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Abstract
Image filtering is generally an irreversible process. Image restoration methods, such as inverse filtering or other deconvolution
techniques, cannot precisely recover the original image and often introduce some level of artifacts. In the current paper, we
formulate the filtering as a blending of several transformed replications of the original image. We assume zero noise after the
filtering. Using this convention, we propose a method that precisely restores the original image from its filtered version. The
method is applicable for a family of filters including average box filters and approximated Gaussian filters.

Keywords Non-blind deconvolution · Filter theory · Inverse filtering · Image restoration

1 Introduction

As the Fourier transforms of common low-pass filters are not
nonzero everywhere, they are not invertible. Discrete Fourier
transform (DFT)-based inverse filtering [15] and deconvolu-
tion methods [2,11] are commonly used for estimating the
latent image from blurred and noisy images. However, these
methods do not produce precise restoration of the original
image and often introduce artifacts. Nevertheless, for zero
noise after the blurring and under specific constraints on the
filter weights and the image’s number of bits, we show that
the original image can still be restored from its filtered ver-
sion. Bilateral transition between the original image and its
smoothed version is a plausible feature that can be used in
many image processing applications. For example, in image
editing [1], users might want to ‘undo’ their smoothing fil-
ter or replace it with an edge-preserving denoising method
[3,20]. In general, users may have different preferences in
the level of sharpness and noise. The ability to return to
the original image is generally better than sharpening the
smoothed image. In the current study, we show how a fam-
ily of filters can be fully reversed to generate the original
image to machine precision. We also highlight the method’s
constraints and limitations.
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1.1 RelatedWork

There are several common methods for estimating the orig-
inal image from its smoothed version when the filter kernel
is given. Inverse filtering [15] is the simplest and fastest
method that uses the DFT of the kernel and filtered image
to estimate the original image. A threshold is generally used
to replace zero or smaller DFT values to avoid infinities or
extremely high values in the invertible DFT kernel elements.
The main disadvantage of this method is that it does not per-
form well in the presence of noise. The Wiener filter [11]
offers an optimal trade-off, in terms of mean square error,
between inverse filtering and noise smoothing. However,
when the blurring filter is singular, the Wiener filter actu-
ally amplifies the noise. Wavelet-based denoising scheme
[8] combines Fourier-domain inverse filtering and wavelet-
domain image denoising in turn. Although the approach
improves the performance, in the case when the blurring
function is not invertible, the algorithm is not applicable.
Furthermore, since the two steps are separated, there is
no control over the overall performance of the restoration.
Neelamani et al. [17] proposed a wavelet-based deconvo-
lution technique for ill-conditioned systems that employs
both Fourier-domain Wiener-like and wavelet-domain regu-
larization. Several recentmethods use priors based on natural
image statistics to regularize the ill-posed problem of non-
blind deconvolution. A common approach that gives good
results in a reasonable time is to assume Laplacian distribu-
tion marginals that allow a number of fast L1 and related
TV-norm methods to be deployed [19,22]. Wang et al. [22]
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used minimization technique known as half-quadratic split-
ting, originally proposedbyGemanandcolleagues [9,10] and
showed how it could be usedwith a total-variation (TV) semi-
norm to deconvolve images. However, real-world images
have shown to have heavier tails than a Laplacian. Levin
et al. [14] and Joshi et al. [12] have applied hyper-Laplacian
image priors to non-blind deconvolution problems using iter-
atively re-weighted least squares (IRLS) [21] to solve for
the deblurred image. Krishnan and Fergus [13] proposed
an efficient scheme using a similar approach. Their algo-
rithm uses an alternating minimization scheme where the
non-convex part of the problem is solved in one phase, fol-
lowed by a quadratic phase, which can be efficiently solved
in the frequency- domain using FFTs.

In the current study, we propose a method for exact non-
blind deconvolution.We assume zero noise after the filtering.
The method has a different approach in restoring the orig-
inal image. Instead of inverting the kernel, we formulate
the filtered image as a blending of translated replications
of the original image. Using this formulation, our method
iteratively eliminates these replications. To the best of our
knowledge, this is the first paper to show a method and con-
straints for exact non-blind deconvolution. The method also
obtains superior results for a small amount of additive Gaus-
sian noise, when filtering with average kernels, compared to
classical and state-of-the-art non-blind deconvolution meth-
ods.

The current paper is organized as follows: Section 2 starts
with describing the method of restoring the original image
from average filtered image. Since the 2D reversible filter is
separable, the restoration is performed in each direction sep-
arately, using one-dimensional filters, one direction after the
other. For simplicity, we start with one-dimensional kernel
formulation of the method. Next, the method is extended to
higher- dimensional kernels and to approximated Gaussian
filters. Thereafter, we provide the proof for reversible filters
of kernels with two nonzero weights. Section 3 illustrates
the method and compares it to inverse filtering and to other
deconvolution methods. Section 4 highlights the method’s
limitations. A list of optional applications is suggested in
Sect. 5, while Sect. 6 provides the summary and conclu-
sions.

2 Method

We start with formulating a moving average filter in one
direction as a blending of several replications of the original
image with a constant translation between successive repli-
cations. The method’s idea is to iteratively update the image
by subtracting its own transformed replications while gen-
erating new distal ones. The original image is fully restored
after the last new-generated replication crosses the image

limits. Figure 1 provides a one-dimensional illustration of
the method. The current section provides the mathematical
formulation of the problem, the proposed solution and a proof
of the method’s bit exact image restoration.

2.1 Reversing aMoving Average Filter

Given the input filtered image with the known kernel size as
an input, and the above formulation, we will now define the
problem of obtaining the original image.

Problem statement
Given an image Î (x) that consists of an average of multiple
equal images with a fixed relative translation

Î (x) = 1

N

N−1∑

i=0

I (x − i) (1)

where N > 1 is the filter size.
We would like to obtain the original image I (x).
For simplicity, in this section, we omit the y index since

the processing is one dimensional. In the following sections,
x denotes a two-dimensional vector of coordinates.

Proposition Denote the image size by Ω . Applying the fol-
lowing operation k ≥ �log2(Ω/N )� times

Îk+1(x) =
{
Îk(x) − Îk(x − 1), k = 1
Îk(x) + Îk(x − 2k−2N ), k > 1

(2)

will result in

Îk+1(x) = 1

N
I (x) − 1

N
I (x − 2k−1N ) (3)

Since for k ≥ �log2(Ω/N )�+1 the second term I (x−Ω)

is outside the image limits for all pixels 0 < x < Ω , we get

I (x) = N Îk+1(x). (4)

Proof We prove the proposition using induction. First, we
show that for k = 1, 2, 3 the proposition holds.

For k = 1, we get

Î2(x) = Î1(x) − Î1(x − 1)

= 1

N

N−1∑

i=0

I (x − i) − 1

N

N∑

i=1

I (x − i)

= 1

N
I (x) − 1

N
I (x − N )

(5)
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Fig. 1 One-dimensional
illustration of the reversible
filtering restoration process. N is
the filter size. The first iteration
is one-dimensional derivative of
the signal. The other iterations
remove repetitions when
generating a new distal one.
When the repetition crosses the
image limit, the image is fully
restored
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Going one step forward to k = 2, we get

Î3(x) = Î2(x) + Î2(x − 20N )

= 1

N
I (x) − 1

N
I (x − N )

+ 1

N
I (x − N ) − 1

N
I (x − 2N )

= 1

N
I (x) − 1

N
I (x − 2N )

(6)

For k = 3, we get

Î4(x) = Î3(x) + Î3(x − 21N )

= 1

N
I (x) − 1

N
I (x − 2N )

+ 1

N
I (x − 2N ) − 1

N
I (x − 4N )

= 1

N
I (x) − 1

N
I (x − 4N )

(7)

Assuming that for some k = n

În+1(x) = 1

N
I (x) − 1

N
I (x − 2n−1N ) (8)

we will show that for k = n + 1

În+2(x) = 1

N
I (x) − 1

N
I (x − 2nN ) (9)

By applying Eq. (2), we get

În+2(x) = În+1(x) + În+1(x − 2n−1N ) (10)

Setting the induction assumption to the above for each of
the two elements, we receive

În+2(x) = 1

N
I (x) − 1

N
I (x − 2n−1N )

+ 1

N
I (x − 2n−1N )

− 1

N
I (x − 2n−1N − 2n−1N )

= 1

N
I (x) − 1

N
I (x − 2nN )

(11)

��
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Fig. 2 Convolution of one-dimensional filters to generate two-
dimensional box filter and approximated Gaussian filters—obtained
using convolution

2.2 Extension to 2D Approximated Gaussian Filters

Until nowwe have described the exact restoration (reversible
filtering) on one-directional average kernel. In the current
section, we generalize the reversible filtering to kernels with
uneven weights and higher dimension. Since the filtering is
formulated using blending of transformed images that can
be reversed, we can compose the transformations (or filtra-
tions) and reverse them. Therefore, the key idea is to build
the final filter kernel using convolution of one-dimensional
average filters. Then, restore the original image by apply-
ing the restoration of these one-dimensional average filters
(described above in Sect. 2.1), iteratively, one filter after the

other. The order of the filters in the convolution or restoration
does not matter as the operation is linear. On the other hand,
the length and direction of the one-dimensional average fil-
ters composing the final filter need to be saved.

We denote these one-dimensional filters by N (i)
x and N ( j)

y ,
for the x and y directions, respectively, where i and j are the
indices of filters in the x and y directions, respectively.

One implication of the central limit theorem [18] is that
convolution of several independent filters approximates a
Gaussian filter. This way, the filtering and reverse filtering
of approximated Gaussian filters can be performed. Fig-
ure 2 demonstrates the filter generation process. Figure 3
demonstrates the iterative process of reverse filtering for two-
dimensional average filter.

Figure 4 shows the method’s results for two-dimensional
average kernel and for two-dimensional approximated Gaus-
sian kernels.

The reverse filtering can be formulated in several ways.
Here, we prefer to formulate the translation using the conven-
tion of transformation matrix M defined using homogeneous
coordinates. This enables simple index writing of x and y as
two-dimensional vectors and eases the generalization to lin-
ear transformations in Sect. 2.3. For example for translations
t y, t x in the vertical and horizontal directions, respectively:

My =
⎡

⎣
1 0 0
0 1 t y
0 0 1

⎤

⎦ , Mx =
⎡

⎣
1 0 t x
0 1 0
0 0 1

⎤

⎦ (12)

Therefore, a composition of twovertical translations t x1, t x2,
will generate a translation of t x1+t x2. It is worthmentioning
that using homogeneous coordinates, composition is imple-
mented simply using matrix multiplication.

For average reverse filtering, we use translation of one
pixel in each direction, i.e., t x = t y = 1.

For example, convolving the image with one-dimensional
averagefilter Nx = 3 is translated to 1

3 (I+I (Mx)+I (M2x))

Filtered Itera�on 2 Itera�on 3 Itera�on 4 Itera�on 5 Itera�on 6 Itera�on 7 

Itera�on 8 Itera�on 9 Itera�on 10 Itera�on 11 Itera�on 12 Itera�on 13 Itera�on 14 

Fig. 3 Illustration of the reversible filtering restoration process. The input image (upper left) was filtered with a [5×5] average kernel. The resulted
image (lower right) is identical to the original image up to machine precision
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filtered kernel restored diff (original, restored) 
[3x3] 

[5x5] 

[9x9] 

Fig. 4 Illustration of the reversible filtering restoration for two-dimensional average kernel (upper row) and for approximated Gaussian kernels
(mid- and lower rows)

where, M =
⎡

⎣
1 0 1
0 1 0
0 0 1

⎤

⎦Below is a description of the algo-

rithm stages. As we loop on the x and y directions, the matrix
M refers to eitherMx orMy depending on the direction of the
current loop. Figure 5 illustrates the method’s flow. Below is
the pseudo-code of reversing approximated Gaussian filters
(denoted by Algorithm A).

Algorithm A:

Input: Î , N (i)
x , N ( j)

y

For each one-directional filter of size N ∈
{
N (i)
x , N ( j)

y

}
:

generate the transformation matrix M
Loop: k = 1, . . . , �log2(Ω/N )� + 1:
1) Get the warped image Îk(Mx) = Warp( Îk, M)

2) Update Î using Eq. (2)
3) Update the transformation matrix:

if k = 1 : M ← M · Mk else M ← M · M

2.3 Reversible Filters with Two NonzeroWeights

Another type of filters that can be reversed are filters with
two nonzero weights. The current section provides the proof
for their bit exact reversibility.

We formulate the problem using two replications with rel-
ative translation:

Problem statement
Given an image Î (x) that consists of integration of two equal
images with relative translation u

Î (x) = α I (x) + β I (x − u) (13)

We would like to obtain the original image I (x). We
assume that α is not smaller than β. If this is not the case,
we switch between the notations of α and β with an opposite
sign to u.

Proposition Denote the image size by Ω .
Applying the following operation k ≥ �log2|Ω/u|� times

Îk+1(x) =

⎧
⎪⎨

⎪⎩

Îk(x) −
(

β
α

)2k−1

Îk(x − 2k−1u), k = 1

Îk(x) +
(

β
α

)2k−1

Îk(x − 2k−1u), k > 1

(14)

will result in

Îk+1(x) = α I (x) − β2k

α2k−1
I (x − 2ku) (15)
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Fig. 5 Illustration of the method’s systematic flow. The downward
path (blue) illustrates the filtering process. The reversible filter param-
eters N (i)

x , N ( j)
y (i and j denote the number of filters in the x and y

directions, respectively) are stored to the meta-data of the image’s file.
The upward path (green) illustrates the restoration process (Algorithm
A, 2.2) (Color figure online)

Since for k ≥ �log2|Ω/u|� the second term I (x − 2ku) is
outside the image limits for all pixels 0 < x < Ω we get

I (x) = Îk+1(x)/α. (16)

Proof We prove the proposition by induction. First we show
that for k = 1, 2 the proposition holds. Setting k = 1 to
Eq. (14) yields

Î2(x) = Î1(x) −
(

β

α

)1

Î1(x − u) (17)

Î2(x) = α I (x) + β I (x − u)

−
(

β

α

)1

[α I (x − u) + β I (x − 2u)]

= α I (x) − β2

α
I (x − 2u) (18)

Going one step forward with k = 2, we get

Î2(x) = α I (x) − β2

α
I (x − 2u) (19)

Î2(x − 2u) = α I (x − 2u) − β2

α
I (x − 4u) (20)

Î3(x) = Î2(x) +
(

β

α

)2

Î2(x − 2u)

= α I (x) − β2

α
I (x − 2u)

+
(

β

α

)2 [
α I (x − 2u) − β2

α
I (x − 4u)

]

= α I (x) − β4

α3 I (x − 4u) (21)

Assuming that for some k = n

În+1(x) = α I (x) − β2n

α2n−1 I (x − 2nu) (22)

we will show that

În+2(x) = α I (x) − β2n+1

α2n+1−1
I (x − 2n+1u) (23)

From (14), we get that

În+2(x) = În+1(x) +
(

β

α

)2n

În+1(x − 2nu) (24)

Setting the assumption both for În+1(x) and for În+1(x −
2nu) and put in (14)

În+2(x) = α I (x) − β2n

α2n−1 I (x − 2nu) +
(

β

α

)2n

×
[
α I (x − 2nu) − β2n

α2n−1 I (x − 2nu − 2nu)

]

(25)
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After some simple algebra, we get

În+2(x) = α I (x) − β2n+1

α2n+1−1
I (x − 2n+1u) (26)

The reader may notice that once I (x) was obtained the
translated image I (x − u) can be restored also by applying

I (x − u) = Î (x) − α I (x)

β
(27)

Below is the pseudo-code of reversing filters with two
nonzero weights (denoted by Algorithm B). ��

Algorithm B:
Input: Î , M, α, β

Loop: k = 1, . . . , �log2(Ω/u)� + 1 :
1)Get the warped image Îk(Mx) = Warp( Îk(x), M)

2) Update Î using Eq. (14)
3)Update the transformation matrix: M ← M · M

2.4 Restoring an Image from Its Linear Transformed
Blended Replications

This section and the subsequent one have nothing to do with
filtering, and the restored image is not bit exact with the orig-
inal one. Yet, the generalization and constraints of restoring
the image from its linear transformed replications sum are
still an interesting problem. Denote transformation matrix
using homogeneous coordinates by M .

For example, affine transformationmatrix should look like
this:

M =
⎡

⎣
a1 a2 t x
a3 a4 t y
0 0 1

⎤

⎦ (28)

Using homogeneous coordinates, the composition of two
linear warps is obtained by matrix multiplication. The image
Î (x) consists of a weighted sum of two replications with a
relative linear transformation

Î (x) = α I (x) + β I (Mx) (29)

Since we can isolate the translation component u from
the transformation M , applying the following operation k ≥
�log2|Ω/u|� times

Îk+1(x) =

⎧
⎪⎨

⎪⎩

Îk(x) −
(

β
α

)2k−1

Îk(Mx), k = 1

Îk(x) +
(

β
α

)2k−1

Îk(Mkx), k > 1
(30)

where Mk = Mk−1 · Mk−1 with M1 = M will result in

Îk+1(x) = α I (x) − β2k

α2k−1
I
(
M2k x

)
(31)

The translation component of the transformation M2k is
2ku. Therefore, the second term is outside the image lim-
its.

Themethod can also be extended to linear transformations
using composition of linear warps.

Given an image Î (x) consisting of average of multiple
equal images with a fixed relative transformation

Î (x) = 1

N

N−1∑

i=0

I (x − iMx) (32)

Since we can isolate the translation component u from
the transformation M , applying the below operation k ≥
�log2|Ω/u|� + 1 times

Îk+1(x) =
{
Îk(x) − Îk(Mx), k = 1
Îk(x) + Îk(Mkx), k > 1

(33)

where Mk = Mk−1 · Mk−1 with M1 = M will result in

Îk+1(x) = 1

N
I (x) − 1

N
I
(
M2k−1

x
)

(34)

The translation component of the transformation M2k is
2ku. Therefore, the second term is outside the image lim-
its.

The reason that the restoration is not bit exact is related
to the interpolation of the images that cannot be precise in
the image edges. A special care of the edges may reduce
the generated artifacts in the restored image. Figures 6 and 7
illustrate the restoration from its affine transformed blended
replications.

3 Numerical Experiments

To test the performance of the proposed method with
respect to alternative restoration algorithms, we compared
the results of the current scheme to the inverse filtering [15],
Lucy–Richardson [2], Wiener [11], Wang et al. [22] and
Krishnan–Fergus [13] deconvolution methods. The results
are demonstrated in Figs. 8 and 9.

The algorithms’ parameters were: default MATLAB
parameters with 10 iterations for the Lucy–Richardson
deconvolution and noise-to-signal ratio (NSR) of 0.01 for
the Wiener deconvolution. A threshold of 0.0001 was used
for the inverse filtering. For the Wang et al. [22] algorithm:
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Blended Itera�on 1 Itera�on 2 Itera�on 3 Itera�on 4 Itera�on 5 

Fig. 6 The method’s iterative restoration process from the blended images (left) to the restored images (right). The middle row describe exact
restoration

l2 was chosen with default values according to [6,7]. For the
Krishnan–Fergus algorithm [13]: λ of 2e − 3 and α of 1/2
were used.

As will be further detailed in Sect. 4, the proposed method
requires the preservation of the initial rows and columns after
the convolution. Therefore, the last rows and columns are
cropped to match the original image size. For the inverse fil-
tering, the blurring was performed in the frequency domain
as it yields better restoration results. For the rest of the decon-
volution methods, the original image size was preserved by
taking the central part of the convolution after filtering with
zero-value boundary handling.

The root-mean-square error (RMSE) of the restored image
with respect to the original image for the noiseless scenario
was computed as a function of the kernel size. The results
are illustrated in Fig. 10 and summarized in Table 1.

To demonstrate the advantages and limitations of the
proposed method more comprehensively with respect to
the other deconvolution methods, the effect of various lev-
els of additive noise after the filtering was tested. The
cameraman image with [9 × 9] kernel size was used.
The results are shown in Fig. 11. The comparison is also
demonstrated in Fig. 12 on a typical image filtered using
a [3 × 3] average kernel followed by an additive Gaus-
sian noise with a standard deviation σ = 0.01. Figure 12
demonstrates the pattern of restoration error and shows that
for very small level of noise (σ = 0.01 corresponds to
noise level of 0.004%) the method provides competitive
results.

4 Method Limitations

The proposed method requires the filtered image to be stored
with sufficient number of bits such that values are not trun-
cated after the filtering. This could be possible either with
floating point or with fixed point by multiplying the image
with the filter divisor beforehand. Since low light and low
dynamic range images are generally noisy, the final image
generally undergoes some histogram adjustment. By using a
linear histogram adjustment, the reversible filter can be cou-
pled with the linear factor such that the final values are not
truncated. The second limitation is that for reversing the fil-
tering, the first rows and columns cannot be cropped from
the image file after the filtering. Instead, more of the last
rows and columns are cropped to match the original image
size. This issue can be bypassed by displaying the filtered
image without the first kernel rows and columns. Since the
first rows and columns are essential for the restoration, it
is important to note that when using border handling other
than zero value, the filtered padded lines must also be stored
for the restoration of the original image. The third limitation
is that for exact restoration the filter kernel must be known
beforehand, therefore the method is less feasible for blind
deconvolution applications [4].

5 Applications

The current section suggests several optional applications
using the proposed method.
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blended images kernel restored image 

Fig. 7 Illustrative results: the blended images (left), the kernel (mid),
and the restored images (right) for the following three blended image
simulations: weighted sum of two replications with relative affine trans-
form (top); bit exact restoration for average of multiple translated

replications or filtering (middle); and average of multiple (N = 20)
affine transformed replications (bottom). The artifacts are related to the
interpolation at the image edges. The middle column demonstrates the
kernel that is spatially variant in affine transformed replications

Table 1 Comparison of the
RMSE of the restored image
with respect to the original
image as a function of the kernel
size

N = 3 N = 5 N = 7 N = 9 N = 11

Inverse filtering 15.2 22.6 27.8 32.0 35.6

Lucy 31.7 45.3 55.6 63.6 70.0

Wiener 24.2 32.9 37.8 42.6 46.0

Wang et al. 47.5 66.6 95.1 97.6 127.6

Krishnan–Fergus 23.5 37.8 56.5 74.6 87.2

Proposed method 6E–12 1.5E–11 1.8E–11 2.9E–11 3.8E–11

Average kernels were used. Noise was not added after the blurring

5.1 Image Denoising

As state-of-the-art denoising algorithms [3,20] are expensive
and of limited use in many real-time applications, sometimes
smoothing filters are the only available option. Using the
current method, the smoothing filter can be replaced later

on with an edge-preserving denoiser if needed or if such
denoiser is available. As high frequencies cannot be restored
after a regular smoothing filter, the edge-preserving denoiser
is expected to performmuch better on the original or restored
image by preserving the original resolution and edges.
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Kernelfilteredoriginal

diff- inverse filteringinverse filteringdiff- LucyLucy deconvolu�on

diff- WienerWiener deconvolu�ondiff- Krishnan& FergusKrishnan& Fergus

diff- proposed methodproposed methoddiff- Wang et al.Wang et al.

Fig. 8 Comparison of the proposedmethod to inverse filtering and other
deconvolution methods. The first row shows the original image (left),
filtered image using the proposed scheme (middle) and the kernel. The

rest of the rows show pairs of restored and diff images using the various
methods. The diff image color limits are [− 20, 20]

In low-illumination condition, the dark image is noisy and
does not use the entire number of bits. Therefore, a reversible
filter, to reduce the image noise, can be selected such that
if multiplying the maximal value with the filter’s denom-
inator, the filtered image values are not truncated. Using
the proposed method, the original image can be restored
and a different sophisticated denoising method can be used
to improve the final image quality. Replacing/canceling the
denoising method can also be performed on image formats

with extended number of bits (e.g., wide dynamic range
image formats) captured in any illumination condition.

5.2 Image Editing of Motion Blur in 2D Computer
Graphics

In 2D computer graphics, motion blur is an artistic filter to
simulate the visual motion effect. Many graphical software
products such as Adobe Photoshop [5] or GIMP [23] offer
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Fig. 9 Comparison of the reverse filtering to inverse filtering and to
deconvolution methods. The same restoration process was performed
on each color channel. The first row shows the original image (left),
filtered image using the proposed scheme (middle) and the kernel. The

rest of the rows show pairs of restored and diff images using the various
methods. The diff image color limits are [− 20, 20]. RMSE: Inverse
filtering (20.2), Lucy (15.6), Wiener (15.9), Krishnan–Fergus (23.6),
Wang (72.3), Proposed (0.0)

simple motion blur filters. Using the proposed method, the
pre-filtered image can be restored to cancel or modify the
blurring direction or strength.

5.3 ControlWeb Commercial Visual Content

Several web commercial strategies are used to give a cus-
tomer the ability to estimate the product before making

the decision of purchasing it. Watermarking enables visu-
alization of the image while protecting copyright/ownership.
Google Books [16] enables the customer to see parts of the
book. The proposed method can be used to enable control
over the visual content with respect to the purchase status
without the need to download the content again. For exam-
ple, the sharpened high-quality visual version will become
available only after purchasing it or after renewing the mem-
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Fig. 10 Comparison RMSE of the restored image with respect to the original image as a function of the kernel size. The comparison was on the
cameraman image. Average kernels were used. Noise was not added after the blurring

Fig. 11 Comparison RMSE of the restored image with respect to the original image as a function of the Gaussian noise standard deviation—σ .
The comparison was on the cameraman image with a [9 × 9] average filter. The proposed method gets the lowest restoration error for σ < 0.01

bership. This can be implemented by withholding the filters’
parameters, which can be unique for each page or image until
getting the payment.

5.4 Restoring the Bayer/Color Image from the Luma
Channel

In sensors’ processing chain, computer vision applications
are often computed on the luma (Y channel of the YCbCr
color space) rather than on theRGB color image to save hard-
ware resources. Therefore, the input Bayer image is used to

generate both the output RGB image and the luma image.
This requires memory for storing the Bayer/RGB image dur-
ing the computation of the computer vision application. The
extraction of the luma image can be obtained by filtering the

Bayer pattern image with the filter

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ /16. Since

this filter can be calculated from two horizontal and two ver-
tical convolutions of the one-dimensional filter [1, 1]/2, the
original Bayer image can be restored from the luma image
using the proposed method. In order to avoid truncation of
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Fig. 12 Comparison of the reverse filtering to inverse filtering and to
deconvolution methods with additive Gaussian noise (σ = 0.01) after
the filtering. The first row shows the original image (left), filtered image
using the proposed scheme (middle) and the [5 × 5] average kernel.

The rest of the rows show pairs of restored and diff images (color limits
[− 20, 20]). RMSE: Inverse filtering (23.7), Lucy (17.5),Wiener (15.4),
Krishnan–Fergus (30.0), Wang (57.8), Proposed (12.5)

the values by the division, the original image should be mul-
tiplied by 16 before the filtering. Using this approach, the
Bayer/color image can be computed from the luma image
after finishing the computer vision computation and save the
extra memory required for storing the Bayer/RGB image.
Figure 13 demonstrates the restoration of the original Bayer
image from the luma channel image.

6 Summary and Conclusions

In the current paper, we propose an exact non-blind decon-
volution scheme that enables bilateral transition between an
image and its smoothed version. The method can revert the
filtering made by average box filters or by approximated
Gaussian filters that were obtained by convolution of aver-
aging filters. The technique can be used for many image
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Fig. 13 Restoration of the Bayer and color images from the luma channel image

processing applications such as image editing [1], computer
graphics and web commercial services where the filtering
can be reverted without the need to keep the original image.
The main contribution of the current work is the theoretical
solution of getting the exact original image from its filtered
version even if the blur kernel has zero weights in its Fourier
transform. The solution may serve as a platform for future
applications to come.
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