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Abstract
Rendering speckle images affected by a given deformation field is of primary importance to assess the metrological perfor-
mance of displacement measurement methods used in experimental mechanics and based on digital image correlation (DIC).
This article describes how to render deformed speckle images with a classic model of stochastic geometry, the Boolean model.
The advantage of the proposed approach is that it does not depend on any interpolation scheme likely to bias the assessment
process, and that it allows the user to render speckle images deformed with any deformation field given by an analytic formula.
The proposed algorithmmimics the imaging chain of a digital camera, and its parameters are carefully discussed. AMATLAB
software implementation and synthetic ground-truth datasets for assessing DIC software programs are publicly available.

Keywords Boolean model · Random speckle rendering · Digital image correlation (DIC)

1 Introduction

In experimental mechanics, numerous variants of digital
image correlation (DIC) are used tomeasure displacement or
strain fields on a specimen subjected to amechanical load and
consequently deformed [50]. DIC methods are based on two
images I and I ′ of the surface of the specimen, taken before
and after deformation, respectively. The aim is to retrieve
the mapping ψ : R

2 → R
2 which registers I ′ on I by

maximizing a correlation or minimizing an optical residual
between patches extracted fromI andI ′◦ψ , where ◦ denotes
the composition operator. With these notations, u such that
ψ(ξ) = ξ +u(ξ) is the so-called direct displacement field,U
such thatψ−1(ξ) = ξ +U(ξ) being the inverse displacement
field. In order to ensure that the image patches contain con-
trasted distinctive shapes, ink is often sprayed on the surface
of the specimen, yielding a speckle pattern on the surface of
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the specimen. Figure 1 shows typical examples of speckle
patterns.

While the amplitude of the displacement field can be as
large as several tens of pixels across the image, the strain
components, which are deduced from the gradient of the
displacement field, are generally much lower than 1% in
most structures made of engineering materials such as steel,
wood, or concrete working in their normal operating range.
Amplitudes greater than several percents are reached only
in components made of soft materials such as elastomers
for instance, or made of the previous materials when they
are close to failure because of excessive load. Such small
valuesmake it necessary to carefully design estimationmeth-
ods. Benchmarking the performance of DIC-based methods
requires to compare the estimated displacement and the
actual, yet unknown displacement. Ground-truth databases
are thus needed, that is, pairs of synthetic speckle images,
taken in a reference state on the one hand, and after deforming
the image by a given prescribedmappingφ on the other hand.
It is worth noting that the displacement field returned by any
DIC software program from such pairs of images is impacted
by both the errors due to the rendering of the deformed arti-
ficial speckles, and the errors caused by the DIC program
itself, while only the last ones are generally the quantity
to be characterized. It is, therefore, of prime importance
to have at disposal artifact-free artificial deformed speck-
les to be certain that only the errors due to the DIC programs
are really estimated. There is indeed an active community
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Fig. 1 First row: typical speckle images proposed in [47] for DIC
program assessment. From left to right: close-up views of images
from samples Sample3, Sample12, Sample13a from [47]. Second
row: images rendered with the proposed algorithm. To generate these
300 × 300 images, σ = 1 pixel and speckle pattern parameters (same

notations as in Table 2) are, from left to right: λ = 2000, μ = 3 pixels
(Poisson distribution of disk radii), γ = 0.6; λ = 50,000, μ = 0.5
pixels (exponential distribution), γ = 0.6; λ = 50,000, μ = 0.7 pixels
(exponential distribution), γ = 0.5

concerned by the assessment of the metrological perfor-
mance of DIC programs, as illustrated by numerous recent
papers on this problem [2,7,8,11,13,16,18,26,27,38,41,52]
for instance. TheSociety forExperimentalMechanics (SEM)
proposes such ground-truth databases within the framework
of the DIC challenge [47], providing the researchers with
synthetic speckle images rendered by several methods of the
literature, briefly reviewed below.

1.1 Synthetic Speckle Rendering for DIC

In [26,38,41,51,52], amethod is presented to render a speckle
image under a prescribed translation via phase modulation in
Fourier domain. Translating images is, however, too limited
to fully analyze the performance of DIC programs and more
complicated displacement fields should be permitted. In [43],
Fourier phasemodulation is also used for interpolationwith a
prescribedquadratic displacement.As noted by the authors of
[14], such a method should not introduce any bias provided
that the underlying infinite resolution speckle image satis-
fies the Shannon–Nyquist condition, which is a quite strong
assumption in practice. In addition to these methods, any
prescribed displacement can be used by numerically interpo-

lating a real or synthetic speckle image [4,16,19,28,51]. DIC
assessment is, however, likely to be affected by the interpola-
tion scheme. In order to reduce the influence of interpolation,
a possibility is to generate low-resolution images by binning
pixels of an interpolated high-resolution deformed speckle
image [4,6,7,10,18,31,41].

TexGen [37] is a software program that generates syn-
thetic speckle images based on Perlin noise [39]. Although
the description of TexGenmisses some details of themethod,
Perlin noise is intrinsically a discrete scheme: it is generated
in [37] through a “super-sampled” image which gives the
final image after a Monte Carlo integration mimicking the
effect of the fill-factor of CCD sensors. This method is used
for example in several assessment papers [11,12,14]. Alter-
natively, in the context of color images, it is proposed in a
recent paper [5] to generate synthetic speckles as the sum
of randomly distributed bell-shaped functions. Afterward,
deformed speckles seem to be numerically integrated over a
pixel with a quadrature rule. Note that this is similar to the
filtered Poisson process described in [49].

The authors of [12,14] note that the algorithms used
to render synthetic images are critical. They suggest that
the interpolation schemes used in these algorithms may
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introduce a bias in the quantification of measurement uncer-
tainties, which seems to make TexGen the method of choice
among the available ones.

1.2 Contribution

The contribution of the present paper is to describe a novel
method to render synthetic speckle images under any arbi-
trary displacement function. The advantage of the proposed
approach is that it does not require any interpolation scheme.
As well as TexGen [37], all what is needed is a closed-form
expression for ψ or ψ−1 defined in the introduction. In par-
ticular, discontinuous displacement fields can be designed.
Contrary to TexGen, the proposed method is based on an
infinite resolution view of the speckle pattern lying on the
specimen surface. Speckle patterns are modeled by a so-
called Boolean model, and the rendering scheme rigorously
follows the image acquisition chain in a digital camera, from
the infinite resolution view to the digital image. The numer-
ical accuracy of the method is carefully discussed to ensure
that no bias is introduced when rendering the deformed
images, to be certain that further assessments of DIC pro-
grams relying on such images return displacement fields free
from any disturbance coming from the rendering stage. The
ability of the proposed algorithm to produce real-looking
patterns is illustrated in Fig. 1.

Section 2 is a reminder on the Boolean model, a classic
model of stochastic geometry. This model gives an infinite
resolution view of speckle patterns. Section 3 recalls the
basis of image formation in a digital sensor and explains
how to build up a digital image from this infinite resolution
view, based on a Monte Carlo integration. The influence of
algorithmic parameters is carefully questioned and a numer-
ical assessment of the benefit of the proposed method over
the popular rendering method based on interpolation is also
provided to the reader. A short discussion on realistic noise
rendering is also proposed. Section 4 concludes the discus-
sion.

In order to allow the researchers in the field of exper-
imental mechanics to use the rendered speckle images as
ground-truth databases, we make a MATLAB code and
several databases publicly available on the following
webpage: http://members.loria.fr/FSur/software/BSpeckle
Render/. Scripts permitting to reproduce the experiments of
the present paper are also available.

1.3 Notations

Boldface letters denote vectorial quantities. Roman alphabet
is used for sampled pixel coordinates (integer values) and
Greek alphabet for pixel coordinates in the infinite resolution
image (real values). The indicator function of any planar setS
is denoted by1S (that is, for any ξ ∈ R

2,1S(ξ) = 1 if ξ ∈ S,

and 1S(ξ) = 0 otherwise). Provided that these quantities
exist,A(S) andP(S) denote the area and the perimeter of S,
respectively.

2 Modeling Speckle Patterns

Since a speckle image is generally obtained by spraying ink
onto the surface of the tested specimen, we propose to model
speckle images as the superposition of random black shapes
on a white background. On the non-deformed surface, these
shapes are simply disks.

2.1 Non-deformed Speckle Images

The proposed approach consists in modeling speckle pat-
terns within the framework of Boolean models. It is based on
the notion of (homogeneous) Poisson point process of inten-
sity λ on a bounded domain Ω ⊂ R

2, which comes down
to drawing a random variable N with a Poisson distribution
of mean λA(Ω), and N independent points, uniformly dis-
tributed in Ω [3]. Such a Poisson point process {di , 1 ≤ i ≤
N } and an independent sequence of independent and identi-
cally distributed compact sets {Di , 1 ≤ i ≤ N } being given,
a random set P is defined as the union of all Di translated
by di :

P = ∪1≤i≤N (di + Di ) . (1)

The random set P ⊂ R
2 follows a so-called Boolean model,

a classical model of stochastic geometry [42,44,48] that has
been applied in various situations such as, for instance, mate-
rial analysis [45], distribution of trees in a forest [22], or film
grain modeling in a resolution-free way [34] (see also [35]
and the software implementation [36]). We shall come back
to this latter paper in the discussion of the proposed algo-
rithm.

The infinite resolution image of the speckle pattern is
defined as the following binary image:

I0(ξ) = 1P(ξ), (2)

value 0 corresponding to the bright background and value 1
to the dark ink. Since speckle is obtained by imaging the
surface of the specimen sprayed by ink, each speckle pat-
ternDi , corresponding to an ink droplet, is modeled as a disk
of radius Ri centered at the origin. We model the Ri as inde-
pendent random variables, identically distributed following
an exponential distribution of mean μ (alternative choices
are discussed in Sect. 2.3).

To sum up the discussion, it can be said that simulating
the Boolean model of Eq. (1) or, equivalently, the infinite
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resolution speckle image of Eq. (2), is achieved through the
following steps:

(1) Generate a realization of the homogeneous Poisson
process giving the di by drawing a Poisson count N
(intensity λ) and generate N points di uniformly dis-
tributed in the continuous image domain Ω;

(2) Draw N disks Di , each radius being the realization of
an exponential random variable of mean μ, centered at
the di .

2.2 Deformed Speckle Images

Let φ be the mapping giving the coordinates φ(ξ) in the non-
deformed image of a material point of coordinates ξ in the
deformed image. The infinite resolution deformed speckle
image I ′

0 is still a binary image, defined by

I ′
0(ξ) = I0(φ(ξ)) = I0 ◦ φ(ξ). (3)

The mapping ψ , introduced in Sect. 1, which DIC aims at
retrieving, satisfies ψ = φ−1. Prescribing φ is equivalent to
prescribing the inverse displacement fieldU. As we shall see
in Sect. 3, the proposed framework permits us to render finite
resolution deformed speckle images for anymapping φ (thus
any inverse displacement fieldU) defined for any ξ ∈ Ω . Not
only are the positions of the disksmapped throughφ, but also
the shape of these disks.

However, DIC-based methods give an estimation of ψ

(or, equivalently, of the direct displacement field u). This
necessitates to assess themetrological performance of aDIC-
based method by comparing its output with the inverse of
the prescribed φ. Direct and inverse displacement fields are
linked byU(x+u(x)) = −u(x) but it is, in general, not easy
to obtain a closed-form expression of u from U. Except for
simple cases (for instance, if the prescribed mapping φ is a
uniform translation by a vector a, ψ is a translation by −a),
calculating φ−1 would require numerical methods such as
fixed-point iteration, which potentially give additional biases
when assessing the performance of DIC. For this reason,
when φ is not explicitly invertible, we suggest to consider I ′

0

as the non-deformed image and I0 as the deformed one, the
mapping given byDIC being in this case directly comparable
to the prescribed φ. This must be explored by further studies
beyond the scope of this paper.

Since we do not address DIC assessment in the present
paper, we keep on calling I0 the reference, non-deformed
speckle image, and I ′

0 the deformed image.

2.3 Two Properties of BooleanModels

Wefinish the discussion ofBooleanmodels by two properties
which give an insight into the role of the λ andμ parameters.
Both quantities will also turn out to be useful in the following
sections. The infinite resolution image I0 takes either 0 or 1
values. It is known [42,48] that the proportion of 1-values
(corresponding to a covering ratio of the random set P over
the resulting image supported by Ω), is given by

κ(P ∩ Ω) = 1 − exp (−λE (A(D0))) (4)

where E(A(D0)) is the expectation of the area of the identi-
cally distributed random sets Di .

It is also known (see, e.g., [42,48] for convex shapes Di ,
and [20]without the convexity assumption) that the perimeter
of P over the resulting infinite resolution image is given by

θ(P ∩ Ω) = λA(Ω)E (P(D0)) exp (−λE (A(D0))) (5)

where E(P(D0)) is the expectation of the perimeter of the
random Di .

Here E(A(D0)) = πE(R2) and E(P(D0)) = 2πE(R)

since the random sets are disks of random radius R. Table 1
gives the expression of several moments of R, of the cover-
ing ratio, and of the perimeter for four potential probability
distribution of R ≥ 0.

In the experiments of the present paper, we use an expo-
nential distribution of mean μ. Consequently, the covering
ratio is given by:

κ = 1 − exp(−2πλμ2) (6)

Table 1 Distribution of the
random radii R ≥ 0 of the disks
in the Boolean model

Distribution E(R) var(R) E(R2) Covering κ Perimeter θ

(Eq. (6)) (Eq. (7))

Exponential μ μ2 2μ2 1 − e−2πλμ2
2πλA(Ω)μe−2πλμ2

Uniform on [0, 2μ] μ μ2/3 4μ2/3 1 − e−4πλμ2/3 2πλA(Ω)μe−4πλμ2/3

Poisson μ μ μ + μ2 1 − e−2πλ(μ+μ2) 2πλA(Ω)μe−2πλ(μ+μ2)

Log-normal μ σ 2
R σ 2

R + μ2 1 − e−πλ(σ 2
R+μ2) 2πλA(Ω)μe−πλ(σ 2

R+μ2)

In the case of the log-normal law (used in the Booleanmodel of [34]), R is such that log(R) follows a Gaussian

distribution of mean μ′ = log(μ2/

√
μ2 + σ 2

R) and variance σ ′2 = log(1 + σ 2
R/μ2)
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and the perimeter by:

θ = 2πλAμ exp(−2πλμ2). (7)

As expected, the covering ratio being fixed, the larger the
mean number of disks λ (with an average radiusμ2 inversely
proportional to λ), the larger the perimeter κ .

The problemof determining the best parameters (intensity,
distribution of the random shapes) to design a Booleanmodel
that mimic a real image is the subject of a quite large liter-
ature, see for instance the references in [42,48]. Although
comparing the examples shown in Fig. 1 shows that the
proposed rendering method provides speckle images which
are quite similar to those currently used for DIC program
assessment, it could be interesting to address such issues in
a separate study in order to design Boolean models for real
speckle images used in experimental mechanics.

3 Digital Speckle Image Rendering

In this section, we explain how a finite resolution digital
image is rendered from the infinite resolution speckle image
defined in Sect. 2.

3.1 Acquisition of an ImageThrough a Digital Sensor

Any digital image is made of a collection of sampled pixels
whose discrete gray value is the result of the integration of
photons across the optical device. More precisely, if I0 is an
infinite resolution view of a planar surface of a specimen, the
digital image I is given by the following equation:

I = Q S G H I0. (8)

In this classical setting (illustrated by example in Figure 3 of
[32]), Q quantizes any real number over b bits (thus 2b pos-
sible values), S is the sampling operator on the pixel grid, G
represents the optical distortions (such as radial distortions,
or convolution with the point spread function—PSF—of the
optical device), and H is the geometric transformwhichmaps
the planar image I0 to the image plane. In the pinhole camera
model, H is a homography [24]. In this framework, further
processing steps such as γ -correction, JPEG compression, or
demosaicing (discussed in [5,9]) are not taken into account.
The digital image I corresponds to the output of a linear
digital camera such as a specialized scientific camera or the
raw output of any consumer camera. Digital noise, a phe-
nomenon which is also overlooked by the model of Eq. (8),
is discussed in Sect. 3.5.

We simplify this generic model by assuming that the
infinite resolutionview is parallel to the imageplane.Homog-
raphy H thus corresponds to a scale change and a rotation;

here H is the identity transform without loss of generality.
Moreover, optical distortions are restricted to the convolution
with the PSF, assumed here to be an isotropic 2D Gaussian
function of standard deviation σ , denoted by Gσ . We also
bring back the contrast of the imaged speckle to a [0, γ ]
range by multiplication by a contrast parameter 0 < γ ≤ 1.

The digital image I eventually writes:

I = Q S (γ Gσ ∗ I0) (9)

where ∗ denotes the convolution between two 2D functions.
The Fourier transform of the Gaussian function Gσ

being F(Gσ )(u, v) = e−2π2σ 2(u2+v2) = K G1/(2πσ)(u, v)

(K being some multiplicative constant), any signal com-
ponent whose frequency is above, say, twice the standard
deviation of G1/(2πσ) is smoothed out in the output image.
Since Nyquist–Shannon sampling condition is satisfied as
soon as the largest frequency component of the imaged
pattern is smaller than half the sampling rate, this yields
2/(2πσ) < 1/2 here, thus σ > 0.64 pixel. As a rule of
thumb, we can say that no aliasing is present in the digital
image I as soon as σ > 1 pixel, whatever the frequency
components of the infinite resolution image I0. Of course,
the practical effect of aliasing depends on the spectrum of
the infinite resolution image. Indeed, although the “twice
the standard deviation” rule is questionable, this spectrum
most likely does not show any meaningful component above
1/(πσ). In practice with the Boolean images, it is proba-
bly sufficient to set σ > 0.5. However, it could be useful to
deliberately generate aliased images by using very small σ ,
in order to assess the effect of aliasing on DIC algorithms.

To sum up, with Eq. (9), the gray level at any (discrete)
pixel x of the digital image I(x) is given by

I(x) = Q (γ I (x)) (10)

where Q(t) is a quantized representation of any real value t ∈
[0, 1] over b bits (typical values are b = 8, 12, 14, or 16
bits in high-end modern cameras), and I (x) is given by the
following integral:

I (x) =
∫∫

Gσ (x − ξ) Ĩ0(ξ) dξ

=
∫∫

Gσ (ξ) Ĩ0(x + ξ) dξ (11)

with Ĩ0 = I0 (reference image) or Ĩ0 = I ′
0 = I0 ◦ φ

(deformed image).
While it is possible to compute integrals as the one of

Eq. (11) with numerical series when Ĩ0 is made of a unique
disk (see for instance [40]), to the best of our knowledge
there is no available formula to compute integrals such as I
when Ĩ0 is made of several disks, possibly overlapping or
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deformed (as in the I ′
0 case). The control of the numerical

accuracy of the integration scheme is crucial here. Esti-
mating the error of classic cubature formulas requires to
bound derivatives of the integrand,which is not possible here.
Recent advances on probabilistic integration [15] generalize
the standard Monte Carlo approach and give a probability
distribution for the numerical error, but it is not clear to us
whether the computational cost required by adaptive sam-
pling is worth the gain in convergence speed. We simply
propose to estimate I with the classic Monte Carlo method.

3.2 Monte Carlo Integration

This section is a brief discussion of Monte Carlo integration
in the proposed framework, which basically consists in esti-
mating integrals as sample means. Note that, although the
context is different, the authors of [34] also use Monte Carlo
estimation to compute integrals for inhomogeneous Boolean
models. These authors aim, however, at visual quality and
not at accuracy, which permits them to drastically limit the
computational burden. On the contrary, in order to obtain
images well suited for the assessment of DIC algorithms, we
need to carefully set the sample size, as discussed below.

Let X be a 2D random vector of density Gσ . The inte-
gral I (x) in Eq. (11) is the expectation of the random
variable Ĩ0(x +X). Let Xm , m ∈ {1 . . . NMC} be NMC inde-
pendent identically distributed randomvectors, following the
Gaussian distribution Gσ . The sample mean given by

Î (x) = 1

NMC

NMC∑
m=1

Ĩ0(x + Xm) (12)

is thus an unbiased estimator of I (x). According to the cen-
tral limit theorem, it is common in Monte Carlo methods to
consider that the sample mean Î (x) is a Gaussian random
variable of mean I (x) and variance s2/NMC, where s2 is the
variance of the random variable Ĩ0(x + X), given by

s2 = E(Ĩ0(x + X)2) − E(Ĩ0(x + X))2 (13)

Since Ĩ0 only takes 0or 1values, Ĩ0(x+X)2 = Ĩ0(x+X), and
since the maximum of the numerical function f (x) = x−x2

is attained at x = 1/2, we have s2 ≤ 1/4.
The gray level I(x) is obtained by quantizing γ Î (x)

over b bits (thus 2b available values). Since γ I (x) takes
values between 0 and 1, the quantization scheme consists
in assigning γ Î (x) to k/2b as soon as it is in the interval
[k/2b, (k + 1)/2b[, with k ∈ {0, . . . , 2b − 1}. Since the sam-
ple mean Î (x) shows random fluctuations, γ Î (x) may be
assigned to another discrete value than the one corresponding
to the quantized γ I (x), yielding quantization error. Using the
model of “Appendix A” (that is, assuming that γ I (x) is uni-
formly distributed over the integration interval), we are able

to compute the probability E of such a quantization error.
Here γ Î (x) is considered as a Gaussian random variable of
mean γ I (x) and variance γ 2s2/NMC; Eq. (36) in “Appendix
A”, with b − a replaced by the quantization step 2−b, gives
the following expression of E :

E =
√
22bγ s√
πNMC

. (14)

Imposing an upper bound α on the quantization error proba-
bility E thus gives

NMC ≥ 22b+1γ 2s2

πα2 . (15)

In practice, we set

NMC =
[
22b+1γ 2s2

πα2

]
(16)

where [x] is the integer part of any real number x .
Setting NMC in such a way ensures that the random fluc-

tuations caused by the stochastic nature of the estimation
process are canceled out by rounding, at least for a propor-
tion 1−α of the pixels. This ensures that the digital image I
really satisfies Eq. (9), except for a proportion α of the pix-
els which may be affected by quantization error. Parameter α
shall be adjusted to control the quantization error,while keep-
ing Monte Carlo integration tractable, NMC being inversely
proportional to α2. This is discussed further in Sect. 3.3.5.

3.3 Practical Implementation

In this section, we discuss the practical implementation of
the proposed speckle rendering algorithm.

3.3.1 Algorithm

Since we would like the final b-bit image to have integer
values between 1 and 2b (corresponding to the range of the
gray levels), the ultimate output of the proposed algorithm is
the value of 2b−1 + γ 2b(0.5 − Î (x)) at any pixel x (so that
ink droplets appear as a dark pattern on a bright background),
quantized over the values {1, . . . , 2b}, γ being the contrast
parameter.

Algorithm 1 renders the digital image I (reference image)
or I ′ (deformed image under a prescribed mapping φ). Note
that no interpolation scheme is ever used, which is the main
motivation for which this approach is proposed and tested.
Figure 2 shows four synthetic speckle images, illustrating
the role of the parameters governing either the digital sensor
(size X × Y , bit depth b, and PSF standard deviation σ )
or the speckle (contrast γ , intensity λ, and mean radius μ).
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Fig. 2 8-bit 500 × 500 speckle images. From left to right and from top to bottom: Experiments 1 to 4. Parameters are given in Table 2

Table 2 Sensor and speckle parameters for Experiments 1 to 4

Exp. γ σ (pixel) λ (no. of disks per image) μ (pixel) Covering κ (Eq. (6)) (%) Perimeter θ (Eq. (7))

1 0.8 1 2000 5 72 3576

2 0.8 3 4000 2 33 16,811

3 0.95 0.1 40,000 1 63 91,968

4 0.6 5 300 8 38 1163

Some of these patterns may not look realistic in the context
of experimental mechanics, but they are chosen here for the
sake of pedagogy. The parameters of these four numerical
experiments are given in Table 2. The numerical value of
the perimeter θ has to be compared to the perimeter of the
image domain Ω , equal here to 2000 pixels. No deformation
is used here (that is, φ = Id is the identity mapping). Three
examples of 300×300 deformed speckle images can be seen
in Fig. 3. The amplitude of the deformations is voluntarily
large for a better visibility; this is not representative of typical
deformations encountered in experimental mechanics which
are much smaller.

3.3.2 Computational Speedups

Several speedups are used in the actual implementation of
Algorithm 1.

Variance estimation In line 4, the variance s2 is estimated at
every pixel x from a sample of size N0 (here, N0 = 500),
by s2(x) = Î (x) − Î 2(x) where Î (x) is the sample mean.
This online estimation adapts the sample size NMC accord-
ing to the value of I (x): NMC is maximum if I (x) is close
to 1/2 (corresponding to pixels lying near the boundary of
the disksDi ), and it isminimum if I (x) is close to 0 or 1. Note
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Fig. 3 From the left to the right: inverse displacement field U, ref-
erence (non-deformed), and deformed speckle images. First row: Ux
(displayed) is a sine wave of amplitude 5 and period 50 pixels, and
Uy = 0. Second row: Uy (displayed) is such that the derivative along y

(corresponding to the strain component εyy) is a sine wave of ampli-
tude .5 along y and of period decreasing with x , and Ux = 0. Third
row: U flow is defined as the “punch” function of [37]. Here, x-axis
and y-axis denote vertical and horizontal axis, respectively

that large PSF (i.e., large σ ) with respect to the size of the
disks are more likely to give pixels whose gray value is not
close to 0 or 1, thus larger computation time. Such an online
estimation is all the more interesting as NMC is proportional
to 22b and can attain very large values. Indeed, conserva-
tively setting NMC to its maximum value would necessitate,
for every pixel, from 330,000 iterations for an 8-bit image to
85 millions iterations for a 12-bit image, and to 22 billions
iterations for a 16-bit image (with γ = 1, s2 = 1/4, and
α = 0.1 in Eq. (16)).

Testing whether φ(x + Xm) belongs to P. In line 7, testing
whether a pointφ(x+Xm) belongs to one of the disksDi may
be time-consuming, because the number N of disks can be as
high as several thousands and this test must be performed for
any m in {1, . . . , NMC} and for any pixel x. We propose the
following speedup, based on the fact that, in practice, strain
fields, thus displacement gradients, have a limited amplitude.
For any pixel x, we pre-compute the listL(x) of the indices of
disks to which φ(x+Xm) may belong. This list is defined as
the list of disk indices whose center is below a given distance
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Data: Speckle parameters (expected number of disks in the
resulting image λ, expected radius of a disk μ, contrast γ ),
camera parameters (standard deviation σ of the PSF, size
of the resulting X × Y image, quantization depth b),
quantization error probability α, mapping φ (φ = Id when
rendering a reference image)

1 Draw the number of disks N , following a Poisson distribution of
intensity λ;

2 Draw N disk centers di uniformly distributed in the image
domain, and N radii Ri following an exponential distribution of
mean μ;

3 for any pixel x ∈ {1 . . . X} × {1 . . . Y } do
4 Estimate s2 and set NMC = 22b+1γ 2s2/(π2α2);
5 for m ∈ {1, . . . , NMC} do
6 Draw Xm following a 2D Gaussian distribution of

standard deviation σ ;
7 Define I0(φ(x + Xm)) = 1 if φ(x + Xm) belongs to a

disk centered at one of the di of radius Ri , and
I0(φ(x + Xm)) = 0 otherwise.

8 end

9 Calculate Î (x) = 1
NMC

∑NMC
m=1 I0(φ(x + Xm));

10 end
11 Quantization: the resulting digital image is

I(x) = [2b−1 + γ 2b(0.5 − Î (x))] (the resulting gray level range
is {1, . . . , 2b});
Result: a digital image I.

Algorithm 1: Speckle image rendering (sketch of the
algorithm). In practice, speedups described in Sect. 3.3.2
are used.

to φ(x), namely:

L(x) = {i ∈ {1, . . . n}, ||φ(x) − di || ≤ Ri + (1 + δ)B} (17)

where || · || is the Euclidean norm, δ is a uniform upper bound
of the Frobenius norm of the Jacobian matrix J of the inverse
displacement field U (such that the mean value inequality
writes ||U(x)−U(y)|| ≤ δ ||x−y|| for any (x, y) ∈ R

2×R
2),

and the random vectorsXm are assumed for a while to satisfy
||Xm || ≤ B for any m ∈ {1, . . . , NMC}, with B > 0. Note
that δ = 0when rendering the reference image forwhichU =
0.

Indeed, since

φ(x) − di = (φ(x) − x) + (x + Xm − φ(x + Xm))

+ (φ(x + Xm) − di ) − Xm,
(18)

φ(x)−x = U(x), and x+Xm −φ(x+Xm) = −U(x + Xm)

(by definition of mapping φ and inverse displacementU), we
have:

φ(x) − di = (U(x) − U(x + Xm)) + (φ(x + Xm) − di )

−Xm . (19)

By definition of B, ||Xm || ≤ B, and by the mean value
inequality, the following inequality holds:

||U(x) − U(x + Xm)|| ≤ δB. (20)

Therefore, it follows fromEq. (19) and the triangle inequality
that:

||φ(x) − di || ≤ (1 + δ)B + ||φ(x + Xm) − di ||. (21)

Consequently, if φ(x + Xm) belongs to the disk Di0 , then
||φ(x + Xm) − di0 || ≤ Ri0 and i0 ∈ L(x). This means that
the indices of the disks in which φ(x+Xm) may fall belong
toL(x) for everym. This ensures that no disk is missed when
restricting to L(x) the search for disks to which φ(x + Xm)

may belong.
Now, since Xm is a Gaussian vector, ||Xm || is not uni-

formly bounded. This quantity has, however, a probability
smaller than p to be larger than B = G−1(1 − p) σ ,
where G is the cumulative distribution function of the stan-
dard normal law. Even if highly unlikely, φ(x + Xm) such
that ||Xm || > B may erroneously give Ĩ0(φ(x + Xm)) = 0
instead of 1. On average, p NMC samplesmay be erroneously
evaluated in the sample mean, then giving an average error
of p on the estimation of Î . We thus choose p equal to a
tenth of the standard deviation s/(

√
NMC) = πα/(

√
22b)

of Î (x), so that the bias p is well below the random fluc-
tuations of the sample mean Î (x). With α = 0.1, this
yields for b = 8, B = G−1(1 − p) σ = 3.75 σ , for
b = 12, B = G−1(1 − p) σ = 4.40 σ , and for b = 16,
B = G−1(1 − p) σ = 4.97 σ .

Since L(x) is significantly smaller than the number N of
disks (its cardinality is typically below 5 and is independent
of the image size), the calculation time of the Monte Carlo
estimation is significantly reduced by pre-computing L(x)
for any pixel x. This approach is relevant for limited strain (δ
is usually below some percents), since the cardinality ofL(x)
increases with δ.

A remark on unbounded strain fieldsWithout any additional
assumption, if the strain field is not bounded,Φ(x+Xm)may
belong to any disk Di and building L(x) would be useless.
However, when considering unbounded strain yet bounded
displacement, we have:

||U(x) − U(x + Xm)|| ≤ 2M (22)

where M is an upper bound to the displacement field. In this
case, the list L(x) satisfies:

L(x) = {i ∈ {1, . . . n}, ||φ(x) − di || ≤ Ri + 2M + B}
(23)

instead of the definition given by Eq. (17).
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Parallel executionSamplemean calculation is parallelized by
running lines 5 to 8 on a Graphics Processing Unit (GPU).

Pseudorandom sample The authors of [34] use the same ran-
dom sequence (Xm)1≤m≤NMC for any pixel x, which slightly
improves the computation time. We do not adopt this sim-
plification in order to avoid the results to be affected by
a systematic bias. Generally speaking, we do not use any
heuristic speedup which could bias subsequent statistics esti-
mated from the speckle images.

3.3.3 Influence of the Parameters on the Calculation Time

Apart from memory management, the calculation time of a
serial execution of Algorithm 1 is proportional to the number
of pixels in the image, and to the size of theMonte Carlo sam-
ple. This sample size is proportional to 1/α2 and contrast γ ,
and it increases with the bit depth b, the size being propor-
tional to 22b. As mentioned above, it also increases with σ ,
large-support PSF giving a sample variance s2 close to the
maximum value 1/4 for a larger number of pixels. Neverthe-
less, typical values for σ are below 1 pixel, as lenses used
for mechanical tests are sharp. The evolution of the calcula-
tion time of a parallel execution does not strictly follow these
guidelines as it also depends on hardware considerations.

Monte Carlo estimation is well suited to an execution on
a parallel architecture (either on a multi-processor / multi-
core system or on a GPU): our software implementation of
the proposed algorithm is a MATLAB 2016A code with par-
allelization on a GPU, using single-precision floating point
numbers (cf. the discussion of Sect. 3.3.4). Table 3 gives the
computation times for rendering the 500 × 500 images of
the experiments of the previous section. Note that rendering
1000× 1000 images would require four times these calcula-
tion times. Two desktop computers have been used for this
test. Configuration 1 is equippedwith a 4-core Intel XeonE3-
1270 v3 @3.50GHz CPU with 32 Gb memory and a Nvidia
Quadro K2000 graphic card with 2 Gb memory. Configura-
tion 2 is equipped with a 6-core Intel Xeon E5-1650 v4 @
3.60GHz CPU with 64 Gb memory and a NVidia Titan X
graphic card with 12 Gb memory. The CPU implementation
is parallelized through multi-core processing. The 8-bit non-
deformed speckle images of Fig. 3 require between 2.8 and
4.3min onDesktop 2.Note that our code is likely to run faster
in the near future, thanks to rapid improvements ofMATLAB
and of the computing power of GPU. Our software imple-
mentation would benefit greatly from a native CUDA code
or from exploiting large-scale parallel computing resources,
especially for 16-bit images. Nevertheless, it should be noted
that calculation time is not really critical in the considered
application: the ultimate goal of this work is to produce once
and for all several ground-truth datasets for DIC assessment.

Table 3 Calculation times in minutes for rendering 500 × 500 images

Experiment no. Time (min)

Config. 1 Config. 2

CPU GPU GPU

1 (8-bit, α = 0.05) 40.3 14.5 5.0

2 (8-bit, α = 0.05) 146.5 71.2 24.3

3 (8-bit, α = 0.05) 28.6 11.3 3.6

4 (8-bit, α = 0.05) 32.6 14.2 8.0

1 (8-bit, α = 0.1) 10.7 4.9 3.6

2 (8-bit, α = 0.1) 38.7 24.2 17.5

3 (8-bit, α = 0.1) 8.1 4.0 2.9

4 (8-bit, α = 0.1) 8.5 6.1 5.8

1 (12-bit, α = 0.1) 3132∗ 1063∗ 73.6

2 (12-bit, α = 0.1) 9427∗ 4820∗ 360.4

3 (12-bit, α = 0.1) 2101∗ 589∗ 57.0

4 (12-bit, α = 0.1) 1990∗ 877∗ 69.5

1 (16-bit, α = 0.1) – – 14,214∗∗

2 (16-bit, α = 0.1) – – 66,875∗∗

3 (16-bit, α = 0.1) – – 11,789∗∗

4 (16-bit, α = 0.1) – – 17,390∗∗

Asterisks mark extrapolated times based on the time needed for render-
ing 5000 pixels, double asterisks based on 20 pixels

All other things being equal, increasing σ increases the
calculation time, as discussed above. It depends, however,
on the perimeter of the speckle pattern: relatively large σ

and large perimeter values (as in Experiment 2) give larger
computation times than relatively largeσ and small perimeter
values (as in Experiment 4), since, in this latter case, much
less pixels x lie at the border of a disk and have an average
gray value.

3.3.4 Single-Precision or Double-Precision Calculation?

It should be noted that an accurate calculation of the sample
mean requires someattention.Although it is difficult to assess
thoroughly, the effect of rounding errors due to the machine
representation of real values [23], the aim of this section is
to discuss whether single-precision floating point represen-
tation is sufficient for the present problem. This question is
important in practice, sincememory occupation is divided by
twowhen using single-precision instead of double-precision,
and, chiefly, most GPU process single-precision floats much
faster.

In Eq. (12), computing the samplemean basically consists
in dividing two integer numbers. If the division and the num-
ber representation follow IEEE-754 standard (implemented
in MATLAB), the sample mean is thus determined up to the
“machine epsilon”, which is εs = 2−23 in single precision
and εs = 2−52 in double precision [17,23]. The machine
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epsilon is well below the quantization step 1/2b even when
16-bit images are rendered.

However, the sample size NMC = [γ 2s222b+1/π2α2],
can be as large as 10 · 22b−1 when α = 0.1. The sample size
and the summation involved in the sample mean must be
performed with a datatype adapted to this range. Integers
below 224 = 16,777,216 being represented exactly by a
single-precision value, the summation involved in the sample
mean can be calculated safelywhen b = 8, since 10·22b−1 =
327,680 in this case. Sample sizes above 224 likely give,
however, rounding errors. Such a value is attained for b = 12.
The problem can be avoided by rearranging the summation,
which must be done in practice.

The parallel calculation of the sample mean requires
indeed that thewhole series (Xm) of random vectors is gener-
ated on the GPU and fits its memory. Such a single-precision
2 × NMC vector would require around 5 Mb of memory for
NMC corresponding to b = 8, around 1.2 Gb for b = 12,
and 1 million Gb for b = 16. It is thus obviously needed to
split the sample and to calculate the sample mean by summa-
tion of the results obtained on the subsamples. We actually
perform the calculation of the sample mean by computing
the average value of K means mk over subsamples of size N
such that NMC = K N . We compute independently the K
terms of the following sum:

Î =
K∑

k=1

N

NMC
mk (24)

with

mk = 1

N

N∑
m=1

Ĩ0(x + Xm). (25)

Setting N ≤ 224 ensures that the summation in Eq. (25) is
not affected by rounding errors. Note that N ≤ 224 may be
required in order that (Xm)1≤m≤N and auxiliary variables fit
theGPUmemory.As discussed above, eachmk is determined
up to εs , thus, in the worst case, N/NMCmk too. Î being the
sum of K term determined up to 2εs , it is determined up to
2K εs . For instance, N = 223 is required to fit a 2 Gb GPU
memory. In this case, K = NMC/N  10 · 22b−22 is at most
around 10 · 22 for a 12-bit image, thus the numerical error
2K εs of Î is at most around 10 · 2−21 and is well below the
quantization step 1/2−12. On the contrary, a 16-bit quanti-
zation would give 2K εs at most around 10 · 2−10 which is
above the quantization step 1/216. In this case, rounding error
in single-precision calculation may cause quantization error.
It should, however, be noted that this calculation corresponds
to a worst case, in which all of the mk in the sum of (24) are
affected by a rounding error. Compensated summation may
also be used in practice [23].

Wecan conclude that all calculations can be led safelywith
single-precision floating point numbers when rendering 8-bit
or 12-bit images. Concerning 16-bit images, the worst-case
analysis shows that it would be safer to lead the calculations
with double-precision floats.Whether this is really a problem
in real-world rendering requires, however, further investiga-
tion.

To conclude this discussion on practical aspects of the
software implementation, let us mention that the period of
the pseudorandom generator must be long enough in order
that the random sample (Xm)1≤m≤NMC generated at any
pixel x can still be considered as a realization of an inde-
pendently distributed process. The period of the generators
implemented in MATLAB seems to be well above what is
needed.

3.3.5 Rendering Accuracy Assessment

In Sect. 3.2, setting the sample size by bounding the error
probability by α means that the numerical accuracy of the
estimation of I is expected to be below the quantization step
for a proportion of the pixels at most equal to 1 − α.

Nevertheless, some assumptions permitting to establish
Eq. (15) may not be valid. For example, the calculation of
“Appendix A” assumes that the sample mean is normally
distributed. Central limit theorem backs this hypothesis; this
is, however, only an asymptotic result. Bounding ||Xm || by
B in Sect. 3.3.2 may also introduce a bias. Moreover, the
implementation of Algorithm 1 relies on a pseudorandom
generator which only approximates the notion of realization
of independent variables.

We, therefore, perform a sanity check of the proposed
algorithm. Of course, it is not possible to measure the numer-
ical accuracy (i.e., the discrepancy between the estimated
gray level Î which may show random fluctuations, and the
deterministic theoretical gray level I which is unknown)
based on the rendering of a single image. The difference δ(x)
between two images rendered by two independent Monte
Carlo estimations (after quantization on b bits), run on the
same infinite resolution speckle image, should, however, be
different from 0 for a proportion of pixels smaller than 2α.

We have calculated this difference for the images of
Fig. 2 and various bit depths. Table 4 gathers the obtained
results. We can see that the proportion of pixels in the dif-
ference image δ affected by quantization errors (i.e., such
that δ(x) �= 0) is below 2α, as expected from the theory. The
result still holds for the strong (inverse) displacement field
corresponding to Experiments 1b to 4b. This confirms that
at most a proportion α of pixels from the rendered digital
image I may be affected by quantization error. Moreover,
this experiment also shows that the vast majority of these
erroneous pixels have a gray value error of 1. If the user gen-
erates noisy images (as in Sect. 3.5), quantization errors are
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Table 4 From left to right: experiment number, bit depth of the render
image, probability error α, proportion of pixels x such that the differ-
ence δ(x) between two quantized independent Monte Carlo estimation
is different from 0, number of pixels such that |δ(x)| = 1, and number
of pixels such that |δ(x)| = 2

Experiment % pixels # pixels # pixels

No. bit α s.t. δ �= 0 s.t. |δ| = 1 s.t. |δ| = 2

1 4 0.1 2.4 6034 0

2 4 0.1 9.2 22,894 0

3 4 0.1 1.4 3552 0

4 4 0.1 2.3 5774 0

1 8 0.05 2.6 6525 0

2 8 0.05 7.0 17,521 0

3 8 0.05 1.5 3679 0

4 8 0.05 4.9 12,126 0

1 8 0.1 5.1 12,666 0

2 8 0.1 13.9 34,692 1

3 8 0.1 2.9 7294 0

4 8 0.1 9.6 24,052 0

1 12 0.1 4.95 12,369 0

2 12 0.1 14.2 35,550 0

3 12 0.1 2.9 7305 1

4 12 0.1 9.8 24,414 2

1b 4 0.1 2.6 6676 0

2b 4 0.1 9.2 23,062 0

3b 4 0.1 1.4 3600 0

4b 4 0.1 2.6 6530 0

1b 8 0.05 2.0 5105 0

2b 8 0.05 6.4 16,017 0

3b 8 0.05 1.2 2971 0

4b 8 0.05 3.9 9705 0

1b 8 0.1 3.3 8323 0

2b 8 0.1 12.8 32,112 0

3b 8 0.1 2.4 6119 0

4b 8 0.1 7.3 18,160 0

1b 12 0.1 3.8 9566 2

2b 12 0.1 14.1 35,407 0

3b 12 0.1 2.4 6025 0

4b 12 0.1 7.7 19,257 0

In all these experiments, |δ(x)| is never larger than 2. The proportion of
pixels has to be compared to 2α, and the numbers of pixels have to be
compared to the 500 × 500 pixels in the images. Several bit depths b
have been tested. Experiments 1b to 4b have the same parameters as
Experiments 1 to 4, but the “punch” function of Fig. 3 is used

likely to be much below the noise floor. Finally, Fig. 4 shows
the difference image δ for α = 0.05. We can see that the pix-
els affected by quantization error mainly lie at the borders of
the black disks.

Since this experiment suggests that setting α = 0.1 actu-
ally gives at most 5% of pixels affected by quantization error

(except when σ has a quite large value, as in Experiment 2
where the error probability is still bounded by α), we recom-
mend to use this valuewhen computing the sample size NMC.

3.3.6 Comparing the Proposed Rendering Method with
Interpolation and Pixel Binning

As mentioned in the introduction, some authors render the
speckle image of a deformed state by interpolating a high-
resolution, either real or synthetic, speckle image under the
prescribed displacement, and make use of pixel binning to
reduce interpolation error.Howmuchpixels should bebinned
together with respect to the interpolation scheme is, to the
best of our knowledge, an overlooked problemwhich has not
yet a rigorous solution. A full comparison of both methods
in the context of the assessment of DIC algorithms is beyond
the scope of this paper. Comparing the retrieved displace-
ment field with respect to the prescribed displacement field
indeed depends on various factors such as the systematic bias
modeled by a Savitzky–Golay filter [43], error caused by the
interpolation scheme needed by DIC itself [7,8], the shape
of the speckle patterns [29,30], and quantization noise. It is
thus difficult to isolate the error solely caused by the process
rendering the input speckle images. We propose, however, a
numerical experiment suggesting that the proposed method
is much more reliable than interpolation and pixel binning.

We render two 1024 × 1024 8-bit speckle images with
the proposed algorithm, one, I, for the reference state and
the other, I ′, for the deformed state. The value of α is such
that at most 5% of the pixels have an incorrect gray value, as
discussed in the preceding section. The prescribed displace-
ment field U is such that Uy(x, y) is a sine function of x of
amplitude 0.5 pixel and of period linearly increasing from 10
to 150 pixels along the y-axis, andUx = 0.We also render an
image of the deformed state I ′ with interpolation, either by
a linear or cubic scheme. We define the binning operator Bp

such thatBp(I) is obtained from any image I by substituting
each p × p array of pixels in I by its mean value, giving the
image Bp(I)whose dimensions are p times smaller than the
input image I. Pixel binning reduces the gray value error,
resulting from the α parameter in the proposed method or
from the interpolation scheme, at the price of a reduced spa-
tial resolution. For example, B8(I ′) is a 128 × 128 image.
Since the proposed rendering method has a controlled error,
still reduced by pixel binning, its output can be considered
as ground-truth data. In order that the binned images Bp(I)

and Bp(I ′) show the same intensity distribution and carry
the same amount of information, we render the 1024× 1024
images I and I ′ such that the random disks have an average
radius of p (thus Bp(I) and Bp(I ′) show disks of average
radius 1 for any value of p). The number of disks is such that
the covering is 50% (cf. Table 1), and the Gaussian PSF has
a standard deviation of 1 pixel.
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Fig. 4 Difference image δ for Experiments 1 to 4 of Fig. 2 (8-bit images,
α = 0.05), from top left to bottom right. Green pixels have no quanti-
zation error, yellow pixels are such that δ ≥ 1, and blue pixels are such

that δ ≤ −1. The proportion of pixels such that the difference image is
different from 0 is equal to 2.6, 7.0, 1.5, and 4.9%, respectively

Figure 5 shows the frequency distribution of the absolute
difference |Bp(I ′) − Bp(I ′)|, for linear and cubic interpo-
lation and p belonging to {1, 2, 4, 8}. As we can see, when
no binning is used (p = 1), less than 40% of the pixels have
the same gray value with the two methods. A significant pro-
portion has a gray value error larger than 4. As expected,
pixel binning reduces the gray value error. However, more
than 20% of the pixels show a gray value error larger than 1
with a 4 × 4 binning scheme, either with linear or cubic
interpolation, while our method was proved to have much
less than 5% of spurious gray values. It can also be noticed
that, unsurprisingly, cubic interpolation gives less erroneous
gray values than linear interpolation. With 8×8 binning and
cubic interpolation, 5% of the total amount of pixels differ
between the two methods.

This numerical assessment, which needs to be completed
by further studies, suggests that both methods may be hardly
distinguishable when a 8×8 pixel binning scheme and cubic
interpolation are used. Since this experiment relies on a spe-
cific prescribed displacement, it should not lead to a hasty
generalization. Of course, interpolation coupled with bin-

ning requires very high-resolution images of the initial state
in order to obtain large enough low-resolution images after
binning. To our knowledge, no theoretical guaranty is avail-
able for the error of such a renderingmethod.On the contrary,
the proposed algorithmdoes not require any interpolation and
comes with a handy parameter, namely α, which controls the
error.

3.4 Potential Extensions of the ProposedModel

Although the proposed framework permits the user to render
realistic speckle images, it can still be adapted to various PSF
or speckle models.

For example, it should be noted that the same calculation
holds for any PSF. Since any PSF integrates to 1, it can be
seen as the density of a random variable. In practice, we just
need to generate the random vector X following this density
to mimic the effect of any PSF function.

Concerning the Booleanmodel, we could use other shapes
than disks. Any shapeS can be used, provided that the indica-
tor function 1S(x) can be calculated. Using a bounding disk
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Fig. 5 Top row: the 1024 × 1024 speckle image when no binning is
employed, the 1024×1024 speckle image before the 8×8 binning (both
in reference state), and Uy displacement field over a 1024× 1024 field.
Middle and bottom rows: frequency distribution of the gray level differ-
ences (absolute value) between the deformed speckle image obtained by
the proposed algorithm and by interpolation, after p × p pixel binning

(middle row: linear interpolation; bottom row: cubic interpolation). For
instance, approximately 55% of the pixels have the same gray level for
both methods with linear interpolation and no pixel binning (p = 1),
and approximately 20% of the pixels differ from one gray level with
cubic interpolation and p = 16

of radius Ri would allow defining the list L(x) discussed in
Sect. 3.3.2.

The Boolean model implicitly assumes that the ink pro-
jected on the specimen is not transparent: the output of the
model is the same, whatever the number of overlapping disks
at a given pixel. It is interesting to note that transparent ink
could be modeled with the so-called transparent dead leaves
model described in [21]. We do not elaborate further on this
subject and leave it for future work.

3.5 Signal-Dependent Noise

Because of the quantum nature of light, any digital image
sensor is affected by noise. The classical signal-dependent
noise model [1,25] expresses the gray level intensity i at a
given pixel x in a linear camera (that is, disregarding nonlin-
ear processing such as γ -correction) as:

i(x) = gρp(x) + τ(η, ν2) (26)

where g is the gain, ρp(x) is a Poisson random variable of
intensity p(x) modeling the shot noise, and τ is a Gaussian
random variable of mean η (offset, set by the manufacturer)
and variance ν2. Intensity p(x) is the number of electrons
generated at x, caused either by conversion of photons or
spontaneously generated as a dark signal, and τ models
various sources of noise such as readout noise. A simple
calculation gives the following affine relation between the
variance and the expected value of i :

Var(i(x)) = gE(i) + ν2 − gη. (27)

The importance of considering such a noise model when
assessing the metrological performance of DIC in real-world
experiments is discussed in [8]. Except for low-light imaging,

123



648 Journal of Mathematical Imaging and Vision (2018) 60:634–650

it is common to consider an additive Gaussian white noise of
variance given by Eq. (27) instead of the Poisson–Gaussian
noise of Eq. (26).

To mimic the output of a real camera, the user of our
rendering code should add to the noise-free gray level I(x)
given by Eq. (9) a Gaussian signal-dependent noise of vari-
ance given by:

Var(I(x)) = gI(x) + ν2 − gη (28)

where g is the gain, ν2 is the readout noise level, and η is the
offset value.

The Gaussian white noise model is, however, very com-
mon in papers on the assessment of DIC. It is backed by
the possibility to use the Generalized Anscombe Transform
[33] to normalize noise in Eq. (26). We thus give the user the
opportunity to consider such a noise model when rendering
speckle images.

4 Conclusion

The contribution of this paper is a new algorithm for ren-
dering speckle images deformed by a displacement field
prescribed by the user. It is based on the analysis of the image
acquisition chain, from the infinite resolution speckle image
seen as a realization of a Booleanmodel, to the digital image,
taking into account the point spread function of the optical
device through aMonteCarlo integration. Several parameters
are carefully discussed to ensure that they are not responsible
for additional biases, which is crucial in the context of the
assessment of the metrological performance of DIC-based
method in experimental mechanics. In particular, the sample
size in Monte Carlo integration is set in such a way that the
random fluctuation involved by this technique is mostly can-
celed out by quantization. It should also be noticed that no
interpolation is required, interpolation being likely to give
spurious gray values, as shown in Sect. 3.3.6. We have also
discussed the effect of aliasing potentially caused by spa-
tial sampling and the effect of rounding errors caused by
floating point arithmetic. A continuation to this work would
consist in the exploration of other speckle models than the
Boolean model. Another potential perspective concerns the
estimation of the parameters governing such models to ren-
der synthetic speckle images which would more precisely
mimic real speckle patterns used in experimental mechanics,
as mentioned in Sect. 3.4. Extending the proposed rendering
algorithm to image pairs useful for stereo-DIC [4] or RGB-
DIC [5] would also be interesting.

Acknowledgements F.S. is grateful to Antoine Fond (Magrit team,
Loria) for his help with the NVidia Titan X GPU.

Appendix A: Quantization Error for a Com-
pound Probability Distribution

We assume that each real value inside a quantization
box [a, b] (with a < b) is assigned to a quantized value.
In Monte Carlo estimation, sample means are distributed
according to a normal distribution of mean m and standard
deviation s. A quantization error occurs when the sample
mean is not assigned to the same quantized value as m. If s
is small with respect to b − a and m is in the middle of the
interval [a, b], the probability of an error is small, while it is
larger if m is close to a or b.

In order to estimate an overall error, we assume that the
mean m is uniformly distributed over [a, b]. In other words,
we assume that the sample mean X is a compound random
variable distributed according to a Gaussian distribution of
standard deviation s and mean m distributed according to
a uniform distribution on interval [a, b]. We estimate the
probability that X is not correctly quantized, i.e., that it falls
outside the interval [a, b]. In other words, we would like to
estimate the probability E(s, b − a) = 1 − Pr(a ≤ X ≤ b).

We denote by g the standard normal probability distribu-
tion function (that is, g(x) = e−x2/2/

√
2π ) and by G the

associated cumulative distribution function. Marginalizing
out m in X gives:

Pr(a ≤ X ≤ b) = 1

b − a

∫ b

a
Pr(a ≤ X ≤ b | μ) dμ (29)

= 1

b − a

∫ b

a

(
G

(
b − μ

s

)

− G

(
a − μ

s

))
dμ. (30)

Now, for any two real values α and β �= 0, an antiderivative
of G(α + βx) is given by:

∫
G(α + βx) = 1

β
((α + βx)G(α + βx)

+ g(α + βx)) . (31)

We calculate:

1

b − a

∫ b

a
G

(
b − μ

s

)
dμ = G

(
b − a

s

)

+ s

b − a
g

(
b − a

s

)
− s√

2π(b − a)

(32)

and

1

b − a

∫ b

a
G

(
a − μ

s

)
dμ = G

(
a − b

s

)

− s

b − a
g

(
a − b

s

)
+ s√

2π(b − a)

(33)
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Weeventually obtain, sinceG(−x) = 1−G(x) and g(−x) =
g(x):

Pr(a ≤ X ≤ b) = 2G

(
b − a

s

)
− 1

+ 2s

b − a

(
g

(
b − a

s

)
− 1√

2π

)
(34)

We are interested in the quantization error when the ran-
dom fluctuation of the Monte Carlo estimation is small, that
is, when s/(b − a) tends to 0.

Since G(x) = 1− g(x)/x +O(g(x)/x) when x → +∞
(where O is Landau’s “big-O”; this is a property of Mill’s
ratio [46, chapter 2]), we have proved the following propo-
sition.

Proposition 1 If a and b are two real numbers such that a <

b, and X is a random variable distributed according to a
compound Gaussian distribution of variance s2 such that its
mean is a randomvariable distributed according to a uniform
distribution on [a, b], the following asymptotic expansion
holds:

Pr(a ≤ X ≤ b) =s→0 1 −
√
2s√

π(b − a)
+ O

(
se−(b−a)/(2s2)

)

(35)

If s/(b− a) << 1, the latter expression gives an accurate
estimate of the probability E of quantization error as:

E(s, b − a) =
√
2s√

π(b − a)
. (36)
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