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Abstract We introduce a new, integrated approach to uncal-
ibrated photometric stereo. We perform 3D reconstruction
of Lambertian objects using multiple images produced by
unknown, directional light sources. We show how to formu-
late a single optimization that includes rank and integrability
constraints, allowing also for missing data. We then solve
this optimization using the Alternating Direction Method of
Multipliers (ADMM). We conduct extensive experimental
evaluation on real and synthetic data sets. Our integrated
approach is particularly valuable when performing pho-
tometric stereo using as few as 4–6 images, since the
integrability constraint is capable of improving estimation
of the linear subspace of possible solutions. We show good
improvements over prior work in these cases.

Keywords Photometric stereo · 3D reconstruction ·
Low-rank optimization

1 Introduction

Uncalibrated photometric stereo (UPS) is the problem of
recovering the 3D shape of an object and associated lighting
conditions, given images taken with varying, unknown illu-
mination. In this work we replace the existing pipeline for
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solving UPS with an integrated approach. This paper, like
much prior work [2,4,11,14,22,31,33], focuses on Lamber-
tian objects illuminated by a single distant point light source
in each image. Existing methods, pioneered by [14], formu-
late UPS as the problem of finding a low-rank factorization
of the measurements. Specifically, givenm images each with
p pixels, let M denote the m × p matrix containing the pixel
intensities. These methods optimize

min
M̂

‖M̂ − M‖2F s.t. rank(M̂) = 3. (1)

This problem can be solved by SVD, from which we pro-
duce a family of solutions, each consisting of a set of light
sources, albedos, and surface normals. These solutions are
related by a 3 × 3 ambiguity matrix. The surface normals
provided by SVD are in general inconsistent with the partial
derivatives of the surface (i.e., they are not integrable). Con-
sequently, existing methods apply an additional sequence of
steps aimed at reducing the ambiguity and fitting a surface
to the recovered normals.

In this paper we propose instead to optimize:

min
M̂

‖M̂ − M‖2F (2)

s.t. M̂ is rank 3 and produced by an integrable surface.

Equation (1) optimizes over rank-3 matrices, which can rep-
resent sets of images produced by any set of surface normals.
In contrast, in (2)we optimize over only those rank 3matrices
that correspond to integrable surfaces.

Intuitively, a single optimization over all constraints may
produce a better global optimum than a sequence of opti-
mizations in which constraints are used one at a time to
increasingly narrow the solution (see illustration in Fig. 1).
Specifically in UPS the measurement matrix may contain
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Fig. 1 An illustration of our approach. Blue represents the set of rank-
3 matrices, while red represents the subset of those that correspond to
integrable surfaces. Our optimization seeks to find the integrable matrix
(red dot) that is closest to the measurements (black dot). If instead we
first find the nearest rank 3 matrix and then select an integrable matrix
(the blue dots) we may produce a suboptimal solution

many errors due to shadows and specular effects. There-
fore, while in theory UPS can be solved with as few as
three images, SVDcan properly handle thesemodeling errors
only when many images are supplied. Indeed, current meth-
ods [2,11] typically use 10 or more images. With fewer
images SVD results tend to provide noisy solutions. Our
method incorporates integrability into this estimation, pro-
viding valuable additional constraints that help us to find a
better subspace in the presence of fewer images with noisy
estimates. In presence of large number of images SVD-
based methods can handle noises and outliers to solve an
overconstrained problem. However for fewer images, a joint
optimization based on rank constraint can obtain a better sub-
space. Our experiments indicate that ourmethod can produce
reasonable reconstructions with as few as four images and
good reconstruction with six images, significantly improv-
ing over state-of-the-art methods with these few images.

For our approach we optimize a cost function based on (2)
over the surface, lighting, normals and (restored) error-free
observations. The cost ensures that normals and lighting are
consistentwith themeasurements,whichmust have low rank.
We use constraints that ensure integrability. This is somewhat
tricky because rank constraints apply to the measurements
while integrability constraints apply to the normals. We
show that by constructing a rank-3 matrix that contains nor-
mals, measurements and lighting, we can impose the rank
and integrability constraints together. Specifically, we use a
truncated nuclear norm approach [15] to enforce the rank
constraint, while integrability is represented by linear equal-
ities. This leads to a single non-convex problem that we solve
using a series of Alternating DirectionMethod ofMultipliers
(ADMM) operations [5,13].

Our formulation allows us to easily account for missing
data in themeasurementmatrix. This commonly occurswhen
pixels are dark due to shadows, or saturated due to specular-
ities. In some of the prior approaches, this can be solved

with a preprocessing step, which may lead to a pipeline with
yet another optimization [31]. We handle missing data using
matrix completion based on the rank constraint. We initialize
our optimization using prior approaches, since non-convex
optimization requires a good initialization.

2 Background and Previous Work

In this section we introduce in detail the problem of uncali-
brated photometric stereo for Lambertian objects and review
past work. We assume that we view an object in multiple
images from a fixed viewpoint. In each image the object is
illuminated by a single, distant point light source. We repre-
sent lighting in image i with li ∈ R3, in which the direction
of li represents the direction to the lighting, and ‖li‖ repre-
sents its magnitude. We represent the object using a set of
surface normals n̂ j ∈ R3, and albedos ρ j ∈ R for each pixel.
We then obtain images with the equation:

Mi j = max(0, ρ j l
T
i n̂ j ) (3)

where Mi j represents the j-th pixel of the i-th image. We
define the surface normal n̂ j = n j

‖n j‖ , n j = (−zx ,−zy, 1)T,
where zx and zy represent partial derivatives of the surface
z(x, y) at pixel j . Negative values of ρ j lTi n̂ j are set to 0;
these appear as attached shadows.

We now describe the creation of all images using matrix
operations.We define S to be a 3× pmatrix in which column
j contains ρ j n̂ j . Givenm images, we can stack the light into
the matrix L of dimension m × 3, where each row denotes
one light per image. We concatenate all the images to form
an observation matrix M of dimensionm× p, where p is the
number of pixels. Now, in the absence of shadows, we can
write the equation of UPS as:

M = LS. (4)

Classical work on photometric stereo (e.g., [30], see a
recent review in [1]) has assumed that known lighting is
obtained by careful calibration. With L known, (4) can be
solved as a linear least squares problem. A more general
and challenging case is unconstrained photometric stereo, in
which the L is unknown. A common approach, which we use
as a Baseline algorithm, follows the steps in Algorithm 1.

Belheumer et al. [4] showed that in UPS the integrable
set of surface normals can only be recovered up to a gener-
alized bas-relief transformation (GBR). A number of recent
papers have concentrated on methods of solving the GBR
ambiguity. Researchers have used priors on the albedo dis-
tribution [2], reflectance extrema [11], total variation norm
[24], grouping based on image appearance and color [25],
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Algorithm 1 Baseline
Input: M
Output: Z
Factorization: Perform SVD on M to obtain light and scaled surface
normals M = L̃ S̃ [14].
Integrability: Follow Yuille and Snow [33] to resolve ambiguity
after the factorization using integrability. In M = LS = L̃ A−1AS̃,
we solve for A, such that S = AS̃ approximately forms a set of
integrable surface normals.
Depth Reconstruction: Obtain the depth map Z from the set of inte-
grable surface normals S as, e.g, in [3].

inter-reflections [9], isotropy and symmetries [29], and spec-
ularity [10] as constraints while solving for the GBR. All of
these methods have first used the above mentioned Baseline
described in Algorithm 1 to obtain a solution up to the GBR.

Recent works have explored a variety of other research
directions in photometric stereo. Mecca et al. [17] proposed
an integrated, PDE-based approach to calibrated photomet-
ric stereo that uses a mere two images under perspective
projection. It is not clear how to extend this to uncalibrated
photometric stereo. Basri et al. [3] extended the Baseline to
handle multiple light sources in each image using a spheri-
cal harmonics formulation. Chandraker et al. [8] proposed a
method to handle attached and cast shadows in the case of
multiple light sources per image. In [27] the authors deter-
mine the visibility subspace for a set of images to remove
the cast and attached shadows for performing UPS. Vari-
ous works have addressed non-Lambertian materials (e.g.,
Georghiades et al. [12] and Okabe et al. [20]).

In the context of Lambertian UPS, Georghiades et al. [12]
proposed to remove shadows and specularities and recover
themissing pixel values usingmatrix completion algorithms,
e.g., using the dampedWiberg [21] or Cabral’s algorithm [6].
Wu et al. [31] proposed a Robust PCA formulation for cali-
brated photometric stereo. Their approach seeks a low-rank
(not necessarily rank 3) approximation to M while removing
outlier pixels (corresponding to shadows and specularities).
Oh et al. [18,19] applied Robust PCA in the context of cal-
ibrated photometric stereo, replacing the nuclear norm with
a Truncated Nuclear Norm (TNN) regularizer [15]. In [11],
Favaro et al. have used Robust PCA as preprocessing to the
Baseline algorithm for UPS.

3 Our Approach

In this section we introduce our integrated formulation that
enforces integrability of surface normals in solving the uncal-
ibrated photometric stereo problem. We recall from (4) that
the measurement matrix M can be factored into M = LS.
To access the derivatives of z(x, y) we write S as a product

S = N�, (5)

where N is a 3 × p matrix whose j’th column is n j =
(−zx ,−zy, 1)T and � = diag(λi , λ2, . . . , λp) with λ j =
−ρ j/‖n j‖. We next define the matrix:

X =
[
X I XN

XL XM

]
=

[
I N
L M�−1

]
, (6)

where X is (3+m)×(3+p). Thematrices X ,�, and the depth
values (z(x, y)) form the unknowns in our optimization.Note
that, because LN = M�−1, the following holds for any 3×3
non-degenerate matrix A

X =
[
A−1

L A−1

] [
A AN

]
. (7)

This shows that X is rank 3. The matrix A represents a linear
ambiguity. However, forcing the normals in N to be inte-
grable will reduce this ambiguity to the GBR.

To force integrability we denote by z = (z1, . . . , z p)T the
vector of unknown depth values and require

XN = [
Dxz, Dyz, −1

]T
, (8)

where Dx , Dy denote, respectively, the x- and y-derivative
operators and 1 denotes the vector of all 1’s.

Additional constraints are obtained by noticing that,
because 0 ≤ ρ j ≤ 1 and ‖n j‖ ≥ 1,

−1 ≤ λ j ≤ 0 (9)

and

X I = I3×3. (10)

We are now ready to define our optimization function. Let
W be a binary,m× pmatrix so thatWi j = 0 ifMi j is missing
and Wi j = 1 otherwise, and let

fdata(X,�) = 1

2

∥∥∥W � (M − XM�)

∥∥∥2
F

, (11)

where � denotes element-wise multiplication. Then (2) can
be written as

min
X,�,z

fdata(X,�)

s.t. rank(X) = 3, (8), (9), and (10). (12)

Handling the rank-3 constraint Enforcing the non-convex
constraint rank(X) = 3 can be challenging. In the context
of matrix completion a recent paper [15] proposed using the
Truncated Nuclear Norm (TNN) regularization term:

ftnn(X) = ‖X‖∗ −
3∑

k=1

σk(X), (13)
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where ‖X‖∗ denotes the nuclear norm of X and σk(X) is the
k-th largest singular value of X . Clearly, ftnn(X) = 0 if and
only if rank(X) ≤ 3. We use ftnn as a regularizer and solve

min
X,�,z

fdata(X,�) + c ftnn(X)

s.t. (8), (9), and (10), (14)

where c is a preset scalar.
There are several different ways of handling the rank con-

straint. One such technique is to use explicit factorization
of M into L , N and ρ with the integrability constraint over
N . This trilinear decomposition can be solved with alternate
steps. Alternate optimizations are sometimes slow to con-
verge. Another technique widely used in matrix completion
is nuclear norm (NN) relaxation :

∑
σk(X). Even though

NN relaxation is convex, TNN [15] regularization is shown
to outperform the former for matrix completion problems.
An alternate approach is to directly impose rank(X) = 3
with ADMM.We have implemented both NN relaxation and
rank(X) = 3 and empirically observed TNN to outperform
both of them. Thus, in this paper we have used TNN regu-
larization to handle the rank constraint.

4 Optimization Using ADMM

In this section we introduce a method for solving (14). This
is a challenging problem because both fdata and ftnn are non-
convex. Specifically, fdata (11) is bilinear in X and �, while
ftnn (13) is a difference between two convex functions. Our
solution is based on a nested iteration in which the outer loop
uses majorization to decrease ftnn, whereas the inner loop
uses the scaled ADMM with alternation to decrease fdata.

Outer loop Following [15] at each iteration of the outer loop
we replace ftnn(X)with a majorizer. Specifically, at iteration
k let X (k) = U�V T be the singular value decomposition of
X (k), and let U3 (and V3) be the matrices containing the left
(right) singular vectors corresponding to the three largest sin-
gular values of X (k). U3 and V3 are determined in the outer
loop and are held constant throughout the inner loop.We then
define

f (k)
maj(X) = ‖X‖∗ − trace(UT

3 XV3). (15)

It was shown in [15] that f (k)
maj(X) ≥ ftnn(X) for all X and

that f (k)
maj(X

(k)) = ftnn(X (k)), and so decreasing fmaj leads
to decreasing ftnn.

Inner loop In the inner loop we seek to minimize

min
X,�,z

fdata(X,�) + c f (k)
maj(X)

s.t. (8), (9), and (10), (16)

We use scaled ADMM, a variant of the augmented
Lagrangianmethod that splits the objective function and aims
to solve the different subproblems separately. We maintain
a second copy of X , which we denote by Y and form the
augmented Lagrangian of (16) as follows

max
�

min
X,�,z,Y

1

2

∥∥∥W � (M − XM�)

∥∥∥2
F

+ c
(
‖Y‖∗ − trace(UT

3 YV3)
)

+ τ

2
‖Y − X + �‖2F

s.t. X I = I3×3, − 1 ≤ λ j ≤ 0 ∀ j, XN = [
Dxz, Dyz, −1

]T
,

(17)

where ‖Y − X +�‖2F denotes the Lagrangian penalty; τ is a
constant, and � is a matrix of Lagrange multipliers the same
size as X that is updated by the ADMM steps [5,13].We next
describe the ADMM steps (applied iteratively).

Step 1 Solving for (X,�, z).
In each iteration, k, we solve the following subproblems:

1. Optimize w.r.t. X I : X I (k+1) = I3×3.
2. Optimize w.r.t. XL :

XL (k+1) = argmin
XL

‖Y L (k) − XL + �L (k)‖2F
= Y L (k) + �L (k). (18)

3. Optimize w.r.t. XN and z:

(
XN (k+1), z(k+1)

)
= argmin

XN ,z

∥∥∥Y N (k) − XN + �N (k)
∥∥∥2
F

s.t. XN = [
Dxz, Dyz, −1

]T
. (19)

The problem is solved by setting the third rowof XN (k+1)

to −1 and by substituting Dxz and Dyz for the first two
rows of XN in the objective, obtaining linear least squares
equations in z that can be solved directly.

4. Optimize w.r.t. XM and �:

(
XM (k+1), �(k+1)

)
= argmin

XM ,�

1

2

∥∥∥W � (M − XM�)

∥∥∥2
F

+ τ

2

∥∥∥Y M (k) − XM + �M (k)
∥∥∥2
F

s.t. − 1 ≤ λ j ≤ 0 ∀ j.

We will separate this into the known and unknown pix-
els based on W . For an unknown pixel j in frame i
(Wi j = 0) the first term vanishes and the minimization
only determines the respective entry of XM so that:

XM (k+1)
i j = Y M (k)

i j + �
M (k)
i j . (20)
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For the known pixels, since � is diagonal we can write
these equations separately for each column j (corre-
sponding to the j-th pixel):

(
XM (k+1)

j , λ
(k+1)
j

)
= argmin

XM
j ,λ j

1

2

∥∥∥(Wj �
(
Mj − λ j X

M
j

)∥∥∥2
2

+ τ

2

∥∥∥Y M (k)
j − XM

j + �
M (k)
j

∥∥∥2
2

s.t. − 1 ≤ λ j ≤ 0. (21)

The problem (21) is non-convex. We will solve it with
alternate optimization. XM and � are updated by the
following steps until convergence.XM : Let M̃ j = Wj �
Mj , X̃ j = Wj � XM

j and ÃM (k)
j = Wj � (Y M (k)

j +
�
M (k)
j ). Then,

X̃ j = argmin
X̃ j

1

2

∥∥∥M̃ j − λ j X̃ j

∥∥∥2
2
+ τ

2

∥∥∥ ÃM (k)
j − X̃ j

∥∥∥2
2

= λ j M̃ j + τ ÃM (k)
j

λ2j + τ
. (22)

�:

λ j = argmin
λ j

1

2

∥∥∥M̃ j − λ j X̃ j

∥∥∥2
2

s.t. − 1 ≤ λ j ≤ 0,

= min(0,max(−1, X̃T
j M̃ j/‖X̃ j‖22)). (23)

Step 2 Solving for Y . Solving for Y requires a solution to

Y (k+1) = argminY c
(
‖Y‖∗ − trace

(
UT
3 YV3

))

+ τ

2

∥∥∥Y − X (k+1) + �(k)
∥∥∥2
F

. (24)

Below we show that this problem can be solved in closed
form by applying the shrinkage operator, obtaining

Y (k+1) = Dc/τ

(
X (k+1) − �(k) + c

τ
U3V

T
3

)
, (25)

where the shrinkage operator Dt (.) is defined as follows.
For a scalar s we define Dt (s) = sign(s) × max(|s| − t, 0).
For a diagonal matrix S = diag(s1, s2, . . .) with nonneg-
ative entries we define Dt (S) = diag(Dt (s1), Dt (s2), . . .).
Finally, for a general matrix ϒ , let ϒ = Ũ SṼ T be its singu-
lar value decomposition, then Dt (ϒ) = Ũ Dt (S)Ṽ T.

To derive (25), we rewrite (24) as:

Y (k+1) = argmin
Y

‖Y‖∗ + τ

2c
‖Y − X (k+1) + �(k)

− c

τ
U3V

T
3 ‖2F − T, (26)

where T = trace(V3UT
3 (X (k+1) − �(k))) + c

2τ
‖U3V T

3 ‖2F
is independent of Y . Equation (26) is of the general form

min
Y

‖Y‖∗ + 1

2t
‖Y − C‖2F , for which the solution is Dt (C),

as is shown in [7], implying (25).

Step 3Update of �. The matrix � contains Lagrange mul-
tipliers that are used in the saddle-point formulation (17) to
enforce the equality constraint X = Y . The following update
is a gradient ascent step that acts to maximize the augmented
Lagrangian (17) for �. For details, see [5,13].

�(k+1) = �(k) +
(
Y (k+1) − X (k+1)

)
. (27)

The entire optimization process is listed in Algorithm 2.
We will make the code available.

Algorithm 2 TNN formulation solved with ADMM
Input: M , W .
Output: X , z.
Initialization: Initialize XL and XN by running Baseline algorithm
(without resolving GBR). Initialize XM = −M ,� = −I , and c = 1.
Set X (0) = X , Y = X , � = 0, and τ = 1.
k = 0.
while not converged do
Perform SVD over X (k) to obtain U3 and V3.
Run ADMM:
while not converged do
Update of X , z and �.
Update X I (k+1) = I3×3.
Update XL(k+1) using (18).
Update XN (k+1) and z using (19).
while not converged do
for each pixel j do
Update XM(k+1)

j using (22) and λ
(k+1)
j using (23).

end for
for each pixel j in each image i do
if Wi j = 0, i.e., pixel j is not known then

Update XM(k+1)
i j using (20).

end if
end for

end while
Update Y using (25).
Update of � using (27).
k = k + 1.

end while
end while

5 Experimental Results

In this section we evaluate and compare the performance of
our algorithm with two versions of the Baseline algorithm,
in both real-world and synthetic examples. We compare the
following methods:

Baseline Algorithm1 described in Sect. 2. Thismethod
is used in [2,9–11,25,29].
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RPCA Images are preprocessed using Robust PCA
[31], parameters are chosen as suggested
by [11]. Then we apply the Baseline algo-
rithm to the obtained matrix. This method
is used in [11]. RPCA solves a sparse low-
rank optimization to detect shadows and other
non-Lambertian effects. The method uses L1

regularization to identify outlier pixels, even
when they do not result in intensities near 0
or 1. The refined intensities obtained from
RPCAmaynot be in the rangeof [0,1].Obtuse
angle between the surface normal and the
light can cause negative intensity, and specu-
larity can cause intensity more than 1.

Our(NC) Our proposed formulation as described in
Sect. 4 using W = 1, i.e., no completion.
This allows comparison to Baseline, which
also does not perform matrix completion.

Our(MC) Our proposed formulation as in Sect. 4 with
wi j ∈ {0, 1}, allowing for matrix comple-
tion. In both versions of our algorithm we use
c = 1. We identify missing pixels as those
with normalized intensity outside the range
of (0.02, 0.98). We use RPCA algorithm to
perform UPS, and the obtained normals and
lights are used to initialize our algorithm as
highlighted in Algorithm 2.

All the tested methods solve for the surface only up to a
GBR ambiguity. To compare the results with ground truth,
we find the GBR that optimizes the fit to ground truth and
measure the residual error.

In the presence of a large number of images with noise and
non-Lambertian effects, we expect the sequential pipeline of
Baseline and RPCA, involving SVD, to produce accurate
solutions, because the problem solved by SVD is heav-
ily overconstrained. In the presence of fewer images, our
integrated method will be able to produce a more accurate
decomposition by using both rank and integrability con-
straints to find the right linear subspace. Thus, we expect
our integrated approach to improve over the Baseline and
RPCA as we reduce the number of images. In the following
subsectionwewill show resultswith synthetic and real-world
data that supports our claim.

5.1 Experiments on Synthetic Data

We use five real objects (“cat,” “owl,” “rock,” “horse,” “bud-
dha”) to produce synthetic images, their shape is obtained by
applying calibrated photometric stereo to a publicly avail-
able dataset [16]. We use the normals and albedos from these
objects to generate images. Each image is generated by a ran-
domly selected light source which lies at 30 degrees of the

viewing direction on average. We clip the intensities outside
the range [0,1] to create shadows and specularity. All images
are of size 512×340 with objects occupying 29–72K pixels.
A segmentation mask is also supplied. To show the variation
of performance with the number of images NI , we use sets
of 4, 6, 8, 10, 15, 20, 25 and 30 images, respectively. We
add Gaussian noise with standard deviation ranging from 1
to 7% (in steps of 2%) of the maximum intensity. For each
choice of noise, we run five different trials with random noise
and lighting to generate the synthetic images. Thus, we have
five objects, four levels of noise and five random simula-
tions, making a total of 100 experiments for each of the 8
different sets of 4, 6, 8, 10, 15, 20, 25 and 30 images. As a
measure of performance, we calculate the error in the recon-
structed depth map. Let the ground truth surface be ZT and
the reconstructed surface be Zrec. We measure error in depth
as Zerr = 100× ‖ZT −Zrec‖

‖ZT ‖ . To compare two algorithms (say,
algorithm A vs. algorithm B), we define the following two
terms :

Relative improvement (in %) Denote eak and ebk as the depth
error for each trial k by using algorithm A and B, respec-
tively. The relative improvement of algorithm B over A is

the average of
(eak−ebk )

eak
over all trials K for each choice of NI

expressed in percentage.

Percent of improved trials This denotes the number of trials
in which algorithm B improves over A. In terms of notation
introduced previously, this is 1

K

∑K
k=1 I(e

a
k < ebk ), where I(.)

is in indicator variable and K is the total number of trials for
each choice of NI . The measure is expressed in percentage.

In Fig. 2we compare performance of Our(MC)with Base-
line and RPCA, on synthetic data in the presence of Gaussian
noise.We initialize ourmethodswithRPCA.We observe that
as the number of images decreases, our method improves
compared to Baseline and RPCA. With simple Gaussian
noise RPCA does not produce additional advantages as there
are no outliers.

In Fig. 3 we compare the performance of our methods
on synthetic data with Gaussian noise and with specularities
generated by the Phong reflectance model [23,28]. Mathe-
matically each image Mi can be represented as :

Mi = Li S + ks(V R)α, (28)

where V is the viewing direction and R denotes the direc-
tions of perfect reflection for incoming light Li for each
pixel j . Larger α produces sharper specularities, while larger
ks causes more light to be reflected as specularity. We use
ks = 0.2 and α = 10. We observe that the advantage
of Our(MC) degrades as the number of images increases,
as expected. This experiment shows that even though our
method is designed specifically for Lambertian objects it can
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Fig. 2 Performance comparison of Our(MC) algorithm to RPCA (in
blue) and Baseline (yellow) for different numbers of input images with
gaussian noise under a pure Lambertian model. The left bar plot shows
the amount of relative improvement achieved with our algorithm, and
the right plot shows the percent of trials in which our algorithm outper-
formed each one of the competing algorithms a median error in depth,
b median error in normal

tolerate a certain amount ofmodel irregularities such as spec-
ularity. With four images our method beats RPCA in 85% of
the all trials with a relative improvement of 22.12%.

In Fig. 4 we compare Our(MC) with Baseline and RPCA
with variation of noise for different subsets of images (4,6,10
and 15). We can conclude that our method is robust to noise
and its advantages do not degrade with an increase in noise.

5.2 Experiments on Real-World Data

5.2.1 Lambertian Objects

To test our approach on real data, we used the two pub-
licly available data sets [16,32] consisting of five and seven
objects, respectively. We perform uncalibrated photometric
stereoover a set of images anduse the result of calibrated pho-
tometric stereo as ground truth for comparison. The datasets
provide calibrated lighting, which we use to perform cal-
ibrated photometric stereo. We use the code provided by
[16,32] along with the lighting information to obtain nor-
mals and depth map. The obtained depth map, albedo and
surface normals from calibrated PS are considered as ground
truth for photometric stereo with unknown lighting similar
to [2]. To show the variation of performance with the number
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Fig. 3 Performance comparison of Our(MC) algorithm to RPCA (in
blue) and Baseline (yellow) for different numbers of input images with
gaussian noise under the Phong model. The left bar plot shows the
amount of relative improvement achieved with our algorithm, and the
right plot shows the percent of trials in which our algorithm outper-
formed each one of the competing algorithms a median error in depth,
b median error in normal
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Fig. 4 Performance comparison of Our(MC)with RPCA and Baseline
with varying noise created using the Phong model

of images, we select subset of 4, 6, 8 and ten images for each
object. We perform 10 random selections of subset of images
for each of the 12 objects. Thus, we have 120 experiments
for every subset of images.

In Fig. 5 we compare the performance of our methods,
Our(MC) and Our(NC), with Baseline and RPCA with vari-
ation in the number of images. We see that for fewer images
our methods outperform Baseline and RPCA by a signifi-
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Fig. 5 Performance comparison of Our(MC) and Our(NC) algorithms
to RPCA and Baseline with real images
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Fig. 6 Average surface reconstruction error with four (top) and six
(bottom) real images of 12 objects over 10 random trials usingOur(MC),
RPCA and Baseline

cant amount and are comparable to RPCA for more images.
For four images Our(MC) outperforms Baseline in 84.9%
cases with a relative improvement of 30.6% and outperforms
RPCA in 81.4% cases with a relative improvement of 12%.
However, for ten images we beat Baseline in 75% cases with
a relative improvement of 10.7% and beat RPCA in only
47.3% cases with a relative improvement of −7.2%.

Figure 6 shows the average reconstruction error obtained
by Our(MC), RPCA and Baseline on 12 real-world objects
over 10 random simulations. We observe that Our(MC) out-
performs RPCA on 11 out of 12 objects for four images
and 10 out of 12 objects for six images (and is comparable
in 1). With ten images the average reconstruction error using
Our(MC) over all objects and all trials is 4.6%. This increases
to 8.1% with four images and is only 5.4% with six images.
This shows that we have reasonable reconstruction with 4
images and good reconstruction with as few as six images.

Figure 7 shows the average of median angular error in
surface normal obtained byOur(MC),RPCAandBaseline on
12 real-world objects over 10 random simulations. Our(MC)
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Fig. 7 Average median angular error in surface normal with 4, 6, 8
and 10 real images of 12 objects over 10 random trials using Our(MC),
RPCA and Baseline

outperforms both RPCA and Baseline on all 12 objects for
four images and 10 out of 12 objects for six images. This
shows that also in terms of surface normal reconstruction
error our algorithm outperforms RPCA and Baseline when
fewer images are available (Fig. 8).

In Fig. 9 we compare the error in surface reconstruc-
tion between Baseline, RPCA and Our(MC) on some of
our real-world examples. Figure 10 shows two views of
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shown in Eq. 17 (left). Convergence of TNN regularized cost function
as shown in Eq. 16 (right)

surfaces reconstructed using Our(MC) algorithm using four
images, showing reasonable surface reconstruction. These
results suggest that our joint approach to enforcing rank and
integrability constraints can significantly improve the perfor-
mance of photometric stereo in the presence of a few images.

In general, we see that incorporating matrix completion
into our formulation results in a slight improvement, with
Our(MC) somewhat outperforming Our(NC). This indicates
that the improvement of our method compared to RPCA or
Baseline is mostly due to the joint optimization formula-
tion and not due to matrix completion. We further note that

RPCA seems to significantly improve over Baseline. RPCA
is able to identify outliers and use that extra information for
better recovery. This also suggests that the robust error func-
tion used by RPCA is important. However, our integrated
approach, which does not have a robust cost function like
RPCA, still outperforms RPCA for four and six images and
is almost equal for eight or ten images. This shows that an
integrated approach is very useful for a small number of
images and provides similar gain compared to RPCA for
more images. It would be an interesting topic of future work
to amend the cost function of Our(MC) to include RPCA’s
robust handling of error, to see if this further improves its
performance.

5.2.2 Non-Lambertian Objects

We also test our method on 8 objects of a non-Lambertian
objects dataset [26]. We compare our method with RPCA
and Baseline. For each object we choose five different ran-
dom sub-samples to 4, 6, 8, 10, 15, 20, 30 and 40 images.
In Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 we show the results
of Our(MC), RPCA and Baseline for different number of

Fig. 9 Reconstruction error |ZT − Zrec| for Baseline, RPCA and Our(MC) on “Cat,” “Owl,” “Pig” and “Hippo” shown in each row. The left
column shows results for four images, the right shows results for 10
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Fig. 10 Two views of surfaces reconstructed with Our(MC) algorithm for four images. Each column shows two images of surfaces reconstructed
on “Cat,” “Owl,” “Pig” and “Hippo,” respectively

Table 1 Median surface normal
reconstruction error for four
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 9.46 15.02 11.20 52.88 10.30 43.24 18.38 49.39

RPCA 10.48 11.63 8.37 39.49 8.32 41.86 12.62 42.41

Our(MC) 9.74 9.91 8.50 38.95 8.39 41.00 13.95 42.40

Bold values indicate the best performance among all the competing algorithms

Table 2 Median surface normal
reconstruction error for six
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 7.34 13.02 7.73 43.35 9.11 36.83 15.22 46.74

RPCA 7.02 10.68 7.23 39.98 7.77 34.78 12.18 39.68

Our(MC) 6.75 9.03 7.41 39.61 7.34 33.96 11.91 38.96

Bold values indicate the best performance among all the competing algorithms

Table 3 Median surface normal
reconstruction error for eight
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 7.01 12.73 7.86 38.39 8.83 36.20 14.76 45.61

RPCA 6.68 10.78 7.49 36.36 7.71 31.11 12.11 39.84

Our(MC) 6.30 9.13 7.63 33.60 7.27 30.40 11.06 39.37

Bold values indicate the best performance among all the competing algorithms

Table 4 Median surface normal
reconstruction error for ten
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.99 12.56 8.18 36.46 8.41 35.07 14.72 45.25

RPCA 6.64 10.88 7.76 35.19 7.66 32.55 12.69 39.75

Our(MC) 6.18 9.19 8.15 31.48 7.73 32.02 11.38 39.45

Bold values indicate the best performance among all the competing algorithms

Table 5 Median surface normal
reconstruction error for 15
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.99 11.95 7.85 45.11 7.86 31.29 15.27 43.52

RPCA 6.61 11.03 7.80 34.89 7.49 31.58 13.40 40.50

Our(MC) 5.89 9.36 8.26 30.98 6.71 31.08 11.87 40.55

Bold values indicate the best performance among all the competing algorithms
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Table 6 Median surface normal
reconstruction error for 20
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.81 11.77 7.68 46.55 7.78 30.70 14.87 43.02

RPCA 6.56 11.08 7.76 33.30 7.43 30.17 13.54 40.20

Our(MC) 5.78 9.52 8.34 31.40 6.91 29.49 11.74 40.70

Bold values indicate the best performance among all the competing algorithms

Table 7 Median surface normal
reconstruction error for 30
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.73 11.76 7.92 46.01 7.89 30.48 14.42 40.42

RPCA 6.63 11.32 8.05 32.71 7.59 33.65 13.46 38.95

Our(MC) 5.68 9.72 8.55 31.96 6.89 32.59 11.69 38.22

Bold values indicate the best performance among all the competing algorithms

Table 8 Median surface normal
reconstruction error for 40
images

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.70 11.80 7.74 44.46 7.90 30.89 14.14 39.75

RPCA 6.69 11.44 7.92 34.05 7.64 29.05 13.39 38.84

Our(MC) 5.58 9.83 8.37 31.71 6.56 27.62 12.01 38.28

Bold values indicate the best performance among all the competing algorithms

Table 9 Median surface normal
reconstruction error for all (96)
images (We set RPCA
parameter to 0.5)

Algorithms Cat Buddha Bear Goblet Pot1 Reading Cow Harvest

Baseline 6.60 11.58 7.34 43.98 7.94 31.18 13.99 39.55

RPCA 6.32 10.80 7.19 32.27 6.92 27.08 11.93 38.27

Our(MC) 5.34 9.14 7.55 32.68 5.18 27.06 12.01 38.60

Bold values indicate the best performance among all the competing algorithms

images. The results show that our method is also robust in
the presence of non-Lambertian objects.

The result shows that Our(MC) consistently performs
better than Baseline and RPCA. Even for large number of
images, like 96, Our(MC) improves over RPCA by 6.19%
on average over all objects in the dataset.

For an image of size 512×340with an object occupying an
area of 30K pixels, our algorithm takes 20 min on a 2.7GHz
Intel Core i5 machine. In Fig. 8 we show a typical sample
convergence graph for our ADMM algorithm which solves
the optimization problem (17) on the left and the convergence
graph for TNN-ADMM algorithm which solves our original
optimization (16) on the right. We empirically observe that
ADMM converges to a local minimum. Since the problem
is non-convex there is no guarantee of convergence to the
global minimum.

6 Conclusion and Future Work

In this paper we have introduced a new low-rank constrained
optimization method for solving uncalibrated photometric
stereo using fewer images. The key to this approach is to
combine rank and integrability constraints in a single opti-
mization problem. This relies on a novel formulation that

exposes both depth and surface normals to the optimiza-
tion, linking them with an integrability constraint. We then
show how to perform this optimization using a truncated
nuclear norm and ADMM. Our joint formulation produces
better solutions, compared to othermethods that use SVD, for
fewer images.We have shown promising results compared to
Baseline approaches using both real and synthetic examples.
We also observe that our method can handle certain degrees
of model irregularities as it has outperformed RPCA in syn-
thetic examples with specularities generated using the Phong
model.

In the future, it will be interesting to apply the idea of
Robust PCA to our formulation.Wewould also like to extend
thiswork to handlemore general lighting configurations, e.g.,
using spherical harmonic approximations to lighting.
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