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Abstract
The need for an efficient method of integration of a dense normal field is inspired by several computer vision tasks, such
as shape-from-shading, photometric stereo, deflectometry. Inspired by edge-preserving methods from image processing, we
study in this paper several variational approaches for normal integration, with a focus on non-rectangular domains, free
boundary and depth discontinuities. We first introduce a new discretization for quadratic integration, which is designed to
ensure both fast recovery and the ability to handle non-rectangular domains with a free boundary. Yet, with this solver,
discontinuous surfaces can be handled only if the scene is first segmented into pieces without discontinuity. Hence, we then
discuss several discontinuity-preserving strategies. Those inspired, respectively, by the Mumford–Shah segmentation method
and by anisotropic diffusion, are shown to be the most effective for recovering discontinuities.

Keywords 3D-reconstruction · Integration · Normal field · Gradient field · Variational methods · Photometric stereo ·
Shape-from-shading

1 Introduction

In this paper, we study several methods for numerical inte-
gration of a gradient field over a 2D-grid. Our aim is to
estimate the values of a function z:R2 → R, over a set
Ω ⊂ R

2 (reconstruction domain) where an estimate g =
[p, q]�: Ω → R

2 of its gradient ∇z is available. Formally,
wewant to solve the following equation in the unknowndepth
map z:

∇z(u, v) = [p(u, v), q(u, v)]�
︸ ︷︷ ︸

g(u,v)

, ∀(u, v) ∈ Ω (1)

In a companion survey paper [48], we have shown that
an ideal numerical tool for solving Eq. (1) should satisfy the
following properties, apart accuracy:

• PFast: be as fast as possible;
• PRobust: be robust to a noisy gradient field;
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• PFreeB: be able to handle a free boundary;
• PDisc: preserve the depth discontinuities;
• PNoRect: be able to work on a non-rectangular domain

Ω;
• PNoPar: have no critical parameter to tune.

Contributions This paper builds upon the previous confer-
ence papers [19,20,47] to clarify the building blocks of
variational approaches to the integration problem, with a
view to meeting the largest subset of these requirements.
As discussed in Sect. 2, the variational framework is well
adapted to this task, thanks to its flexibility. However, these
properties are difficult, if not impossible, to satisfy simulta-
neously. In particular, PDisc seems hardly compatible with
PFast and PNoPar.

Therefore, we first focus in Sect. 3 on the propertiesPFreeB

and PNoRect. A new discretization strategy for normal inte-
gration is presented, which is independent from the shape
of the domain and assumes no particular boundary condi-
tion. When used within a quadratic variational approach,
this discretization strategy allows to ensure all the desired
properties except PDisc. In particular, the numerical solution
comes down to solving a symmetric, diagonally dominant
linear system, which can be achieved very efficiently using
preconditioning techniques. In comparisonwith our previous
work [20] which considered only forward finite differences
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and standard Jacobi iterations, the properties PRobust and
PFast are better satisfied.

In Sect. 4, we focus more specifically on the integration
problem in the presence of discontinuities. Several variations
of well-known models from image processing are empir-
ically compared, while suggesting for each of them the
appropriate state-of-the-art minimization method. Besides
the approaches based on total variation and non-convex
regularization, which we already presented, respectively,
in [19,47], two new methods inspired by the Mumford–
Shah segmentation method and by anisotropic diffusion are
introduced. They are shown to be particularly effective for
handling PDisc, although PFast and PNoPar are lost.

These variational methods for normal integration are
based on the same variational framework, which is detailed
in the next section.

2 From Variational Image Restoration to
Variational Normal Integration

In view of the PRobust property, variational methods, which
aim at estimating the surface by minimization of a well-
chosen criterion, are particularly suited for the integration
problem. Hence, we choose the variational framework as
basis for the design of newmethods. This choice is alsomoti-
vated by the fact that the property which is the most difficult
to ensure is probably PDisc. Numerous variational methods
have been designed for edge-preserving image processing:
such methods may thus be a natural source of inspiration for
designing discontinuity-preserving integration methods.

2.1 Variational Methods in Image Processing

For a comprehensive introduction to this literature, we refer
the reader to [4] and to pioneering papers such as [11,16,34,
38]. Basically, the idea in edge-preserving image restoration
is that edges need to be processed in a particular way. This
is usually achieved by choosing an appropriate energy to
minimize, formulating the inverse problem as the recovery
of a restored image z: Ω ⊂ R

2 → Rminimizing the energy:

E(z) = F(z) + R(z) (2)

where

• F(z) is a fidelity term penalizing the difference between
a corrupted image z0 and the restored image:

F(z) =
∫∫

(u,v)∈Ω

Φ
(

z(u, v) − z0(u, v)
)

du dv (3)

• R(z) is a regularization term, which usually penalizes
the gradient of the restored image:

R(z) =
∫∫

(u,v)∈Ω

λ(u, v) Ψ (‖∇z(u, v)‖) du dv (4)

In (3), Φ is chosen accordingly to the type of corruption
the original image z0 is affected by. For instance, ΦL2(s) =
s2 is the natural choice in the presence of additive, zero-
mean, Gaussian noise, while ΦL1(s) = |s| can be used in
the presence of bi-exponential (Laplacian) noise, which is a
rather good model when outliers come into play (e.g., “salt
and pepper” noise).

In (4), λ ≥ 0 is a field of weights which control the respec-
tive influence of the fidelity and the regularization terms. It
can be either manually tuned beforehand [if λ(u, v) ≡ λ, λ
can be seen as a “hyper-parameter”], or defined as a function
of ‖∇z(u, v)‖.

The choice of Ψ must be made accordingly to a desired
smoothness of the restored image. The quadratic penalty
ΨL2(s) = s2 will produce “smooth” images,while piecewise-
constant images are obtained when choosing the sparsity
penalty ΨL0(s) = 1 − δ(s), with δ(s) = 1 if s = 0 and
δ(s) = 0 otherwise. The latter approach preserves the edges,
but the numerical solving is much more difficult, since the
regularization term is non-smooth and non-convex. Hence,
several choices of regularizers “inbetween” the quadratic and
the sparsity ones have been suggested.

For instance, the total variation (TV) regularizer is
obtained by setting Ψ (s) = |s|. Efficient numerical meth-
ods exist for solving this non-smooth, yet convex, problem.
Examples include primal–dual methods [13], augmented
Lagrangian approaches [23], and forward–backward split-
tings [40]. The latter can also be adapted to the case where
the regularizer Ψ is non-convex, but smooth [41]. Such
non-convex regularization terms were shown to be partic-
ularly effective for edge-preserving image restoration [22,
36,38].

Another strategy is to stick to quadratic regularization
(Ψ = ΨL2 ), but apply it in a non-uniform manner by tuning
the field ofweightsλ in (4). For instance, settingλ(u, v) in (4)
inversely proportional to ‖∇z(u, v)‖ yields the “anisotropic
diffusion” model by Perona and Malik [44]. The discontinu-
ity set K can also be automatically estimated and discarded
by setting λ(u, v) ≡ 0 over K and λ(u, v) ≡ λ over
Ω\K , in the spirit of Mumford and Shah’s segmentation
method [37].

2.2 Notations

Although we chose for simplicity to write the variational
problems in a continuous form, we are overall interested
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in solving discrete problems. Two different discretization
strategies exist. The first one consists in using variational
calculus to derive the (continuous) necessary optimality con-
dition, then discretize it by finite differences, and eventually
solve the discretized optimality condition. The alternative
method is to discretize the functional itself by finite dif-
ferences, before solving the optimality condition associated
with the discrete problem.

As shown in [20], the latter approach eases the handling
of the boundary of Ω; hence, we use it as discretization
strategy. The variational models hereafter will be presented
using the continuous notations, because we find them more
readable. The discrete notations will be used only when
presenting the numerical solving. Yet, to avoid confusion,
we will use calligraphic letters for the continuous energies
(e.g., E), and capital letters for their discrete counterparts
(e.g., E). With these conventions, it should be clear whether
an optimization problem is discrete or continuous. Hence,
we will use the same notation ∇z = [∂uz, ∂vz]� both
for the gradient of z and its finite differences approxima-
tion.

2.3 ProposedVariational Framework

In this work, we show how to adapt the aforementioned vari-
ational models, originally designed for image restoration, to
normal integration. Although both these inverse problems
are formally very similar, they are somehow different, for
the following reasons:

• The concept of edges in an image to restore is replaced
by those of depth discontinuities and kinks.

• Unlike image processing functionals, our data consist in
an estimate g of the gradient of the unknown z, in lieu of
a corrupted version z0 of z. Therefore, the fidelity term
F(z) will apply to the difference between ∇z and g, and
it is the choice of this term which will or not allow depth
discontinuities.

• Regularization terms are optional here: all the methods
we discuss basically work even with R(z) ≡ 0, but we
may use this regularization term to allow introducing, if
available, a prior on the surface (e.g., user-defined con-
trol points [30,33] or a rough depth estimate obtained
using a low-resolution depth sensor [32]). Such feature
“is appreciable, although not required” [48].

We will discuss methods seeking the depth z as the min-
imizer of an energy E(z) in the form (2), but with different
choices for F(z) and R(z):

• F(z) now represents a fidelity term penalizing the differ-
ence between the gradient of the recovered depth map z
and the datum g:

F(z) =
∫∫

(u,v)∈Ω

Φ (‖∇z(u, v) − g(u, v)‖) du dv (5)

• The regularization term R(z) now represents prior
knowledge of the depth1:

R(z) =
∫∫

(u,v)∈Ω

λ(u, v)
[

z(u, v) − z0(u, v)
]2

(6)

where z0 is the prior, and λ(u, v) ≥ 0 is a user-defined,
spatially varying, regularization weight. In this work, we
consider for simplicity only the case where λ does not
depend on z.

2.4 Choosing λ and z0

The main purpose of the regularization termR defined in (6)
is to avoid numerical instabilities whichmay arise when con-
sidering solely the fidelity term (5): this fidelity term depends
only on ∇z, and not on z itself; hence, the minimizer of (5)
can be estimated only up to an additive ambiguity.

Besides, one may also want to impose one or several con-
trol points on the surface [30,33]. This can be achieved very
simply within the proposed variational framework, by set-
ting λ(u, v) ≡ 0 everywhere, except on the control points
locations (u, v) where a high value for λ(u, v) must be set
and the value z0(u, v) is fixed.

Another typical situation is when, given both a coarse
depth estimate and an accurate normal estimate, one would
like to “merge” them in order to create a high-quality depth
map. Such a problem arises, for instance, when refining the
depth map of an RGB-D sensor (e.g., a Kinect) by means of
shape-from-shading [42], photometric stereo [25] or shape-
from-polarization [32]. In such cases, we may set z0 to the
coarse depth map, and tune λ so as to merge the coarse and
fine estimates in the best way. Non-uniform weights may be
used, in order to lower the influence of outliers in the coarse
depth map [25].

Eventually, in the absence of such priors, we will use the
regularization term only to fix the integration constant: this is
easily achieved by setting an arbitrary prior [e.g., z0(u, v) ≡
0], along with a small value for λ [typically, λ(u, v) ≡ λ =
10−6].

3 Smooth Surfaces

We first tackle the problem of recovering a “smooth” depth
map z from a noisy estimate g of∇z. To this end, we consider
the quadratic variational problem:

1 We consider only quadratic regularization terms: studying more
robust ones (e.g., L1 norm) is left as perspective.
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min
z

∫∫

(u,v)∈Ω

‖∇z(u, v) − g(u, v)‖2

+ λ(u, v)
[

z(u, v) − z0(u, v)
]2

du dv (7)

When λ ≡ 0, Problem (7) comes down to Horn and
Brook’s model [29]. In that particular case, an infinity of
solutions z ∈ W 1,2(Ω) exist, and they differ by an additive
constant.2 On the other hand, the regularization term allows
us to guarantee uniqueness of the solution as soon as λ is
strictly positive almost everywhere.3,4

If the depth map z is further assumed to be twice differ-
entiable, the necessary optimality condition associated with
the continuous optimization problem (7) (Euler–Lagrange
equation) is written:

− �z + λz = −∇ · g + λz0 over Ω (8)

(∇z − g) · η = 0 over ∂Ω (9)

withη a normal vector to the boundary ∂Ω ofΩ ,� theLapla-
cian operator, and∇· the divergence operator. This condition
is a linear PDE in z which can be discretized using finite
differences. Yet, providing a consistent discretization on the
boundary of Ω is not straightforward [26], especially when
dealing with non-rectangular domains Ω where many cases
have to be considered [6]. Hence, we follow a different track,
based on the discretization of the functional itself.

3.1 Discretizing the Functional

Instead of a continuous gradient field g: Ω → R
2 over an

open setΩ , we are actually given a finite set of values {gu,v =
[pu,v, qu,v]�, (u, v) ∈ Ω}, where the (u, v) represent the
pixels of a discrete subset Ω of a regular square 2D-grid.5

Solving the discrete integration problem requires estimating
a finite set of values, i.e., the |Ω| unknown depth values zu,v ,
(u, v) ∈ Ω (| · | denotes the cardinality), which are stacked
columnwise in a vector z ∈ R

|Ω|.

2 Proof: by developing the terms inside the integral in (7), and inte-
grating by parts, Theorem 6.2.5 in [3] applies with f := −∇ · g and
g := g · η.
3 Proof: bydeveloping the terms inside the integral in (7) and integrating
by parts, Theorem 6.2.2-(ii) in [3] applies with f := −∇ · g+ λz0 and
g := g · η.
4 This condition makes the matrix of the associated discrete problem
strictly diagonally dominant, see Sect. 3.2.
5 To ease the comparison between the variational and the discrete prob-
lems, we will use the same notation Ω for both the open set of R2 and
the discrete subset of the grid.

For now, let us use a Gaussian approximation for the noise
contained ing,6 That is, let us assume in the rest of this section
that each datum gu,v, (u, v) ∈ Ω , is equal to the gradient
∇z(u, v) of the unknown depth map z, taken at point (u, v),
up to a zero-mean additive, homoskedastic (same variance at
each location (u, v)), Gaussian noise:

gu,v = ∇z(u, v) + ε(u, v) (10)

where ε(u, v) ∼ N
(

[0, 0]� ,

[

σ 2 0
0 σ 2

])

and σ is

unknown.7 Now, we need to give a discrete interpretation
of the gradient operator in (10), through finite differences.

In order to obtain a second-order accurate discretization,
we combine forward and backward first-order finite differ-
ences, i.e., we consider that each measure of the gradient
gu,v = [pu,v, qu,v

]� provides us with up to four independent
and identically distributed (i.i.d.) statistical observations,
depending on the neighborhood of (u, v). Indeed, its first
component pu,v can be understood either in terms of both
forward or backward finite differences (when both the bot-
tomand the top8 neighbors are insideΩ), by one of both these
discretizations (only one neighbor inside Ω), or by none of
these finite differences (no neighbor insideΩ). Formally, we
model the p-observations in the following way:

pu,v =
∂+
u zu,v

︷ ︸︸ ︷

zu+1,v − zu,v +ε+
u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u + 1, v) ∈ Ω}
︸ ︷︷ ︸

Ω+
u

(11)

pu,v =
∂−
u zu,v

︷ ︸︸ ︷

zu,v − zu−1,v +ε−
u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u − 1, v) ∈ Ω}
︸ ︷︷ ︸

Ω−
u

(12)

where ε
+/−
u ∼ N (0, σ 2). Hence, rather than considering that

we are given |Ω| observations p, our discretization handles
these data as |Ω+

u |+ |Ω−
u | observations, some of them being

interpreted in terms of forward differences, some in terms
of backward differences, some in terms of both forward and
backward differences, the points without any neighbor in the
u-direction being excluded.

6 In 3D-reconstruction applications such as photometric stereo [55],
the assumption on the noise should rather be formulated on the images.
This will be discussed in more details in Sect. 4.4.
7 The assumptions of equal variance σ 2 for both components and of
a diagonal covariance matrix are introduced only for consistency with
the least-squares problem (7). They are discussed with more care in
Sect. 4.4.
8 The u-axis points “downward,” the v-axis points “to the right” and
the z-axis points from the surface to the camera, see Fig. 1.
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Symmetrically, the second component q of g corresponds
either to two, one or zero observations:

qu,v =
∂+
v zu,v

︷ ︸︸ ︷

zu,v+1 − zu,v +ε+
v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v + 1) ∈ Ω}
︸ ︷︷ ︸

Ω+
v

(13)

qu,v =
∂−
v zu,v

︷ ︸︸ ︷

zu,v − zu,v−1 +ε−
v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v − 1) ∈ Ω}
︸ ︷︷ ︸

Ω−
v

(14)

where ε
+/−
v ∼ N (0, σ 2). Given theGaussianity of the noises

ε
+/−
u/v , their independence, and the fact that they all share the
same standard deviation σ and mean 0, the joint likelihood
of the observed gradients {gu,v}(u,v) is:

L
({

gu,v, (u, v) ∈ Ω
} | {zu,v, (u, v) ∈ Ω

})

=
∏

(u,v)∈Ω+
u

1√
2πσ 2

exp

{

−
[

∂+
u zu,v − pu,v

]2

2σ 2

}

×
∏

(u,v)∈Ω−
u

1√
2πσ 2

exp

{

−
[

∂−
u zu,v − pu,v

]2

2σ 2

}

×
∏

(u,v)∈Ω+
v

1√
2πσ 2

exp

{

−
[

∂+
v zu,v − qu,v

]2

2σ 2

}

×
∏

(u,v)∈Ω−
v

1√
2πσ 2

exp

{

−
[

∂−
v zu,v − qu,v

]2

2σ 2

}

, (15)

and hence, the maximum-likelihood estimate for the depth
values is obtained by minimizing:

FL2(z) = 1

2

(

∑∑

(u,v)∈Ω+
u

[

∂+
u zu,v − pu,v

]2

+
∑∑

(u,v)∈Ω−
u

[

∂−
u zu,v − pu,v

]2
)

+ 1

2

(

∑∑

(u,v)∈Ω+
v

[

∂+
v zu,v − qu,v

]2

+
∑∑

(u,v)∈Ω−
v

[

∂−
v zu,v − qu,v

]2
)

(16)

where the 1
2 coefficients are meant to ease the continuous

interpretation: the integral of the fidelity term in (7) is approx-
imated by FL2(z), expressed in (16) as the mean of the
forward and the backward discretizations.

To obtain a more concise representation of this fidelity
term, let us stack the data in two vectors p ∈ R

|Ω| and
q ∈ R

|Ω|. In addition, let us introduce four |Ω|× |Ω| differ-
entiation matrices D+

u , D
−
u , D

+
v and D−

v , associated with the

finite differences operators ∂
+/−
u/v . For instance, the i th line

of D+
u reads:

(

D+
u

)

i,·

=

⎧

⎪
⎨

⎪
⎩

[

0, . . . , 0, −1
︸︷︷︸

Position i

, 1
︸︷︷︸

Position i+1

, 0, . . . , 0
]

if m(i) ∈ Ω+
u

0� otherwise

(17)

where m is the mapping associating linear indices i with the
pixel coordinates (u, v):

m: {1, . . . , |Ω|} → Ω

i → m(i) = (u, v)
(18)

Once these matrices are defined, (16) is equal to:

FL2(z) = 1

2

(
∥

∥D+
u z − p

∥

∥
2 + ∥∥D−

u z − p
∥

∥
2
)

+ 1

2

(
∥

∥D+
v z − q

∥

∥
2 + ∥∥D−

v z − q
∥

∥
2
)

− 1

2

⎛

⎝

∑∑

(u,v)∈Ω\Ω+
u

pu,v
2 +

∑∑

(u,v)∈Ω\Ω−
u

pu,v
2

⎞

⎠

− 1

2

⎛

⎝

∑∑

(u,v)∈Ω\Ω+
v

qu,v
2 +

∑∑

(u,v)∈Ω\Ω−
v

qu,v
2

⎞

⎠

(19)

The terms in both the last rows of (19) being independent
from the z-values, they do not influence the actual minimiza-
tion and will thus be omitted from now on.

The regularization term (6) is discretized as:

R(z) =
∑∑

(u,v)∈Ω

λu,v

[

zu,v − z0u,v

]2 =
∥

∥

∥Λ
(

z − z0
)∥

∥

∥

2
(20)

with Λ a |Ω| × |Ω| diagonal matrix containing the values
√

λu,v, (u, v) ∈ Ω .
Putting it altogether, our quadratic integration method

reads as the minimization of the discrete functional:

EL2(z) = 1

2

(
∥

∥D+
u z − p

∥

∥
2 + ∥∥D−

u z − p
∥

∥
2
)

+ 1

2

(
∥

∥D+
v z − q

∥

∥
2 + ∥∥D−

v z − q
∥

∥
2
)

+ ∥∥Λ (z − z0
)∥

∥

2

(21)
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3.2 Numerical Solution

The optimality condition associated with the discrete func-
tional (21) is a linear equation in z:

Az = b (22)

where A is a |Ω| × |Ω| symmetric matrix9:

A =
L

︷ ︸︸ ︷

1

2

[

D+
u

�D+
u + D−

u
�D−

u + D+
v

�D+
v + D−

v
�D−

v

]

+ Λ2 (23)

and b is a |Ω| × 1 vector:

b =
Du

︷ ︸︸ ︷

1

2

[

D+
u

� + D−
u

�] p +
Dv

︷ ︸︸ ︷

1

2

[

D+
v

� + D−
v

�] q

+ Λ2z0 (24)

The matrix A is sparse: it contains at most five nonzero
entries per row. In addition, it is diagonal dominant: if
(Λ)i,i = 0, the value (A)i,i of a diagonal entry is equal to the
opposite of the sum of the other entries (A)i, j , i �= j , from
the same row i . It becomes strictly superior as soon as (Λ)i,i
is strictly positive. Let us also remark that, whenΩ describes
a rectangular domain and the regularization weights are uni-
form (λ(u, v) ≡ λ),A is a Toeplitz matrix. Yet, this structure
is lost in the general case where it can only be said that A is
a sparse, symmetric, diagonal dominant (SDD) matrix with
at most 5|Ω| nonzero elements. It is positive semi-definite
when Λ = 0, and positive definite as soon as one of the λu,v

is nonzero.
System (22) can be solved by means of the conjugate gra-

dient algorithm. Initialization will not influence the actual
solution, but it may influence the number of iterations
required to reach convergence. In our experiments, we used
z0 as initial guess, yet more elaborate initialization strategies
may yield faster convergence [6]. To ensure PFast, we used
the multigrid preconditioning technique [35], which has a
negligible cost of computation and still bounds the compu-
tational complexity required to reach a ε relative accuracy10

by:

O (5n log(n) log(1/ε)) (25)

9 A and b are purposely divided by two in order to ease the continuous
interpretation of Sect. 3.3.
10 In our experiments, the threshold of the stopping criterion is set to
ε = 10−4.

where n = |Ω|.11 This complexity is inbetween the com-
plexities of the approaches based on Sylvester equations [26]
(O(n1.5)) and on DCT [53] (O(n log(n))). Besides, these
competing methods explicitly require that Ω is rectangular,
while ours does not.

By construction, the integration method consisting in
minimizing (21) satisfies the PRobust property (it is the
maximum-likelihood estimate in the presence of zero-mean
Gaussian noise). The discretization we introduced does not
assume any particular shape for Ω , neither treats the bound-
ary in a specific manner; hence, PFreeB and PNoRect are also
satisfied. We also showed that PFast could be satisfied, using
a solving method based on the preconditioned conjugate gra-
dient algorithm. Eventually, let us recall that tuning λ and/or
manually fixing the values of the prior z0 is necessary only
to introduce a prior, but not in general. Hence, PNoPar is also
enforced. In conclusion, all the desired properties are satis-
fied, except PDisc. Let us now provide additional remarks on
the connections between the proposed discrete approach and
a fully variational one.

3.3 Continuous Interpretation

System (22) is nothing else than a discrete analogue of the
continuous optimality conditions (8) and (9):

Lz
︸︷︷︸

≈−�z

+ Λ2z
︸︷︷︸

≈λz

= Dup + Dvq
︸ ︷︷ ︸

≈−∇·g
+Λ2z0
︸ ︷︷ ︸

≈λz0

(26)

where the matrix–vector products are easily interpreted in
terms of the differential operators in the continuous for-
mula (8). One major advantage when reasoning from the
beginning in the discrete setting is that one does not need
to find out how to discretize the natural12 boundary condi-
tion (9), which was already emphasized in [20,26]. Yet, the
identifications in (26) show that both the discrete and contin-
uous approaches are equivalent, provided that an appropriate
discretization of the continuous optimality condition is used.
It is thus possible to derive O(5n log(n) log(1/ε)) algo-
rithms based on the discretization of the Euler–Lagrange
equation, contrarily to what is stated in [26]. The real draw-
back of such approaches does not lie in complexity, but in
the difficult discretization of the boundary condition. This is
further explored in the next subsection.

11 In (25), the factor 5n is nothing else than the number of nonzero
elements in A. Therefore, exploiting sparsity is not as “fruitless” as
argued in [26] when it comes to solving large linear systems faster than
using Gaussian elimination (complexity O(n3)).
12 As stated in [26], homogeneous Neumann boundary conditions of
the type ∇z · η = 0, used, e.g., in [1], should be avoided.
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(1, 1)

v

u (1,1( )3, 2)

(2, 1) (2,2( )3, 2)

(3, 1) (3, 2)

Fig. 1 Example of non-rectangular domain Ω (solid dots) inside a
3 × 3 grid. When invoking the continuous optimality condition, the
discrete approximations of the Laplacian and of the divergence near the
boundary involve several points inside ∂Ω (circles) for which no data
are available. The first-order approximation of the natural boundary
condition (9) is thus required. Relying only on discrete optimization
simplifies a lot the boundary handling

3.4 Example

To clarify the proposed discretization of the integration prob-
lem, let us consider a non-rectangular domainΩ inside a 3×3
grid, like the one depicted in Fig. 1.

The vectorized unknown depth z and the vectorized com-
ponents p and q of the gradient write in this case:

z =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z1,1
z2,1
z3,1
z1,2
z2,2
z3,2
z1,3
z2,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

p =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p1,1
p2,1
p3,1
p1,2
p2,2
p3,2
p1,3
p2,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q1,1
q2,1
q3,1
q1,2
q2,2
q3,2
q1,3
q2,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(27)

The sets Ω
+/−
u/v all contain five pixels:

Ω+
u = {(1, 1) , (2, 1) , (1, 2) , (2, 2) , (1, 3)} (28)

Ω−
u = {(2, 1) , (3, 1) , (2, 2) , (3, 2) , (2, 3)} (29)

Ω+
v = {(1, 1) , (2, 1) , (3, 1) , (1, 2) , (2, 2)} (30)

Ω−
v = {(1, 2) , (2, 2) , (3, 2) , (1, 3) , (2, 3)} (31)

so that the differentiation matrices D+/−
u/v have five nonzero

rows according to their definition (17). For instance, the
matrix associated with the forward finite differences oper-
ator ∂+

u reads:

D+
u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1 1 0 0 0 0 0 0
0 − 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 − 1 1 0 0 0
0 0 0 0 − 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 1
0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

The negative Laplacian matrix L defined in (23) is worth:

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 − 1 0 − 1 0 0 0 0
− 1 3 − 1 0 − 1 0 0 0
0 − 1 2 0 0 − 1 0 0

− 1 0 0 3 − 1 0 − 1 0
0 − 1 0 − 1 4 − 1 0 − 1
0 0 − 1 0 − 1 2 0 0
0 0 0 − 1 0 0 2 − 1
0 0 0 0 − 1 0 − 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(33)

One can observe that thismatrix describes the connectivity of
the graph representing the discrete domain Ω: the diagonal
elements (L)i,i are the numbers of neighbors connected to
the i th point, and the off-diagonals elements (L)i, j are worth
−1 if the i th and j th points are connected, 0 otherwise.

Eventually, the matrices Du and Dv defined in (24) are
equal to:

Du = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1 − 1 0 0 0 0 0 0
1 0 − 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 − 1 − 1 0 0 0
0 0 0 1 0 − 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 − 1 − 1
0 0 0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

Dv = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1 0 0 − 1 0 0 0 0
0 − 1 0 0 − 1 0 0 0
0 0 − 1 0 0 − 1 0 0
1 0 0 0 0 0 − 1 0
0 1 0 0 0 0 0 − 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)

Let us now show how these matrices relate to the dis-
cretization of the continuous optimality condition (8). Using
second-order central finite differences approximations of
the Laplacian (�zu,v ≈ zu,v−1 + zu−1,v + zu+1,v +
zu,v+1 − 4zu,v) and of the divergence operator (∇ · gu,v ≈
1
2

(

pu+1,v − pu−1,v
)+ 1

2

(

qu,v+1 − qu,v−1
)

), we obtain:
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[

4zu,v − zu,v−1 − zu−1,v − zu+1,v − zu,v+1
]+ λu,vzu,v

= 1

2

[

pu−1,v − pu+1,v
]+ 1

2

[

qu,v−1 − qu,v+1
]+ λu,vz

0
u,v

(36)

The pixel (u, v) = (2, 2) is the only one whose four neigh-
bors are inside Ω . In that case, (36) becomes:

[

4z2,2 − z2,1 − z1,2 − z3,2 − z2,3
]

︸ ︷︷ ︸

=(L)5,·z

+ λ2,2z2,2
︸ ︷︷ ︸

=(Λ2)

5,·z

= 1

2

[

p1,2 − p3,2
]

︸ ︷︷ ︸

=(Du)5,·p

+ 1

2

[

q2,1 − q2,3
]

︸ ︷︷ ︸

=(Dv)5,·q

+ λ2,2z
0
2,2

︸ ︷︷ ︸

=(Λ2)

5,·z0

(37)

where we recognize the fifth equation of the discrete opti-
mality condition (26). This shows that, for pixels having all
four neighbors insideΩ , both the continuous and the discrete
variational formulations yield the same discretizations.

Now, let us consider a pixel near the boundary, for instance
pixel (1, 1). Using the same second-order differences, (36)
reads:

[

4z1,1 − z1,0 − z0,1 − z2,1 − z1,2
]+ λ1,1z1,1

= 1

2

[

p0,1 − p2,1
]+ 1

2

[

q1,0 − q1,2
]+ λ1,1z

0
1,1 (38)

which involves the values z1,0 and z0,1 of the depth map,
which we are not willing to estimate, and the values p0,1
and q1,0 of the gradient field, which are not provided as
data. To eliminate these four values, we need to resort to
boundary conditions on z, p and q. The discretizations, using
first-order forward finite differences, of the natural boundary
condition (9), at locations (1, 0) and (0, 1), read:

z1,1 − z1,0 = q1,0 (39)

z1,1 − z0,1 = p0,1; (40)

hence, the unknown depth values z1,0 and z0,1 can be elimi-
nated from Eq. (38):

[

2z1,1 − z2,1 − z1,2
]+ λ1,1z1,1

= 1

2

[−p0,1 − p2,1
]+ 1

2

[−q1,0 − q1,2
]+ λ1,1z

0
1,1

(41)

Eventually, the unknown values p0,1 and q1,0 need to be
approximated. Since we have no information at all about
the values of g outside Ω , we use homogeneous Neumann
boundary conditions13:

13 This assumption is weaker than the homogeneous Neumann bound-
ary condition ∇z · η = 0 used by Agrawal et al. [1].

∇ p · η = 0 over ∂Ω (42)

∇q · η = 0 over ∂Ω (43)

Discretizing these boundary conditions using first-order for-
ward finite differences, we obtain:

p0,1 = p1,1 (44)

q1,0 = q1,1 (45)

Using these identifications, the discretized optimality condi-
tion (41) is given by:
[

2z1,1 − z2,1 − z1,2
]

︸ ︷︷ ︸

=(L)1,·z

+ λ1,1z1,1
︸ ︷︷ ︸

=(Λ2)

1,·z

= 1

2

[−p1,1 − p2,1
]

︸ ︷︷ ︸

=(Du)1,·p

+ 1

2

[−q1,1 − q1,2
]

︸ ︷︷ ︸

=(Dv)1,·q

+ λ1,1z
0
1,1

︸ ︷︷ ︸

=(Λ2)

1,·z0

(46)

which is exactly the first equation of the discrete optimality
condition (26).

Using a similar rationale, we obtain equivalence of both
formulations for the eight points insideΩ . Yet, let us empha-
size that discretizing the continuous optimality condition
requires treating, on this example with a rather “simple”
shape for Ω , not less than seven different cases (only pix-
els (3, 2) and (2, 3) are similar). More general shapes bring
out to play even more particular cases (points having only
one neighbor inside Ω). Furthermore, boundary conditions
must be invoked in order to approximate the depth values and
the data outsideΩ . On the other hand, the discrete functional
provides exactly the same optimality condition, but without
these drawbacks. The boundary conditions can be viewed as
implicitly enforced; hence, PFreeB is satisfied.

3.5 Empirical Evaluation

We first consider the smooth surface from Fig. 2, whose
normals are analytically known [26], and compare three dis-
crete least-squares methods which all satisfy PFast, PRobust

and PFreeB: the DCT solution [53], the Sylvester equations
method [26], and the proposed one.As shown inFigs. 2 and 3,
our solution is slightly more accurate. Indeed, the bias near
the boundary induced by the DCT method is corrected. On
the other hand, we believe the reasonwhy ourmethod ismore
accurate than that from [26] is because we use a combina-
tion of forward and backward finite differences, while [26]
relies on central differences. Indeed, when using central dif-
ferences to discretize the gradient, the second-order operator
(Laplacian) appearing in the Sylvester equations from [26]
involves none of the direct neighbors, which may be non-
robust for noisy data (see, for instance, Appendix 3 in [4]).
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Fig. 2 Qualitative evaluation of thePRobust property. An additive, zero-
mean, Gaussian noise with standard deviation 0.1‖g‖∞ was added to
the (analytically known) gradient of the ground-truth surface, before
integrating this gradient by three least-squares methods. Ours qualita-

tively provides better results than the Sylvester equations method from
Harker and O’Leary [26]. It seems to provide similar robustness as the
DCT solution from Simchony et al. [53], but the quantitative evaluation
from Fig. 3 shows that our method is actually more accurate

For instance, let us consider a 1D domain Ω with 7 pix-
els. Then, the following differentiation matrix is advocated
in [26]:

Du = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 3 4 − 1 0 0 0 0
− 1 0 1 0 0 0 0
0 − 1 0 1 0 0 0
0 0 − 1 0 1 0 0
0 0 0 − 1 0 1 0
0 0 0 0 − 1 0 1
0 0 0 0 1 − 4 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

The optimality condition (Sylvester equation) in [26] invol-
ves the following second-order operator Du

�Du :

Du
�Du = 1

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

10 − 12 2 0 0 0 0
− 12 17 − 4 − 1 0 0 0
2 − 4 3 0 − 1 0 0
0 − 1 0 2 0 − 1 0
0 0 − 1 0 3 − 4 2
0 0 0 − 1 − 4 17 − 12
0 0 0 0 2 − 12 10

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(48)

The bolded values of this matrix indicate that computa-
tion of the second-order derivatives for the fourth pixel
does not involve the third and fifth pixels. On the other
hand, with the proposed operator defined in Eq. (24),
the second-order operator always involves the “correct”
neighborhood:

Du
�Du =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1 0 0 0 0 0
− 1 2 − 1 0 0 0 0
0 − 1 2 − 1 0 0 0
0 0 − 1 2 − 1 0 0
0 0 0 − 1 2 − 1 0
0 0 0 0 − 1 2 − 1
0 0 0 0 0 − 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)

In addition, as predicted by the complexity analysis
in Sect. 3.2, our solution relying on preconditioned con-
jugate gradient iterations has an asymptotic complexity
(O(5n log(n) log(1/ε))) which is inbetween that of the
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Fig. 3 Quantitative evaluation of the PRobust (top) and PFast (bottom)
properties. Top: RMSE between the depth ground truth and the ones
reconstructed from noisy gradients (adding a zero-mean Gaussian noise
with standard deviation σ‖g‖∞, for several values of σ ). Bottom: com-
putation time as a function of the size |Ω| of the reconstruction domain
Ω . The method we put forward has a complexity which is inbetween
those of the methods of Simchony et al. [53] (based on DCT) and of
Harker and O’Leary [26] (based on Sylvester equations), while being
slightly more accurate than both of them

Sylvester equations approach [26] (O(n1.5)) and ofDCT [53]
(O(n log(n))). The CPU times of our method and of the
DCT solution, measured using MATLAB codes running on
a recent i7 processor, actually seem proportional: according
to this complexity analysis, we guess the proportionality fac-
tor is around 5 log(1/ε). Indeed, with ε = 10−4, which is the
value we used in our experiments, 5 log(1/ε) ≈ 46, which
is consistent with the second graph in Fig. 3.

Besides its improved accuracy, the major advantage
of our method over [26,53] is its ability to handle non-
rectangular domains (PNoRect). This makes possible the
3D-reconstruction of piecewise-smooth surfaces, provided
that a user segments the domain into pieces where z is
smooth beforehand (see Fig. 4). Yet, if the segmentation is
not performed a priori, artifacts are visible near the discon-
tinuities, which get smoothed, and Gibbs phenomena appear
near the continuous, yet non-differentiable kinks. We will
discuss in the next section several strategies for removing
such artifacts.

Fig. 4 3D-reconstruction of surface Svase (see Figure 3 in [48]) from its
(analytically known) normals, using the proposed discrete least-squares
method. Top: when Ω is restricted to the image of the vase. Bottom:
when Ω is the whole rectangular grid. Quadratic integration smooths
the depth discontinuities and produces Gibbs phenomena near the kinks

4 Piecewise-Smooth Surfaces

We now tackle the problem of recovering a surface which is
smooth only almost everywhere, i.e., everywhere except on
a “small” set where discontinuities and kinks are allowed.
Since all the methods discussed hereafter rely on the same
discretization as in Sect. 3, they inherit itsPFreeB andPNoRect

properties, which will not be discussed in this section.
Instead, we focus on thePFast,PRobust,PNoPar, and of course
PDisc properties.

4.1 Recovering Discontinuities and Kinks

In order to clarify which variational formulations may pro-
vide robustness to discontinuities, let us first consider the
1D-example of Fig. 5, with Dirichlet boundary conditions.
As illustrated in this example, least-squares integration of a
noisy normal field will provide a smooth surface. Replacing
the least-squares estimator ΦL2(s) = s2 by the sparsity one
ΦL0(s) = 1 − δ(s) will minimize the cardinality of the dif-
ference between g and ∇z, which provides a surface whose
gradient is almost everywhere equal to g. As a consequence,
robustness to noise is lost, yet discontinuities may be pre-
served.

These estimators can be interpreted as follows: least
squares assume that all residuals defined by ‖∇z(u, v) −
g(u, v)‖ are “low,” while sparsity assumes thatmost of them
are “zero.” The former is commonly used for “noise,” and
the latter for “outliers.” In the case of normal integration,
outliers may occur when: (1) ∇z(u, v) exists but its estimate
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Ground truth

Least-squares

Sparsity

Fig. 5 1D-illustration of integration of a noisy normal field (arrows)
over a regular grid (circles), in the presence of discontinuities. The least-
squares approach is robust to noise, but smooths the discontinuities.
The sparsity approach preserves the discontinuities, but is not robust to
noise. An ideal integration method would inherit robustness from least
squares, and the ability to preserve discontinuities from sparsity

g(u, v) is not reliable; (2) ∇z(u, v) is not defined because
(u, v) lies within the vicinity of a discontinuity or a kink.
Considering that situation (1) should rather be handled by
robust estimation of the gradient [31], we deal only with the
second one, and use the terminology “discontinuity” instead
of “outlier,” although this also covers the concept of “kink.”

We are looking for an estimator which combines the
robustness of least squares to noise, and that of spar-
sity to discontinuities. These abilities are actually due to
their asymptotic behaviors. Robustness of least squares to
noise comes from the quadratic behavior around 0, which
ensures that “low” residuals are considered as “good” esti-
mates, while this quadratic behavior becomes problematic in
±∞: discontinuities yield “high” residuals, which are over-
penalized. The sparsity estimator has the opposite behavior:
treating the high residuals (discontinuities) exactly as the
low ones ensures that discontinuities are not over-penalized,
yet low residuals (noise) are. A good estimator would thus be
quadratic around zero, but sublinear around±∞. Obviously,
only non-convex estimators hold both these properties. We
will discuss several choices “inbetween” the quadratic esti-
mator ΦL2 and the sparsity one ΦL0 (see Fig. 6): the convex
compromiseΦL1(s) = |s| is studied in Sect. 4.2, and the non-
convex estimatorsΦ1(s) = log(s2+β2) andΦ2(s) = s2

s2+γ 2 ,
where β and γ are hyper-parameters, in Sect. 4.3.

Another strategy consists in keeping least squares as basis,
but using it in a non-uniformmanner. The simplestwaywould
be to remove the discontinuity points from the integration
domain Ω and then to apply our quadratic method from the
previous section, since it is able to manage non-rectangular
domains. Yet, this would require detecting the discontinu-
ities beforehand, which might be tedious. It is actually more
convenient to introduce weights in the least-squares func-
tionals, which are inversely proportional to the probability
of lying on a discontinuity [47,50]. We discuss this weighted
least-squares approach in Sect. 4.4, where a statistical inter-

Fig. 6 Graph of some robust estimators. The ability of ΦL2 to handle
noise (small residuals) comes from its over-linear behavior around zero,
while that ofΦL0 to preserve discontinuities (large residuals) is induced
by its sublinear behavior in+ ∞. An estimator holding both these prop-
erties is necessarily non-convex (e.g., Φ1 and Φ2, whose graphs are
shown with β = γ = 1), although ΦL1 may be an acceptable convex
compromise

pretation of the Perona and Malik’s anisotropic diffusion
model [44] is also exhibited. Eventually, an extreme case
of weighted least squares consists in using binary weights,
where the weights indicate the presence of discontinuities.
This is closely related to Mumford and Shah’s segmentation
method [37], which simultaneously estimates the discontinu-
ity set and the surface.We show in Sect. 4.5 that this approach
is the one which is actually the most adapted to the problem
of integrating a noisy normal field in the presence of discon-
tinuities.

4.2 Total Variation-Like Integration

The problem of handling outliers in a noisy normal field
has been tackled by Du, Robles-Kelly, and Lu, who com-
pare in [18] the performances of several M-estimators. They
conclude that regularizers based on the L1 norm are the
most effective ones. We provide in this subsection several
numerical considerations regarding the discretization of the
L1 fidelity term:

FL1(z) =
∫∫

(u,v)∈Ω

‖∇z(u, v) − g(u, v)‖1du dv

=
∫∫

(u,v)∈Ω

{

|∂uz(u, v) − p(u, v)|

+ |∂vz(u, v) − q(u, v)|
}

du dv (50)
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When p(u, v) ≡ 0 and q(u, v) ≡ 0, (50) is the
so-called anisotropic total variation (anisotropic TV) regular-
izer, which tends to favor piecewise-constant solutions while
allowing discontinuity jumps. Considering the discontinu-
ities and kinks as the equivalent of edges in image restoration,
it seems natural to believe that the fidelity term (50) may be
useful for discontinuity-preserving integration.

This fidelity term is not only convex, but also decouples
the two directions u and v, which allows fast ADMM-based
(Bregman iterations) numerical schemes involving shrink-
ages [24,47]. On the other hand, it is not so natural to
use such a decoupling: if the value of p is not reliable at
some point (u, v), usually that of q is not reliable either.
Hence, it may be worthwhile to use instead a regularizer
adapted from the “isotropic TV.” This leads us to adapt the
well-known model from Rudin et al. [49] to the integration
problem:

ETV(z) =
∫∫

(u,v)∈Ω

‖∇z(u, v) − g(u, v)‖

+ λ(u, v)
[

z(u, v) − z0(u, v)
]2

du dv (51)

Discretization Since the term ‖∇z(u, v) − g(u, v)‖ can be
interpreted in different manners, depending on the neighbor-
hood of (u, v), we need to discretize it appropriately. Let
us consider all four possible first-order discretizations of the
gradient∇z, associatedwith the four following sets of pixels:

ΩUV = ΩU
u ∩ ΩV

v , (U , V ) ∈ {+,−}2 (52)

The discrete functional to minimize is thus given by:

ETV(z)

= 1

4

(

∑∑

(u,v)∈Ω++

√

[

∂+
u zu,v − pu,v

]2 + [∂+
v zu,v − qu,v

]2

+
∑∑

(u,v)∈Ω+−

√

[

∂+
u zu,v − pu,v

]2 + [∂−
v zu,v − qu,v

]2

+
∑∑

(u,v)∈Ω−+

√

[

∂−
u zu,v − pu,v

]2 + [∂+
v zu,v − qu,v

]2

+
∑∑

(u,v)∈Ω−−

√

[

∂−
u zu,v − pu,v

]2 + [∂−
v zu,v − qu,v

]2
)

+
∑∑

(u,v)∈Ω

λu,v

[

zu,v − z0u,v

]2
(53)

Minimizing (53) comes down to solving the following
constrained optimization problem:

min
z,{rUV }

1

4

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

‖rUVu,v‖

+
∑∑

(u,v)∈Ω

λu,v

[

zu,v − z0u,v

]2

s.t. rUVu,v = ∇UV zu,v − gu,v (54)

where we denote ∇UV = [∂Uu , ∂V
v ]�, (U , V ) ∈ {+,−}2,

the discrete approximation of the gradient corresponding to
domain ΩUV .

Numerical Solution We solve the constrained optimization
problem (54) by the augmented Lagrangian method, through
an ADMM algorithm [21] (see [9] for a recent overview of
such algorithms). This algorithm reads:

z(k+1) = argmin
z∈R|Ω|

α

8

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

∥

∥

∥∇UV zu,v

−
(

gu,v + rUVu,v

(k) − bUVu,v

(k)
) ∥

∥

∥

2

+
∑∑

(u,v)∈Ω

λu,v

[

zu,v − z0u,v

]2
(55)

rUVu,v

(k+1) = argmin
r∈R2

α

8

∥

∥

∥r −
(

∇UV z(k+1)
u,v − gu,v + bUVu,v

(k)
)∥

∥

∥

2

+ ‖r‖ (56)

bUVu,v

(k+1) = bUVu,v

(k) + ∇UV z(k+1)
u,v − gu,v − rUVu,v

(k+1)
(57)

where the bUV are the scaled dual variables, and α > 0 cor-
responds to a descent stepsize, which is supposed to be fixed
beforehand. Note that the choice of this parameter influences
only the convergence rate, not the actual minimizer. In our
experiments, we used α = 1.

The z-update (55) is a linear least-squares problem similar
to the one which was tackled in Sect. 3. Its solution z(k+1) is
the solution of the following SDD linear system:

ATVz(k+1) = b(k)
TV (58)

with:

ATV = α

8

∑∑

(U ,V )∈{+,−}2

[

DU
u

�
DU
u + DV

v

�
DV

v

]

+ Λ2 (59)

b(k)
TV = α

8

∑∑

(U ,V )∈{+,−}2

[

DU
u

�
pUV

(k) + DV
v

�
qUV

(k)
]

+Λ2z0

(60)

where theDU/V
u/v matrices are defined as in (17), theΛmatrix

as in (20), and where we denote pUV (k)
and qUV (k)

the com-
ponents of g + rUV (k) − bUV (k)

.
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The solution of System (58) can be approximated by
conjugate gradient iterations, choosing at each iteration
the previous estimate z(k) as initial guess (setting z(0), for
instance, as the least-squares solution from Sect. 3). In
addition, thematrixATV is always the same: this allows com-
puting the preconditioner only once.

Eventually, the r-updates (56), (u, v) ∈ Ω , are basis pur-
suit problems [17], which admit the following closed-form
solution (generalized shrinkage):

rUVu,v

(k+1) = max

{

‖sUVu,v

(k+1)‖ − 4

α
, 0

}

sUVu,v
(k+1)

‖sUVu,v
(k+1)‖ (61)

with:

sUVu,v

(k+1) = ∇UV z(k+1)
u,v − gu,v + bUVu,v

(k)
(62)

Discussion This TV-like approach has two main advan-
tages: apart from the stepsize α which controls the speed
of convergence, it does not depend on the choice of a
parameter, and it is convex. The initialization has influ-
ence only on the speed of convergence and not on the
actual minimizer: convergence toward the global minimum
is guaranteed [51]. It can be shown that the convergence rate
of this scheme is ergodic, and this rate can be improved
rather simply [23]. We cannot consider that PFast is satis-
fied since, in comparison with the quadratic method from
Sect. 3, yet the TV approach is “reasonably” fast. Possi-
bly faster algorithms could be employed, as for instance the
FISTA algorithm fromBeck andTeboulle [7], or primal–dual
algorithms [13], but we leave such improvements as future
work.

On the other hand, according to the results fromFig. 7, dis-
continuities are recovered in the absence of noise, although
staircasing artifacts appear (such artifacts are partly due to the
non-differentiability of TV in zero [38]). Yet, the recovery of
discontinuities is deceiving when the noise level increases.
On noisy datasets, the only advantage of this approach over
least squares is thus that it removes the Gibbs phenomena
around the kinks, i.e., where the surface is continuous, but
non-differentiable (e.g., the sides of the vase).

Because of the staircasing artifacts and of the lack of
robustness to noise, we cannot find this first approach sat-
isfactory. Yet, since turning the quadratic functional into
a non-quadratic one seems to have positive influence on
discontinuities recovery, we believe that exploring non-
quadratic models is a promising route. Staircasing artifacts
could probably be reduced by replacing total variation by
total generalized variation [10], but we rather consider now
non-convex models.

4.3 Non-convex Regularization

Let us now consider non-convex estimators Φ in the fidelity
term (5), which are often referred to as “Φ-functions” [4].
As discussed in Sect. 4.1, the choice of a specificΦ-function
should be made according to several principles:

• Φ should have a quadratic behavior around zero, in order
to ensure that the integration is guided by the “good” data.
The typical choice ensuring this property isΦL2(s) = s2,
which is discussed in Sect. 3;

• Φ should have a sublinear behavior at infinity, so that
outliers do not have a predominant influence, and also to
preserve discontinuities and kinks. The typical choice is
the sparsity estimatorΦL0(s) = 0 if s = 0 andΦL0(s) =
1 otherwise;

• Φ should ideally be a convex function.

Obviously, it is not possible to simultaneously satisfy
these three properties. The TV-like fidelity term introduced
in Sect. 4.2 is a sort of “compromise”: it is the only convex
function being (over-) linear in 0 and (sub-) linear in ±∞.
Although it does not depend on the choice of any hyper-
parameter, we saw that it has the drawback of yielding the
so-called staircase effect and that discontinuities were not
recovered so well in the presence of noise. If we accept to
lose the convexity of Φ, we can actually design estimators
which better fit both other properties. Although there may
then be severalminimizers, such non-convex estimatorswere
recently shown to be very effective for image restoration [36].

Fig. 7 Depth estimated after 1000 iterations of the TV-like approach, in
the presence of additive, zero-mean, Gaussian noise with standard devi-
ation equal to σ‖g‖∞. The indicated RMSE is computed on the whole
domain. In the absence of noise, both discontinuities and kinks are

restored, although staircasing artifacts appear. In the presence of noise,
the discontinuities are smoothed. Yet, the 3D-reconstruction near the
kinks is still more satisfactory than the least-squares one: Gibbs phe-
nomena are not visible, unlike in the second row of Fig. 4
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Wewill consider two classicalΦ-functions, whose graphs
are plotted in Fig. 6:

{

Φ1(s) = log(s2 + β2)

Φ2(s) = s2

s2+γ 2

⇒
⎧

⎨

⎩

Φ ′
1(s) = 2 s

s2+β2

Φ ′
2(s) = 2 γ 2 s

(s2+γ 2)2

(63)

Let us remark that these estimators were initially intro-
duced in [19] in this context and that other non-convex
estimators can be considered, based for instance on L p

norms, with 0 < p < 1 [5].
Let us now show how to numerically minimize the result-

ing functionals:

EΦ(z) =
∫∫

(u,v)∈Ω

Φ (‖∇z(u, v) − g(u, v)‖)

+ λ(u, v)
[

z(u, v) − z0(u, v)
]2

du dv (64)

Discretization We consider the same discretization strategy
as in Sect. 4.2, aiming at minimizing the discrete functional:

EΦ(z) = 1

4

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

Φ
(
∥

∥∇UV zu,v − gu,v

∥

∥

)

+
∑∑

(u,v)∈Ω

λu,v

[

zu,v − z0u,v

]2
(65)

which resembles theTV functional defined in (53), andwhere
∇UV represents the finite differences approximation of the
gradient used over the domainΩUV , with {U , V } ∈ {+,−}2.

Introducing the notations:

f (z) = 1

4

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

Φ
(‖∇UV zu,v − gu,v‖

)

(66)

g(z) = ‖Λ(z − z0)‖2 (67)

the discrete functional (65) is rewritten:

EΦ(z) = f (z) + g(z) (68)

where f is smooth, but non-convex, and g is convex (and
smooth, although non-smooth functions g could be handled).

Numerical Solution The problem of minimizing a discrete
energy like (68), yielded by the sum of a convex term g and a
non-convex, yet smooth term f , can be handled by forward–
backward splitting. We use the “iPiano” iterative algorithm
by Ochs et al. [41], which reads:

z(k+1) = (I + α1∂g)
−1
(

z(k) − α1∇ f (z(k))

+α2

(

z(k) − z(k−1)
))

(69)

where α1 and α2 are suitable descent stepsizes (in our imple-
mentation, α2 is fixed to 0.8, and α1 is chosen by the “lazy
backtracking” procedure described in [41]), (I + α1∂g)−1 is
the proximal operator of g, and ∇ f (z(k)) is the gradient of
f evaluated at current estimate z(k). We detail hereafter how
to evaluate the proximal operator of g and the gradient of f .

The proximal operator of g writes, using (67):

(I + α1∂g)
−1 (̂x) = argmin

x∈R|Ω|

‖x − x̂‖
2

+ α1g(x) (70)

=
(

I + 2α1Λ
2
)−1 (

x̂ + 2α1Λz0
)

(71)

where the inversion is easy to compute, since the matrix
involved is diagonal.

In order to obtain a closed-form expression of the gradi-
ent of f defined in (66), let us rewrite this function in the
following manner:

f (z) = 1

4

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

Φ
(‖DUV

u,vz − gu,v‖
)

(72)

where DUV
u,v is a 2 × |Ω| finite differences matrix used for

approximating the gradient at location (u, v), using the finite
differences operator ∇UV , {U , V } ∈ {+,−}2:

DUV
u,v =

[(

DU
u

)

m−1(u,v),·
(

DV
v

)

m−1(u,v),·

]

(73)

where we recall that the mapping m associates linear indices
with pixel coordinates [see Eq. (18)].

The gradient of f is thus given by:

∇ f (z) = 1

4

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

{

DUV
u,v

� (
DUV
u,vz − gu,v

)

× Φ ′ (‖DUV
u,vz − gu,v‖

)

‖DUV
u,vz − gu,v‖

}

(74)

Given the choices (63) for theΦ-functions, this can be further
simplified:

∇ f1(z) = 1

2

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

DUV
u,v

� (DUV
u,vz − gu,v

)

‖DUV
u,vz − gu,v‖2 + β2

(75)

∇ f2(z) = 1

2

∑∑

(U ,V )∈{+,−}2

∑∑

(u,v)∈ΩUV

γ 2DUV
u,v

� (DUV
u,vz − gu,v

)

(‖DUV
u,vz − gu,v‖2 + γ 2

)2

(76)
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Fig. 8 Non-convex 3D-reconstructions of surface Svase, usingΦ1 (top)
or Φ2 (bottom). An additive, zero-mean, Gaussian noise with standard
deviation σ‖g‖∞, σ = 1%, was added to the gradient field. The non-
convex approaches depend on the tuning of a parameter (β or γ ), but

they are able to reconstruct the discontinuities in the presence of noise,
unlike the TV approach. Staircasing artifacts indicate the presence of
local minima (we used as initial guess z(0) the least-squares solution)

DiscussionContrarily to the TV-like approach (see Sect. 4.2),
the non-convex estimators require setting one hyper-para-
meter (β or γ ). As shown in Fig. 8, the choice of this
parameter is crucial: when it is too high, discontinuities are
smoothed, while setting a too low value leads to strong stair-
casing artifacts. Inbetween, the values β = 0.5 and γ = 1
seem to preserve discontinuities, even in the presence of noise
(which was not the case using the TV-like approach).

Yet, staircasing artifacts are still present. Despite their
non-convexity, the new estimators Φ1 and Φ2 are differ-
entiable; hence, these artifacts do not come from a lack of
differentiability, as this was the case for TV. They rather indi-
cate the presence of local minima. This is illustrated in Fig. 9,
where the 3D-reconstruction of a “Canadian tent”-like sur-
face, with additive, zero-mean, Gaussian noise (σ = 10%),
is presented. When using the least-squares solution as initial
guess z(0), the 3D-reconstruction is very close to the genuine
surface. Yet, when using the trivial initialization z(0) ≡ 0, we
obtain a surface whose slopes are “almost everywhere” equal
to the real ones, but unexpected discontinuity jumps appear.
Since only the initialization differs in these experiments, this
clearly shows that the artifacts indicate the presence of local
minima.

Although local minima can sometimes be avoided by
using the least-squares solution as initial guess (e.g., Fig. 9),
this is not always the case (e.g., Fig. 8). Hence, the non-
convex estimators perform overall better than the TV-like
approach, but they are still not optimal. We now follow other
routes, which use least squares as basis estimator, yet in a
non-uniform manner, in order to allow discontinuities.

4.4 Integration by Anisotropic Diffusion

Both previous methods (total variation and non-convex esti-
mators) replace the least-squares estimator by another one,

Fig. 9 3D-reconstruction of a “Canadian tent”-like surface from its
noisy gradient (σ = 1%), by the non-convex integrator Φ1 (β = 0.5,
12,000 iterations), using two different initializations. The objective
function being non-convex, the iterative scheme may converge toward
a local minimum

assumed to be robust to discontinuities. Yet, it is possible to
proceed differently: the 1D-graph in Fig. 5 shows thatmost of
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data are corrupted only by noise, and that the discontinuity set
is “small.” Hence, applying least squares everywhere except
on this set should provide an optimal 3D-reconstruction. To
achieve this, a first possibility is to consider weighted least
squares:

min
z

∫∫

(u,v)∈Ω

∥

∥W(u, v)
[∇z(u, v) − g(u, v)

]∥

∥
2

+ λ(u, v)
[

z(u, v) − z0(u, v)
]2

du dv (77)

whereW is aΩ → R
2×2 tensor field, acting as a weight map

designed to reduce the influence of discontinuity points. The
weights can be computed beforehand according to the inte-
grability of g [47], or by convolution of the components of
g by a Gaussian kernel [1]. Yet, such approaches are of lim-
ited interest when g contains noise. In this case, the weights
should rather be set as a function inversely proportional to
‖∇z(u, v)‖, e.g.,

W(u, v) = 1
√

( ‖∇z(u,v)‖
μ

)2 + 1

I2 (78)

with μ a user-defined hyper-parameter. The latter tensor is
the one proposed by Perona and Malik [44]: the contin-
uous optimality condition associated with (77) is related
to their “anisotropic diffusion model.”14 Such tensor fields
W: Ω → R

2×2 are called “diffusion tensors”: we refer the
reader to [54] for a complete overview.

The use of diffusion tensors for the integration problem is
not new [47], but we provide hereafter additional comments
on the statistical interpretation of such tensors. Interestingly,
the diffusion tensor (78) also appears when making different
assumptions on the noise model than those we considered
so far. Up to now, we assumed that the input gradient field
g was equal to the gradient ∇z of the depth map z, up to
an additive, zero-mean, Gaussian noise: g = ∇z + ε, ε ∼
N
(

[0, 0]�,

[

σ 2 0
0 σ 2

])

. This hypothesis may not always

be realistic. For instance, in 3D-reconstruction scenarii such
as photometric stereo [55], one estimates the normal field
n:Ω → R

3 pixelwise, rather than the gradient g: Ω → R
2,

from a set of images. Hence, the Gaussian assumption should
rather be made on these images. In this case, and provided
that a maximum-likelihood for the normals is used, it may be
assumed that the estimated normal field is the genuine one,
up to an additive Gaussian noise. Yet, this does not imply
that the noise in the gradient field g is Gaussian-distributed.
Let us clarify this point.

14 Although (78) actually yields an isotropic diffusion model, since it
“utilizes a scalar-valued diffusivity and not a diffusion tensor” [54].

Assumingorthographic projection, the relationshipbetween
n = [n1, n2, n3]� and ∇z is written, in every point (u, v)

where the depth map z is differentiable:

n(u, v) = 1
√‖∇z(u, v)‖2 + 1

[

−∇z(u, v)�, 1
]�

(79)

which implies that [− n1
n3

,− n2
n3

]� = [∂uz, ∂vz]� = ∇z. If

we denote n = [n1, n2, n3]� the estimated normal field, it
follows from (79) that [− n1

n3
,− n2

n3
]� = [p, q]� = g.

Let us assume that n and n differ according to an additive,
zero-mean, Gaussian noise:

n(u, v) = n(u, v) + ε(u, v) (80)

where :

ε(u, v) ∼ N
⎛

⎝[0, 0, 0]�,

⎡

⎣

σ 2 0 0
0 σ 2 0
0 0 σ 2

⎤

⎦

⎞

⎠ (81)

Since n3 is unlikely to take negative values (this would
mean that the estimated surface is not oriented toward the
camera), the following Geary–Hinkley transforms:

t1 =
n3
(

n1
n3

)

− n1
√

σ 2

(
(

n1
n3

)2 + 1

)
(82)

t2 =
n3
(

n2
n3

)

− n2
√

σ 2

(
(

n2
n3

)2 + 1

)
(83)

both follow standard Gaussian distribution N (0, 1) [27].
After some algebra, this can be rewritten as:

1

σ
√

1 + p2
√‖∇z‖2 + 1

[∂uz − p] ∼ N (0, 1) (84)

1

σ
√

1 + q2
√‖∇z‖2 + 1

[∂vz − q] ∼ N (0, 1) (85)

This rationale suggests the use of the following fidelity
term:

FPM(z) =
∫∫

(u,v)∈Ω

∥

∥W(u, v)
[∇z(u, v) − g(u, v)

]∥

∥
2 du dv

(86)

where W(u, v) is the following 2 × 2 anisotropic diffusion
tensor field:
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W(u, v) = 1
√‖∇z(u, v)‖2 + 1

[

1√
1+p(u,v)2

0

0 1√
1+q(u,v)2

]

(87)

Unfortunately, we experimentally found with the choice
(87) for the diffusion tensor field, discontinuities were not
always recovered. Instead, following the pioneering ideas
from Perona and Malik [44], we introduce two parameters
μ and ν to control the respective influences of the terms
depending on the gradient of the unknown ‖∇z‖ and on the
input gradient (p, q). The new tensor field is then given by:

W(u, v) = 1
√

( ‖∇z(u,v)‖
μ

)2 + 1

⎡

⎢

⎣

1
√

1+
(

p(u,v)
ν

)2
0

0 1
√

1+
(

q(u,v)
ν

)2

⎤

⎥

⎦

(88)

Replacing the matrix in (88) by I2 yields exactly the Perona–
Malik diffusion tensor (78), which reduces the influence
of the fidelity term on locations (u, v) where ‖∇z(u, v)‖
increases, which are likely to indicate discontinuities. Yet,
our diffusion tensor (88) also reduces the influence of points
where p or q is high, which are also likely to correspond to
discontinuities. In our experiments, we found that ν = 10
could always be used, yet the choice of μ has more influence
on the actual results.

Discretization Using the same discretization strategy as in
Sects. 4.2 and 4.3 leads us to the following discrete func-
tional:

EPM(z) = 1

4

∑∑

(U ,V )∈{+,−}2

{
∥

∥

∥AUV (z)
(

DU
u z − p

)∥

∥

∥

2

+
∥

∥

∥BUV (z)
(

DV
v z − q

)∥

∥

∥

2
}

+
∥

∥

∥Λ
(

z − z0
)∥

∥

∥

2

(89)

where theAUV (z) and BUV (z) are |Ω|× |Ω| diagonal matri-
ces containing the following values:

aUVu,v = 1
√

1 + ( pu,v

ν

)2
√

(∂Uu zu,v)
2+(∂Vv zu,v)

2

μ2 + 1

(90)

bUVu,v = 1
√

1 + ( qu,v

ν

)2
√

(∂Uu zu,v)
2+(∂Vv zu,v)

2

μ2 + 1

(91)

with (U , V ) ∈ {+,−}2.

Numerical Solution Since the coefficients aUVu,v and bUVu,v

depend on a nonlinear way on the unknown values zu,v , it
is difficult to derive a closed-form expression for the mini-
mizer of (89). To deal with this issue, we use the following
fixed point scheme, which iteratively updates the anisotropic
diffusion tensors and the z-values:

z(k+1) = argmin
z∈R|Ω|

1

4

∑∑

(U ,V )∈{+,−}2

{
∥

∥

∥AUV (z(k))
(

DU
u z − p

)∥

∥

∥

2

+
∥

∥

∥BUV (z(k))
(

DV
v z − q

)∥

∥

∥

2
}

+
∥

∥

∥Λ
(

z − z0
)∥

∥

∥

2

(92)

Now that the diffusion tensor coefficients are fixed, each
optimization problem (92) is reduced to a simple linear
least-squares problem. In our implementation, we solve the
corresponding optimality condition using Cholesky factor-
ization, which we experimentally found to provide more
stable results than conjugate gradient iterations.

Discussion We first experimentally verify that the proposed
anisotropic diffusion approach is indeed a statistically mean-
ingful approach in the context of photometric stereo. As
stated in [39], “in previous work on photometric stereo, noise
is [wrongly] added to the gradient of the height function
rather than camera images.” Hence, we consider the images
from the “Cat” dataset presented in [52] and add a zero-mean,
Gaussian noise with standard deviation σ‖I‖∞, σ = 5%, to
the images, where ‖I‖∞ is the maximum gray-level value.
The normals were computed by photometric stereo [55] over
the part representing the cat. Then, since only the normals
ground truth is provided in [52], and not the depth ground
truth, we a posteriori computed the final normalmaps by cen-
tral finite differences. This allows us to calculate the angular
error, in degrees, between the real surface and the recon-
structed one. The mean angular error (MAE) can eventually
be computed over the set of pixels for which central finite dif-
ferences make sense (boundary and background points are
excluded).

Figure 10 shows that the 3D-reconstruction obtained by
anisotropic diffusion outperforms that obtained by least
square: discontinuities are partially recovered, and robust-
ness to noise is improved (see Fig. 11). However, although
the diffusion tensor (87) does not require any parameter tun-
ing, the restoration of discontinuities is not as sharp as with
the non-convex integrators, and artifacts are visible along the
discontinuities.

Although the parameter-free diffusion tensor (87) seems
able to recover discontinuities, this is not always the case.
For instance, we did not succeed in recovering the disconti-
nuities of the surface Svase. For this dataset, we had to use
the tensor (88). The results from Fig. 12 show that with an
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Least-squares Anisotropic diffusion

(MAE = 9.29 degrees) (MAE = 8.43 degrees)

Fig. 10 Top row: three out of the 96 input images used for estimating the
normals by photometric stereo [55].Middle row, left: 3D-reconstruction
by least-squares integration of the normals (see Sect. 3). Bottom row,
left: angular error map (blue is 0◦, red is 60◦). The estimation is biased
around the occluded areas. Middle and bottom rows, right: same, using
anisotropic diffusion integration with the tensor field defined in (87).
The errors remain confined in the occluded parts, and do not propagate
over the discontinuities

Fig. 11 Mean angular error (in degrees) as a function of the standard
deviation σ‖I‖∞ of the noise which was added to the photometric
stereo images. The anisotropic diffusion approach always outperforms
least squares. For the methods [26,53], the gradient field was filled with
zeros outside the reconstruction domain, which adds even more bias

appropriate tuning of μ, discontinuities are recovered and
Gibbs phenomena are removed, without staircasing artifact.

Fig. 12 Integration of the noisy gradient of Svase (σ = 1%) by
anisotropic diffusion. As long as μ is small enough, discontinuities are
recovered. Besides, no staircasing artifact is visible. Yet, the restored
discontinuities are not perfectly sharp

Yet, as in the experiment of Fig. 10, the discontinuities are
not very sharp. Such artifacts were also observed by Badri
et al. [5], when experimenting with the anisotropic diffusion
tensor from Agrawal et al. [1]. Sharper discontinuities could
be recovered by using binary weights: this is the spirit of the
Mumford–Shah segmentation method, which we explore in
the next subsection.

4.5 Adaptation of theMumford and Shah Functional

Let z0: Ω → R be a noisy image to restore. In order to esti-
mate a denoised image z while preserving the discontinuities
of the original image, Mumford and Shah suggested in [37]
to minimize a quadratic functional only over a subset Ω\K
ofΩ , while automatically estimating the discontinuity set K
according to some prior. A reasonable prior is that the length
of K is “small,” which leads to the following optimization
problem:

min
z,K

μ
∫∫

(u,v)∈Ω\K
‖∇z(u, v)‖2 du dv + ∫K dσ

+ λ
∫∫

(u,v)∈Ω\K

[

z(u, v) − z0(u, v)
]2

du dv
(93)
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where λ andμ are positive constants, and
∫

K dσ is the length
of the set K . See [4] for a detailed introduction to this model
and its qualitative properties.

Several approaches have been proposed to numerically
minimize the Mumford–Shah functional: finite differences
scheme [12], piecewise-constant approximation [14], primal–
dual algorithms [46], etc. Another approach consists in using
elliptic functionals. An auxiliary function w: Ω → R is
introduced. This function stands for 1−χK , where χK is the
characteristic function of the set K . Ambrosio and Tortorelli
have proposed in [2] to consider the following optimization
problem:

min
z,w

μ

∫∫

(u,v)∈Ω

w(u, v)2 ‖∇z(u, v)‖2 du dv

+
∫∫

(u,v)∈Ω

[

ε ‖∇w(u, v)‖2 + 1

4ε
[w(u, v) − 1]2

]

du dv

+ λ

∫∫

(u,v)∈Ω

[

z(u, v) − z0(u, v)
]2

du dv (94)

By using the theory of Γ -convergence, it is possible to show
that (94) is a way to solve (93) when ε → 0.

We modify the above models, so that they fit our inte-
gration problem. Considering g as basis for least-squares
integration everywhere except on the discontinuity set K ,
we obtain the following energy:

EMS(z, K )

= μ

∫∫

(u,v)∈Ω\K
‖∇z(u, v) − g(u, v)‖2 du dv +

∫

K
dσ

+
∫∫

(u,v)∈Ω\K
λ(u, v)

[

z(u, v) − z0(u, v)
]2

du dv (95)

for the Mumford–Shah functional, and the following
Ambrosio–Tortorelli approximation:

EAT(z, w)

= μ

∫∫

(u,v)∈Ω

w(u, v)2 ‖∇z(u, v) − g(u, v)‖2 du dv

+
∫∫

(u,v)∈Ω

[

ε ‖∇w(u, v)‖2 + 1

4ε
[w(u, v) − 1]2

]

du dv

+
∫∫

(u,v)∈Ω

λ(u, v)
[

z(u, v) − z0(u, v)
]2

du dv (96)

where w: Ω → R is a smooth approximation of 1 − χK .

Numerical Solution We use the same strategy as in Sect. 3
for discretizing ∇z(u, v) inside Functional (96), i.e., all the
possible first-order discrete approximations of the differen-
tial operators are summed. Since discontinuities are usually
“thin” structures, it is possible that a forward discretization
contains the discontinuity while a backward discretization
does not. Hence, the definition of the weights w should be
made accordingly to that of ∇z. Thus, we define four fields
w

+/−
u/v : Ω → R, associated with the finite differences oper-

ators ∂
+/−
u/v . This leads to the following discrete analogue of

Functional (96):

EAT(z,w+
u ,w−

u ,w+
v ,w−

v )

= μ

2

(

∥

∥W+
u

(

D+
u z − p

)∥

∥
2 + ∥∥W−

u

(

D−
u z − p

)∥

∥
2

+ ∥

∥W+
v

(

D+
v z − q

)∥

∥
2 + ∥∥W−

v

(

D−
v z − q

)∥

∥
2
)

+ ε

2

(
∥

∥D+
u w

+
u

∥

∥
2 + ∥∥D−

u w
−
u

∥

∥
2 + ∥∥D+

v w
+
v

∥

∥
2

+ + ∥∥D−
v w

−
v

∥

∥
2
)

+ 1

8ε

(
∥

∥w+
u − 1

∥

∥
2 + ∥∥w−

u − 1
∥

∥
2

+ ∥∥w+
v − v1

∥

∥
2 + ∥∥w−

v − 1
∥

∥
2
)

+
∥

∥

∥Λ
(

z − z0
)∥

∥

∥

2

(97)

where w+/−
u/v ∈ R

|Ω| is a vector containing the values of

the discretized field w
+/−
u/v , andW+/−

u/v = Diag(w+/−
u/v ) is the

|Ω| × |Ω| diagonal matrix containing these values.
We tackle the nonlinear problem (97) by an alternating

optimization scheme:

z(k+1) = argmin
z∈R|Ω|

EAT

(

z,w+
u

(k)
,w−

u
(k)

,w+
v

(k)
,w−

v
(k)
)

(98)

w+
u

(k+1) = argmin
w∈R|Ω|

EAT

(

z(k+1),w,w−
u

(k)
,w+

v
(k)

,w−
v

(k)
)

(99)

and similar straightforward updates for the other indicator
functions. We can choose as initial guess, for instance, the
smooth solution from Sect. 3 for z(0), and w+

u
(0) = w−

u
(0) =

w+
v

(0) = w−
v

(0) ≡ 1.
At each iteration (k), updating the surface and the indica-

tor functions requires solving a series of linear least-squares
problems.We achieve this by solving the resulting linear sys-
tems (normal equations) by means of the conjugate gradient
algorithm. Contrarily to the approaches that we presented
so far, the matrices involved in these systems are modified
at each iteration. Hence, it is not possible to compute the
preconditioner beforehand. In our experiments, we did not
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Fig. 13 3D-reconstructions from the noisy gradient of Svase (σ = 1%), using the Mumford–Shah integrator. If μ is tuned appropriately, sharp
discontinuities can be restored, without staircasing artifacts

consider any preconditioning strategy at all. Thus, the pro-
posed scheme could obviously be accelerated.

Discussion Let us now check experimentally, on the same
noisy gradient of surface Svase as in previous experiments,
whether the Mumford–Shah integrator satisfies the expected
properties. In the experiment of Fig. 13,weperformed50 iter-
ations of the proposed alternating optimization scheme, with
various choices for the hyper-parameter μ. The ε parameter
was set to ε = 0.1 (this parameter is not critical: it only has
to be “small enough,” in order for the Ambrosio–Tortorelli
approximation to converge toward the Mumford–Shah func-
tional). As it was already the case with other non-convex
regularizers (see Sect. 4.3), a bad tuning of the parame-
ter leads either to over-smoothing (low values of μ) or to
staircasing artifacts (high values of μ), which indicate the
presence of local minima. Yet, by appropriately setting this
parameter, we obtain a 3D-reconstructionwhich is very close
to the genuine surface, without staircasing artifact.

The Mumford–Shah functional being non-convex, local
minima may exist. Yet, as shown in Fig. 14, the choice of the
initialization may not be as crucial as with the non-convex
estimators from Sect. 4.3. Indeed, the 3D-reconstruction of
the “Canadian tent” surface is similar using as initial guess
the least-squares solution or the trivial initialization z(0) ≡ 0.

Hence, among all the variational integration methods we
have studied, the adaptation of the Mumford–Shah model
is the approach which provides the most satisfactory 3D-
reconstructions in the presence of sharp features: it is possible
to recover discontinuities and kinks, even in the presence of
noise, and with limited artifacts. Nevertheless, local minima
may theoretically arise, as well as staircasing if the parameter
μ is not tuned appropriately.

5 Conclusion and Perspectives

We proposed several new variational methods for solving the
normal integration problem. Thesemethodswere designed to
satisfy the largest subset of properties that were identified in
a companion survey paper [48] entitled Normal Integration:
A Survey.

Fig. 14 3D-reconstructions of the “Canadian tent” surface from its
noisy gradient (σ = 1%), by the Mumford–Shah integrator (μ = 20),
using two different initializations. The initialization matters, but not as
much as with the non-convex estimators from Sect. 4.3

We first detailed in Sect. 3 a least-squares solution which
is fast, robust, and parameter-free, while assuming neither a
particular shape for the integration domain nor a particular
boundary condition. However, discontinuities in the surface
can be handled only if the integration domain is first seg-
mented into pieces without discontinuities. Therefore, we
discussed in Sect. 4 several non-quadratic or non-convex
variational formulations aiming at appropriately handling
discontinuities. As we have seen, the latter property can be
satisfied only if (slow) iterative schemes are used and / or
one critical parameter is tuned. Therefore, there is still room
for improvement: a fast, parameter-free integrator, able to
handle discontinuities remains to be proposed.

Table 1 summarizes the main features of the five new
integration methods proposed in this article. Contrarily to
Table 1 in [48], which recaps the features of state-of-the-art
methods, this time we use a more nuanced evaluation than
binary features +/−. Among the new methods, we believe
that the least-squares method discussed in Sect. 3 is the best
if speed is the most important criterion, while the Mumford–
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Table 1 Main features of the five methods of integration proposed in this paper

Method PFast PRobust PFreeB PDisc PNoRect PNoPar Local minima Staircasing

Quadratic + + + + + − + + No No

Total variation + + + + + + No Yes

Non-convex regularization − + + + + + + − Yes Yes

Anisotropic diffusion − + + ++ + −− No No

Mumford–Shah − + + + + + + −− Yes Yes

The quadratic method has all desirable properties, except PDisc. The others lose PFast but hold PDisc. Sharpest features are recovered by using
non-convex regularization or the Mumford–Shah approach, yet staircasing artifacts and local minima may appear. In addition, all discontinuity-
preserving methods except TV require tuning at least one hyper-parameter. Yet, TV is not able to recover discontinuities in the presence of noise.
Overall, we recommend using: quadratic integration if speed is the most important issue; the Mumford–Shah approach if recovering discontinuities
is the most important issue; and anisotropic diffusion if discontinuities are present, but limited

Fig. 15 3D-reconstruction using photometric stereo. a–c All (real)
input images, d 3D-reconstruction by least squares on the whole grid, e
3D-reconstruction by least squares on the non-rectangular reconstruc-
tion domain corresponding to the images of the bust, f3D-reconstruction

using the Mumford–Shah approach, on the whole grid. When disconti-
nuities are handled, it is possible to perform photometric stereo without
prior segmentation of the object

Shah approach discussed in Sect. 4.5 is the most appropriate
one for recovering discontinuities and kinks. Inbetween, the
anisotropic diffusion approach from Sect. 4.4 represents a
good compromise.

Future research directions may include accelerating the
numerical schemes and proving their convergence when this
is not trivial (e.g., for the non-convex integrators). We also
believe that introducing additional smoothness terms inside
the functionals may be useful for eliminating the artifacts
in anisotropic diffusion integration. Quadratic (Tikhonov)
smoothness terms were suggested in [26]: to enforce surface

smoothness while preserving the discontinuities, we should
rather consider non-quadratic ones. In this view, higher-order
functionals (e.g., total generalized variation methods [10])
may reduce not only these artifacts, but also staircasing.
Indeed, as shown in Fig. 15, such artifacts may be visible
when performing photometric stereo [55] without prior seg-
mentation. Yet, this example also shows that the artifacts are
visible only over the background, and do not seem to affect
the relevant part.

3D-reconstruction is not the only application where
efficient tools for gradient field integration are required.
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Fig. 16 Application to image compression/image editing. a Ref-
erence image, b control points (where the RGB values and their
gradients are kept), c restored image obtained by considering the pro-

posed Mumford–Shah integrator as a piecewise-constant interpolation
method.A reasonable piecewise-constant restoration of the initial image
can be obtained from as few as 10% of the initial information

Although the assumption on the noise distribution may differ
from one application to another, PDE-based imaging prob-
lems such as Laplace image compression [45] or Poisson
image editing [43] also require an efficient integrator. In this
view, the ability of our methods to handle control points may
be useful. We illustrate in Fig. 16 an interesting application.
From an RGB image I , we selected the points where the
norm of the gradient of the luminance (in the CIE-LAB
color space) was the highest (conserving only 10% of the
points). Then, we created a gradient field g equal to zero
everywhere, except on the control points, where it was set to
the gradient of the color levels. The prior z0 was set to a null
scalar field, except on the control points where we retained
the original color data. Eventually, λ is set to an arbitrary
small value (λ = 10−9) everywhere, except on the control
points (λ = 10). The integration of each color channel gra-
dient is performed independently, using the Mumford–Shah
method to extrapolate the data from the control points to the
whole grid. Using this approach, we obtain a nice piecewise-
constant approximation of the image, in the spirit of the
“texture-flattening” application presented in [43]. Besides,
by selecting the control points in a more optimal way [8,28],
this approach could easily be extended to image compres-
sion, reaching state-of-the-art lossy compression rates. In
fact, existing PDE-based methods can already compete with
the compression rate of the well-known JPEG 2000 algo-
rithm [45]. We believe that the proposed edge-preserving
framework may yield even better results.

Eventually, some of the research directions already men-
tioned in the conclusion section of our survey paper [48]were
ignored in this second paper, but they remain of important
interest. One of the most appealing examples is multiview
normal field integration [15]. Indeed, discontinuities rep-
resent a difficulty in our case because they are induced by
occlusions, yet more information would be obtained near the
occluding contours by using additional views.

Acknowledgements We are grateful to the reviewers for the construc-
tive discussion during the reviewing process.
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