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Abstract We introduce a new algorithm that allows the
detection of line segments, contours, corners andT-junctions.
The proposed model is inspired by the mammal visual sys-
tem. The detection of corners and T-junctions plays a role
as part of the process in contour detection. This method
unifies tasks that have been traditionally worked apart. An
a-contrario validation is applied to select the most meaning-
ful contours without the need of fixing any critical parameter.

Keywords Contour detection · Line segment detection ·
Visual system · A-contrario validation

1 Introduction

Contour, corner and T-junction detection in digital images is
a fundamental problem in computer vision. These features
provide important and necessary information for more com-
plex tasks as object detection and segmentation [27], object
recognition [31] and depth ordering [12,36], among others.
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The detection of contours and corners has been an inten-
sive research area since the pioneering works by Canny [9]
and Harris [23]. The Canny contour detector models edges
as sharp discontinuities in the brightness, adding nonmax-
imum suppression and hysteresis thresholding steps. The
use of anisotropic kernels [46,50] or local thresholding [43]
has been proposed to overcome some of Canny’s algorithm
limitations. Structure tensor-based methods have been used
for contour identification. For instance, Köthe [30] jointly
computes edges and corners from the defined tensor. More
complete image representations, as the response to a fam-
ily of filters at different scales and orientations, have been
considered to improve the detection [18,40]. More recent
approaches take into account color and texture information
and make use of learning techniques [2,34].

A particular instance of contour detection is line segment
detection. Most algorithms use the edge information to iden-
tify line segments. Pixels are either grouped in the image
plane if they lie in the same direction [8,22] or accumulated
in a parametric space using methods based on the Hough
transform [1,19].Acombination of these techniques has been
proposed by Nieto et al. [37].

The corner detector introduced by Harris [23] is widely
used as a feature detector. Thismethod analyzes thematrix of
local derivatives around each point. It is neither able to iden-
tify the geometry around corner points, nor to differentiate a
corner of a T-junction. For that reason, it is commonly used
as a general feature detector and has been thoroughly studied
and improved [16,29]. More recent methods identify corners
as points, lying on a detected boundary or edge, which have a
high curvature [33,35]. In [35], an additional analysis on dif-
ferent scales is performed to achieve an accurate localization.
Other methods analyze the principal directions of directional
derivatives on contours [47,49].
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The aim of this work is to jointly identify contours,
line segments, corners and T-junctions. It is inspired by
the first stages of the mammal visual system. Hubel and
Wiesel [25,26] studied the organization and functionality
of the primary visual cortex (V1) in macaques. The authors
characterized the functionality of the neurons in V1, their
interaction and its relationship with their spatial organization
in the visual cortex. In the particular case of the hypercolumn
system of the V1, proximity in the system relates to spatial
closeness in the view and similar dominant orientation. The
basic operations made by the neurons in V1 are equivalent to
directional derivatives of the image. The same calculations
were also themain atom suggested for representing images in
Field et al. [17]. They also appear naturally in image process-
ing when computing an Independent Component Analysis
(ICA) of image patches [4]. The introduction of normaliza-
tion on patch space before applying ICA [32] makes high
level features appear, for example corner detectors.

The second motivation for this work is using the a-
contrario validation, introduced into digital imaging by
Desolneux, Moisan and Morel [13]. The authors defined
those geometrical configurations that cannot be observed by
chance as meaningful. Desolneux et al. [14] applied this for-
mulation for the detection of contrasted boundaries and Cao
et al. [10] for detecting good continuation of contours. In both
cases, the level lines of the image are employed as potential
candidates to be meaningful edges or contours. The Line
Segment Detection algorithm (LSD) [21] performs state-of-
the-art line contour detection using the a-contrario validation.
This algorithm groups close pixels sharing a similar orien-
tation. Thus, it is valid only for detecting line segments or
short edges. An extension of LSD was introduced in [39] to
detect elliptic arcs by joining small segments. A-contrario
validation has shown to be effective for hierarchical image
segmentation, Cardelino et al. [11], and for T-junction detec-
tion, Xia et al. [48]. For junction detection, a measure is
associated with each candidate depending on the number and
strength of gradient branches meeting the point. A meaning-
ful analysis on this measure permits to select the detected
junctions.

We propose a new method capable of dealing efficiently
with line segment and contour detection, as well as corner
and T-junction identification. Traditionally, these tasks are
performed independently and with a very different formula-
tion. Since these features are complementary, we believe that
a unified procedure should identify all at once. Indeed, cor-
ners andT-junctions separate continuous curves into different
edges, and edges are the main feature used for identifying
corners and T-junctions. In [41,42], the authors build junc-
tion and symmetry detectors based on 2D steerable wavelets.
Their algorithm is able to detectM-fold junctions in different
scales and orientations. The work in [42] is the most similar
to ours, in the sense that it permits to detect junctions and

contours at the same time. Indeed, edges are detected as a
particular case of M-fold junctions with M = 2. The main
purpose of [42] is the detection of M > 2 folds; for M = 2
edges are not differentiated from corners. While their algo-
rithm detects junction points, our aim is to group pixels with
a continuity in orientation, giving as output entire contours,
clearly differentiated from corners.

Our approach groups spatially close pixels which share
a similar orientation. These two notions are embedded in a
3D system that computes the response to an oriented filter
for each particular pixel position (x, y) and orientation θ .
This representation depends on a prefixed scale σ . The the-
oretical analysis of such 3D system has been performed by
Sarti et al. [44,45] and Zucker et al. [5,6]. However, no spe-
cific implementation for contour detection exploiting such a
structure has been accomplished yet. We also investigate the
geometric relationships among curves using this representa-
tion, startingwith parallelism. The detection of orthogonality
and amodal completion will be the object of future research.

The paper is organized as follows. In Sect. 2, the detection
algorithm is introduced, and the a-contrario validation is elab-
orated along Sect. 3. A comparison between our method and
state-of-the-art contour and segment detection is discussed
in Sect. 4. Finally, Sect. 5 contains a brief summary with the
main conclusions and relevance of this work.

2 Detection Algorithm

The algorithm is divided into two parts. The first part builds
and processes the responses of the image to several oriented
filters. The responses are organized in a 3D volume depend-
ing on the pixel coordinates and the orientation of the filter.
We call this 3D volume the cube. Then, inhibition and fil-
tering stages help to enhance the structures. The second part
is a grouping process in the cube which identifies contours,
corners and T-junctions. Figure 1 shows a block diagram of
the algorithm.
Orientation response The first stage of the algorithm is the
convolution, at each scale σ , of the image with several direc-
tional filters. We compute dσ (x, y, θ): the response of the
image u at any point (x, y) to the directional derivative of a
Gaussian of standard deviation σ . The direction is indicated
by the angle θ ∈ [0, 2π ], meaning that directions with a dif-
ference of π are taken as different, even when their response
at a particular pixel differs only in the sign. We retain only
positive values,

dσ (x, y, θ) ← max
(
0, dσ (x, y, θ)

)
,

and the 2π range is sampled with p different angles.
In order to reduce the computational cost of the detec-

tion algorithm, only points having dσ (x, y, θ) larger than a
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Fig. 1 Block diagram of the novel algorithm

certain threshold τ are retained. Generally, we are able to
distinguish a contour when its gradient is larger than 8, for
images with range in [0, 255]. In order to be conservative,
we set this threshold to a low value τ = 2.5. Flat points are
thus easily discarded, making the algorithm faster, thanks to
the reduction in the number of points for which the further
processing must be applied.

The responses at each scale are processed independently.
That is, interactions only occur in a 3D volume of fixed scale
σ . The data organization is similar to the hypercolumn geom-
etry of the V1 visual cortex [38]. Close points in the volume
have close pixel coordinates and similar orientation. This
permits to combine points with similar orientation and pixel
coordinates by 3D convolution.

Lateral inhibition The next step is to identify meaningful
points to be candidates for edges. This is achieved by a lat-
eral inhibition process. That is, we suppress the points that
have lateral neighbors with larger responses. Lateral inhibi-
tion is a pervasive mechanism in the visual nervous system
[38]. The aim of this step is to reduce lateral redundancy by
selecting the set of points that best follow the ridge of the
edge. Again, each scale σ is processed separately. A point
(x, y, θ) is retained only if

dσ (x, y, θ) > e− (x−x ′)2+(y−y′)2
8σ2 · dσ (x ′, y′, θ ′)

for (x ′, y′, θ ′) in the lateral neighborhood as shown in Fig. 2
(center). The lateral neighborhood is defined as

{(x ′, y′, θ ′) | |d · θ | > |d · θ⊥| and |θ − θ ′| < θ0},

where d = (x − x ′, y − y′) and θ0 is fixed empirically to 15
degrees. This lateral neighborhood is the complementary of
the association field well studied in visual perception. The
neurones in the association field enforce the response of the
current one, while neurones in the lateral field inhibit its
response. A simplified scheme is provided in Fig. 2. In prac-
tice, the association and inhibition fields form a 3D structure
in the cube, since they might react to different orientations.

Retained points are set to one and nonretained ones to
zero. The response to the oriented filter is no longer used.
This means the contrast information is not considered for
detecting contours apart from the initial threshold. We will
denote the output of this process by d thσ (x, y, θ).
Filtering/density computation After the inhibition process,
points in the cube mutually reinforce by averaging their
responses. We want responses to interact if they are linked
by the association field displayed in Fig. 2 (left). The exact
solution leads to the computation of geodesics in a spacewith
sub-Riemannian geometry [44,45].

Association field

Fig. 2 Left: association field. Right: inhibition or lateral field. For each
reference point, neighbors in its association field reinforce its response
while the ones in the inhibition field cancel it. Points in the association
field share a similar orientation and are spatially located according to
this direction
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Two points (x0, y0, θ0) and (x1, y1, θ1) are linked if ori-
entations θ0 and θ1 are similar, pixel coordinates (x0, y0) and
(x1, y1) are close and the segment joining them has similar
orientation to θ0. We write such an operation as a linear con-
volution in the cube. Each point of the cube is convolvedwith
a 3D Gaussian oriented according to the current point orien-
tation. Since this operation is separable, each 2D component
(·, ·, θ) is convolved with a directional Gaussian kernel of
orientation θ . The resulting response is filtered with a 1D
convolution in the third dimension θ .

Since (d thσ (x, y, θ)) has only zeros and ones, the output of
the current filtering stage can be interpreted as an anisotropic
local density around each point. We will denote the output
of this process by d f

σ (x, y, θ).

High curvature point detection We define a high curvature
point as a pixel that responds meaningfully to a representa-
tive set of orientations. For each pixel coordinate (x, y), we
compute the indicator function,

Γσ (x, y) = ∣∣{θ | d f
σ (x, y, θ) > γ }∣∣.

Recall that the orientations were quantized into p different
values. The compared response is obtained after the inhi-
bition and filtering processes; after these two stages, only
meaningful orientations have a nonzero value, so γ is set to
a small value, γ = 0.01.

The indicator function Γσ (·, ·) is convolved with a 2D
Gaussian of standard deviation σ . The high curvature points
are defined as local maxima of this convolved image and
larger than a certain threshold parameter ρ. This parameter
is proportional to the sampling rate of the [0, 2π ] orientation
range, actually ρ = 0.3p. That is, a point has to respond to
at least the 30% of directions to be considered as possible
corner. This percentage is fixed experimentally.

The detection of corners and T-junctions is by itself one
of the objectives of our algorithm. In addition, it will serve as
part of the contour integration algorithm. Contours will not
be allowed to pass through a corner/T-junction, thus stopping
the groupingof points in the cube. The analysis on the number
of edges arriving at a particular high curvature point permits
to differentiate between corners and junctions.

Second lateral inhibition The same inhibition process of the
first stage is now computed on the local densities d f

σ to obtain
d p
σ . With this second inhibition, the prominent points are
detected, highlighting the skeleton of each contour.
Grouping A 5 × 5 × 5 connectivity grouping is applied to
the output of the previous inhibition stage. The detected
corners/T-junctions serve to stop the grouping process, thus
separating a contour in two edges if it goes through a high
curvature point.

Finally, only long enough contours are retained as mean-
ingful. A threshold λ on the length must be applied. Figure 3

λ = 0

λ = 10

λ = 25

λ = 50

σ = 1 σ = 2 σ = 3

Fig. 3 Comparison of detection for different length parameters λ and
different scales σ

illustrates a detection example for different threshold values
and scales. As one can see, this length-based threshold turns
out to be the main parameter of the algorithm. The next sec-
tion describes an a-contrario formulation for automatically
selecting such threshold considering the length and density
of points of each curve.

Corner update and T-junctions We retain only the points
identified with high curvature when at least two detected
curves of different orientation join in them. At this point,
we can differentiate between corners and T-junctions based
on the number of different edges arriving at a high curva-
ture point. More than two arriving contours with different
orientations indicate a junction.
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Once we updated the high curvature points, we re-apply
the grouping algorithm with the updated high curvature
points mask.

3 A-Contrario Validation

This section describes the statistical setting used to automat-
ically select the relevant curves, that is, getting rid of the
threshold on the curve length.

We follow the a-contrario framework introduced in [13]
and developed further in [15]. This method is based on
the nonaccidentalness principle, according to which, an
observedgeometric structure is perceptuallymeaningful only
when its expectation is low under random conditions. This
principle guarantees the absence of false positives in the fol-
lowing weak sense: Only one false detection would be made
on average in a white noise image of the same size. For the
control of the expected number of false detections, a geomet-
rical structure is validated only when a test rejects the noise
hypothesis. Because a big amount of structures are tested, we
need to consider the problem of multiple testing, well known
in statistics [24]. The a-contrario setting corresponds to the
formulation of Gordon et al. [20].

We use the length of the curve and the computed density
at each point to compute the meaningfulness of a curve. The
density d f

σ (x, y, θ) implicitly encodes the local curvature.
The result is compatible with the fact that one generally per-
ceives line segments asmore important than curved contours.

The closest approach to ours is the one introduced by
Desolneux et al. [14]. The authors proposed an a-contrario
method for contour extraction based on the contrast of the
level lines. The meaningfulness of a level line depends on
the magnitude of the gradient of their points, |∇u(x, y)|. The
gradient of pixels at a distance larger than twowas assumed to
be independent. Then, the probability that all points in a line
of length l have a contrast larger thanμ is H(μ)l . Here H(μ)

is the probability for a point on any level line to have a con-
trast larger than μ. An important issue arising in a-contrario
validations is the choice of the null hypothesis distribution
H(μ). This distribution can be given beforehand or estimated
from the image itself. The authors of [14] decided to learn this
probability from the image itself computing the histogram of
|∇u(x, y)|.

Our meaningfulness approach will be based on the
grouped curves and will depend on the evaluated density
instead of the contrast. In contrast to Desolneux et al. [14],
an a priori probability distribution will be used for the null
hypothesis.

3.1 A Priori Model

It seems appropriate to define the a priori noise model H(μ)

computing the density d f
σ (x, y, θ) on a noise sample image.

This a priori probability must be estimated for each scale at
which contours will be evaluated. In order to do so, we first
generate a noise image of large size (we used an image of
width and height equal to 2048). We then apply the inhibi-
tion/filtering strategy introduced in Sect. 2. In order to make
the process independent of the noise standard deviation, we
set τ = 0. This means we compute the density for all points
in the cube.

Finally, we compute the histogram of the density of
nonzero points. The values are normalized by the total
number of points with nonzero density. The accumulated his-
togram gives a valid estimate of Hσ (μ).

3.2 Detection

Our model does not require the whole curve to have large
density. Such assumption would suppress many meaningful
curves, because the density decreases near its end points.
Instead, we count the number of points for which the contrast
is higher than a given threshold μ.

Given a curve L of length l and a density threshold μ, the
number k will be evaluated as

k = #{(x, y, θ) ∈ L : d f
σ (x, y, θ) ≥ μ}.

Theprobability P of observing one suchpoint under the noise
hypothesis is P = Hσ (μ). Given the independence assump-
tion, the probability of observing at least k of such points is
given by the tail of a binomial distribution of parameter P:

B(l, k, P) =
l∑

i=k

(
l

i

)
Pi (1 − P)l−i .

We define then the quantity

NFA(L) = NT · B
(
l, k, Hσ (μ)

)
,

where NT is the number of tests to be performed and corre-
sponds to the Bonferroni correction term in multiple testing
[20]. The NFA(L) is an upper bound to the expected num-
ber of detections under the noise model. The larger the NFA
value, the more common it is to observe by chance a curve
similar to L in the noise model, making it less interesting.
Inversely, a curve with small NFA value does not appear fre-
quently in noise images and would require a rare accident to
be observed. When the NFA(L) < ε, the curve is validated.
It can be shown [15,20] that this formulation guarantees on
average no more than ε detections on noise. As it is common
in the a-contrario literature, wewill set ε = 1, since obtaining
one or less false detections per image is a good compromise.

In this formulation, one needs to choose the value of μ.
Instead of selecting a particular value, we propose to test
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several values μi . A curve will be declared valid if its NFA
is less than ε for any of the μi . Formally, this is equivalent to
increasing the number of tests, so NT must bemultiplied by a
factor M corresponding to the number of testedμ. We do not
choose arbitrary values forμ; we rather fix probability values
Pi and derive the corresponding μi from Pi = Hσ (μi ). We
selected the values {0.1, 0.2, 0.3, 0.4, 0.5} for Pi .

To complete the formulation, we need to specify the num-
ber of tests NT . This value depends on the scale parameter
σ . The proposed inhibition stage limits the distance between
detected curves, thus reducing the area of the image that can
be occupied by a contour. This suggests that the number of
tests can be written as N2

κσ 2 , N being the number of pixels in
the image. We chose κ = 4, as the exact theoretical number
of curves is not computable. This number of tests is multi-
plied by M , the number of tested probabilities yielding the
family of tests

M · NT · B
(
l, k, Hσ (μi )

)
< ε.

for i = 1, . . . , M . To conclude the process, the corners are
updated and the grouping applied again, replacing the length
criterion by the above-mentioned a-contrario validation.
Computational complexityWe cannot estimate the complex-
ity of the algorithm. It depends on the image being processed
since only contrasted points are taken into account dur-
ing the detection. The most time-consuming parts are the
lateral inhibition and the directional filtering, having order
O((4σ + 1)2 p) for each point in the cube, where p is the
number of different orientations. If all points in the cube
were processed, the total complexity would be of the order
O((4σ+1)2 p2N ), N being thenumber of pixels in the image.
The algorithm is, however, highly parallelizable, which is
indeed the strategy applied in the visual cortex. The execu-
tion time for a 600 × 500 natural image, as those in Fig. 9,
with σ = 2 is in average 20 s in a 3.3 GHZ 6-Core Intel
Xeon.

4 Experimentation and Discussions

We illustrate the performance of the proposed algorithmwith
different tests. We evaluate and compare our approach with
state-of-the-artmethods for contour andT-junctiondetection.
We also study the property of parallelism among the detected
contours.

4.1 Contour Detection

The performance of the a-contrario validation is illustrated
in Figs. 4 and 5. We compare this criterion with the length-
based thresholding of the grouped curves. For low values of

the length threshold, spurious curves are detected, whereas
for larger values, short, but well-contrasted line segments
are missed. The length-based criterion may also validate
long grouped curves created by chance in noisy parts of the
image. The nonregularity of these curves, interpreted as a
fast change in curvature, allows to discard these false detec-
tions. This feature is implicitly considered by the a-contrario
validation. Indeed, slowly varying curvatures are associated
with large density values. In such a scenario, segments or
slightly varying curves of the same length will be detected
by the a-contrario criterion, while false alarms in noise will
be discarded.

Figure 6 displays the application of the current algorithm
at several scales σ = 1, 1.5, 2, 2.5, 3. The detected curves
are nearly identical for all the scales tested. A unified visu-
alization is proposed by drawing all detected curves at the
same scale with the same color and width proportional to
the value of σ . Small scales are displayed in the foreground,
while larger scales are drawn thicker in the back.

Figure 7 compares our detector with Köthe [30], Desol-
neux et al. [14] and the LSD [22] on figures from Gestalt
experiments. The approach by Desolneux et al. [14] identi-
fies well-contrasted pieces of image level lines as contours.
An image contour may create many close parallel level lines.
In such case, this algorithm represents the contour bymultiple
lines. Since regularity is not taken into account, false detec-
tions are distinguished in noisy regions. Köthe [30] detects
edges and junctions with a structure tensor. The detected
edges are irregular and not well defined. LSD [22] is a line
segment detector. The method correctly identifies straight
contours, but curves are rendered as a chain of small line
segments. The proposed method (σ = 2) extracts all the
relevant information, keeping curves as such. It also detects
corners (red dots) and junctions (blue dots).We display these
features since they take an active part in our curve detection
algorithm.

Figure 8 compares our method with the state of the art
[2,14,22,30] on several natural images. Arbeláez et al. [2]
bring together all contour identification cues in a single strat-
egy. This algorithm, as well as Köthe’s algorithm [30], needs
to fix a threshold on the estimated contour density, thus iden-
tifying candidate points rather than complete structures. The
rest of the algorithms provide a contour description. Due to
these different contour representations, the algorithms are
not directly comparable. Nevertheless, all results show sim-
ilar detections at roughly the same regions of the images.

Finally, we have evaluated our method on the dataset with
annotated ground truth edges introduced by Bowyer et al. in
[7]. Figure 9 compares the proposed model with Canny [9]
and Köthe [30] edge detectors. Our method shows to be less
sensitive to texture oscillations and has very few false detec-
tions compared to the other two methods. The contour image
provided by our approach is more similar to the ground truth.
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Fig. 4 Comparison of detection with fixed length and a-contrario
methodwith scale parameterσ = 2.0. From left to right: original image,
length threshold λ = 0, 10, 50 and a-contrario validation. This figure
illustrates the need to get rid of the length parameter. For too small

values of this threshold, spurious curves are detected while for larger
values short, but well-contrasted segments are not detected. The use of
the a-contrario validation allows to remove spurious short curves while
maintaining meaningful short segments

Fig. 5 Comparison of detection with fixed length and a-contrario
method with scale parameter σ = 2.0. From top to bottom and left
to right: original image, length threshold λ = 0, 10, 50 and a-contrario
validation. Spurious contours created by noise are detected if a length
criterion is used. Long curves might be created in nearly constant areas
by chance. Fixing a threshold on contrast or length does not contribute
to get rid of these false detections. The nonregularity of these curves,

interpreted as a fast change in curvature, actually allows to discard these
detections. This is naturally performed by our directional density com-
putation, since slowly varying curvatures associate with larger density
values. In such a scenario, for the same length, segments or slightly
varying curves will be detected, while false alarms in noise will be
discarded

Fig. 6 Joint visualization of different scale detection. Top: original
image and unified visualization of detection for scalesσ = 1, 1.5, 2, 2.5
and 3. Bottom: detection for each of the scales. The unified visualiza-

tion of all scales is achieved by drawing all detected curves at the same
scalewith the same color andwidth proportional to the value ofσ (Color
figure online)
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input image Desolneux et al. [14] Köthe [30] LSD [22] proposed method

Fig. 7 Comparison with three structure detectors on figures from
Gestalt experiments. Desolneux et al. [14] aim at detecting well-
contrasted contours by selecting parts of image level lines, but one
obtains some spurious curves andmost contours are represented bymul-
tiple level line segments. Köthe [30] detects edges and junctions from
a structure tensor, with no distinction made between corners and junc-

tions. The detected edges are irregular and not well defined. LSD [22] is
a line segment detector, and therefore, curved contours are rendered as
a chain of line segments. The proposed method extracts all the relevant
information, keeping curves as such, while also detecting corners (red
dots) and junctions (blue dots) (Color figure online)

input image Desolneux et al. [14] Köthe [30] Arbeláez et al. [2] LSD [22] proposed

Fig. 8 A comparison of the proposed method (σ = 2) with the detection of contrasted level lines [14], Köthe [30], Arbeláez et al. [2] and LSD [22]
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proposed]03[ehtöKCanny [9]ground truthinput image

Fig. 9 Visual results on the Bowyer et al.’s dataset [7]
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Fig. 10 Quantitative comparison with Canny [9]. Aggregated ROC
curve using the 50 images of the Objects dataset from [7]. A ROC
curve standing to the lower left of another curve is preferred

A quantitative comparison with Canny [9] is illustrated in
Fig. 10. The empirical ROC curve proposed in [7] is plot-
ted using the 50 images of the Objects dataset. The curve
represents, at different parameter settings, the points (%
Unmatched GT edges, % FP edges). These are,

%Unmatched GT edges = 1 − CTP

CP
, %FP edges = CFP

CN
,

whereCTP stands for true positives,CP for positives,CFP for
false positives and CN for negatives. The different parame-
ters are selected to vary the sensitivity of the result. In Canny,

these parameters are the scale and lower and upper thresh-
olds. In our method, the sensitivity can be adjusted by tuning
the minimum contrast τ , the allowed number of false alarms
ε and the scale σ . Under this format, the ideal point is (0, 0)
and a ROC curve standing to the lower left of another curve
is preferred. As shown in Fig. 10, our method yields better
results than Canny in terms of ROC curve.

4.2 Corner and T-Junction Identification

In Fig. 11, we compare our corner and junction detection
algorithmwith the classical Harris detector [23], thewavelet-
based detection by Püspöki et al. [42], the a-contrario
algorithm by Xia et al. [48], the curvature scale space (CSS)
method by Mokhtarian et al. [35] and the structure tensor
approach by Köthe [30]. The Harris, CSS and Köthe meth-
ods do not differentiate corners from junctions. For that
reason, we plot all their detections in red. The detector pre-
sented in Püspöki et al. [42] aims at the identification of
M-fold junctions: M = 2 corresponds to an edge, M = 3
depicts a T-junction, M = 4 goes for an X-junction, etc. It
therefore does not distinguish between edges and corners as
both are twofold symmetries. Then, for this method we only
plot results with M > 2 and all its detections are in blue.
Our method, as well as Xia et al.’s, additionally differenti-
ates T-junctions from X-junctions. For simplicity, we plot
all junctions detected by these methods in blue. Harris and
CSS algorithms identifymany false corners, whereasKöthe’s
method misses many feature points in the second example of
the figure. Püspöki et al.’s approach produces many false
detections, essentially at edge points, with a low amount of
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Fig. 11 Corner and junction detection. Junctions are plotted in blue while corners are plotted in red. From left to right, top to bottom: original
image, Harris detector [23], CSS [35], Köthe [30], Püspöki et al.’s [42], Xia et al.’s [48] and the proposed method (Color figure online)
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Fig. 12 Set of images considered for quantitative evaluation on corner
detection

true positives in both images. Xia et al.’s algorithm produces
some false positives at high curvature points. The proposed
method does not have any false positive and identifies nearly
all corners and junctions.

We test the robustness of our method to noise and geo-
metrical deformations using the average repeatability and
localization error measures proposed in [3].We initially con-
sider seven images (see Fig. 12) from which we create two
different datasets. The first set is obtained by rotating each
image at angles from − 90◦ to 90◦ with steps of 10◦. This
procedure provides 18 test images for each initial one. For the
second dataset, we add zero-mean white Gaussian noise with
variances ranging from 0.005 to 0.05 with steps of 0.005 (for
images in range [0, 1]), creating ten additional noisy images.

Let No be the total number of detected corners in the initial
image, Nt the number of detected corners in a test image and
Nr the number of repeated corners (detected in both initial
and test images). Then, the average repeatability is defined as

Ravg = Nr

2

(
1

No
+ 1

Nt

)
.

An average repeatability equal to one means that all corners
detected in the original image have also been detected in
the test image. Besides, the localization error stands for the
distance between repeated corners:

Le =
√√√√ 1

Nr

Nr∑

i=1

(xoi − xti )2 + (yoi − yti )2,

(xoi , yoi ) and (xti , yti ) being the pixel positions of the
repeated corner i in the initial and test images, respectively.
Notice that the initial corners are rotated using the same
parameters to compute these measures. A maximum pixel
distance of 3 is set as valid to consider a corner repetition.
Figure 13 reports the performance of the proposed method
in comparison with Harris [23], Köthe [30], CSS [35] and
Xia et al. [48] detectors. Figures 14 and 15 detail the repeata-
bility and localization error measures for each value of the
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Fig. 13 Quantitative evaluation of the proposed corner detector com-
pared to Harris [23], Köthe [30], CSS [35] and Xia et al. [48]. Average
repeatability (left) and localization error (right) under white Gaussian
noise and rotations
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Fig. 14 Comparison between the proposed method and Harris [23],
Köthe [30], CSS [35] andXia et al. [48], for corner detection evaluation.
Left: average repeatability. Right: localization error under rotation with
different angles
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Fig. 15 Comparison between the proposed method and Harris [23],
Köthe [30], CSS [35] andXia et al. [48], for corner detection evaluation.
Left: average repeatability. Right: localization error under zero-mean
white Gaussian noise with different variances

tested rotation and noise parameters. Our method performs
the best in terms of repeatability while being competitive in
localization error under both noise and rotation.

4.3 Identification of Parallel Curves

We study the notion of parallelism among the set of detected
contours C , |C | = n. Notice that any curve c ∈ C belongs to
the three-dimensional cube, that is, each point x ∈ c actually
writes as x = (x, y, θ) .

Let us define δ̂ : C × C → R+ the distance between two
curves as

δ̂(c1, c2) = max
(
δ(c1, c2), δ(c2, c1)

)
,

c1, c2 ∈ C being curves of length l1 and l2, respectively, and
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Fig. 16 Example for identification of parallel curves. Curves represented with the same color are detected as parallel by our algorithm. We used
η = 5 for all the experiments (Color figure online)

δ(c1, c2) = 1

l1

∑

x1∈c1
min
x2∈c2

‖x1 − x2‖2.

with

||x1 − x2||2 = ||x1 − x2||2 + ||y1 − y2||2 + ||θ1 − θ2||2.

For each pair of curves ci, cj ∈ C of lengths li and l j ,
respectively, with i, j = 1, 2, . . . , n, i �= j , we compute

the barycenter of the points forming the curve taking into
account only spatial coordinates. That is,

bci = 1

li

∑

(x,y,θ)∈ci
(x, y) and bcj = 1

l j

∑

(x,y,θ)∈cj
(x, y).

Now, we translate the curve ci by the vector v =
(bcj−bci , 0). We then consider the translated curve Tci =
ci + v. Note that if curves ci and cj are parallel, Tci and cj
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will be the same curve. Therefore, we will say that curves ci
and cj are parallel if the distance between Tci and cj is lower
than a certain threshold, i.e.,

δ̂(Tci, cj) < η,

with η > 0. Curves are compared in the three-dimensional
system; this means taking into account the orientation, even
when only the spatial coordinates are shifted.

Figure 16 illustrates the detection of curve parallelism
with several examples. We have used a value of η = 5 for all
the images. Parallel curves are plotted using the same color.
The algorithm performs correctly for both line segments (see
a–e) and circular contours (see a, d, e). Notice that line seg-
ments with the same orientation and different length are not
identified as parallel, since the distance implicitly takes into
account the length of the curve. Circular contours with dif-
ferent curvature are neither identified as parallel as illustrated
in (a). The method is also capable of identifying circles of
the same radius; see, for instance, (e).

5 Conclusion

We proposed a method for joint contour, corner and T-
junction detection on digital images. Inspired by themammal
visual cortex, a 3D space is computed integrating the spa-
tial and orientation information. After lateral inhibition and
filtering steps, a unified grouping process in the 3D space
extracts contours, corners and T-junctions. An a-contrario
validation allows to get rid of the main threshold parameter,
resulting in an algorithm that merely depends on the scale of
detection. The experimental results show performances com-
parable to state-of-the-art methods, with the advantage of a
richer structure by the addition of the corners andT-junctions.
Parallelism among detected contours has also been studied.

Future work will concentrate on the integration of con-
tours and corners across different scales. The role of T-
junctions in the occlusion phenomenon and the amodal
completion, introduced by the Gestalt school, represent chal-
lenging/interesting investigations to address [28].
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