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Abstract
In this paper, a new set of quaternion radial-substituted Chebyshev moments (QRSCMs) is proposed for color image repre-
sentation and recognition. These new moments are circular moments defined over a unit disk by using a new set of orthogonal
basis functions called radial-substituted Chebyshev functions. A new hybrid method is proposed for highly accurate com-
putation of QRSCMs in polar coordinates. In this method, the angular kernel is exactly computed by analytical integration
of Fourier function over circular pixels. The radial kernel is computed using a recurrence relation which completely elim-
inates the coefficient matrix associated with the radial-substituted Chebyshev functions. Rotation, scaling, and translation
(RST) invariances for QRSCMs are proved. Numerical experiments were conducted where the results of these experiments
show better performance of QRSCMs over existing quaternion moments in terms of image reconstruction capabilities, RST
invariances, robust to different noises, and CPU elapsed times.

Keywords Quaternion radial-substituted Chebyshev moment · Chebyshev rational moment · Color image representation ·
RST · Polar coordinates · Color image reconstruction · Classifications of color images

1 Introduction

Moment functions play an essential role in representing dig-
ital images. Orthogonal moment functions are preferable in
representing digital images due to their minimum informa-
tion redundancy. Orthogonal moment functions are defined
either in polar or Cartesian coordinate systems [1]. Circular
orthogonal moments are defined over a unit circle and rota-
tionally invariants by nature. This characteristic is a very
attractive in pattern recognition applications. Orthogonal
Zernike moments (ZMs) are the first set of circular orthog-
onal moment defined by Teague [2]. During the last four
decades, many circular orthogonal moments were defined
and widely used. Bailey and Srinath [3] defined circu-
lar pseudo-Zernike moments (PZMs) for image analysis
and representation. Sheng and Shen [4] defined the cir-
cular orthogonal Fourier–Mellin moments (OFMMs). Ping
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et al. [5] defined the circular Chebyshev–Fourier moments
(CFMs) for image description. Ren et al. [6] defined radial-
harmonic-Fourier Moments (RHFMs) for invariant image
description. Ping et al. [7] defined the generic circular orthog-
onal Jacobi–Fourier moments for invariant image descrip-
tion. Yap et al. [8] defined the circular orthogonal polar
harmonic transform moments (PHTs) for invariant image
representation. Xiao et al. [9] defined the circular orthog-
onal radial-shifted Legendre moments (RSLMs) for image
analysis and invariant image recognition. Recently, Guo et
al. [10] defined a new set of circular orthogonal moments
based on Chebyshev rational functions.

The interest in color images analysis steadily increased.
Color image representation and processing using quaternion
moments attract many research groups around the world dur-
ing the last few years. Chen et al. [11] derived the quaternion
Zernike moments (QZMs) from their corresponding ZMs
for the three separate RGB channels. Also, they derived
the rotation, scaling, and translation (RST) moment invari-
ants of the QZMS. In a similar fashion, Chen et al. [12]
derived the quaternion pseudo-Zernike moments (QPZMs)
and their RST invariants and then applied these quater-
nion moments in color face recognition. Guo and Zhu [13]
derived the quaternion Fourier–Mellin moments (QFMMs)
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and their invariants to RST transformations. Xiang-yang
et al. [14] derived the quaternion radial-harmonic-Fourier
moments (QRHFMs) for color image representation. Wang
et al. [15] derived the quaternion polar harmonic transforms
(QPHTs) and their RST invariants for color image represen-
tation and recognition. Yang et al. [16] derived the quaternion
exponent moments (QEMs) and their invariant to similarity
transformations for invariant color image representation.

Conventional computation of Chebyshev rational
moments as discussed in [10] encountered by three major
problems:

• First is the low accuracy due to the approximated evalu-
ation of both angular and radial functions.

• Second is the extremely low speed computational process
due to the evaluation of the coefficient matrix for each
order. This process is very time-consuming process due
to the hug number of factorial terms.

• Third is numerical instabilities due to accumulation of
errors and the highly dynamic change in the values of the
coefficient matrix.

Recursive computing of the radial kernel, by using recurrence
formula overcome these three problems. Highly accurate
computation is achieved through accurate computation of
the initial terms. Fast computation and numerical stability
are achieved by eliminating the coefficient matrix entirely
from the computational process.

In this paper, a new set of quaternion radial-substituted
Chebyshevmoments (QRSCMs) is proposed for color image
representation. The QRSCMs are computed in polar coordi-
nates using new accurate method. In this method, the radial
kernel is computed recursively where fast computation is
achieved through avoiding the hug computational demands
encountered in the direct conventional computational meth-
ods.

The rest of the paper is organized as follows. Prelimi-
naries about the Chebyshev rational moments for grayscale
images. The definition of QRSCMs for RGB color images is
presented in Sect. 2. In Sect. 3, the detailed description of the
proposed method is presented. Numerical experiments and
the obtained results are presented in Sect. 4. Conclusion is
presented in Sect. 5.

2 Quaternion Radial-Substituted Chebyshev
Moments

This section is divided into three subsections. In the first
one, a brief description of the Chebyshev rational moments
(CRMs) [10] for grayscale images is presented. In the
second subsection, a new set of basis functions called radial-
substituted Chebyshev functions is defined in polar coordi-

nates over a unit circle. The quaternion radial-substituted
Chebyshev moments (QRSCMs) for color image represen-
tation is presented in the third subsection.

2.1 Chebyshev Rational Moments for Gray-Level
Images

Chebyshev rational moments (CRMs) are defined as follows
[10]:

Mnm = 1

2π an

2π∫

0

1∫

0

f (r , θ) Rn (r) W (r) exp
(
−î mθ

)
rdrdθ ,

(1)

where î = √−1; n = 0, 1, 2, . . . and m = 0, ± 1,
± 2, . . . . . .. are the moment orders. The f (r , θ) represents
the image function in polar coordinates. The normalization
constant is defined as:

an = Cnπ

2
, (2)

where

Cn =
{
2, for n = 0
1, for n ≥ 1

(3)

Theweight function,W (r), and theChebyshev rational func-
tion, Rn (r), are defined as follows:

W (r) = 1

(1 + r)
√
r

, (4)

Rn (r) =
n∑

k=0

αnk
1

(1 + r)k
, (5)

where the coefficient matrix is:

αnk = (k!)2
(2k)!

(
n + k − 1
k

) (
n
k

)
(−4)k . (6)

The first five terms of theChebyshev rational function, Rn (r)
are:

R0 (r) = 1,

R1 (r) = r − 1

r + 1
,

R2 (r) = r2 − 6r + 1

(r + 1)2
,

R3 (r) = r3 − 15 r
2 + 15 r − 1

(r + 1)3
,

R4 (r) = r4 − 28 r3 + 70 r
2 − 28 r + 1

(r + 1)4
. (7)
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The orthogonality of the Chebyshev rational functions is
expressed using the following form:

∞∫

0

Rn (r) Rm (r) W (r) dr = Cnπ

2
δn m . (8)

In order to derive the quaternion version of these moments
to represent the RGB color images, we encounter a major
problem. Chebyshev rational functions as defined in [10] are
orthogonal in the infinite domain. They are not orthogonal
over the unit disk.

This can be verified by the following:
Let

Inm=
∫ 1

0
Rn (r) Rm (r)W (r) dr (9)

Then

I01=
1∫

0

R0 (r) R1 (r)W (r)=
[−2

√
r

r+1

]1
0
, (10)

which is not zero. Therefore, Rnm �= 0, when n �=m. This
motivate the authors to define the radial-substituted Cheby-
shev functions as orthogonal functions over a unit disk.

2.2 Radial-Substituted Chebyshev Rational
Moments for Gray-Level Images

Based on the definition of Chebyshev rational functions, we
can derive the radial-substituted Chebyshev functions R̄n (r)
by assuming

r̂ = r

1 + r
, r = r̂

1 − r̂
, dr = 1(

1 − r̂
)2 dr̂ . (11)

Substituting Eq. (11) into (4) and (5), the radial-substituted
Chebyshev functions, R̄n (r), and the substituted weight
function, W̄ (r), are defined as follows:

R̄n+1
(
r̂
) = 2

(
2r̂ − 1

)
R̄n

(
r̂
) − R̄n−1

(
r̂
)
, (12)

where

R̄0
(
r̂
) = 1,

R̄1
(
r̂
) = 2r̂ − 1.

The radial-substituted Chebyshev functions, R̄n (r), are
defined by using the explicit form as follows:

R̄n
(
r̂
) =

n∑
k=0

(k!)2
(2k)!

(
n + k − 1
k

) (
n
k

)
(−4)k

(
1 − r̂

)k
.

(13)

For n ≥ 1.
The substituted weighted function is defined as follows:

W̄
(
r̂
) =

(
1 − r̂

)3/2
(
1 − r̂

)2 √
r̂

=
(
r̂ − r̂2

)−1/2 = 1√(
r̂ − r̂2

) .

(14)

The real-valued substituted functions, R̄n(r̂), are orthogonal
over the unit disk (in the interval 0 < r̂ < 1 ) and satisfy the
following orthogonally relation:

1∫

0

R̄n
(
r̂
)
R̄m

(
r̂
)
W̄

(
r̂
)
dr̂ = Cnπ

2
δn m . (15)

Based on orthogonality of the radial-substituted Chebyshev
functions, the image function f (r , θ) could be reconstructed
as follows:

f (r , θ) =
∞∑
n=0

∞∑
m=−∞

Mnm R̄n(r) e
îmθ . (16)

Since the summation to infinity is impossible in comput-
ing environment, a finite summation to max be replaced
where max refers to a user predefined maximum order of the
computed radial-substituted Chebyshev moments (RSCMs).
Therefore, Eq. (16) is rewritten as follows:

f (r , θ) ≈
max∑
n=0

max∑
m=−max

Mnm R̄n (r) eîmθ . (17)

2.3 Quaternion Radial-Substituted Chebyshev
Moments for Color Images

Hamilton [17] defined the quaternion, q, as a generalization
of the complex number where this quaternion has one real
and three imaginary components:

q = a + bi + cj + dk, (18)

where a, b, c, and d are real numbers, and i, j, and k are three
imaginary units obeying the following rules:

i2 = j2 = k2 = ijk = −1,

ij = − ji = k, jk = −kj = i,ki = − ik = j. (19)
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The quaternion q is called a pure quaternion when the com-
ponent a = 0. The modulus and the conjugate of q are
defined as follows:

q∗ = a − bi − cj − dk, (20)

|q| =
√
a2 + b2 + c2 + d2. (21)

A color image, f (r , θ), can be represented using a pure
quaternion as follows:

f (r , θ) = fR (r , θ) i + fG (r , θ) j + fB (r , θ) k, (22)

where fR (r , θ) , fG (r , θ), and fB (r , θ) represent the red,
green, and blue channel components, respectively. Based
on the definition of the quaternion, the right-side quater-
nion radial-substituted Chebyshev moments (QRSCMs) are
defined as:

MR
nm = 1

2π an

2π∫

0

1∫

0

f
(
r̂ , θ

)
R̄n

(
r̂
)
W̄

(
r̂
)
exp (−μmθ) r̂dr̂dθ.

(23)

The unit pure quaternionμhas the valueμ= (i + j + k) /
√
3.

Based on the properties of quaternion algebra, and using
Eq. (22) in (23), the right side (QRSCMs) could be repre-
sented using the RGB channels as follows:

MR
nm = AR

nm + iBR
nm + jCR

nm + kDR
nm (24)

where

AR
nm = − 1√

3

[
imag (Mnm ( fR)) + imag (Mnm ( fG))

+ imag (Mnm ( fB))
]

BR
nm = real (Mnm ( fR)) + 1√

3

[
imag (Mnm ( fB))

− imag (Mnm ( fG))
]

CR
nm = real (Mnm ( fG)) + 1√

3

[
imag (Mnm ( fR))

− imag (Mnm ( fB))
]

DR
nm = real (Mnm ( fB)) + 1√

3

[
imag (Mnm ( fG))

− imag (Mnm ( fR))
]

(25)

Mpq ( fR) , Mpq ( fG), andMpq ( fB) represent RSCMs for
the red, green, and blue channel, respectively. Based on
Eq. (25), the computational process of QRSCMs depends on
the computational process of the conventional RSCMs for
the three single-channel images. Consequently, exact com-
putation of RSCMs results in exact QRSCMs.

The input color image could be reconstructed by a finite
number of QRSCMs using the following form:

f reco. (r , θ) = f̂ A (r , θ) + f̂B (r , θ) i + f̂C (r , θ) j

+ f̂D (r , θ) k, (26)

where

f̂ A (r , θ) = real
(
ÁR
nm

)
− 1√

3
[imag

(
B́ R
nm

)

+ imag
(
Ć R
nm

)
+ imag(D́R

nm)]

f̂B (r , θ) = real
(
B́ R
nm

)
+ 1√

3
[imag

(
ÁR
nm

)

+ imag
(
Ć R
nm

)
− imag(D́R

nm)]

f̂C (r , θ) = real
(
Ć R
nm

)
+ 1√

3
[imag

(
ÁR
nm

)

− imag
(
B́ R
nm

)
+ imag(D́R

nm)]

f̂D (r , θ) = real
(
D́R
nm

)
+ 1√

3

[
imag

(
ÁR
nm

)

+ imag
(
B́ R
nm

)
− imag

(
Ć R
nm

)]
(27)

The value of f̂ A (r , θ) is very close to 0; and f̂ B (r , θ) ,

f̂C (r , θ) and f̂D (r , θ) are the red, green and blue compo-
nents of the reconstructed color image. The terms ÁR

nm , B́ R
nm ,

Ć R
nm and D́R

nm represent the reconstruction matrix of AR
nm,

BR
nm , CR

nm and DR
nm , respectively.

ÁR
nm =

∞∑
n=0

∞∑
m=−∞

AR
nm Rn (r)eμmθ ≈

max∑
n=0

max∑
m=−max

AR
nm Rn (r)eμmθ ,

B́ R
nm =

∞∑
n=0

∞∑
m=−∞

BR
nm Rn (r)eμmθ ≈

max∑
n=0

max∑
m=−max

BR
nm Rn (r)eμmθ ,

Ć R
nm =

∞∑
n=0

∞∑
m=−∞

CR
nm Rn (r)eμmθ ≈

max∑
n=0

max∑
m=−max

CR
nm Rn (r)eμmθ ,

D́R
nm =

∞∑
n=0

∞∑
m=−∞

DR
nm Rn (r)eμmθ ≈

max∑
n=0

max∑
m=−max

DR
nm Rn (r)eμmθ ,

(28)

Based on Eq. (19), the right- and the left-side QRSCMs are
not identical. These moments are related by the form:

ML
pq = −MR

p−q , (29)

where
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Fig. 1 a Cartesian image pixels, b polar image pixels

ML
nm = 1

2π an

2π∫

0

1∫

0

f
(
r̂ , θ

)
R̄n

(
r̂
)
W̄

(
r̂
)
exp (−μmθ) r̂dr̂dθ .

(30)

3 The Proposed Computational Method

Radial-substituted Chebyshev functions are defined in polar
coordinates. Therefore, computation of these functions in
Cartesian coordinate system required a circle-to-squaremap-
ping which results in geometric errors. These errors could be
avoided through computation in polar coordinates.All details
of this approach are found in [18–20]where the polar raster is
displayed in Fig. 1. Radial-substituted Chebyshev moments
could be computed in polar coordinates as following:

Mnm = 1

2π an

∑
i

∑
j

In
(
r̂i

)
Im

(
θi j

)
f̂
(
r̂i , θi, j

)
. (31)

The image intensity function f̂ (ri , θi, j ) is deduced from the
input one using the cubic interpolation [21]. The angular and
radial kernels are defined as:

Im
(
θi j

) =
Vi, j+1∫

Vi j

e−î m θdθ, (32)

In
(
r̂i

) =
Ui+1∫

Ui

W̄
(
r̂
)
R̄n

(
r̂
)
r̂dr̂ . (33)

The lower and upper limits of the definite integrals in
Eqs. (32) and (33) are expressed as follows:

Ui+1 = Ri + �Ri/2 ; Ui = Ri − �Ri/2, (34)

Vi, j+1 = θi, j + �θi, j/2 ; Vi, j = θi, j − �θi, j/2 . (35)

Based on the principles of calculus, exact computation of the
angular kernel, Im

(
θi j

)
, is achieved by using the analytical

integration as follows:

Im
(
θi, j

) = î

m

(
e−î m V i, j+1 − e−î m V i, j

)
. (36)

For q ≥ 1, where:

I0
(
θi, j

) = (
Vi, j+1 − Vi, j

)
. (37)

Now, we looking for accurate computation of the radial
kernel In

(
r̂i

)
. Equation (12) could be rewritten as follows:

R̄n
(
r̂
) = 2

(
2r̂ − 1

)
R̄n−1

(
r̂
) − R̄n−2

(
r̂
)
. (38)

For n ≥ 2.
Using Eq. (38) in (35) yields:

In
(
r̂i

) =
Ui+1∫

Ui

W̄ (r̂)
[
2

(
2r̂ − 1

)
R̄n−1

(
r̂
) − R̄n−2

(
r̂
)]

r̂dr̂ .

(39)

Equation (39) is rewritten in the following compact form:

In
(
r̂i

) = An−1
(
r̂i

) − In−2
(
r̂i

)
. (40)

For n ≥ 2, where the first term is defined as follows:

I0
(
r̂i

) =
Ui+1∫

Ui

√
r̂√

1 − r̂
dr̂ . (41)
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This integration, I0 (ri ) , is evaluated analytically as follows
[22]:

I0 (ri ) = 2arctan

( √
Ui+1√

1 −Ui+1 − 1

)
− √

Ui+1
√
1 −Ui+1

− 2arctan

( √
Ui√

1 −Ui − 1

)
+ √

Ui
√
1 −Ui (42)

I1
(
r̂i

) =
Ui+1∫

Ui

(
2r̂ − 1

) √
r̂√

1 − r̂
dr̂ =

Ui+1∫

Ui

2r̂
√
r̂√

1 − r̂
dr̂

−
Ui+1∫

Ui

√
r̂√

1 − r̂
dr̂

=
Ui+1∫

Ui

2r̂
√
r̂√

1 − r̂
dr̂−I0

(
r̂i

)
, (43)

where

An−1
(
r̂i

) =
Ui+1∫

Ui

2 W̄ (r̂)
(
2r̂ − 1

)
R̄n−1

(
r̂
)
r̂dr̂ . (44)

Substituting Eq. (14) in (44) yields:

An−1
(
r̂i

) =
Ui+1∫

Ui

2

(
2r̂ − 1

)
√
r̂ − r̂2

R̄n−1
(
r̂
)
r̂dr̂ . (45)

It is obvious that analytical evaluation of the definite inte-
gration in Eq. (45) is impossible. The Gaussian numerical
integration method is a highly accurate numerical integra-
tion method [23] used to evaluate An−1

(
r̂i

)
. This method

was successfully used in [24,25]. The Gaussian numerical
integration method is defined as follows:

b∫

a

g (z) dz ≈ (b − a)

2

c−1∑
l=0

wl g

(
a + b

2
,
b − a

2
tl

)
, (46)

wherewi and ti refer to weights and the location of sampling
points and cis the order of the numerical integration with i =
0, 1, 2, . . . c − 1. The values of wi are fixed and

c−1∑
i=0

wi = 2.

The values of ti can be expressed in terms of the limits of the
integration aand b.

4 Numerical Experiments

Numerical experiments are performed in order to achieve
two goals. First goal is concerned with the validation of

the proposed method. The second goal is concerned with
comparing the performance of the QRSCMs with the other
quaternion moments. In The first subsection, experiments
were performed to reconstruct different RGB color images
by using the computed QRSCMs. Evaluation of the recon-
structed images ensure the accuracy of the proposed method.
Invariances of the QRSCMs with respect to similarity trans-
formations (rotation, scaling, and translation) of RGB color
images is presented in the second subsection. Robustness
against different kinds of noises discussed in the third sub-
section.

Evaluation of the classification color images ensure the
accuracy of the proposed method with respect to (rotation,
scaling, and translation) RST transformations of RGB color
images is presented in the fourth subsection. The CPU-speed
estimation for the proposed method is discussed in the fifth
subsection.

4.1 Color Image Reconstruction

Accurate reconstruction of color images required accurate
moments where the reconstruction accuracy increased as
the order of moments increased. Accurate computation of
higher-order moments represents a challenge for most com-
mon numerical methods. Therefore, reconstruction of RGB
color images is a very relevant way to assess the accuracy
of the proposed method. Numerical experiments were per-
formed where the accuracy of the reconstructed images is
evaluated quantitatively and qualitatively. The normalized
image reconstruction error (NIRE) [13] is used as a quanti-
tative measure of the reconstruction capability of QRSCMs.
The NIRE is defined as follows:

NIRE =
∑N−1

i=0
∑N−1

j=0 | f (i, j) − f recons. (i, j)|2∑N−1
i=0

∑N−1
j=0 | f (i, j)|2 , (47)

where f (i, j) and f recons.(i, j) represent the original and the
reconstructed RGB color images, respectively. A computa-
tion method is said to be highly accurate when the values
of the NIRE approach zero. The visual inspection of the
reconstructed images by human eyes is used in qualitative
evaluation of the reconstructed images. Normal human eye
could easily measure the degree of similarity between the
original and the reconstructed images.

Five color images are displayed in Fig. 2. These images
are used in five different numerical experiments. In the first
experiment, the QRSCMs of different orders ranging from 0
to 120 are computed for the color image of “Lena” with size
64×64 by using the proposed hybrid method and the QZMs
[11], QPZM [12], QFMMs [13], QRHFMs [14], QPCETs
[15], and QEMs [16]. The values of NIRE are evaluated and
plotted in Fig. 3. It is observed that the values of NIRE for
QRHFMs [14], QPCETs [15], QEMs [16] decreased as the
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Fig. 2 A set of color images

Fig. 3 NIRE for the image of the Lena of size 64 × 64 using the pro-
posed QRSCMs and the existing quaternion moments [11–16]

moment order increased up to moment orders 20, 15, 15,
respectively. Furthermore, the computation of QFMMs [13]
is highly instable with moment orders > 20. The numerical
instability of the QPZMs [12] and QZMs [11] comes with
moment order ≥ 25, and 45, respectively. It is also observed
that the proposed hybridmethod is highly accurate and stable
where the values of the NIRE are much smaller and contin-
uously decreased as the moment orders increased.

The second numerical experiment is performed using the
color image of “pills” with size 128 × 128. The computed
values of the NIRE for different methods are displayed in
Fig. 4. It is clear that the values of theNIREofQRHFMs [14],
QPCETs [15], and the QEMs [16] are dramatically increased
where the accumulation of the approximation errors make
thismethod instable. Thevalues of theNIREofQFMMs [13],
QPZMs [12], and the QZMs [11] keeps its stability for orders
up to 20, 25, and 40, respectively, and suddenly becomes
highly instable due to the accumulation of errors. The pro-
posed method is stable for all moment orders where the
values of NIRE continuously decreased as the moment order
increased.

The qualitative quality of the reconstructed color images
is evaluated by using a visual perception where the original
color image is reconstructed using different orders and the

Fig. 4 NIRE for a color image of b of size pills 128 × 128 using the
proposed QRSCMs and the existing quaternion moments [11–16]

reconstructed color images are displayed for eye observa-
tion. To evaluate the effect of geometric error and numerical
integration which is reflected in the quality of reconstructed
images. In the third experiment, the standard color image
of “Peppers” with size 64 × 64 is reconstructed by using
the proposed method and the other six quaternion moments,
QZMs [11], QPZM [12], QFMMs [13], QRHFMs [14],
QPCETs [15], and QEMs [16]. The reconstructed images
are displayed in Fig. 5. This figure clearly shows that the
reconstructed images using the (QZMs) [11], (QPZMs) [12],
(QOFMMs) [13], (QRHFM) [14], (QPCET) [15], (QEMs)
[16], are significantly damaged due to the low accuracy and
highly numerical instability. The reconstructed color images
by using the proposed method are very close to the origi-
nal color image especially with higher-order moments. This
observation ensures highly accurate and stable computation
of QRSCMs. Visual comparison and quantitative measure-
ments show great results which ensure the accuracy of the
proposed method compared with other quaternion moments.

In the fourth experiment, the color image of the “Baboon”
with size 128 × 128 is reconstructed by using the proposed
method and all aforementioned quaternion moments. The
reconstructed color images are displayed in Fig. 6. The fifth
experiment is performedusing the color image of flower. This
image of size 256×256 is reconstructed by using QRSCMs.
The reconstructed color images are displayed in Fig. 7. Sim-
ilar conclusion is reached where the obtained results are
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Fig. 5 Reconstructed color image of Pepper with size 64 × 64 using selected order of using the proposed QRSCMs and the existing quaternion
moments [11–16]

similar to the corresponding results of the previous exper-
iments.

Smaller reconstructed errors may be considered due to
the accurate computation method of QRSCMs using hybrid
exact and Gaussian numerical integration. In order to remove
any ambiguity, additional numerical experiment is performed
where the conventional ZOA computational method is used
for computing QRSCMs and the other existing quater-
nion moments QZMs [11], QPZMs [12], QOFMMs [13],
QRHFMs [14], QPCETs [15], and QEMs [16]. The normal-
ized image reconstruction errors (NIRE) for all mentioned
quaternion moments are computed and displayed in Fig. 8. It
is clear that the proposed new set of QRSCMsmoments show
the best performance either with accurate computational
method or the conventional ZOA computational method.

The existing quaternion methods could be classified into
two groups. The first group contains QZMs [11], QPZMs
[12], andQOFMMs [13]. The accuratemethod is not suitable
for these moments. Two major problems are associated with
these moments. The first one is concerned with nature of
these polynomials while the second one is concerned the
coefficients of the radial polynomials. The performance of
these moments would not improve, even with the utilization
of the accurate computational method.

For the second group which contains QRHFMs [14],
QPCETs [15], and QEMs [16], the accurate method could be
adapted to be suitable for these moments. The performance
of these moments would be improved. Even after this possi-
ble improvement, the performance of the proposedQRSCMs
is still better due to the nature of the Chebyshev radial poly-
nomials [10].

In the recent published paper, [26], a novel recurrence
formula is proposed to remove the errors associated with the
computation of QPCETs in polar coordinates. The authors
could say, now the door is opened for similar works to
improve the accuracy of QRHFMs and QEMs by find hybrid
proper exact formula and recurrence relations.

4.2 Similarity Transformations

4.2.1 Rotation Invariance

Invariance to the similarity transformations such as rotation
and scaling, are very important in pattern recognition applica-
tions. However, QRSCMs moment invariants are negatively
affected by the accumulated errors. The original image is
rotated with an angle α. The image intensity function of
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Fig. 6 Reconstructed color image of Baboon of size 128 × 128 using selected order of using the proposed QRSCMs and the existing quaternion
moments [11–16]

rotated image is related to its corresponding one for origi-
nal image as:

f rot (r , θ) = f (r , θ + α). (48)

Let θ̂ = θ + α, then θ = θ̂ − α and dθ = dθ̂
The QCRMs of the two images f rot and f have the fol-

lowing relations

MR
pq

(
f rot

) = 1

2π an

∫ 2π

0

∫ 1

0
f (r , θ + α)R̄p (r) W̄ (r)

e−μqθrdrdθ

= 1

2π an

∫ 2π

0

∫ 1

0
f
(
r , θ̂

)
R̄p (r) W̄ (r)

e−μq(θ̂−α)rdrdθ̂

= 1

2π an

∫ 2π

0

∫ 1

0
f
(
r , θ̂

)
R̄p (r) W̄ (r)

e−μq θ̂eμqαrdrdθ̂

= MR
pq( f )e

μqα (49)

where MR
pq

(
f rot

)
and MR

pq( f ) are the QCRMs of f rot and
f , respectively. Similarly, we can obtain the following rela-
tionship for the left-side QCRMs s as follows:
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Fig. 7 Reconstructed color image of flower of size 256 × 256 using the proposed QRSCMs

ML
pq

(
f rot

) = eμqαML
pq ( f ) . (50)

Since |eμqα| = 1, then:

|MR
pq

(
f rot

) | = |MR
pq

(
f rot

)
eμqα| = |MR

pq

(
f rot

) ||eμqα|
= |MR

pq ( f ) |.

Themagnitude values of theQRSCMsare rotation invariants.
In other words, ϕpq = |MR

pq ( f ) | are invariant with respect
to rotation transform.

In order to evaluate the effectiveness of the proposed
QRSCMs invariants under the rotation transform, a set
of numerical experiments are performed. The well-known
Columbia Object Image Library (COIL-100) [27] of color
objects is used in the upcoming numerical experiments. A
collection of the 100 objects is displayed in Fig. 9. The color
image for the obj_74 of size 128 × 128 is rotated by dif-
ferent angles ranging from 0◦ to 180◦. The rotated images
are displayed in Fig. 10. The magnitude values of the first
few QRSCMs for various angles of rotation are presented in
Table 1. The magnitude values are very similar and almost
unchanged with different rotation angles which ensure the
accuracy of the rotation invariance of the QRSCMs.

Additional experiment is performed where the rotational
invariance of the proposed method is compared with other
existing quaternionmoments [11–16]. Themean square error

Fig. 8 NIRE for the image of the Lena of size 64 × 64 using the con-
ventional ZOA for computing QRSCMs and the existing quaternion
moments [11–16]

(MSE) is a quantitative measure that reflects the accuracy of
rotation which is defined as follows:

MSE = 1

LTotal

max∑
p=0

max∑
q=0

(|MR
pq ( f ) | − |MR

pq

(
f rot

) | )2 , (51)
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Fig. 9 Color images of the dataset Coil-100 [27]

where L total is total number of independent QRSCMs and
|MR

pq ( f ) | , |MR
pq

(
f rot

) | are the magnitudes of QRSCMs
before and after the rotation. The MSE are computed using
the eight methods with a maximum order 20. The rotation
angles, the rotated images, and the values of MSE are pre-
sented in Table 2. The MSEs of the proposed method are
much smaller than their corresponding ones [11–16].

4.2.2 Scaling Invariance

The modulus of QRSCMs moments for RGB color images
are invariant to scaling if the computation area can be made
to cover the same content [15]. In the proposed method, this
condition is met because the QRSCMs are defined and com-
puted on the unit circle. Also, the input RGB color images
are mapped into the unit circle as displayed in Fig. 1. Let f S

be the scaled version of an image f . The right-side QRSCM
moments of f and f S are MR

pq ( f ) and MR
pq ( f s) respec-

tively. Themean square error (MSE) is a quantitativemeasure

that reflects the accuracy of scaling which is defined as fol-
lows:

MSE = 1

LTotal

max∑
p=0

max∑
q=0

(|MR
pq ( f ) | − |MR

pq

(
f s

) | )2 (52)

where L total is total number of independent QRSCMs and
|MR

pq ( f ) | , |MR
pq ( f s) | are the magnitudes of QRSCMs

before and after the scaling.
In order to test the scaling invariance, an experiment

is performed using the color image of obj_52 of the size
128×128. This color test image is uniformly scaled with dif-
ferent scaling factors where both original and scaled images
are displayed in Fig. 11. Both MR

pq ( f s) and MR
pq ( f ) are

computed with a maximum order 20 by using the proposed
hybrid method and the compared methods where theMSE of
are showed in Table 3. It is clear that the scaling invariance
of the proposed method is outperformed all other methods.
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Fig. 10 Original and rotated
color images of the obj_74 [27]

Table 1 Rotation invariance of the rotated images using the proposed QRSCMs

Rotation angle (◦) ϕ1,1 ϕ2,0 ϕ2,2 ϕ2,3 ϕ3,1 ϕ3,2 ϕ3,3 ϕ4,0 ϕ4,2 ϕ4,4

0 0.0072 0.0712 0.0135 0.0147 0.0138 0.0108 0.0110 0.0048 0.0062 0.0014

30 0.0073 0.0712 0.0135 0.0146 0.0138 0.0107 0.0110 0.0048 0.0062 0.0016

60 0.0073 0.0712 0.0135 0.0145 0.0138 0.0108 0.0109 0.0048 0.0062 0.0015

90 0.0073 0.0712 0.0139 0.0146 0.0139 0.0108 0.0109 0.0049 0.0062 0.0014

120 0.0072 0.0712 0.0135 0.0145 0.0138 0.0107 0.0109 0.0048 0.0062 0.0016

150 0.0072 0.0712 0.0135 0.0146 0.0137 0.0108 0.0110 0.0048 0.0062 0.0015

180 0.0071 0.0712 0.0136 0.0146 0.0137 0.0108 0.0110 0.0048 0.0062 0.0014

4.2.3 Translation Invariance

Translation invariance is achieved when the color image
centroid is coinciding with the origin of coordinates. Suk
and Flusser [28] defined the centroid (xc, yc) of RGB color
images as follows:

xc = (m10 ( fR) + m10 ( fG) + m10 ( fB)) /m00 ,

yc = (m01 ( fR) + m01 ( fG) + m01 ( fB)) /m00,

m00 = m00 ( fR) + m00 ( fG) + m00 ( fB) . (53)

where m00 ( fR), m10 ( fR) and m01 ( fR), are the zero-order
and first-order geometric moment for red color channel,
respectively. Similarly, m00 ( fG), m10 ( fG) and m01 ( fG),
and,m00 ( fB),m10 ( fB) andm01 ( fB) are the zero-order and
the first-order geometric moment for green and blue color
channels, respectively.
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Table 2 MSE for the rotated images using the proposed QRSCMs and the other quaternion moments [11–16]

Rotation angle (◦) Rotated images QZMs [11] QPZMs [12] QOFMMs [13] QRHFMs [14] QPCETs [16] QEMs [18] Proposed method

0 0 0 0 0 0 0 0

3 0.1211 0.1673 0.6340 0.0227 0.1170 0.0345 2.32e−4

60 0.1134 0.1675 0.6959 0.0271 0.0833 0.0535 2.44e−4

90 3.4e−4 1.3e−4 3.1e−4 6.9e−5 2.3e−4 1.4e−4 2.01e−29

120 0.1211 0.1673 0.6340 0.0227 0.1170 0.0345 1.93e−4

150 0.1134 0.1675 0.6959 0.0271 0.0833 0.0535 2.65e−4

180 1.4e−4 1.1e−4 3.5e−4 8.2e−5 2.4e−4 2.4e−4 1.64e−29

By locating the coordinate origin at centroid (xc , yc),
the central QCRMs, which are invariant to translation, are
defined as follows:

M
R
nm = 1

2π an

∫ 2π

0

∫ 1

0
f (r , θ)R̄p (r̄) W̄ (r̄) e−μqr rdrdθ (54)

The translation invariance of the proposed QRSCMs is eval-
uated using the color image of the obj_43 [27]. The tested
image is translated with different translation factors in both
x-, and y-axes. The translated images are displayed inFig. 12.

The low order translated right-sideQRSCMs,M
R
nm , are com-

puted for the original and the translated objects where the
computed moments are showed in Table 4. The computed
moments are very similar for different translated objects
which ensure the accuracy of the proposed method to trans-
lation invariance.

4.3 Robustness to Noises

Robustness to different kinds of noise is an attractive charac-
teristic. The noise-free color images of obj_10 [27] is used
in this experiment. This color image is contaminated by
different levels of the ‘salt and pepper’, the ‘white Gaus-
sian’, the ‘speckle,’ and the ‘Poisson’ noises. The noise-free
and contaminated color images are displayed in Fig. 13a–
e, respectively. Noisy color images are reconstructed using

the proposed method with moment order up to 100. The val-
ues of NIRE for the noise-free and noisy color images are
plotted and displayed in Fig. 14. Despite of the presence of
noises in the contaminated images, the values of the NIRE
are decreased as the moment order increased which show
numerical stability. The plotted values of the NIRE ensure
the robustness of the proposed method against the different
kind of noises.

4.4 Classification Performance Using Color Images

In this subsection, we conduct experiments to evaluate the
classification performance of the QRSCMs invariants under
the RST transforms of color images. A collection of the 100
color objects as displayed in Fig. 9 is used in the numerical
experiments. The classification problem is decomposed into
two main steps: the first on is feature extraction, and the sec-
ond is the classification. In this experiment, we construct
the feature vecto using the magnitudes of the quaternion
radial-substituted Chebyshev moment invariants. We used
randomly 40 images from COIL dataset as a training set.
The testing set is then constructed as follows: Each sample
image was scaled with the factor 0.5 and 1.5, and rotated
from 30◦, 60◦, 90◦, 120◦, 180◦, and then each image was
translated by (�x,�y) = (2, 5) in both direction.
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Fig. 11 Original and scaled color images of the obj_52 [27]

Table 3 MSE for the scaled images using the proposed QRSCMs and the other quaternion moments [11–16]

Scaling factors QZMs [11] QPZMs [12] QOFMMs [13] QRHFMs [14] QPCETs [15] QEMs [16] Proposed method

Original (128 × 128) 0 0 0 0 0 0 0

S1 (64 × 64) 0.2022 0.1985 2.0287 0.0321 0.6483 0.0173 1.123e−04

S2 (96 × 96) 0.2996 0.2137 0.4120 0.0030 0.0022 0.0016 1.261e−05

S3 (160 × 160) 0.0544 0.0382 0.1371 6.30e−04 4.41e−04 3.68e−04 4.736e−06

S4 (192 × 192) 0.0299 0.0197 0.1542 0.0013 3.88e−04 8.46e−04 8.529e−06

S5 (224 × 224) 0.0292 0.0203 0.1831 0.0018 3.56e−04 0.0011 9.434e−06

S6 (256 × 256) 0.0593 0.0383 0.2204 0.0022 5.27e−04 0.0014 1.056e−05

In the first numerical experiment, the k-nearest neigh-
bor classifier based on minimum Euclidean-distance and the
SVM classifier-Weka software are used to measure the cor-
rect classification percentage (CCP) with the classification
results using different orders, 2, 8 and 20, of the quater-
nion radial-substituted Chebyshev moment invariants. The
obtained results as displayed in Table 5 show that, the CCP
of the SVM classifier-Weka software is much better than the
k-nearest neighbor classifier.

In the second numerical experiment, the QRSCMs invari-
ants in addition to the other quaternion moment invariants,
QZMs [11], QPZMs [12], QFMMs [13], QRHFMs [14],
QPCET [15] andQEMs [16] are used to extract the features of
the color images, and then the SVMclassifier-Weka software
is utilized. The corresponding correct classification percent-
ages are computed and shown in Table 6. Based on the tabu-
lated results, we can see that the QSCRMs invariants provide
higher classification accuracy than other quaternion moment
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Fig. 12 Original and translated color images of the obj_43 [27]

invariants [11–16] for all orders. The CCP of the quater-
nion moment invariants [11–16] decreased as the moment’s
order increasedwhile theCCPofQSCRM invariants remains
the same even the moment’s order increased. Generally, the
results show clearly that the proposed QSCRMs could be
useful as a new feature descriptor for object classification.

4.5 Computational CPUTimes

Computational CPU times is an essential issue in evaluat-
ing new computational methods. These times are used as an
indicator that reflects the efficiency of the proposed compu-
tational methods by comparing their performances with the
existing methods in a quantitative fashion. Fast computation
of QRSCMs moments is desirable in real-time applications
and processing of big size images. In order to ensure the
efficiency of the proposed method, a number of numerical
experiments are performed with three different datasets of
color images.

The first dataset is the dataset of birds [29] which con-
tains 600 images (100 samples each) of six different classes

of birds. The images are color JPEG with different sizes.
The second dataset is the dataset of butterflies [30] which
contains 619 images of seven different classes of butterflies.
The images are color JPEGwith different sizes. These classes
are “Admiral: 111 images”, “Black Swallowtail: 42 images”,
“Machaon: 83 images”, “Monarch 1 (wings closed): 74
images”, “Monarch 2 (wings open): 84 images”, “Peacock:
134 images”, and “Zebra: 91 images”. Selected images of
these datasets are displayed in Figs. 15 and 16.

The QRSCMs of orders 0–50 with increment 10 are com-
puted for all color images of birds and butterflies. Due to
the difference in size of the color images of the first and the
second datasets, the elapsedCPU times for all images is accu-
mulated and individual average CPU time for each dataset
is computed. Additional experiments are performed to com-
pute the QZMs [11], QPZM [12], QFMMs [13], QRHFMs
[14], QPCETs [15], and QEMs [16] of the same orders. The
average CPU times are showed in Tables 7 and 8, respec-
tively.

The third dataset is the colored Brodatz texture (CBT)
dataset which is a colored version of the original 112 Brodatz

Table 4 Translation invariance of the translated images using the proposed QRSCMs

Translated image ϕ1,1 ϕ2,0 ϕ2,2 ϕ2,3 ϕ3,1 ϕ3,2 ϕ3,3 ϕ4,0 ϕ4,2 ϕ4,4

T0 0.0022 0.0458 0.0028 0.0021 0.0068 0.0009 0.0013 0.0124 0.0031 0.0019

T1 0.0023 0.0453 0.0026 0.0020 0.0068 0.0008 0.0009 0.0125 0.0031 0.0016

T2 0.0024 0.0454 0.0027 0.0019 0.0068 0.0008 0.0008 0.0124 0.0033 0.0013

T3 0.0024 0.0448 0.0024 0.0019 0.0069 0.0007 0.0005 0.0125 0.0030 0.0013

T4 0.0024 0.0454 0.0028 0.0018 0.0067 0.0008 0.0006 0.0122 0.0034 0.0010

T5 0.0024 0.0448 0.0025 0.0018 0.0069 0.0007 0.0004 0.0123 0.0031 0.0010

T6 0.0025 0.0442 0.0022 0.0017 0.0070 0.0008 0.0003 0.0124 0.0028 0.0010
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Fig. 13 a Noise-free color image. Noisy images: b white Gaussian, c salt and peppers, d speckle, e poisson

Fig. 14 NIRE curves for noise-free and noisy color images of Obj_10
[27] computed using the proposed QRSCMs

grayscale texture images [31]. These color images have a
unified size of 640×640. Selected images of this dataset are
displayed in a Fig. 17. The proposedQRSCMs and theQZMs
[11], QPZM [12], QFMMs [13], QRHFMs [14], QPCETs
[15], andQEMs [16] are computed for order ranging from0 to
50. Since all images have the same size, each computational
process is repeated five times and the average CPU time for
the entire dataset is shown in Table 9. A quick comparison
of the average CPU times in seconds for the moment order

Table 5 Correct classification percentages (CCP%) for the color image
COIL dataset using the proposed method

Moment order QRSCMs + K-N QRSCMs + SVM-Weka

2 95.2 97

8 10 10

20 10 10

50 is displayed in Fig. 18. The obtained results clearly show
that the proposed method is very fast and much faster than
the other quaternion moments [11–16].

5 Conclusion

In this paper, a new set of quaternion radial-substituted
Chebyshev moments for color image representation is pre-
sented.Ahighly accurate and stablemethod of computing the
QRSCMs is proposed. The new set of quaternion moments
show a significant improvement in color image reconstruc-
tion capabilities for high orders. Numerical experiments
obviously show that, highly accurate computation of the
QRSCMs results in highly accurate rotation, scaling, and
translation invariances of these moments. Based on its sim-
plicity, the proposed method is very fast which make suitable
for real-time image processing applications. The comparison
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Table 6 Correct classification percentages (CCP%) of the proposed method and The different quaternion moments [11–16] using SVM-Weka

Moment order QZMs [11] QPZMs [12] QFMMs [13] QRHFMs [14] QPCET [15] QEMs [16] Proposed

2 94.25 94.05 93.15 97 94.38 96.29 97

8 95.08 94.43 93.42 97.31 95.12 96.40 100

20 74.40 72.18 70.21 89.74 83.03 89.18 100

Fig. 15 Selected color images of the dataset of Birds [29]

Fig. 16 Selected color images of the dataset of butterflies [30]
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Table 7 Average CPU times for the dataset of color images of Birds [29]

Moment order QZMs [11] QPZMs [12] QFMMs [13] QRHFMs [14] QPCET [15] QEMs [16] Proposed

0 0.0270 0.0240 0.0402 0.0407 0.0184 0.0188 0.0064

10 1.1385 2.1856 2.9052 0.9550 1.2729 1.4025 0.4945

20 5.8464 10.7663 18.3910 3.5713 5.1364 5.1679 1.8110

30 15.9224 29.3726 56.8737 7.8651 10.6972 11.4069 4.0585

40 32.3565 61.8882 129.411 13.8398 18.7158 19.8642 7.1710

50 105.7953 121.857 246.071 30.4750 35.9957 37.6552 10.1324

Table 8 Average CPU times for the dataset of color images of butterflies [30]

Moment order QZMs [11] QPZMs [12] QFMMs [13] QRHFMs [14] QPCET [15] QEMs [16] Proposed

0 0.0513 0.0456 0.0764 0.0774 0.0350 0.0357 0.0293

10 2.1633 4.1527 5.5200 1.8145 2.4185 2.6649 0.9518

20 11.1091 20.4560 34.9429 6.7855 9.7592 9.8190 3.5575

30 30.2526 55.8080 108.060 14.9445 20.3247 21.6732 7.7489

40 61.4774 117.587 245.882 26.2956 35.5601 37.7421 14.0757

50 163.6111 212.529 467.535 60.8026 75.0918 78.2450 20.4562

Fig. 17 Selected color images of the dataset of colored Brodatz texture [31]

Table 9 Average CPU times for the dataset of color images of (CBT) [31]

Moment order QZMs [11] QPZMs [12] QFMMs [13] QRHFMs [14] QPCET [16] QEMs [18] Proposed

0 0.1486 0.1321 0.22134 0.2241 0.1013 0.1034 0.0824

10 6.2622 12.0211 15.9790 5.2527 7.0010 7.7142 2.7752

20 32.1580 59.2148 101.150 19.6422 28.2504 28.4234 9.9987

30 87.5735 161.549 312.805 43.2605 58.8347 62.7384 22.2755

40 177.9610 340.385 711.763 76.1190 102.937 109.253 40.2832

50 328.8743 615.217 1353.39 138.113 189.476 198.604 60.5954
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Fig. 18 Average CPU times the three datasets at moment order 50

with existing quaternion moments ensure the superiority of
the new set of QRSCMs.
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