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Abstract The need for efficient normal integrationmethods
is driven by several computer vision tasks such as shape-
from-shading, photometric stereo, deflectometry. In the first
part of this survey, we select the most important properties
that onemay expect from a normal integrationmethod, based
on a thorough study of two pioneering works by Horn and
rooks (Comput Vis Graph Image Process 33(2): 174–208,
1986) and Frankot and Chellappa (IEEE Trans Pattern Anal
Mach Intell 10(4): 439-451, 1988). Apart from accuracy, an
integration method should at least be fast and robust to a
noisy normal field. In addition, it should be able to handle
several types of boundary condition, including the case of a
free boundary and a reconstruction domain of any shape,
i.e., which is not necessarily rectangular. It is also much
appreciated that a minimum number of parameters have to
be tuned, or even no parameter at all. Finally, it should pre-
serve the depth discontinuities. In the second part of this
survey, we review most of the existing methods in view of
this analysis and conclude that none of them satisfies all of
the required properties. This work is complemented by a
companion paper entitled Variational Methods for Normal
Integration, in which we focus on the problem of normal
integration in the presence of depth discontinuities, a prob-
lem which occurs as soon as there are occlusions.
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1 Introduction

Computing the 3D-shape of a surface from a set of normals
is a classical problem of 3D-reconstruction called normal
integration. This problem is well posed, except that a con-
stant of integration has to be fixed, but its resolution is not as
straightforward as it could appear, even in the case where the
normal is known at every pixel of an image. One may well be
surprised that such a simple problem has given rise to such a
large number of papers. This is probably due to the fact that,
likemany computer vision problems, it simultaneouslymeets
several requirements. Of course, a method of integration is
expected to be accurate, fast, and robust re noisy data or out-
liers, but we will see that several other criteria are important
as well.

In this paper, a thorough study of two pioneering works
is done: a paper by Horn and Brooks based on variational
calculus [29]; another one by Frankot and Chellappa resort-
ing to Fourier analysis [19]. This preliminary study allows
us to select six criteria apart from accuracy, through which
we intend to qualitatively evaluate the main normal integra-
tionmethods. Our survey is summarized in Table 1. Knowing
that no existing method is completely satisfactory, this pre-
liminary study impels us to suggest several new methods of
integration which will be found in a companion paper [48].

The organization of the present paper is the following.We
derive the basic equations of normal integration in Sect. 2.
Horn and Brooks’ and Frankot and Chellappa’s methods are
reviewed in Sect. 3. This allows us, in Sect. 4, to select sev-
eral properties that are required by any normal integration
method and to comment the most relevant related works. In
Sect. 5, we conclude that a completely satisfactory method
of integration is still lacking.
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Table 1 Main methods of
integration listed in
chronological order

Authors Year References PFast PRobust PFreeB PDisc PNoPar PNoRect

Coleman and Jain 1982 [12] + − + − + +
Horn and Brooks 1986 [29] − + + − + +
Frankot and Chellappa 1988 [19] + + − − + −
Simchony et al. 1990 [52] + + + − + −
Noakes et al. 1999 [45] − + − − + −
Horovitz and Kiryati 2000 [30] + + + − − +
Petrovic et al. 2001 [47] − + + − − +
Kimmel and Yavneh 2003 [36] + + + − − +
Wei and Klette 2003 [56] + + − − − −
Karaçali and Snyder 2003 [34] − + + + − −
Kovesi 2005 [38] + + − − + −
Agrawal et al. 2005 [1] − − − + − +
Agrawal et al. 2006 [2] − + − + − +
Fraile and Hancock 2006 [18] − − + + + +
Ho et al. 2006 [27] + − + − − +
Wu and Tang 2006 [59] − + + + − +
Ng et al. 2007 [41] − + − + − +
Durou and Courteille 2007 [16] − + + − + +
Harker and O’Leary 2008 [23] + + + − + −
Ettl et al. 2008 [17] − + + − + +
Reddy et al. 2009 [49] − + − + − +
Durou et al. 2009 [15] − + + + − +
Saracchini et al. 2010 [50] + + + + − +
Galliani et al. 2012 [20] + − + − + +
Balzer 2012 [9] + + + − − +
Wang et al. 2012 [55] − + + + − +
Balzer and Mörwald 2012 [10] + + + − − +
Xie et al. 2014 [61] − + + − + +
Badri et al. 2014 [5] − + − + − −
Yamaura et al. 2015 [62] + + + − − +
Bähr et al. 2016 [7] + + + − + +

2 Basic Equations of Normal Integration

Suppose that, in each point x = [u, v]� of the image
of a surface, the outer unit-length normal n(u, v) =
[n1(u, v), n2(u, v), n3(u, v)]� is known. Integrating the nor-
mal field n amounts to searching for three functions x , y and
z such that the normal to the surface at the surface point
x(u, v) = [x(u, v), y(u, v), z(u, v)]�, which is conjugate
to x, is equal to n(u, v). Following [28], let us rigorously
formulate this problem when the projection model is either
orthographic, weak-perspective or perspective.

2.1 Orthographic Projection

We attach to the camera a 3D-frame cxyz whose origin c is
located at the optical center, and such that cz coincides with
the optical axis (see Fig. 1).
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Fig. 1 Orthographic projection: x1 and x2 are conjugate to xo1 and x
o
2,

respectively. The visible part of the surface is highlighted in gray. Point
xo2 lies on the occluding contour

The origin of pixel coordinates is taken as the intersection
o of the optical axis cz and the image plane π . In practice, π
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coincides with the focal plane z = f , where f denotes the
focal length.

Assuming orthographic projection, a 3D-point x projects
orthogonally onto the image plane, i.e.,

x(u, v) = u

y(u, v) = v
(1)

By normalizing the cross product of both partial derivatives
∂ux and ∂vx, and choosing the sign so that n points toward the
camera, we obtain (the dependencies in u and v are omitted,
for the sake of simplicity):

n = 1
√
1 + ‖∇z‖2

⎡

⎣
∂uz
∂vz
−1

⎤

⎦ (2)

where ∇z = [∂uz, ∂vz]� denotes the gradient of the depth
map z. From (2), we conclude that n3 < 0.

Of course, 3D-points such that n3 ≥ 0 also exist. Such
points are non-visible if n3 > 0. If n3 = 0, they are visi-
ble and project onto the occluding contour (see point xo2 in
Fig. 1). Thus, even if the normal n is easily determined on the
occluding contour, since n is both parallel to π , and orthog-
onal to the contour, computing the depth z by integration in
such points is impossible.

Now, let us consider the image points which do not lie on
the occluding contour. Equation (2) immediately gives the
following pair of linear PDEs in z:

∇z = [p, q]� (3)

where

p = −n1
n3

q = −n2
n3

(4)

Equation (3) shows that integrating a normal field, i.e., com-
puting z from n, amounts to integrating the vector field
[p, q]�. The solution of (3) is straightforward:

z(u, v) = z(u0, v0) +
∫ (u,v)

(r,s)=(u0,v0)
[p(r, s) dr + q(r, s) ds] (5)

regardless of the integration path between some point
(u0, v0) and (u, v), as soon as p and q satisfy the constraint
of integrability ∂v p = ∂uq (Schwartz theorem). If they do
not, the integral in Eq. (5) depends on the integration path.

If there is no point (u0, v0) where z is known, it follows
from (5) that z(u, v) is computable up to an additive constant.

z

n(x2)

n(x1)

x1

x2

π

oc

ux
f

xw
2

v

xw
1

y

π
d

Fig. 2 Weak-perspective projection: x1 and x2 are conjugate to xw
1 and

xw
2 , respectively. Point x

w
2 lies on the occluding contour. The plane π ,

which is conjugate to π , is supposed to match the mean location of the
surface

This constant can be chosen so as tominimize the root-mean-
square error (RMSE) in z, provided that the ground-truth is
available.1

2.2 Weak-Perspective Projection

Weak-perspective projection assumes that the camera is
focused on a plane π of equation z = d, supposed to match
the mean location of the surface. Any visible point x projects
first orthogonally onto π , then perspectively onto π , with c
as projection center (see Fig. 2).

Assuming weak-perspective projection, we have:

x(u, v) = d
f
u

y(u, v) = d
f

v

(6)

Denoting by m the image magnification f/d, the outer
unit-length normal n now reads:

n = 1
√
1 + m2‖∇z‖2

⎡

⎣
m ∂uz
m ∂vz
−1

⎤

⎦ (7)

For the image points which do not lie on the occluding
contour, the pair of PDEs (3) becomes:

∇z = 1

m
[p, q]� (8)

which explains why “weak-perspective projection” is also
called “scaled orthographic projection.” From (8), analo-
gously to (5):

z(u, v) = z(u0, v0) + 1

m

∫ (u,v)

(r,s)=(u0,v0)
[p(r, s) dr + q(r, s) ds] (9)

1 The same procedure is used by Klette and Schlüns in [37]: “The
reconstructed height values are shifted in the range of the original sur-
face using LSE optimization.”
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Fig. 3 Perspective projection: x1 and x3 are conjugate to xp
1 and xp

3 ,
respectively (xp

3 lies on the occluding contour)

2.3 Perspective Projection

We now consider perspective projection (see Fig. 3).
As major difference to weak-perspective, d must be

replaced with z(u, v) in Eq. (6):

x(u, v) = z(u, v)

f
u

y(u, v) = z(u, v)

f
v

(10)

The cross product of ∂ux and ∂vx is a little more complicated
than in the previous case:

∂uxp × ∂vxp = z

f2

⎡

⎣
−f ∂uz
−f ∂vz

z + u ∂uz + v ∂vz

⎤

⎦ (11)

Writing that this vector is parallel to n(u, v), this provides us
with the three following equations:

f n3 ∂uz + n1 [z + u ∂uz + v ∂vz] = 0

f n3 ∂vz + n2 [z + u ∂uz + v ∂vz] = 0

n2 ∂uz − n1 ∂vz = 0

(12)

Since this system is homogeneous in z, and knowing that
z > 0, we introduce the change of variable:

z̃ = ln(z) (13)

which makes (12) linear with respect to ∂u z̃ and ∂v z̃:

[f n3 + u n1] ∂u z̃ + v n1 ∂v z̃ = −n1

u n2 ∂u z̃ + [f n3 + v n2] ∂v z̃ = −n2

n2 ∂u z̃ − n1 ∂v z̃ = 0

(14)

System (14) is non-invertible if it has rank less than 2, i.e., if
its three determinants are zero:

f n3 [u n1 + v n2 + f n3] = 0

− n1 [u n1 + v n2 + f n3] = 0

− n2 [u n1 + v n2 + f n3] = 0

(15)

As n1, n2 and n3 cannot simultaneously vanish, because vec-
tor n is unit-length, the equality (15) holds true if and only
if u n1 + v n2 + f n3 = 0. Knowing that [u, v, f]� are the
coordinates of the image point xp in the 3D-frame cxyz, this
happens if and only if xp lies on the occluding contour (see
point xp

3 in Fig. 3). It is noticeable that for a given object,
the occluding contour depends on which projection model is
assumed.

For the image points which do not lie on the occluding
contour, System (14) is easily inverted, which gives us the
following pair of linear PDEs in z̃:

∇ z̃ = [ p̃, q̃]� (16)

where

p̃ = − n1
u n1 + v n2 + f n3

q̃ = − n2
u n1 + v n2 + f n3

(17)

Hence, under perspective projection, integrating a normal
field n amounts to integrating the vector field [ p̃, q̃]�. The
solution of Eq. (16) is straightforward:

z̃(u, v) = z̃(u0, v0) +
∫ (u,v)

(r,s)=(u0,v0)

[
p̃(r, s) dr + q̃(r, s) ds

]
(18)

from which we deduce, using (13):

z(u, v) = z(u0, v0) exp

{∫ (u,v)

(r,s)=(u0,v0)

[
p̃(r, s) dr + q̃(r, s) ds

]
}

(19)

It follows from (19) that z is computable up to a multi-
plicative constant. Notice also that (17), and therefore (19),
require that the focal length f is known, as well as the location
of the principal point o, since the coordinates u and v depend
on it (see Fig. 3).

The similarity between (3), (8) and (16) shows that
any normal integration method can be extended to weak-
perspective or perspective, provided that the intrinsic param-
eters of the camera are known.2 Let us emphasize that such
extensions are generic, i.e., not restricted to a given method

2 This is advocated in [54] for the method designed in [31].
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of integration. We can thus limit ourselves to solving the fol-
lowing pair of linear PDEs, which we consider as the model
problem:

∇z = g (20)

where (z, g)means (z, [p, q]�), (z, 1
m [p, q]�), or (z̃, [ p̃, q̃]�),

depending on whether the projection model is orthographic,
weak-perspective, or perspective, respectively.

2.4 Integration Using Quadratic Regularization

From now on, we do not care more about the projection
model. We just have to solve the generic Eq. (20).

As already noticed, the respective solutions (5), (9) and
(18) of Eqs. (3), (8) and (16), are independent from the
integration path if and only if the constraint of integrabil-
ity ∂v p = ∂uq, or ∂v p̃ = ∂uq̃ , is satisfied. In practice,
a normal field is never rigorously integrable (or curl-free).
Apart from using several integration paths and averaging the
integrals [12,26,60], a natural way to deal with the lack of
integrability is to turn (20) into an optimization problem [29].
Using quadratic regularization, this amounts to minimizing
the functional:

FL2(z) =
∫∫

(u,v)∈Ω

‖∇z(u, v) − g(u, v)‖2 du dv (21)

where Ω ⊂ R
2 is the reconstruction domain, and the gradi-

ent field g = [p, q]� is the datum of the problem.
The functional FL2 is strictly convex in ∇z, but does

not admit a unique minimizer z∗ since, for any κ ∈ R,
FL2(z

∗ + κ) = FL2(z
∗). Its minimization requires that the

associatedEuler–Lagrange equation is satisfied. The calculus
of variation provides us with the following:

∇FL2(z) = 0 ⇐⇒ −2 div (∇z − g) = 0 (22)

Thisnecessary condition is rewritten as the followingPoisson
equation3:

Δz = ∂u p + ∂vq (23)

Solving Eq. (23) is not a sufficient condition for mini-
mizing FL2(z), except if z is known on the boundary ∂Ω

(Dirichlet boundary condition), see [40] and the references
therein. Otherwise, the so-called natural boundary condi-
tion, which is of the Neumann type, must be considered. In
the case of FL2(z), this condition is written [29]:

(∇z − g) · η = 0 (24)

3 Similar equations arise in other computer vision problems [3,46,52].

where vector η is normal to ∂Ω in the image plane.
Usingdifferent boundary conditions, one could expect that

the different solutions of (23) would coincide on most part
of Ω , but this is not true. For a given gradient field g, the
choice of a boundary condition has a great influence on the
recovered surface. This is noted in [29]: “Eq. (23) does not
uniquely specify a solutionwithout further constraint. In fact,
we can add any harmonic function to a solution to obtain a
different solution also satisfying (23).” A harmonic function
is a solution of the Laplace equation:

Δz = 0 (25)

As an example, let us search for the harmonic functions tak-
ing the form z(u, v) = z1(u) z2(v). Knowing that z1 �= 0
and z2 �= 0, since z > 0, Eq. (25) gives:

z′′1(u)

z1(u)
= − z′′2(v)

z2(v)
(26)

Both sides of Eq. (26) are thus equal to the same constant
K ∈ R. Two cases may occur, according to the sign of K . If
K < 0, we pose K = −ω2, ω ∈ R:

{
z′′1(u) + ω2 z1(u) = 0
z′′2(v) − ω2 z2(v) = 0

⇒
{
z1(u) = z1(0) ejωu

z2(v) = z2(0) eωv (27)

where j is such that j2 = −1. Finally, we obtain:

z(u, v) = z(0, 0) eω(j u+v) (28)

Note that a real harmonic function defined on R
2 can

be considered as the real part or as the imaginary part of
a holomorphic function. All the functions of the form (28)
are indeed holomorphic. Their real and imaginary parts thus
provide us with the following two families of harmonic func-
tions:

{
cos(ωu) eωv

}
ω∈R ;

{
sin(ωu) eωv

}
ω∈R (29)

Adding to a given solution of Eq. (23) any linear combina-
tion of these harmonic functions (many other such functions
exist), we obtain other solutions. The way to select the right
solution is to carefully manage the boundary.

In the case of a free boundary, the variational calculus tells
us that minimizing FL2(z) requires that (24) is imposed on
the boundary, but the solution is still non-unique, since it is
known up to an additive constant. The same conclusion holds
true for anyNeumannboundary condition.On the other hand,
as soon as Ω is bounded, a Dirichlet boundary condition
ensures existence and uniqueness of the solution.4

4 See for instance Theorem 2.4.2.6 on page 125 in [22] for the Dirichlet
case, and Theorem 2.4.2.7 on page 126 in [22] for the Neumann case.
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3 Two Pioneering Normal Integration Methods

Before a more exhaustive review, we first make a thorough
study of two pioneering normal integration methods which
have very different peculiarities. This will allow us to detect
the most important properties that one may expect from any
method of integration.5

3.1 Horn and Brooks’ Method

A well-known method due to Horn and Brooks [29], which
we denote byMHB, attempts to solve the following discrete
analogue of the Poisson Eq. (23), where u and v denote the
pixels of a square 2D-grid:

zu+1,v + zu−1,v + zu,v+1 + zu,v−1 − 4 zu,v

= pu+1,v − pu−1,v

2
+ qu,v+1 − qu,v−1

2

(30)

The left-hand and right-hand sides of (30) are second-order
finite differences approximations of the Laplacian and of the
divergence, respectively. As stated in [25], other approxima-
tions can be considered, as long as the orders of the finite
differences are consistent.

In [29], Eq. (30) is solved using a Jacobi iteration, for
(u, v) ∈ Ω̊ , i.e., for the pixels (u, v) ∈ Ω whose four nearest
neighbors are inside Ω:

z(k+1)
u,v = z(k)u+1,v + z(k)u−1,v + z(k)u,v+1 + z(k)u,v−1

4

− pu+1,v − pu−1,v

8
− qu,v+1 − qu,v−1

8

(31)

The values of z for the pixels (u, v) ∈ ∂Ω can be deduced
from a discrete analogue of the natural boundary condi-
tion (24), “provided that the boundary curve is polygonal,
with horizontal and vertical segments only.”

It is standard to show the convergence of this scheme [53],
whatever the initialization, but it converges very slowly if the
initialization is far from the solution [16].

However, it is not so easy to discretize the natural bound-
ary condition properly, because many cases have to be
considered (see, for instance, [7]).

3.2 Improvement in Horn and Brooks’ Method

Horn and Brooks’ method can be extended in order to more
properly manage the natural boundary condition, by dis-
cretizing the functional FL2(z) defined in (21), and then
solving the optimality condition, rather than discretizing the
continuous optimality condition (23).

5 AMATLAB implementation of the methods presented in this section
is available at https://github.com/yqueau/normal_integration.
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Fig. 4 Only the black pixels are inside Ω . The straight line D is a
plausible approximation of the tangent to ∂Ω at (u, v)

This simple idea allowedDurou andCourteille to design in
[16] an improved version ofMHB, denoted byMDC, which
attempts to minimize the following discrete approximation
of FL2(z):

FL2(z) =
∑

(u,v)∈Ω1

[
zu+1,v − zu,v

δ
− pu+1,v + pu,v

2

]2

+
∑

(u,v)∈Ω2

[
zu,v+1 − zu,v

δ
− qu,v+1 + qu,v

2

]2

(32)

where δ is the distance betweenneighboring pixels (fromnow
on, the scale is chosen so that δ = 1), Ω1 and Ω2 contain the
pixels (u, v) ∈ Ω such that (u+1, v) ∈ Ω or (u, v+1) ∈ Ω ,
respectively, and z = [zu,v](u,v)∈Ω .

In (32), the values of p and q are averaged using for-
ward finite differences, in order to ensure the equivalence
withMHB. Indeed, one gets from (32) and from the charac-
terization ∇FL2 = 0 of an extremum, the same optimality
condition (30) as discretized by Horn and Brooks, for the
pixels (u, v) ∈ Ω̊ .

However, handling the boundary is much simpler than
with MHB, because the appropriate discretization along
the boundary naturally arises from the optimality condition
∇FL2 = 0. Indeed, for a pixel (u, v) ∈ ∂Ω , the equation
∂FL2/∂zu,v = 0 does not take the form (30) any more. Fig-
ure 4 shows the example of a pixel (u, v) ∈ ∂Ω such that
(u + 1, v) and (u, v + 1) are inside Ω , while (u − 1, v) and
(u, v − 1) are outside Ω .

In this case, Eq. (30) must be replaced with:

zu+1,v + zu,v+1 − 2 zu,v

= pu+1,v + pu,v

2
+ qu,v+1 + qu,v

2

(33)
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(a) (b)

(c) (d)

Fig. 5 a Test surface Svase. b Gradient field gvase, obtained by sam-
pling of the analytically computed gradient of Svase. c Reconstructed
surface obtained by integration of gvase, using as reconstruction domain

the image of the vase, at convergence ofMDC (RMSE = 0.93). d Same
test, but on the whole grid (RMSE = 4.51). In both tests, the constant
of integration is chosen so as to minimize the RMSE

Sinceη = −√
2/2 [1, 1]� is a plausible unit-length normal to

the boundary ∂Ω in this case, the natural boundary condition
(24) reads:

∂uz − p + ∂vz − q = 0 (34)

It is obvious that (33) is a discrete approximation of
(34). More generally, it is easily shown that the equation
∂FL2/∂zu,v = 0, for any (u, v) ∈ ∂Ω , is a discrete approxi-
mation of the natural boundary condition (24).

Let us test MDC on the surface Svase shown in Fig. 5a,
which models a half-vase lying on a flat ground. To this end,
we sample the analytically computed gradient of Svase on
a regular grid of size 312 × 312, which provides the gradi-
ent field gvase (see Fig. 5b). We suppose that a preliminary
segmentation allows us to use as reconstruction domain the
image of the vase, which constitutes an additional datum.
The reconstructed surface obtained at convergence of MDC

is shown in Fig. 5c.
On the other hand, it is well known that quadratic regu-

larization is not well adapted to discontinuities. Let us now
test MDC using as reconstruction domain the whole grid of
size 312× 312, which contains discontinuities at the top and
at the bottom of the vase. The reconstructed surface at con-

vergence is shown in Fig. 5d. It is not satisfactory, since the
discontinuities are not preserved. This is numerically con-
firmed by the RMSE, which is much higher than that of
Fig. 5c.

We know that removing the flat ground from the recon-
struction domain suffices to reach a better result (see Fig. 5c),
since this eliminates any depth discontinuity. However,
this requires a preliminary segmentation, which is known
to be a hard task, and also requires that the integration
can be carried out on a non-rectangular reconstruction
domain.

Otherwise, it is necessary to appropriately handle the
depth discontinuities, in order to limit the bias. The lack
of integrability of the vector field [p, q]� is a basic idea
to detect the discontinuities, as shown in our companion
paper [48]. Unfortunately, this characterization of the dis-
continuities is neither necessary nor sufficient. On the one
hand, shadows can induce outliers if [p, q]� is estimated
via photometric stereo [49], which can therefore be non-
integrable along shadow limits, even in the absence of depth
discontinuities. On the other hand, the vector field [p, q]�
of a scale seen from above is uniform, i.e., perfectly inte-
grable.
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(a) (b)

Fig. 6 aGradient field gface of a face estimated via photometric stereo.
b Reconstructed surface obtained by integration of gface, using Frankot
and Chellappa’s method [19]. Since a periodic boundary condition is

assumed, the depth is forced to be the same on the cheek and on the
nose. As a consequence, this much distorts the result

3.3 Frankot and Chellappa’s Method

A more general approach to overcome the possible non-
integrability of the gradient field g = [p, q]� is to first define
a set I of integrable vector fields, i.e., of vector fields of the
form ∇z, and then compute the projection ∇ z̄ of g on I, i.e.,
the vector field ∇ z̄ of I the closest to g, according to some
norm. Afterward, the (approximate) solution of Eq. (20) is
easily obtained using (5), (9) or (18), since ∇ z̄ is integrable.

Nevertheless, the boundary conditions can be complicated
to manage, because I depends on which boundary condition
is imposed (including the case of the natural boundary con-
dition). It is noticed in [2] that minimizing the functional
FL2(z) amounts to following this general approach, in the
case where I contains all integrable vector fields and the
Euclidean norm is used.

The most cited normal integration method, due to Frankot
and Chellappa [19], follows this approach in the case where
the Fourier basis is considered. Let us use the standard defi-
nition of the Fourier transform:

f̂ (ωu, ωv) =
∫∫

(u,v)∈R2

f (u, v) e−jωu u e−jωv v du dv (35)

where (ωu, ωv) ∈ R
2. Computing the Fourier transforms of

both sides of (23), we obtain:

−(ω2
u + ω2

v) ẑ(ωu, ωv) = jωu p̂(ωu, ωv) + jωv q̂(ωu, ωv)

(36)

In Eq. (36), the data p̂ and q̂ , as well as the unknown ẑ,
depend on the variablesωu andωv . For any (ωu, ωv) such that
ω2
u +ω2

v �= 0, this equation gives us the following expression
of ẑ(ωu, ωv):

ẑ(ωu, ωv) = ωu p̂(ωu, ωv) + ωv q̂(ωu, ωv)

j (ω2
u + ω2

v)
(37)

Indeed, computing the inverse Fourier transform of (37) will
provide us with a solution of (23). This method of integration
[19], whichwe denote byMFC, is very fast thanks to the FFT
algorithm.

The definition of the Fourier transform may be confus-
ing, because several definitions exist. Instead of pulsations
(ωu, ωv), frequencies (nu, nv) can be used. Knowing that
(ωu, ωv) = 2π(nu, nv), Eq. (37) then becomes:

ẑ(nu, nv) = nu p̂(nu, nv) + nv q̂(nu, nv)

2π j (n2u + n2v)
(38)

It is written in [41] that the accuracy of Frankot and Chel-
lappa’s method “relies on a good input scale.” In fact, it only
happens that, in a publicly available code of this method, the
2π coefficient in (38) is missing.

Since the right-hand side of Eq. (37) is not defined if
(ωu, ωv) = (0, 0), Frankot and Chellappa assert that it
“simply means that we cannot recover the average value
of z without some additional information.” This is true but
incomplete, because MFC provides the solution of Eq. (23)
up to the addition of a harmonic function over Ω . Sarac-
chini et al. note in [51] that “the homogeneous version of
[(23)] is satisfied by an arbitrary linear function of position
z(u, v) = a u+b v+c, which when added to any solution of
[(23)] will yield infinitely many additional solutions.” Affine
functions are harmonic indeed, but we know from Sect. 2.4
that many other harmonic functions also exist.

ApplyingMFC to gvase would give the same result as that
of Fig. 5d, but much faster, when the reconstruction domain
is equal to the whole grid. On the other hand, such a result
as that of Fig. 5c could not be reached, since MFC is not
designed to manage a non-rectangular domain Ω .

Besides, MFC works well if and only if the surface to be
reconstructed is periodic. This clearly appears in the example
of Fig. 6: the gradient field gface of a face (see Fig. 6a), esti-
mated via photometric stereo [57], is integrated usingMFC,
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which results in the reconstructed surface shown in Fig. 6b.
Since the face is non-periodic, but the depth is forced to be
the same on the left and right edges of the face, i.e., on the
cheek and on the nose, the result is much distorted.

This failure of MFC was first exhibited by Harker and
O’Leary in [23], who show on some examples that the solu-
tion provided by MFC is not always a minimizer of the
functional FL2(z). They moreover explain: “The fact that
the solution [of Frankot and Chellappa] is constrained to be
periodic leads to a systematic bias in the solution” (This peri-
odicity is clearly visible on the recovered surface of Fig. 6b.)
Harker and O’Leary also conclude that “any approach based
on the Euler–Lagrange equation is only valid for a few spe-
cial cases.” The improvements in MFC that we describe in
the next section make this assertion highly questionable.

3.4 Improvements in Frankot and Chellappa’s Method

A first improvement in MFC suggested by Simchony et al.
in [52] amounts to solving the discrete approximation (30)
of the Poisson equation using the discrete Fourier trans-
form, instead of discretizing the solution (37) of the Poisson
Eq. (23).

Consider a rectangular 2D domain Ω = [0, du] × [0, dv],
and choose a lattice of equally spaced points (u du

m , v dv

n ),
u ∈ [0,m], v ∈ [0, n]. Let us denote by fu,v the value of
a function f : Ω → R at (u du

m , v dv

n ). The standard defini-
tion of the discrete Fourier transform of f is as follows, for
k ∈ [0,m − 1] and l ∈ [0, n − 1]:

f̂k,l =
m−1∑

u=0

n−1∑

v=0

fu,v e
−j2π uk

m e−j2π vl
n (39)

The inverse transform of (39) reads:

fu,v = 1

mn

m−1∑

k=0

n−1∑

l=0

f̂k,l e
+j2π ku

m e+j2π lv
n (40)

Replacing any term in (30) by its inverse discrete Fourier
transform of the form (40), and knowing that the Fourier
family is a basis, we obtain:

2

[
cos

(
2π

k

m

)
+ cos

(
2π

l

n

)
− 2

]
ẑk,l

= j
[
sin

(
2π

k

m

)
p̂k,l + sin

(
2π

l

n

)
q̂k,l

] (41)

The expression in brackets of the left-hand side is zero if and
only if (k, l) = (0, 0). As soon as (k, l) �= (0, 0), Eq. (41)
provides us with the expression of ẑk,l :

ẑk,l = sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

4j
[
sin2

(
π k

m

) + sin2
(
π l

n

)] (42)

which is rewritten by Simchony et al. as follows:

ẑk,l = sin
(
2π k

m

)
p̂k,l + sin

(
2π l

n

)
q̂k,l

j

[
sin2

(
2π k

m

)

cos2(π k
m )

+ sin2
(
2π l

n

)

cos2(π l
n )

] (43)

Comparing (35) and (39) shows us that ωu corresponds
to 2π k

m and ωv to 2π l
n . Using these correspondences, we

would expect to be able to identify (37) and (43). This is true
if sin

(
2π k

m

)
and sin

(
2π l

n

)
tend toward 0, and cos2

(
π k

m

)

and cos2
(
π l

n

)
tend toward 1, which occurs if k takes either

the first values or the last values inside [0,m − 1], and the
same for l inside [0, n−1], which is interpreted by Simchony
et al. as follows: “At low frequencies our result is similar to
the result obtained in [19]. At high frequencies we attenuate
the corresponding coefficients since our discrete operator has
a low-pass filter response […] the surface z obtained in [19]
may suffer from high frequency oscillations.” Actually, the
low values of k and l correspond to the lowest values of ωu

and ωv inside R
+, and the high values of k and l may be

interpreted as the lowest absolute values of ωu and ωv inside
R

−.
Moreover, using the inverse discrete Fourier transform

(40), the solution of (30) which follows from (42) will be
periodic in u with period du , and in v with period dv . This
means that zm,v = z0,v , for v ∈ [0, n], and zu,n = zu,0,
for u ∈ [0,m]. The discrete Fourier transform is therefore
appropriate only for problems which satisfy periodic bound-
ary conditions.

More relevant improvements in MFC due to Simchony
et al. are to suggest the use of the discrete sine or cosine
transforms if the problem involves, respectively, Dirichlet or
Neumann boundary conditions.
Dirichlet Boundary Condition It is easily checked that any
function that is expressed as an inverse discrete sine trans-
form of the following form6:

fu,v = 4

mn

m−1∑

k=1

n−1∑

l=1

f̄k,l sin

(
π
ku

m

)
sin

(
π
lv

n

)
(44)

satisfies the homogeneous Dirichlet condition fu,v = 0 on
the boundary of the discrete domain Ω = [0,m] × [0, n],
i.e., for u = 0, u = m, v = 0, and v = n.

To solve (30) on a rectangular domain Ω with the homo-
geneous Dirichlet condition zu,v = 0 on ∂Ω , we can

6 Whereas the Fourier transform coefficients of f are denoted by f̂ ,

the sine and cosine transform coefficients are denoted by f̄ and ¯̄f ,
respectively.
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therefore write zu,v as in (44). This is still possible for a
non-homogeneous Dirichlet boundary condition:

zu,v = bDu,v for (u, v) ∈ ∂Ω (45)

A first solution would be to solve a pair of problems. We
could search for both a solution z0u,v of (30) satisfying the
homogeneous Dirichlet boundary condition, and a harmonic
function hu,v on Ω satisfying the boundary condition (45).
Then, z0u,v + hu,v is a solution of Eq. (30) satisfying this
boundary condition.

But it is much easier to replace zu,v with z′u,v , such that
z′u,v = zu,v everywhere on Ω , except on its boundary ∂Ω

where z′u,v = zu,v − bDu,v . The Dirichlet boundary condition
satisfied by z′u,v is homogeneous, so we can actually write
z′u,v under the form (44).

In practice, we just have to change the right-hand side gu,v

of Eq. (30) for the pixels (u, v) ∈ Ω which are adjacent to
∂Ω . Either one or two neighbors of these pixels lie on ∂Ω .
For example, only the neighbor (0, v) of pixel (1, v) lies on
∂Ω , for v ∈ [2, n − 2]. In such a pixel, the right-hand side
of Eq. (30) must be replaced with:

gD1,v = p2,v − p0,v
2

+ q1,v+1 − q1,v−1

2
− bD0,v (46)

On the other hand, among the four neighbors of the corner
pixel (1, 1), both (0, 1) and (1, 0) lie on ∂Ω . Therefore, the
right-hand side of Eq. (30) must be modified as follows, in
this pixel:

gD1,1 = p2,1 − p0,1
2

+ q1,2 − q1,0
2

− bD0,1 − bD1,0 (47)

Knowing that the products of sine functions in (44) form
a linearly independent family, we get from (30) and (44),
∀(k, l) ∈ [1,m − 1] × [1, n − 1]:

z̄′k,l = − ḡDk,l
4

(
sin2 πk

2m + sin2 πl
2n

) , (48)

From (48), we easily deduce z′u,v using the inverse discrete
sine transform (44), thus zu,v .
Neumann Boundary Condition The reasoning is similar, yet
a little bit trickier, in the case of a Neumann boundary con-
dition. Any function that is expressed as an inverse discrete
cosine transform of the following form:

fu,v = 4

mn

m−1∑

k=0

n−1∑

l=0

¯̄fk,l cos
(

π
ku

m

)
cos

(
π
lv

n

)
(49)

satisfies the homogeneous Neumann boundary condition
∇ fu,v · ηu,v = 0 on ∂Ω , where ηu,v is the outer unit-length

normal to ∂Ω in pixel (u, v). To solve (30) on a rectangu-
lar domain Ω with the homogeneous Neumann condition
on ∂Ω , we can thus write zu,v as in (49). Consider now a
non-homogeneous Neumann boundary condition:

∇zu,v · ηu,v = bNu,v for (u, v) ∈ ∂Ω (50)

A similar trick as before consists in defining an auxiliary
function z′′u,v such that z′′u,v is equal to zu,v on Ω , but differs
from zu,v outsideΩ and satisfies the homogeneousNeumann
boundary condition on ∂Ω . Let us first take the example of
a pixel (0, v) ∈ ∂Ω , v ∈ [1, n − 1]. By discretizing (50)
using first-order finite differences, it is easily verified that z′′
satisfies the homogeneous Neumann boundary condition in
such a pixel if z′′−1,v = z−1,v + bN0,v . Similar definitions of
z′′ arise on the other three edges of Ω .

Let us now take the example of a corner ofΩ , for instance
pixel (0, 0). Knowing that η0,0 = − 1√

2
[1, 1]�, one can

easily check, by discretizing (50) using first-order finite dif-
ferences, that appropriate modifications of z in this pixel are

z′′−1,0 = z−1,0 +
√
2
2 bN0,0 and z′′0,−1 = z0,−1 +

√
2
2 bN0,0. With

these modifications, the function z′′u,v indeed satisfies the
homogeneous Neumann boundary condition in pixel (0, 0).

In practice, we just have to change the right-hand side
gu,v of Eq. (30) for the pixels (u, v) ∈ ∂Ω . Either one or
two neighbors of these pixels lie outside Ω . For example,
only the neighbor (−1, v) of pixel (0, v) lies outside Ω , for
v ∈ [1, n−1]. In such a pixel, the right-hand side of Eq. (30)
must be replaced with:

gN0,v = p1,v − p−1,v

2
+ q0,v+1 − q0,v−1

2
− bN0,v (51)

A problem with this expression is that p−1,v is unknown.
Using a first-order discretization of the homogeneous Neu-
mann boundary condition (on p, not on z) ∇ p0,v · η0,v = 0,
we obtain the approximation p−1,v ≈ p0,v , and thus (51) is
turned into:

gN0,v = p1,v − p0,v
2

+ q0,v+1 − q0,v−1

2
− bN0,v (52)

On the other hand, among the four neighbors of pixel (0, 0),
which is a corner of Ω , both (0,−1) and (−1, 0) lie out-
side Ω . Therefore, the right-hand side of Eq. (30) must be
modified as follows:

gN0,0 = p1,0 − p0,0
2

+ q0,1 − q0,0
2

− √
2 bN0,0 (53)
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Fig. 7 Reconstructed surfaces obtained by integration of gface (see
Fig. 6a), using Simchony, Chellappa and Shao’s method [52], and
imposing two different boundary conditions. a Since the homogeneous

Dirichlet boundary condition z = 0 is clearly false, the surface is much
distorted.bThe (Neumann) natural boundary conditionprovides amuch
more realistic result

Knowing that the products of cosine functions in (49) form
a linearly independent family, we get from (30) and (49),
∀(k, l) ∈ [0,m − 1] × [0, n − 1]:

¯̄z′′k,l = −
¯̄gNk,l

4
(
sin2 πk

2m + sin2 πl
2n

) , (54)

except for (k, l) = (0, 0). Indeed, we cannot determine the
coefficient ¯̄z′′0,0, which simply means that the solution of the
Poisson equation using a Neumann boundary condition (as,
for instance, the natural boundary condition) is computable
up to an additive constant, because the term which corre-

sponds to the coefficient ¯̄f0,0 in the double sum of (49) does
not depend on (u, v). Keeping this point in mind, we can
deduce z′′u,v from (54) using the inverse discrete cosine trans-
form (49), thus zu,v .

Accordingly, the method MSCS designed by Simchony,
Chellappa and Shao in [52] works well even in the case
of a non-periodic surface (see Fig. 7). Knowing more-
over that this method is as fast as MFC, we conclude
that it improves Frankot and Chellappa’s original method
a lot.

On the other hand, the useful property of the solutions
(44) and (49), i.e., they satisfy a homogeneous Dirichlet or
Neumann boundary condition, is obviously valid only if the
reconstruction domain Ω is rectangular. This trick is hence
not useable for any other form of domain Ω . It is claimed
in [52] that embedding techniques can extendMSCS to non-
rectangular domains, but this is neither detailed, nor really
proved. As a consequence, such a result as that of Fig. 5c
could not be reached applying MSCS to the gradient field
gvase: the result would be the same as that of Fig. 5d.

4 Main Normal Integration Methods

4.1 A List of Expected Properties

This may appear as a truism, but a basic requirement
of 3D-reconstruction is accuracy. Anyway, the evalua-
tion/comparison of 3D-reconstruction methods is a diffi-
cult challenge. Firstly, it may happen that some meth-
ods require more data than the others, which makes the
evaluation/comparison biased in some sense. Secondly, it
usually happens that the choice of the benchmark has a great
influence on the final ranking. Finally, it is a hard task to
implement a method just from its description, which gives in
practice a substantial advantage to the designers of a ranking
process, whatever their methodology, in the case when they
also promote their own method. In Sect. 4.3, we will review
the main existing normal integration methods. However, in
accordance with these remarks, we do not intend to evaluate
their accuracy. We will instead quote their main features.

In view of the detailed reviews of the methods of Horn
and Brooks and of Frankot and Chellappa (see Sect. 3), we
may expect, apart from accuracy, five other properties from
any normal integration method:

• PFast: The desired method should be as fast as possible.
• PRobust: It should be robust to a noisy normal field.7

• PFreeB: The method should be able to handle a free
boundary. Accordingly, each method aimed at solving

7 If the normal field is estimated via photometric stereo, we suppose
that the images are corrupted by an additive Gaussian noise, as rec-
ommended in [44]: “in previous work on photometric stereo, noise is
[wrongly] added to the gradient of the height function rather than cam-
era images.”
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the Poisson Eq. (23) should be able to solve the natural
boundary condition (30) in the same time.

• PDisc: The method should preserve the depth discontinu-
ities. This property could allow us, for example, to use
photometric stereo on a whole image, without segment-
ing the scene into different parts without discontinuity.

• PNoRect: The method should be able to work on a non-
rectangular domain. This happens for example when
photometric stereo is applied to an object with back-
ground. This property could partly remedy a method
which would not satisfy PDisc, knowing that segmenta-
tion is usually easier to manage than preserving the depth
discontinuities.

An additional property would also be much appreciated:

• PNoPar: The method should have no parameter to tune
(only the critical parameters are involved here). In prac-
tice, tuning more than one parameter often means that an
expert of the method is needed. One parameter is often
considered as acceptable, but no parameter is even better.

4.2 Integration and Integrability

Among the required properties, we did not explicitly quote
the ability of a method to deal with non-integrable normal
fields, but this is implicitly expected through PRobust and
PDisc. In other words, the two sources of non-integrability
that we consider are noise and depth discontinuities. A nor-
mal field estimated using shape-from-shading could be very
far from being integrable, because of the ill-posedness of this
technique, to such a point that integrability is sometimes used
to disambiguate the problem [19,29]. Also the uncalibrated
photometric stereo problem is ill-posed and can be disam-
biguated imposing integrability [63]. However, we are over
all interested in calibrated photometric stereo with n ≥ 3
images, which is well posed without resorting to integrabil-
ity. An error in the intensity of one light source is enough to
cause a bias [31], and outliers may appear in shadow regions
[49], thus providing normal fields that can be highly non-
integrable, but we argue that such defects do not have to be
compensated by the integrationmethod itself. In otherwords,
we suppose that the only outliers of the normal field we want
to integrate are located on depth discontinuities.

In order to know whether a normal integration method
satisfies PDisc, a shape like Svase (see Fig. 5a) is well indi-
cated, but a practical mistake must be avoided, which is not
obvious. A discrete approximation of the integrability term∫∫

(u,v)∈Ω
[∂v p(u, v) − ∂uq(u, v)]2 du dv, which is used in

[29] to measure the departure of a gradient field [p, q]� from

being integrable, is as follows:

Eint =
∑

(u,v)∈Ω3

[
pu,v+1 − pu,v

δ
− qu+1,v − qu,v

δ

]2
(55)

where Ω3 denotes the set of pixels (u, v) ∈ Ω such that
(u, v + 1) and (u + 1, v) are inside Ω . Let us suppose in
addition that the discrete values pu,v and qu,v are numerically
approximated using as finite differences:

pu,v = zu+1,v − zu,v

δ

qu,v = zu,v+1 − zu,v

δ

(56)

Reporting the expressions (56) of pu,v and qu,v in (55), this
always implies Eint = 0. Using such a numerically approx-
imated gradient field is thus biased, since it is integrable
even in the presence of discontinuities,8 whereas for instance,
Eint = 390 in the case of gvase.

4.3 Most Representative Normal Integration Methods

The problem of normal integration is sometimes considered
as solved, because itsmathematical formulation iswell estab-
lished (see Sect. 2), but we will see that none of the existing
methods simultaneously satisfies all the required properties.
In 1996, Klette and Schlüns stated that “there is a remarkable
deficiency of literature about integration techniques, at least
in computer vision” [37]. Many contributions have appeared
afterward, but a detailed review is still missing.

The way to cope with a possible non-integrable normal
field was seen as a property of primary importance in the first
papers on normal integration. The most obvious way to solve
the problem amounts to use different paths in the integrals
of (5), (9) or (18) and to average the different values. Apart
from this approach, which has given rise to several heuristics
[12,26,60], we propose to separate the main existing normal
integration methods into two classes, depending on whether
they care about discontinuities or not.

4.3.1 Methods Which Do Not Care About Discontinuities

According to the discussion conducted in Sect. 2.4, the
most natural way to overcome non-integrability is to solve
the Poisson Eq. (23). This approach has given rise to the
method MHB (see Sect. 3.1), pioneered by Ikeuchi in [33]
and then detailed by Horn and Brooks in [29], which has
been the source of inspiration of several subsequent works.

8 This problem is also noted by Saracchini et al. in [51]: “Note that tak-
ing finite differences of the reference height mapwill not yield adequate
test data.”
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The methodMHB satisfies the propertyPRobust (much better
than the heuristics cited above), as well as PNoPar (there is
no parameter), PNoRect and PFreeB. A drawback of MHB is
that it does not satisfy PFast, since it uses a Jacobi iteration
to solve a large linear system whose size is equal to the num-
ber of pixels inside Ω̊ = Ω\∂Ω . Unsurprisingly, PDisc is
not satisfied byMHB, since this method does not care about
discontinuities.

Frankot and Chellappa address shape-from-shading using
a method which “also can be used as an integrator” [19]. The
gradient field is projected on a set I of integrable vector fields
∇z. In practice, the set of functions z is spannedby theFourier
basis. The method MFC (see Sect. 3.3) not only satisfies
PRobust and PNoPar, but also PFast, since it is non-iterative
and, thanks to the FFT algorithm, much faster than MHB.
On the other hand, the reconstruction domain is implicitly
supposed to be rectangular, even if the following is claimed:
“The Fourier expansion could be formulated on a finite lattice
instead of a periodic lattice. The mathematics are somewhat
more complicated […] and more careful attention could then
be paid to boundary conditions.” Hence,PNoRect is not really
satisfied, not more thanPDisc. Finally,PFreeB is not satisfied,
since the solution is constrained to be periodic.9

Simchony, Chellappa and Shao suggest in [52] a non-
iterative way to solve the Poisson Eq. (23) using direct
analytical methods. It is noteworthy that the resolution of
the discrete Poisson equation described in Sect. 3.4, in the
case of a Dirichlet or Neumann boundary condition, does not
exactly match the original description in [52], but is rather
intended to be pedagogic. As observed by Lee in [39], the
discretized Laplacian operator on a rectangular domain is a
symmetric tridiagonal Toeplitz matrix if a Dirichlet bound-
ary condition is used, whose eigenvalues are analytically
known. Simchony, Chellappa and Shao show how to use
the discrete sine transform to diagonalize such a matrix.
They design an efficient solver for Eq. (23), which satis-
fies PFast, PRobust and PNoPar. Another extension of MSCS

to Neumann boundary conditions using the discrete cosine
transform is suggested, which allows PFreeB to be satisfied.
Even if embedding techniques are supposed to generalize this
method to non-rectangular domains, PNoRect is not satisfied
in practice. Neither is PDisc.

In [30,31], Horovitz and Kiryati improve MHB in two
ways. They show how to incorporate the depth in some
sparse control points, in order to correct a possible bias in the
reconstruction. They also design a coarse-to-fine multigrid
computation, in order to satisfy PFast.10 This acceleration

9 Noakes et al. follow the same way as Frankot and Chellappa but,
since they use a set I of integrable vector fields which is not spanned
by the Fourier basis, they cannot resort to the very efficient Fast Fourier
Transform algorithm any more [43,45].
10 Goldman et al. [21] do the same using conjugate gradient.

technique, however, requires a parameter to be tuned, which
loses PNoPar.

As in [19], Petrovic et al. enforce integrability [47], but
the normal field is directly handled under its discrete writ-
ing, in a Bayesian framework. “Imposing the integrability
over elementary loops in [a] graphical model will correct
the irregularities in the data.” An iterative algorithm known
as belief propagation is used to converge toward the MAP
estimate of the unknown surface. It is claimed that “discon-
tinuities are maintained,” but too few results are provided to
evaluate PDisc.

In [36], Kimmel and Yavneh show how to accelerate the
multigrid method designed by Horovitz and Kiryati [30] in
the case where “the surface height at specific coordinates
or along a curve” is known, using an algebraic multigrid
approach. Basically, their method has the same properties as
[30], although PFast is even better satisfied.

An alternative derivation of Eq. (37) is yielded by Wei
and Klette in [56], in which the preliminary derivation of
the Euler–Lagrange Eq. (23) associated to FL2(z) is not
needed. They claim that “to solve the minimization prob-
lem, we employ the Fourier transform theory rather than
variational approach to avoid using the initial and boundary
conditions,” but since a periodic boundary condition is actu-
ally used instead, PFreeB is not satisfied. They also add two
regularization terms to the functional FL2(z) given in (21),
“in order to improve the accuracy and robustness.” The prop-
erty PNoPar is thus lost. On the other hand, even if Wei and
Klette note that “[MHB] is very sensitive to abrupt changes
in orientation, i.e., there are large errors at the object bound-
ary,” their method does not satisfy PDisc either, whereas we
will observe that loosing PNoPar is often the price to satisfy
PDisc.

Another method inspired by MFC is that of Kovesi [38].
Instead of projecting the given gradient field on a Fourier
basis, Kovesi suggests to compute the correlations of this
gradient field with the gradient fields of a bank of shapelets,
which are in practice a family of Gaussian surfaces.11 This
method globally satisfies the same properties asMFC but, in
addition, it can be applied to an incomplete normal field, i.e.,
to normals whose tilts are known up to a certain ambiguity.12

Although photometric stereo computes the normals without
ambiguity, this peculiarity could indeed be useful when a
couple of images only is used, or a fortiori a single image
(shape-from-shading), since the problem is not well posed in
both these cases.

In [27], Ho et al. derive from (20) the eikonal equation
‖∇z‖2 = p2+ q2, and aspire to use the fastmarchingmethod
for its resolution. Unfortunately, thismethod requires that the

11 According to [2], Kovesi uses “a redundant set of non-orthogonal
basis functions.”
12 http://www.peterkovesi.com/matlabfns/index.html#shapelet.
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unknown z has a unique global minimum over Ω . Thereby,
a more general eikonal equation ‖∇(z + λ f )‖2 = (p +
λ ∂u f )2+(q+λ ∂v f )2 is solved,where f is a known function
and the parameterλhas to be tuned so that z+λ f has a unique
globalminimum. Themain advantage is thatPFast is (widely)
satisfied. Nothing is said about robustness, but we guess that
error accumulation occurs as the depth is computed level set
by level set.

As already explained in Sect. 3.2, Durou and Courteille
improve MHB in [16], in order to better satisfy PFreeB.13 A
very similar improvement in MHB is proposed by Harker
and O’Leary in [23]. The latter loses the ability to han-
dle any reconstruction domain, whereas the reformulation
of the problem as a Sylvester equation provides two appre-
ciable improvements. First, it deals with matrices of the
same size as the initial (regular) grid and resorts to very
efficient solvers dedicated to Sylvester equations, thus sat-
isfying PFast. Moreover, any form of discrete derivatives is
allowed. In [24,25], Harker and O’Leary moreover propose
several variants including regularization, which are still writ-
ten as Sylvester equations, but one of them loses the property
PFreeB, whereas the others lose PNoPar.

In [17], Ettl et al. propose a method specifically designed
for deflectometry, which aims at measuring “height varia-
tions as small as a fewnanometers” and delivers normal fields
“with small noise and curl,” but the normals are provided on
an irregular grid. This is why Ettl et al. search for an inter-
polating/approximating surface rather than for one unknown
value per sample. Of course, this method is highly paramet-
ric, but PNoPar is still satisfied, since the parameters are the
unknowns. Its main problem is that PFast is rarely satisfied,
depending on the number of parameters that are used.

The fast marching method [27] is improved in [20] by
Galliani et al. in three ways. First, the method by Ho et al. is
shown to be inaccurate, due to the use of analytical deriva-
tives ∂u f and ∂v f in the eikonal equation, instead of discrete
derivatives. An upwind scheme is more appropriate to solve
such a PDE. Second, the new method is more stable and the
choice of λ is no more a cause for concern. This implies
that PNoPar is satisfied de facto. Finally, any form of domain
Ω can be handled, but it is not clear whether PNoRect was
not satisfied by the former method yet. Not surprisingly, this
new method is not robust, even its robustness is improved in
a more recent paper [6], but it can be used as initialization
for more robust methods based, for instance, on quadratic
regularization [7].

The integration method proposed by Balzer in [9] is based
on second-order shape derivatives, allowing for the use of a
fast Gauss–Newton algorithm. Hence, PFast is satisfied. A
careful meshing of the problem, as well as the use of a finite
element method, make PNoRect to be satisfied. However, for

13 A preliminary version of this method was already described in [13].

the very same reason, PNoPar is not satisfied. Moreover, the
method is limited to smooth surfaces, and therefore PDisc

cannot be satisfied. Finally, PRobust can be achieved thanks
to a preliminary filtering step. Balzer and Mörwald design in
[10] another finite element method, where the surface model
is based on B-splines. It satisfies the same properties as the
previous method.14

In [61], Xie et al. deform a mesh “to let its facets follow
the demanded normal vectors,” resorting to discrete geom-
etry processing. As a nonparametric surface model is used,
PFreeB, PNoPar and PNoRect are satisfied. In order to avoid
oversmoothing, sharp features can be preserved. However,
PDisc is not addressed. On the other hand, PFast is not sat-
isfied since the proposed method alternates local and global
optimization.

In [62], Yamaura et al. design a new method based on
B-splines, which has the same properties as that proposed
in [10]. But since the latter “relies on second-order partial
differential equations, which is inefficient and unnecessary,
as normal vectors consist of only first-order derivatives,” a
simpler formalism with higher performances is proposed.
Moreover, a nice application to surface editing is exhibited.

4.3.2 Methods Which Care About Discontinuities

The first work which really addresses the problem ofPDisc is
by Karaçali and Snyder [34,35], who show how to define a
new orthonormal basis of integrable vector fields which can
incorporate depth discontinuities. They moreover show how
to detect such discontinuities, in order to partially enforce
integrability. The designed method thus satisfies PDisc, as
well asPRobust andPFreeB, butPFast is lost, despite the use of
a block processing technique inspired by the work of Noakes
et al. [43,45]. In accordance with a previous remark, since it
is often the price to satisfy PDisc, PNoPar is also lost.

In [1], Agrawal et al. consider the pixels as a weighted
graph, such that the weights are of the form pu,v+1 − pu,v −
qu+1,v + qu,v . Each edge whose weight is greater than a
threshold is cut. A minimal number of suppressed edges are
then restored, in order to reconnect the graph while mini-
mizing the total weight. As soon as an edge is still missing,
one gradient value pu,v or qu,v is considered as possibly cor-
rupted. It is shownhow these suspected gradient values canbe
corrected, in order to enforce integrability “with the impor-
tant property of local error confinement.” Neither PFreeB nor
PNoPar is satisfied, and PFast is not guaranteed as well, even
if the method is non-iterative. Moreover, the following is
asserted in [49]: “Under noise, the algorithm in [1] confuses
correct gradients as outliers and performs poorly.” Finally,
PDisc may be satisfied since strict integrability is no more
uniformly imposed over the entire gradient field.

14 https://github.com/jonabalzer/iga-integration/tree/master/core.
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In [2], Agrawal et al. propose a general framework “based
on controlling the anisotropy of weights for gradients during
the integration.”15 They aremuch inspired by classical image
restoration techniques. It is shown how the (isotropic) Lapla-
cian operator in Eq. (23) must be modified using “spatially
varying anisotropic kernels,” thus obtaining four methods:
two based on robust estimation, one on regularization, and
one on anisotropic diffusion.16 A homogeneous Neumann
boundary condition ∇z · η = 0 is assumed, which looks
rather unrealistic. Thus, the four proposed methods do not
satisfy PFreeB, neither PFast nor PNoPar. Nevertheless, a spe-
cial attention is given to satisfy PRobust and PDisc.

A similar method to the first one proposed in [2] is
designed by Fraile and Hancock in [18]. A minimum span-
ning tree is constructed from the same graph of pixels as in
[1], except that the weights are different (several weights are
tested). The integral in (6) along the unique path joining each
pixel to a root pixel is then computed. Of course, this method
is less robust than those based on quadratic regularization (or
than the weighted quadratic regularization proposed in [2]),
since “the error due to measurement noise propagates along
the path,” and it is rather slow because of the search for a
minimum spanning tree. But, depending on which weights
are used, it could preserve depth discontinuities: in such a
case as that of Fig. 5a, each pixel could be reached from a
root pixel without crossing any discontinuity.

In [59], Wu and Tang try to find the best compromise
between integrability and discontinuity preservation. In order
to segment the scene into pieceswithout discontinuities, “one
plausible method […] is to identify where the integrability
constraint is violated,” but “in real case, [this] may produce
very poor discontinuitymaps rendering themunusable at all.”
A probabilistic method using the expectation-maximization
(EM) algorithm is thus proposed, which provides a weighted
discontinuity map. The alternating iterative optimization is
very slow and a parameter is used, but this approach is
promising, even if the evaluation of the results remains qual-
itative.

In [41,42], Ng et al. do not enforce integrability over the
entire domain, because with such an enforcement “sharp fea-
tures will be smoothed out and surface distortion will be
produced.” Since “either sparse or dense, residing on a 2D
regular (image) or irregular grid space” gradient fieldsmaybe
integrated, it is concluded that “a continuous formulation for
surface-from-gradients is preferred.” Gaussian kernel func-
tions are used, in order to linearize the problem and to avoid
the need for extra knowledge on the boundary.17 Unfortu-

15 http://www.amitkagrawal.com/eccv06/RangeofSurfaceReconstruc
tions.html.
16 A similar approach will be detailed in [48].
17 http://www.cse.ust.hk/~pang/papers/supp_materials/pami_sur3d_
code.zip.

nately, at least two parameters must be tuned. Also PFast is
not satisfied, not more than PFreeB, as shown in [10] on the
basis of several examples. On the other hand, the proposed
method outputs “continuous 3D representation not limited to
a height field.”

In [49], Reddy et al. propose a method specifically
designed to handle heavily corrupted gradient fields, which
combines “the best of least squares and combinatorial search
to handle noise and correct outliers, respectively.” Even if it
is claimed that “L1 solution performs well across all scenar-
ios without the need for any tunable parameter adjustments,”
PNoPar is not satisfied in practice. Neither is PFreeB.

In [15],Durou et al. aremainly concerned byPDisc.Know-
ing that quadratic regularization works well in the case of
smooth surfaces, but is not well adapted to discontinuities,
the use of other regularizers, or of other variational models
inspired by image processing, as in [2], allows PDisc to be
satisfied. This is detailed in the companion paper [48].

The integrationmethod proposed in [50,51] by Saracchini
et al.18 is a multi-scale version of MHB. A system is solved
at each scale using a Gauss–Seidel iteration in order to sat-
isfy PFast. Since reliability in the gradient is used as local
weight, “each equation can be tuned to ignore bad data sam-
ples and suspected discontinuities,” thus allowing PDisc to
be satisfied. Finally, setting the weights outside Ω to zero
allows PFreeB and PNoRect to be satisfied as well. However,
this method “assumes that the slope and weight maps are
given,” But such a weight map is a crucial clue, and the
following assertion somehow avoids the problem: “practical
integration algorithms require the user to provide a weight
map.”

A similar approach is followed by Wang et al. in [55],
but the weight map is binary and automatically computed. In
addition to the gradient map, the photometric stereo images
themselves are required. Eight cues are used by two SVM
classifiers, which have to be trained using synthetic labeled
data. Even if the results are nice, the proposed method seems
rather difficult to manage in practice, and clearly loses PFast

and PNoPar.
In [4,5], Badri et al. resort to L p norms, p ∈ ]0, 1[. As p

decreases, the L0 norm is approximated, which is a sparse
estimator well adapted to outliers. Indeed, the combination
of four terms allows Badri et al. to design a method which
simultaneously handles noise and outliers, thus ensuring that
PRobust and PDisc are satisfied. However, since the problem
becomes non-convex, the proposed half-quad resolution is
iterative and requires a good initialization: PFast is lost. It
happens that neitherPNoPar is satisfied. Finally, each iteration
resorts to FFT, which implies a rectangular domain and a
periodic boundary condition; hence, PFreeB and PNoRect are
not satisfied either.

18 http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/.
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4.4 Summary of the Review

Our discussion on the most representative methods of inte-
gration is summarized in Table 1, where the methods are
listed in chronological order. It appears that none of them
satisfies all the required properties, which is not surprising.
Moreover, even if accuracy is the most basic property of any
3D-reconstruction technique, let us recall that it would have
been impossible in practice to numerically compare all these
methods.

In view of Table 1, almost every method differs from all
the others, regarding the six selected properties. Of course, it
may appear that such a binary (+/−) table is hardly informa-
tive, but more levels in each criterion would have led to more
arbitrary scores. On the other hand, the number of + should
not be considered as a global score for a givenmethod: it hap-
pens that a method perfectly satisfies a subset of properties,
while it does not care at all about the others.

5 Conclusion and Perspectives

Even if robustness to outliers was not selected in our list of
required properties, let us cite a paper specifically dedicated
to this problem. In [14], Du et al. compare the L2 and L1

norms, as well as a number of M-estimators, faced to the
presence of outliers in the normal field: L1 is shown to be
the globally best parry. This paper being worthwhile, one can
wonder why it does not appear in Table 1. On the one hand,
even if PRobust is satisfied at best, none of the other criteria
are considered. On the other hand, let us recall why we did
not select robustness to outliers as a pertinent feature: the
presence of outliers in the normal field does not have to be
compensated by the integration method. In [5], it is said that
“[photometric stereo] can fail due to the presence of shadows
and noise,” but recall that photometric stereo can be robust
to outliers [32,58].

Another property was ignored: whether the depth can be
fixed at some points or not. As integration is a well-posed
problem without any additional knowledge on the solution,
we considered that this property is appreciable, although not
required. Let us however quote, once again, the papers by
Horovitz and Kiryati [31] and by Kimmel and Yavneh [36],
in which this problem is specifically dealt with.

Some other works on normal integration have not been
mentioned in our review, since they address other problems
or do not face the same challenges. Let us first cite a work
by Balzer [8], in which a specific problem with the normals
delivered by deflectometry is highlighted: as noted by Ettl
et al. in [17], such normals are usually not noisy, but Balzer
points out that they are distant-dependent, which means that
the gradient field g = [p, q]� also depends on the depth
z. The iterative method proposed in [8] to solve this more

general problem seems to be quite limited, but an interesting
extension to normals provided by photometric stereo is sug-
gested: “one could abandon the widespread assumption that
the light sources are distant and the lighting directions thus
constant.”

Finally, Chang et al. address in [11] the problem of multi-
view normal integration, which aims at reconstructing a full
3D-shape in the framework of multiview photometric stereo.
The original variational formulation (21) is extended to such
normal fields, and the resulting PDE is solved via a level
set method, which has to be soundly initialized. The results
are nice but are limited to synthetic multiview photometric
stereo images. However, this approach should be continued,
since it provides complete 3D-models. Moreover, it is noted
in [11] that the use of multiview inputs is the most intuitive
way to satisfy PDisc.

As noticed by Agrawal et al. about the range of solutions
proposed in [2], but this is more generally true, “the choice of
using a particular algorithm for a given application remains
an open problem.”We hope this reviewwill help the reader to
make up its ownmind, faced to so many existing approaches.

Finally, even if none of the reviewed methods satisfies all
the selected criteria, this work helped us to develop some new
normal integration methods. In a companion paper entitled
Variational Methods for Normal Integration [48], we par-
ticularly focus on the problem of normal integration in the
presence of discontinuities, which occurs as soon as there are
occlusions.

Acknowledgements We are grateful to the reviewers for the construc-
tive discussion during the reviewing process.
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