behav-
ior of the signal in a space–time local neighborhood. Starting
from a theoretical analysis, followed by toy as well as real
examples, we discussed what are the typical patterns one
may find in space–time signals. Then, we derived a point
representation based on signal coefficients and show that
it appears to be stable on set of points of the same nature,
while also meaningfully highlighting their spatio-temporal
behavior. Based on this property, we derived an unsuper-
vised approach to identify different space–time primitives of
a video frame. This primitives are the centroids of space–
time points clusters obtained by the k-means algorithm. Our
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analysis shortens the gap between theory and algorithms and
allows us to derive a computational model which may be
applied to motion analysis and action recognition.

In this paper, we considered one frame at a time with its
temporal neighborhood. We are currently investigating how
to integrate the analysis at the level of the entire video. We
conclude by observing that shearlets may lead to a perfect
scale invariant representation. On 2D signals, this has been
clearly demonstrated in the theory and exploited in prac-
tice in [8]. Furthermore, it would be of interest to exploit
the multi-scale property of the shearlet coefficients to detect
spatial-temporal patterns at different scales. This requires a
representation with a large number of different scales and,
at the present, this poses some implementation problems,
whose solution will be the objective of future work.
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