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Abstract We conduct a thorough study of photometric
stereo under nearby point light source illumination, from
modeling to numerical solution, through calibration. In the
classical formulation of photometric stereo, the luminous
fluxes are assumed to be directional, which is very diffi-
cult to achieve in practice. Rather, we use light-emitting
diodes to illuminate the scene to be reconstructed. Such
point light sources are very convenient to use, yet they yield
a more complex photometric stereo model which is ardu-
ous to solve. We first derive in a physically sound manner
this model, and show how to calibrate its parameters. Then,
we discuss two state-of-the-art numerical solutions. The first
one alternatingly estimates the albedo and the normals, and
then integrates the normals into a depth map. It is shown
empirically to be independent from the initialization, but
convergence of this sequential approach is not established.
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The second one directly recovers the depth, by formulating
photometric stereo as a system of nonlinear partial differ-
ential equations (PDEs), which are linearized using image
ratios. Although the sequential approach is avoided, initial-
izationmatters a lot and convergence is not established either.
Therefore, we introduce a provably convergent alternating
reweighted least-squares scheme for solving the original sys-
tem of nonlinear PDEs. Finally, we extend this study to the
case of RGB images.

Keywords 3D-reconstruction · Photometric stereo · Point
light sources · Variational methods · Alternating reweighted
least-squares

1 Introduction

3D-reconstruction is one of themost important goals of com-
puter vision. Among the many techniques which can be used
to accomplish this task, shape-from-shading [28] and photo-
metric stereo [64] are photometric techniques, as they use the
relationship between the gray or color levels of the image,
the shape of the scene, supposedly opaque, its reflectance and
the luminous flux that illuminates it.

Let us first introduce some notations that will be used
throughout this paper. We describe a point x on the scene
surface by its coordinates [x, y, z]� in a frame originating
from the optical center C of the camera, such that the plane
Cxy is parallel to the image plane and the Cz axis coin-
cides with the optical axis and faces the scene (cf. Fig. 1).
The coordinates [u, v]� of a point p in the image (pixel) are
relative to a frame Ouv whose origin is the principal point
O , and whose axes Ou and Ov are parallel to Cx and Cy,
respectively. If f refers to the focal length, the conjugation
relationship between x and p is written, in perspective pro-
jection:
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Fig. 1 Schematic representation of the geometric setup. A point x =
[x, y, z]� ∈ R

3 on the scene surface and a pixel p = [u, v]� ∈ R
2 in

the image plane are conjugated according to Eq. (1.1). Equation (2.1)
states that, when the scene is illuminated by a LED located in xs ∈ R

3,
the gray level I (p) of the pixel p conjugated to x is a function of the
angle between the lighting vector s(x) and the normaln(x) to the surface
in x (illuminance), of the angle θ between the principal direction ns of
the LED and s(x) (anisotropy), of the distance ‖x − xs‖ between the
surface point and the light source location (inverse-of-square falloff),
and of the albedo in x (Lambertian reflectance)

⎧
⎪⎨

⎪⎩

x = z

f
u,

y = z

f
v.

(1.1)

The 3D-reconstruction problem consists in estimating, in
each pixel p of a part Ω of the image domain, its conjugate
point x in 3D-space. Equation (1.1) shows that it suffices
to find the depth z to determine x = [x, y, z]� from p =
[u, v]�. The only unknown of the problem is thus the depth
map z, which is defined as follows:

z : Ω ⊂ R
2 → R

+
p = [u, v]� �→ z(p).

(1.2)

We are interested in this article in 3D-reconstruction of
Lambertian surfaces by photometric stereo. The reflectance
in a point of such a surface is completely characterized by a
coefficient ρ, called albedo, which is 0 if the point is black
and 1 if it is white. Photometric stereo is nothing else than an
extension of shape-from-shading: instead of a single image,
the former uses m � 3 shots I i , i ∈ {1, . . . ,m}, taken
from the same angle, but under varying lighting. Consid-
ering multiple images allows to circumvent the difficulties
of shape-from-shading: photometric stereo techniques are
able to unambiguously estimate the 3D-shape as well as the
albedo, i.e., without resorting to any prior.

A parallel and uniform illumination can be characterized
by a vector s ∈ R

3 oriented toward the light source, whose
norm is equal to the luminous flux density.We call s the light-
ing vector. For a Lambertian surface, the classical modeling
of photometric stereo is written, in each pixel p ∈ Ω , as the
following system1:

1 The equalities (1.3) are in fact proportionality relationships: see the
expression (2.12) of I (p).

I i (p) = ρ(x) si · n(x), i ∈ {1, . . . ,m}, (1.3)

where I i (p) denotes the gray level of p under a parallel and
uniform illumination characterized by the lighting vector si ,
ρ(x)denotes the albedo in the pointx conjugate top, andn(x)
denotes the unit-length outgoing normal to the surface in this
point. Since there is a one-to-one correspondence between
the points x and the pixels p, we write for convenience ρ(p)

and n(p), in lieu of ρ(x) and n(x). Introducing the notation
m(p) = ρ(p)n(p), System (1.3) can be rewritten in matrix
form:

I(p) = Sm(p), (1.4)

where vector I(p) ∈ R
m and matrix S ∈ R

m×3 are defined
as follows:

I(p) =
⎡

⎢
⎣

I 1(p)
...

Im(p)

⎤

⎥
⎦ and S =

⎡

⎢
⎣

s1�
...

sm�

⎤

⎥
⎦ . (1.5)

As soon as m � 3 non-coplanar lighting vectors are used,
matrix S has rank 3. The (unique) least-squares solution of
System (1.4) is then given by

m(p) = S† I(p), (1.6)

where S† is the pseudo-inverse of S. From this solution, we
easily deduce the albedo and the normal:

ρ(p) = ‖m(p)‖ and n(p) = m(p)

‖m(p)‖ . (1.7)

The normal field estimated in such a way must eventually be
integrated so as to obtain the depth map, knowing that the
boundary conditions, the shape of domainΩ as well as depth
discontinuities significantly complicate this task [55].

To ensure lighting directionality, as is required by
Model (1.3), it is necessary to achieve a complex optical
setup [45]. It is much easier to use light-emitting diodes
(LEDs) as light sources, but with this type of light sources,
we should expect significant changes in the modeling, and
therefore in the numerical solution. The aim of our work is to
conduct a comprehensive and detailed study of photometric
stereo under point light source illumination such as LEDs.

1.1 Related Works

Modeling the luminous flux emitted by a LED is a well-
studied problem, see for instance [46]. One model which is
frequently considered in computer vision is that of nearby
point light source. This model involves an inverse-of-square
law for describing the attenuation of lighting intensity with
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respect to distance, which has long been identified as a key
feature for solving shape-from-shading [32] and photometric
stereo [12]. Attenuation with respect to the deviation from
the principal direction of the source (anisotropy) has also
been considered [7].

If the surface to reconstruct lies in the vicinity of a plane,
it is possible to capture a map of this attenuation using
a white planar reference object. Conventional photometric
stereo [64] can then be applied to the images compensated
by the attenuation maps [3,40,61]. Otherwise, it is neces-
sary to include the attenuation coefficients in the photometric
stereo model, which yields a nonlinear inverse problem to be
solved.

This is easier to achieve if the parameters of the illumina-
tionmodel have been calibrated beforehand. Lots of methods
exist for estimating a source location [1,4,11,17,22,54,59,
62]. Such methods triangulate this location during a calibra-
tion procedure, by resorting to specular spheres. This can
also be achieved online, by introducing spheres in the scene
to reconstruct [37].Calibrating anisotropy is amore challeng-
ing problem, which was tackled recently in [48,67] by using
images of a planar surface. Some photometric stereo meth-
ods also circumvent calibration by (partly or completely)
automatically inferring lighting during the 3D-reconstruction
process [36–38,44,51,57].

Still, even in the calibrated case, designing numerical
schemes for solving photometric stereo under nearby point
light sources remains difficult. When only two images are
considered, the photometric stereo model can be simplified
using image ratios. This yields a quasi-linear PDE [42,43]
which can be solved by provably convergent front propaga-
tion techniques, provided that a boundary condition is known.
To improve robustness, this strategy has been adapted to the
multi-images case in [38,39,41,56], using variational meth-
ods. However, convergence guarantees are lost. Instead of
considering such a differential approach, another class of
methods [2,8,13,29,34,47,51,69] rathermodify the classical
photometric stereo framework [64], by alternatingly estimat-
ing the normals and the albedo, integrating the normals into
a depth map, and updating the lighting based on the current
depth. Yet, no convergence guarantee does exist. A method
based on mesh deformation has also been proposed in [68],
but convergence is not established either.

1.2 Contributions

In contrast to existing works which focus either on model-
ing, calibrating or solving photometric stereo with near point
light sources such as LEDs, the objective of this article is
to propose a comprehensive study of all these aspects of the
problem. Building upon our previous conference papers [56–
58], we introduce the following innovations:

• We present in Sect. 2 an accurate model for photomet-
ric stereo under point light source illumination. As in
recent works [38,39,41–43,47,48,67], this model takes
into account the nonlinearities due to distance and to the
anisotropy of the LEDs. Yet, it also clarifies the notions
of albedo and of source intensity, which are shown to be
relative to a reference albedo and to several parameters
of the camera, respectively. This section also introduces
a practical calibration procedure for the location, the ori-
entation and the relative intensity of the LEDs.

• Section 3 reviews and improves two state-of-the-art
numerical solutions in several manners. We first mod-
ify the alternating method [2,8,13,29,34,47,51,69] by
introducing an estimation of the shape scale, in order to
recover the absolute depth without any prior. We then
study the PDE-based approach which employs image
ratios for eliminating the nonlinearities [38,39,41,56],
and empirically show that localminima can be avoided by
employing an augmented Lagrangian strategy. Neverthe-
less, neither of these state-of-the-art methods is provably
convergent.

• Therefore, we introduce in Sect. 4 a new, provably con-
vergent method, inspired by the one recently proposed
in [57]. It is based on a tailored alternating reweighted
least-squares scheme for approximately solving the non-
linearized system of PDEs. Following [58], we further
show that this method is easily extended in order to
address shadows and specularities.

• In Sect. 5, we build upon the analysis conducted in [56]
in order to tackle the case of RGB-valued images, before
concluding and suggesting several future research direc-
tions in Sect. 6.

2 Photometric Stereo Under Point Light Source
Illumination

Conventional photometric stereo [64] assumes that the pri-
mary luminous fluxes are parallel and uniform, which is
difficult to guarantee. It is much easier to illuminate a scene
with LEDs.

Keeping this in mind, we have developed a photomet-
ric stereo-based setup for 3D-reconstruction of faces, which
includesm = 8 LEDs2 located at about 30 cm from the scene
surface (see Fig. 2a). The face is photographed by a Canon
EOS 7D camera with focal length f = 35 mm. Trigger-
ing the shutter in burst mode, while synchronically lighting
the LEDs, provides us with m = 8 images such as those of
Fig. 2b–d. In this section, we aim at modeling the formation
of such images, by establishing the following result:

2 We use white LUXEON Rebel LEDs: http://www.luxeonstar.com/
luxeon-rebel-leds.
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If them LEDs aremodeled as anisotropic (imperfect Lam-
bertian) point light sources, if the surface is Lambertian and if
all the automatic settings of the camera are deactivated, then
the formation of the m images can be modeled as follows,
for i ∈ {1, . . . ,m}:

I i (p) = Ψ i ρ(p)

[
nis · (x − xis

)

‖x − xis‖

]μi {
(xis − x) · n(p)

}

+
‖xis − x‖3 ,

(2.1)

where:

• I i (p) is the “corrected gray level” at pixel p conjugate
to a point x located on the surface [cf. Eq. (2.12)];

• Ψ i is the intensity of the i th source multiplied by an
unknown factor, which is common to all the sources
and depends on several camera parameters and on the
albedo ρ0 of a Lambertian planar calibration pattern [cf.
Eq. (2.14)];

• ρ(p) is the albedo of the surface point x conjugate to
pixel p, relatively to ρ0 [cf. Eq. (2.22)];

• nis ∈ S
2 ⊂ R

3 is the (unit-length) principal direction of
the i th source, xis ∈ R

3 its location (cf. Fig. 2), and μi ≥
0 its anisotropy parameter [cf. Fig. 3 and Eq. (2.5)];

• {·}+ is the positive part operator, which accounts for self-
shadows:

{x}+ = max{x, 0}. (2.2)

In Eq. (2.1), the anisotropy parameters μi are (indirectly)
provided by the manufacturer (cf. Eq. (2.6)), and the other
LEDs parameters Ψ i , nis and xis can be calibrated thanks to
the procedure described in Sect. 2.2. The only unknowns in
System (2.1) are thus the depth z of the 3D-point x conju-
gate to p, its (relative) albedo ρ(p) and its normal n(p). The
estimation of these unknowns will be discussed in Sects. 3
and 4. Before that, let us show step-by-step how to derive
Eq. (2.1).

2.1 Modeling the Luminous Flux Emitted by a LED

For the LEDs we use, the characteristic illuminating volume
is of the order of one cubic millimeter. Therefore, in compar-
ison with the scale of a face, each LED can be seen as a point
light source located at xs ∈ R

3. At any point x ∈ R
3, the

lighting vector s(x) is necessarily radial i.e., collinear with
the unit-length vector ur = x−xs‖x−xs‖ . Using spherical coordi-
nates (r, θ, φ) of x in a frame having xs as origin, it is written

s(x) = −Φ(θ, φ)

r2
ur , (2.3)

(a)

(b) (c) (d)

Fig. 2 a Our photometric stereo-based experimental setup for 3D-
reconstruction of faces using a Canon EOS 7D camera (highlighted
in red) and m = 8 LEDs (highlighted in blue). The walls are painted in
black in order to avoid the reflections between the scene and the envi-
ronment. b–d Three out of the m = 8 images obtained by this setup
(Color figure online)

where Φ(θ, φ) � 0 denotes the intensity of the source3, and
the 1/r2 attenuation is a consequence of the conservation
of luminous energy in a non-absorbing medium. Vector s(x)
is purposely oriented in the opposite direction from that of
the light, in order to simplify the writing of the Lambertian
model.

Model (2.3) is very general.We could project the intensity
Φ(θ, φ) on the spherical harmonics basis, which allowed
Basri et al. to model the luminous flux in the case of
uncalibrated photometric stereo [6]. We could also sample
Φ(θ, φ) in the vicinity of a plane, using a plane with known
reflectance [3,40,61].

Using the specific characteristics of LEDs may lead to
a more accurate model. Indeed, most of the LEDs emit a
luminous flux which is invariant by rotation around a prin-
cipal direction indicated by a unit-length vector ns [46]. If
θ is defined relatively to ns , this means that Φ(θ, φ) is inde-
pendent from φ. The lighting vector in x induced by a LED
located in xs is thus written

s(x) = Φ(θ)

‖xs − x‖2
xs − x

‖xs − x‖ . (2.4)

3 The intensity is expressed in lumen per steradian (lm sr−1), i.e., in
candela (cd).
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Fig. 3 Intensity patterns of the LEDs used. a Anisotropy function
Φ(θ)/Φ0 as a function of θ . b Polar representation. These diagrams
show us that θ1/2 = π/3, which corresponds to μ = 1 according
to Eq. (2.6) (Lambertian source). Source: http://www.lumileds.com/
uploads/28/DS64-pdf)

The dependency on θ of the intensity Φ characterizes
the anisotropy of the LED. The function Φ(θ) is generally
decreasing over [0, π/2] (cf. Fig. 3).

An anisotropy model satisfying this constraint is that of
“imperfect Lambertian source”:

Φ(θ) = Φ0 cosμ θ, (2.5)

which contains two parameters Φ0 = Φ(0) and μ � 0,
and models both isotropic sources (μ = 0) and Lambertian
sources (μ = 1). Model (2.5) is empirical, and more elabo-
rate models are sometimes considered [46], yet it has already
been used in photometric stereo [38,39,41,42,47,48,57,67],
including the casewhere all the LEDs are arranged on a plane
parallel to the image plane, in such away that ns = [0, 0, 1]�
[43].Model (2.5) has proven itself and,moreover, LEDsman-
ufacturers provide the angle θ1/2 such that Φ(θ1/2) = Φ0/2,
from which we deduce, using (2.5), the value of μ:

μ = − log(2)

log(cos θ1/2)
. (2.6)

As shown in Fig. 3, the angle θ1/2 is π/3 for the LEDs we
use. From Eq. (2.6), we deduce thatμ = 1, which means that
these LEDs are Lambertian. Plugging the expression (2.5) of
Φ(θ) into (2.4), we obtain

s(x) = Φ0 cosμ θ
xs − x

‖xs − x‖3 , (2.7)

where we explicitly keep μ to address the most general case.
Model (2.7) thus includes seven parameters: three for the
coordinates of xs , two for the unit vector ns , plus Φ0 and μ.
Note that ns appears in this model through the angle θ .

In its uncalibrated version, photometric stereo allows the
3D-reconstruction of a scene surface without knowing the
lighting. Uncalibrated photometric stereo has been widely
studied, including the case of nearby point light sources

[29,36,44,51,69], but if this is possible, we should rather
calibrate the lighting4.

2.2 Calibrating the Luminous Flux Emitted by a LED

Most calibration methods of a point light source [1,4,11,
17,22,54,59,62] do not take into account the attenuation of
the luminous flux density as a function of the distance to
the source, nor the possible anisotropy of the source, which
may lead to relatively imprecise results. To our knowledge,
there are few calibration procedures taking into account these
phenomena. In [67], Xie et al. use a single pattern, which
is partially specular and partially Lambertian, to calibrate a
LED. We intend to improve this procedure using two pat-
terns, one specular and the other Lambertian. The specular
one will be used to determine the location of the LEDs by tri-
angulation, and the Lambertian one to determine some other
parameters by minimizing the reprojection error, as recently
proposed by Pintus et al. in [53].

2.2.1 Specular Spherical Calibration Pattern

The location xs of a LED can be determined by triangulation.
In [54], Powell et al. advocate the use of a spherical mirror.
To estimate the locations of the m = 8 LEDs for our setup,
we use a billiard ball. Under perspective projection, the edge
of the silhouette of a sphere is an ellipse, which we detect
using a dedicated algorithm [52]. It is then easy to determine
the 3D-coordinates of any point on the surface, as well as
its normal, since the radius of the billiard ball is known. For
each pose of the billiard ball, detecting the reflection of the
LED allows us to determine, by reflecting the line of sight
on the spherical mirror, a line in 3D-space passing through
xs . In theory, two poses of the billiard ball are enough to
estimate xs , even if two lines in 3D-space do not necessarily
intersect, but the use of ten poses improves the robustness of
the estimation.

2.2.2 Lambertian Model

To estimate the principal direction ns and the intensity Φ0

in Model (2.7), we use a Lambertian calibration pattern. A
surface is Lambertian if the apparent clarity of any point x
located on it is independent from the viewing angle. The
luminance L(x), which is equal to the luminous flux emitted
per unit of solid angle and per unit of apparent surface, is
independent from the direction of emission. However, the
luminance is not characteristic of the surface, as it depends on
the illuminance E(x) (denoted E from French “clairement”),
that is to say on the luminous flux per unit area received by

4 It is also necessary to calibrate the camera, since the 3D-frame is
attached to it. We assume that this has been made beforehand.
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the surface in x. The relationship between luminance and
illuminance5 is written, for a Lambertian surface:

L(x) = ρ(x)
π

E(x), (2.8)

where the albedo ρ(x) ∈ [0, 1] is defined as the proportion
of luminous energy which is reemitted, i.e., ρ(x) = 1 if x is
white, and ρ(x) = 0 if it is black.

The parameter ρ(x) is enough to characterize the
reflectance6 of a Lambertian surface. In addition, the illumi-
nance at a point x of a (not necessarily Lambertian) surface
with normal n(x), lit by the lighting vector s(x), is written7

E(x) = {s(x) · n(x)}+ . (2.9)

Focusing the camera on a point x of the scene surface, the
illuminance ε(p) of the image plane, at pixel p conjugate to
x, is related to the luminance L(x) by the following “almost
linear” relationship [27]:

ε(p) = β cos4 α(p) L(x), (2.10)

where β is a proportionality coefficient characterizing the
clarity of the image, which depends on several factors such
as the lens aperture and the magnification. Regarding the
factor cos4 α(p), where α(p) is the angle between the line of
sight and the optical axis, it is responsible for darkening at the
periphery of the image. This effect should not be confused
with vignetting, since it occurs even with ideal lenses [16].

With current photosensitive receptors, the gray level J (p)

at pixel p is almost proportional8 to its illuminance ε(p),
except of course in case of saturation. Denoting γ this coef-
ficient of quasi-proportionality, and combining equalities
(2.8), (2.9) and (2.10), we get the following expression of
the gray level in a pixel p conjugate to a point x located on a
Lambertian surface:

J (p) = γ β cos4 α(p)
ρ(x)
π

{s(x) · n(x)}+ . (2.11)

We have already mentioned that there is a one-to-one corre-
spondence between a point x and its conjugate pixel p, which
allows us to denote ρ(p) and n(p) instead of ρ(x) and n(x).
As the factor cos4 α(p) is easy to calculate in each pixel p of
the photosensitive receptor, since cosα(p) = f√

‖p‖2+ f 2
, we

5 A luminance is expressed in lmm−2 sr−1 (or cdm−2), an illuminance
in lmm−2, or lux (lx).
6 The reflectance is generally referred to as the bidirectional reflectance
distribution function, or BRDF.
7 Negative values in the right hand side of Eq. (2.9) are clamped to zero
in order to account for self-shadows.
8 Provided that the RAW image format is used.

Fig. 4 Two out of the q poses of the Lambertian planar calibration
pattern used for the photometric calibration of the LEDs. The parts
of the white cells which are used for estimating the LEDs principal
directions and intensities are highlighted in red

can very easily compensate for this source of darkening and
will manipulate from now on the “corrected gray level”:

I (p) = J (p)

cos4 α(p)
= γ β

ρ(p)

π
{s(x) · n(p)}+ . (2.12)

2.2.3 Lambertian Planar Calibration Pattern

To estimate the parameters ns and Φ0 in Model (2.7), i.e., to
achieve photometric calibration, we use a second calibration
pattern consisting of a checkerboard printed on a white paper
sheet, which is itself stuck on a plane (cf. Fig. 4), with the
hope that the unavoidable outliers to the Lambertian model
will not influence the accuracy of the estimates too much.

The use of a convex calibration pattern (planar, in this
case) has a significant advantage: the lighting vector s(x) at
any point x of the surface is purely primary i.e., it is only due
to the light source, without “bouncing” on other parts of the
surface of the target, provided that the walls and surrounding
objects are covered in black (see Fig. 2a). Thanks to this
observation, we can replace the lighting vector s(x) in Eq.
(2.12) by the expression (2.7) which models the luminous
flux emitted by a LED. From (2.7) and (2.12), we deduce
the gray level I (p) of the image of a point x located on this
calibration pattern, illuminated by a LED:

I (p) = γ β
ρ(p)

π
Φ0 cos

μ θ
{(xs − x) · n(p)}+

‖xs − x‖3 . (2.13)

If q � 3 poses of the checkerboard are used, numerous
algorithms exist for unambiguously estimating the coordi-
nates of the points x j of the pattern, for the different poses
j ∈ {1, . . . , q}. These algorithms also allow the estimation
of the q normals n j (we omit the dependency in p of n j ,
since the pattern is planar), and the intrinsic parameters of
the camera9. As for the albedo, if the use of white paper
does not guarantee that ρ(p) ≡ 1, it still seems reasonable
to assume ρ(p) ≡ ρ0 i.e., to assume a uniform albedo in the

9 To perform these operations, we use the Computer Vision toolbox
from MATLAB.
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white cells. We can then group all the multiplicative coeffi-
cients of the right hand side of Eq. (2.13) into one coefficient

Ψ = γ β
ρ0

π
Φ0. (2.14)

With this definition, and knowing that θ is the angle between
vectors ns and x−xs , Eq. (2.13) can be rewritten, in a pixel p
of the setΩ j containing the white pixels of the checkerboard
in the j th pose (these pixels are highlighted in red in the
images of Fig. 4):

I j (p) = Ψ

[
ns · (x j − xs

)

‖x j − xs‖

]μ {
(xs − x j ) · n j

}

+
‖xs − x j‖3 . (2.15)

To be sure that in Eq. (2.15), Ψ is independent from the pose
j , we must deactivate all automatic settings of the camera,
in order to make β and γ constant.

Since xs is already estimated, and the value ofμ is known,
the only unknowns in Eq. (2.15) arens andΨ . Two casesmay
occur:

• If the LED to calibrate is isotropic i.e., if μ = 0, then
it is useless to estimate ns , and Ψ can be estimated in a
least-squares sense, by solving

min
Ψ

q∑

j=1

∑

p∈Ω j

[

I j (p) − Ψ

{
(xs − x j ) · n j

}

+
‖xs − x j‖3

]2

,

(2.16)

whose solution is given by

Ψ =
∑q

j=1

∑
p∈Ω j I j (p)

{
(xs−x j )·n j

}

+
‖xs−x j‖3

∑q
j=1

∑
p∈Ω j

[ {(xs−x j )·n j}+
‖xs−x j‖3

]2 . (2.17)

• Otherwise (if μ > 0), Eq. (2.15) can be rewritten

Ψ
1
μ ns︸ ︷︷ ︸
ms

· (x j − xs) =
[

I j (p)
‖xs − x j‖3+μ

{
(xs − x j ) · n j

}

+

] 1
μ

.

(2.18)

The least-squares estimation of vector ms defined in
(2.18) is thus written

min
ms

q∑

j=1

∑

p∈Ω j

⎡

⎣ms · (x j − xs) −
[

I j (p)
‖xs − x j‖3+μ

{
(xs − x j ) · n j

}

+

] 1
μ

⎤

⎦

2

.

(2.19)
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Fig. 5 Two views of a schematic representation of the experimental
setup of Fig. 2a. The camera center is located in (0, 0, 0). A blackmarker
characterizes the location xs of each LED (unit mm), the orientation of
a blue arrow its principal direction ns , and the length of this arrow its
intensity Φ0 (up to a common factor) (Color figure online)

This linear least-squares problem can be solved using
the pseudo-inverse. From this estimate, we easily deduce
those of parameters ns and Ψ :

ns = ms

‖ms‖ and Ψ = ‖ms‖μ. (2.20)

In both cases, it is impossible to deduce from the estimate
of Ψ that of Φ0, because in the definition (2.14) of Ψ , the
product γ β

ρ0
π

is unknown. However, since this product is
the same for all LEDs (deactivating all automatic settings of
the camera makes β and γ constant), all the intensities Φ i

0,
i ∈ {1, . . . ,m}, are estimated up to a common factor.

Figure 5 shows a schematic representation of the exper-
imental setup of Fig. 2a, where the LEDs parameters were
estimated using our calibration procedure.

2.3 Modeling Photometric Stereo with Point Light
Sources

If the luminous flux emitted by a LED is described byModel
(2.7), then we obtain from (2.13) and (2.14) the following
equation for the gray level at pixel p:
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I (p) = Ψ
ρ(p)

ρ0

[
ns · (x − xs)

‖x − xs‖
]μ {(xs − x) · n(p)}+

‖xs − x‖3 .

(2.21)

Let us introduce a new definition of the albedo relative to the
albedo ρ0 of the Lambertian planar calibration pattern:

ρ(p) = ρ(p)

ρ0
. (2.22)

By writing Eq. (2.21) with respect to each LED, and by using
Eq. (2.22), we obtain, in each pixel p ∈ Ω , the system of
equations (2.1), for i ∈ {1, . . . ,m}.

To solve this system, the introduction of the auxiliary vari-
ablem(p) = ρ(p)n(p) may seem relevant, since this vector
is not constrained to have unit-length, but we will see that
this trick loses part of its interest. Defining the following m
vectors, i ∈ {1, . . . ,m}:

ti (x) = Ψ i

[
nis · (x − xis

)

‖x − xis‖

]μi

xis − x
‖xis − x‖3 , (2.23)

and neglecting self-shadows ({x}+ = x), then System (2.1)
is rewritten in matrix form:

I(p) = T(x)m(p), (2.24)

where I(p) ∈ R
m has been defined in (1.5) andT(x) ∈ R

m×3

is defined as follows:

T(x) =
⎡

⎢
⎣

t1(x)�
...

tm(x)�

⎤

⎥
⎦ . (2.25)

Equation (2.24) is similar to (1.4). Knowing the matrix field
T(x) would allow us to estimate its field of pseudo-inverses
in order to solve (2.24), just as calculating the pseudo-inverse
of S allows us to solve (1.4). However, the matrix field T(x)
depends on x, and thus on the unknown depth. This sim-
ple difference induces major changes when it comes to the
numerical solution, as discussed in the next two sections.

3 A Review of Two Variational Approaches for
Solving Photometric Stereo Under Point Light
Source Illumination, with New Insights

In this section, we study two variational approaches from
the literature for solving photometric stereo under point light
source illumination.

The first one inverts the nonlinear image formation model
by recasting it as a sequence of simpler subproblems [2,8,13,
29,34,47,51,69]. It consists in estimating the normals and the

albedo, assuming that the depthmap is fixed, then integrating
the normals into a new depth map, and to iterate. We show
in Sect. 3.1 how to improve this standard method in order to
estimate absolute depth, without resorting to any prior.

The second approach first linearizes the image formation
model by resorting to image ratios, then directly estimates
the depth by solving the resulting system of PDEs in an
approximate manner [38,39,41,56]. We show in Sect. 3.2
that state-of-the-art solutions, which resort to fixed point iter-
ations,may be trapped in localminima. This shortcoming can
be avoided by rather using an augmented Lagrangian algo-
rithm.

As in these state-of-the-art methods, self-shadows will be
neglected through out this section, i.e., we abusively assume
{x}+ = x . To enforce robustness, we simply follow the
approach advocated in [10], which systematically eliminates,
in each pixel, the highest gray level, which may come from a
specular highlight, as well as the two lowest ones, whichmay
correspond to shadows.More elaboratemethods for ensuring
robustness will be discussed in Sect. 4.

Apart from robustness issues, we will see that the state-of-
the-art methods studied in this section remain unsatisfactory,
because their convergence is not established.

3.1 Scheme Inspired by the Classical Numerical
Solution of Photometric Stereo

For solving Problem (2.24), it seems quite natural to adapt the
solution (1.6) of the linear model (1.4). To linearize (2.24),
we have to assume that matrix T(x) is known. If we pro-
ceed iteratively, this can be made possible by replacing, at
iteration (k + 1), T(x) by T(x(k)). This very simple idea has
led to several numerical solutions [2,8,13,29,34,47,51,69],
which all require some kind of a priori knowledge on the
depth. On the contrary, the scheme we propose here requires
none, which constitutes a significant improvement. This new
scheme consists in the following algorithm:

Algorithm 1 (alternating approach)
1: Initialize x(0). Set k := 0.
2: loop
3: Solve Problem (2.24) in the least-squares sense in each

p ∈ Ω , replacing T(x) by T(x(k)), which provides a
new estimation of m(p):

m(k+1)(p) = T(x(k))† I(p). (3.1)

4: Deduce a new estimation of the normal n(p):

n(k+1)(p) = m(k+1)(p)

‖m(k+1)(p)‖ . (3.2)
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5: Integrate the new normal field n(k+1) into an updated
3D-shape x(k+1), up to a scale factor.

6: Estimate this scale factor by nonlinear optimization.
7: Set k := k + 1 as long as k < kmax.

8: ρ(p) =
∥
∥
∥m(kmax)(p)

∥
∥
∥ . (3.3)

For this scheme to be completely specified, we need to
set the initial 3D-shape x(0). We use as initial guess a fronto-
parallel plane at distance z0 from the camera, z0 being a rough
estimate of the mean distance from the camera to the scene
surface.

3.1.1 Integration of Normals

Stages 3 and 4 of the scheme above are trivial and can
be achieved pixelwise, but Stages 5 and 6 are trick-
ier. From equalities in (1.1), and by denoting ∇z(p) =
[
∂uz(p), ∂vz(p)

]� the gradient of z in p, it is easy to deduce
that the (non-unit-length) vector

n(p) =
⎡

⎣
f ∂uz(p)

f ∂vz(p)

−z(p) − p · ∇z(p)

⎤

⎦ (3.4)

is normal to the surface. Expression (3.4) shows that inte-
grating the (unit-length) normal field n allows to estimate
the depth z only up to a scale factor κ ∈ R, since:

n(p) ∝
⎡

⎣
f ∂uz(p)

f ∂vz(p)

−z(p) − p · ∇z(p)

⎤

⎦ ∝
⎡

⎣
f ∂u(κ z)(p)

f ∂v(κ z)(p)

−(κ z)(p) − p · ∇(κ z)(p)

⎤

⎦ .

(3.5)

The collinearity of n(p) and n(p) = [n1(p), n2(p), n3(p)]�
leads to the system

{
n3(p) f ∂uz(p) + n1(p)

[
z(p) + p · ∇z(p)

] = 0,

n3(p) f ∂vz(p) + n2(p)
[
z(p) + p · ∇z(p)

] = 0,
(3.6)

which is homogeneous in z(p). Introducing the change of
variable z̃ = log(z), which is valid since z > 0, (3.6) is
rewritten

{[
f n3(p) + u n1(p)

]
∂u z̃(p) + v n1(p)∂v z̃(p) = −n1(p),

u n2(p)∂u z̃(p) + [
f n3(p) + v n2(p)

]
∂v z̃(p) = −n2(p).

(3.7)

The determinant of this system is equal to

f n3(p)
[
u n1(p)+v n2(p)+ f n3(p)

]= f n3(p)
[
p · n(p)

]
,

(3.8)

if we denote

p = [u, v, f ]�. (3.9)

It is then easy to deduce the solution of (3.7):

∇ z̃(p) = − 1

p · n(p)

[
n1(p)

n2(p)

]

. (3.10)

Let us now come back to Stages 5 and 6 of Algorithm 1.
The newnormal field isn(k+1)(p), fromwhichwe can deduce
the gradient ∇ z̃(k+1)(p) thanks to Eq. (3.10). By integrating
this gradient between a pixel p0, chosen arbitrarily inside
Ω , and any pixel p ∈ Ω , and knowing that z = exp{z̃}, we
obtain:

z(k+1)(p) = z(k+1)(p0) exp
{∫ p

p0
∇ z̃(k+1)(q) · dq

}

. (3.11)

This integral can be calculated along one single path insideΩ

going from p0 to p, but since the gradient field ∇ z̃(k+1)(p) is
never rigorously integrable in practice, this calculus usually
depends on the choice of the path [66]. The most common
parry to this well-known problem consists in resorting to a
variational approach, see for instance [55] for some discus-
sion.

Expression (3.11) confirms that the depth can only be
calculated, from n(k+1)(p), up to a scale factor equal to
z(k+1)(p0). Let us determine this scale factor by minimiza-
tion of the reprojection error of Model (2.24) over the entire
domain Ω . Knowing that, from (1.1) and (3.9), we get
x = z

f p, this comes down to solving the following nonlinear
least-squares problem:

z(k+1)(p0) = argmin
w ∈R+

Ealt(w) :=
∑

p∈Ω

∥
∥
∥I(p)

− T
(w

f
exp

{∫ p

p0
∇ z̃(k+1)(q) · dq

}

p
)
m(k+1)(p)

∥
∥
∥
2
,

(3.12)

which allows us to eventually write the 3D-shape update
(Stages 5 and 6):

x(k+1) = z(k+1)(p0)
f

exp

{∫ p

p0
∇ z̃(k+1)(q) · dq

}

p. (3.13)

3.1.2 Experimental Validation

Despite the lack of theoretical guarantee, convergence of this
scheme is empirically observed, provided that the initial 3D-
shape x(0) is not too distant from the scene surface. For the
curves in Fig. 6, several fronto-parallel planes with equa-
tion z ≡ z0 were tested as initial guess. The mean distance
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Fig. 6 Evolution of the energy Ealt of the alternating approach, defined
in (3.12), in function of the iterations, when the initial 3D-shape is a
fronto-parallel plane with equation z ≡ z0. The used data are them = 8
images of the plaster statuette of Fig. 2. The proposed scheme consists in
alternating normal estimation, normal integration and scale estimation
(cf. Algorithm 1). It converges toward the same solution (at different
speeds), for the five tested values of z0

Fig. 7 a 3D-reconstruction and b albedo obtained with Algorithm 1. c
Ground truth 3D-shape obtained by laser scanning. Photometric stereo
not only provides a 3D-shape qualitatively similar to the laser scan, but
also provides the albedo

from the camera to the scene being approximately 700 mm,
it is not surprising that the fastest convergence is observed
for this value of z0. Besides, this graph also shows that
under-estimating the initial scale quite a lot is not a problem,
whereas over-estimating it severely slows down the process.

Figure 7 allows to compare the 3D-shape obtained by
photometric stereo, from sub-images of size 920 × 1178 in
full resolution (bounding box of the statuette), which contain
773,794 pixels inside Ω , with the ground truth obtained by
laser scanning, which contains 1,753,010 points. The points
density is thus almost the same on the front of the statuette,
since we did not reconstruct its back. However, our result is
achieved in less than ten seconds (five iterations of a MAT-
LAB code on a recent i7 processor), instead of several hours
for the ground truth, while we also estimate the albedo.

Fig. 8 aHistogram of point-to-point distances between the alternating
3D-reconstruction and the ground truth (cf. Fig. 7). The median value is
1.3 mm. b Spatial distribution of these distances. The histogram peak is
not located in zero. As we will see in Sect. 3.2, this bias can be avoided
by resorting to a differential approach based on PDEs

Figure 8a shows the histogram of point-to-point distances
between our result (Fig. 7a) and the ground truth (Fig. 7c).
The median value is 1.3 mm. The spatial distribution of
these distances (Fig. 8b), shows that the largest distances are
observed on the highest slopes of the surface. This clearly
comes from the facts that, even for a diffuse material such as
plaster, the Lambertian model is not valid under skimming
lighting, and that self-shadows were neglected.

More realistic reflectance models, such as the one pro-
posed by Oren and Nayar in [49], would perhaps improve
accuracy of the 3D-reconstruction in such points, and we
will see in Sect. 4 how to handle self-shadows. But, as we
shall see now, bias also comes from normal integration. In the
next section, we describe a different formulation of photo-
metric stereo which permits to avoid integration, by solving
a system of PDEs in z.

3.2 Direct Depth Estimation Using Image Ratios

The scheme proposed in Sect. 3.1 suffers from several
defects. It requires to integrate the gradient ∇ z̃(k+1)(p) at
each iteration. This is not achieved by the naive formulation
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(3.12), but using more sophisticated methods which allow to
overcome the problem of non-integrability [14]. Still, bias
due to inaccurate normal estimation should not have to be
corrected during integration. Instead, it seems more justified
to directly estimate the depth map, without resorting to inter-
mediate normal estimation. This can be achieved by recasting
photometric stereo as a system of quasi-linear PDEs.

3.2.1 Differential Reformulation of Problem (2.24)

Let us recall (cf. Eq. (1.1)) that the coordinates of the 3D-
point x conjugate to a pixel p are completely characterized
by the depth z(p):

x = z(p)

f

[
p
f

]

. (3.14)

The vectors ti (x) defined in (2.23) thus depend on the
unknown depth values z(p). Using once again the change
of variable z̃ = log(z)10, we consider from now on each ti ,
i ∈ {1, . . . ,m}, as a vector field depending on the unknown
map z̃:

ti (z̃) : Ω → R
3

p �→ ti (z̃)(p) = Ψ i
[
−nis ·vi (z̃)(p)

‖vi (z̃)(p)‖
]μi

vi (z̃)(p)

‖vi (z̃)(p)‖3 ,
(3.15)

where each field ti (z̃) depends in a nonlinear way on the
unknown (log-) depth map z̃, through the following vector
field:

vi (z̃) : Ω → R
3

p �→ vi (z̃)(p) = xis − exp(z̃(p))
f

[
p
f

]

.
(3.16)

Knowing that the (non-unit-length) vector n(p) defined in
(3.4), divided by z(p), is normal to the surface, and still
neglecting self-shadows,we can rewrite System (2.1), in each
pixel p ∈ Ω:

I i (p) = ρ(p)

d(z̃)(p)
ti (z̃)(p) ·

[
f ∇ z̃(p)

−1 − p · ∇ z̃(p)

]

,

i ∈ {1, . . . ,m}, (3.17)

with

d(z̃)(p) =
√

f 2 ‖∇ z̃(p)‖2 + (−1 − p · ∇ z̃(p))2. (3.18)

10 Without this change of variable, one would obtain a system of homo-
geneous PDEs in lieu of (3.23), which would need regularization to be
solved, see [56].

3.2.2 Partial Linearization of (3.17) Using Image Ratios

In comparison with Eqs. (2.1), the PDEs (3.17) explicitly
depend on the unknown map z̃, and thus remove the need
for alternating normal estimation and integration. However,
these equations contain two difficulties: they are nonlinear
and cannot be solved locally. We can eliminate the non-
linearity due to the coefficient of normalization d(z̃)(p).
Indeed, neither the relative albedo ρ(p), nor this coefficient,
depend on the index i of the LED. We deduce from any pair
{i, j} ∈ {1, . . . ,m}2, i = j , of equations from (3.17), the
following equalities:

ρ(p)

d(z̃)(p)
= I i (p)

ai (z̃)(p) · ∇ z̃(p) − bi (z̃)(p)

= I j (p)

a j (z̃)(p) · ∇ z̃(p) − b j (z̃)(p)
, (3.19)

with the following definitions of ai (z̃)(p) and bi (z̃)(p),
denoting ti (z̃)(p) = [t i1(z̃)(p), t i2(z̃)(p), t i3(z̃)(p)]�:

ai (z̃)(p) = f

[
t i1(z̃)(p)

t i2(z̃)(p)

]

− t i3(z̃)(p)p, (3.20)

bi (z̃)(p) = t i3(z̃)(p). (3.21)

From equalities (3.19), we obtain:

[
I i (p) a j (z̃)(p) − I j (p) ai (z̃)(p)

]

︸ ︷︷ ︸
ai, j (z̃)(p)

· ∇ z̃(p)

=
[
I i (p) b j (z̃)(p) − I j (p) bi (z̃)(p)

]

︸ ︷︷ ︸
bi, j (z̃)(p)

. (3.22)

The fields ai, j (z̃) and bi, j (z̃) defined in (3.22) depend
on z̃ but not on ∇ z̃: Eq. (3.22) is thus a quasi-linear PDE
in z over Ω . It could be solved by the characteristic strips
expansion method [42,43] if we were dealing with m = 2
images only, but using a larger number of images is necessary
in order to design a robust 3D-reconstruction method. Since
we are provided with m > 2 images, we follow [20,38,39,
41,56,60] and write

(m
2

)
PDEs such as (3.22) formed by the(m

2

)
pairs {i, j} ∈ {1, . . . ,m}2, i = j . Forming the matrix

field A(z̃) : Ω → R(m2)×2 by concatenation of the row
vectors ai, j (z̃)(p)�, and the vector field b(z̃) : Ω → R(m2)

by concatenation of the scalar values bi, j (z̃)(p), the system
of PDEs to solve is written:

A(z̃)∇ z̃ = b(z̃) over Ω. (3.23)

This new differential formulation of photometric stereo
seems simpler than theoriginal differential formulation (3.17),
since the main source of nonlinearity, due to the denominator
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d(z̃)(p), has been eliminated. However, it still presents two
difficulties. First, the PDEs (3.23) are generally incompatible
and hence do not admit an exact solution. It is thus necessary
to estimate an approximate one, by resorting to a variational
approach. Assuming that each of the

(m
2

)
equalities in Sys-

tem (3.23) is satisfied up to an additive, zero-mean, Gaussian
noise11, one should estimate such a solution by solving the
following variational problem:

min
z̃:Ω→R

Erat(z̃) := ‖A(z̃)∇ z̃ − b(z̃)‖2L2(Ω)
. (3.24)

Second, the PDEs (3.22) do not allow to estimate the scale
of the scene. Indeed, when all the depth values simultane-
ously tend to infinity, then both members of (3.22) tend to
zero (because the coordinates of ti do so, cf. (3.15)). Thus,
a large, distant 3D-shape will always “better” fit these PDEs
(in the sense of the criterion Erat defined in Eq. (3.24)) than
a small, nearby one (cf. Figs. 10, 11). A “locally optimal”
solution close to a very good initial estimate should thus be
sought.

3.2.3 Fixed Point Iterations for Solving (3.24)

It has been proposed in [38,39,41,56] to iteratively estimate
a solution of Problem (3.24), by uncoupling the (linear) esti-
mation of z̃ from the (nonlinear) estimations of A(z̃) and of
b(z̃). This can be achieved by rewriting (3.24) as the follow-
ing constrained optimization problem:

min
z̃:Ω→R

‖A∇ z̃ − b‖2
L2(Ω)

s.t.

{
A = A(z̃),

b = b(z̃),

(3.25)

and resorting to a fixed point iterative scheme:

z̃(k+1) = argmin
z̃:Ω→R

‖A(k) ∇ z̃ − b(k)‖2L2(Ω)
, (3.26)

A(k+1) = A(z̃(k+1)), (3.27)

b(k+1) = b(z̃(k+1)). (3.28)

In the linear least-squares variational problem (3.26), the
solution can be computed only up to an additive constant.
Therefore, the matrix of the system arising from the nor-
mal equations associated with the discretized problem will
be symmetric, positive, but rank-1 deficient, and thus only
semi-definite. Figure 9 shows that this may cause the fixed

11 In fact, any noise assumption should be formulated on the images,
and not on Model (3.23), which was obtained by considering ratios of
gray levels: if the noise on gray levels is Gaussian, then that on ratios is
Cauchy-distributed [25]. Hence, the least-squares solution (3.24) is the
best linear unbiased estimator, but it is not the optimal solution.

0 2 4 6 8 10
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Fig. 9 Evolution of the energy Erat of the ratio-based approach, defined
in (3.24), in function of the iterations, for the data of Fig. 2 (the initial
3D-shape is a fronto-parallel plane with equation z ≡ 700 mm). With
the fixed point scheme, the energy is not always decreased after each
iteration, contrarily to the ADMM scheme we are going to introduce

point scheme not to decrease the energy after each iteration.
This issue can be resolved by resorting to the alternating
direction method of multipliers (ADMM algorithm), a stan-
dard procedure which dates back to the 70’s [15,18], but has
been revisited recently [9].

3.2.4 ADMM Iterations for Solving (3.24)

Instead of “freezing” the nonlinearities of the variational
problem (3.24), z̃ can be estimated not only from the lin-
earized parts, but also from the nonlinear ones. In this view,
we introduce an auxiliary variable z and reformulate Prob-
lem (3.24) as follows:

min
z,z̃

‖A(z)∇ z̃ − b(z)‖2L2(Ω)

s.t. z̃ = z.
(3.29)

In order to solve the constrained optimization problem
(3.29), let us introduce a dual variable h and a descent step
ν. A local solution of (3.29) is then obtained at convergence
of the following algorithm:

Algorithm 2 (ratio-based ADMM approach)
1: Initialize z̃(0) = z(0), h(0) ≡ 0. Set k := 0.
2: loop
3: Update z̃ by using the linear part, “while keeping z̃ close

to z(k)”:

z̃(k+1) = argmin
z̃

∥
∥
∥A(z(k))∇ z̃ − b(z(k))

∥
∥
∥
2

L2(Ω)

+ 1

2 ν

∥
∥
∥z̃ − z(k) + h(k)

∥
∥
∥
2

L2(Ω)
. (3.30)
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Fig. 10 3D-reconstructions after 10 iterations of the ADMM scheme,
taking as initial guess different fronto-parallel planes z ≡ z0. The
median of the distances to ground truth is, from left to right: 3.05,
2.88, 1.68, 2.08 and 5.86. When the initial guess is too close to the cam-

era, the 3D-reconstruction is flattened, while the scale is over-estimated
when starting too far away from the camera (although this yields a lower
energy, see Fig. 11). a z0 = 500 mm, b z0 = 650 mm, c z0 = 700 mm,
d z0 = 750 mm and e z0 = 900 mm

4: Update z by using the nonlinear part, “while keeping z
close to z̃(k+1)”:

z(k+1) = argmin
z

∥
∥
∥A(z)∇ z̃(k+1) − b(z)

∥
∥
∥
2

L2(Ω)

+ 1

2 ν

∥
∥
∥z̃(k+1)− z + h(k)

∥
∥
∥
2

L2(Ω)
. (3.31)

5: Update the dual variable h:

h(k+1) = h(k) + z̃(k+1) − z(k+1). (3.32)

6: If the stopping criterion is not satisfied, then set k :=
k + 1.

Stage (3.30) of Algorithm 2 is a linear least-squares prob-
lem which can be solved using the normal equations of its
discrete formulation12. The presence of the regularization
term now guarantees the positive definiteness of the matrix
of the system. This matrix is however too large to be inverted
directly. Therefore, we resort to the conjugate gradient algo-
rithm.

Thanks to the auxiliary variable z, which decouples ∇ z̃
and z̃ in Problem (3.29), Stage (3.31) ofAlgorithm2 is a local
nonlinear least-squares problem: in fact,∇z is not involved in
this problem, which can be solved pixelwise. Problem (3.31)
thus reduces to a nonlinear least-squares estimation prob-
lem of one real variable, which can be solved by a standard
method such as the Levenberg-Marquardt algorithm.

12 In our experiments, the gradient operator∇ is discretized by forward,
first-order finite differences with a Neumann boundary condition.

Because of the nonlinearity of Problem (3.31), it is
unfortunately impossible to guarantee convergence for this
ADMM scheme, which depends on the initialization and on
parameter ν [9]. A reasonable initialization strategy consists
in using the solution provided by Algorithm 1 (cf. Sect. 3.1).
As for the descent step ν, we iteratively calculate its optimal
value according to the Penalty Varying Parameter procedure
described in [9]. Finally, the iterations stop when the rela-
tive variation of the criterion of Problem (3.24) falls under a
threshold equal to 10−4.

Figure 9 shows that with such choices, Problem (3.24) is
solved more efficiently than with the fixed point scheme: the
energy is now decreased at each iteration. Figure 11 shows
that this is the case whatever the initial guess, although ini-
tialization has a strong impact on the solution, as confirmed
by Fig. 10.

Figure 12 shows the 3D-reconstruction obtained by refin-
ing the results of Sect. 3.1 using Algorithm 2. At first sight,
the 3D-shapedepicted inFig. 12a seemshardly different from
that of Fig. 7a, but the comparison of histograms in Figs. 8a
and 12b indicates that bias has been significantly reduced.
This shows the superiority of direct depth estimation over
alternating normal estimation and integration.

However, the lack of convergence guarantees and the
strong dependency on the initialization remain limiting bot-
tlenecks. Themethoddiscussed in the next sectionovercomes
both these issues.
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Fig. 11 Evolution of the energy Erat defined in (3.24), in function of the
iterations, for the data of Fig. 2. Using as initialization z̃(0) ≡ log(z0),
the ADMM scheme always converges toward a local minimum, yet this
minimum strongly depends on the value of z0. Besides, a lower final
energy does not necessarily means a better 3D-reconstruction, as shown
in Fig. 10. Hence, not only a careful initial guess is of primary impor-
tance, but the criterion derived from image ratios prevents automatic
scale estimation

Fig. 12 a 3D-reconstruction obtained with Algorithm 2, using the
result from Fig. 7a as initial guess. b Histogram of point-to-point dis-
tances between this 3D-shape and the ground truth (cf. Fig. 7c). The
median value is 1.2 mm

4 A New, Provably Convergent Variational
Approach for Photometric Stereo Under Point
Light Source Illumination

When it comes to solving photometric stereo under point
light source illumination, there are two main difficulties:
the dependency of the lighting vectors on the depth map
(cf. Eq. (3.15)), and the presence of the nonlinear coeffi-
cient ensuring that the normal vectors have unit-length (cf.
Eq. (3.18)).

The alternating strategy from Sect. 3.1 solves the former
issue by freezing the lighting vectors at each iteration, and
the latter by simultaneously estimating the normal vector and
the albedo. The objective function tackled in this approach,
which is based on the reprojection error, seems to be themost
relevant. Indeed, thefinal result seems to be independent from
the initialization, although convergence is not established.

On the other hand, the differential strategy from Sect. 3.2
explicitly tackles the nonlinear dependency of lighting on
the depth, and eliminates the other nonlinearity using image
ratios. Directly estimating depth reduces bias, but the objec-
tive function derived from image ratios admits a global
solution which is not acceptable (depth uniformly tending to
+∞), albedo is not estimated and convergence is not estab-
lished either.

Therefore, an ideal numerical solution should: (i) build
upon a differential approach, in order to reduce bias, (ii) avoid
linearization using ratios, in order to avoid the trivial solution
and allowalbedo estimation, and (iii) be provably convergent.
The variational approach presented in this section, initially
presented in [57], satisfies these three criteria.

4.1 Proposed Discrete Variational Framework

The nonlinearity of the PDEs (3.17) with respect to ∇ z̃,
due to the nonlinear dependency of d(z̃) (see Eq. (3.18)),
is challenging. We could explicitly consider this nonlin-
ear coefficient within a variational framework [26], but we
rather take inspiration from the way conventional photomet-
ric stereo [64] is linearized and integrate the nonlinearity
inside the albedovariable, asweproposed recently in [57,58].
Instead of estimating ρ(p) in each pixelp, we thus rather esti-
mate:

ρ̃(p) = ρ(p)

d(z̃)(p)
. (4.1)

The system of PDEs (3.17) is then rewritten as

I i (p) = ρ̃(p)
[
Q(p) ti (z̃)(p)

]
·
[∇ z̃(p)

−1

]

,

i ∈ {1, . . . ,m}, (4.2)
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where we use the following notation, ∀p = [u, v]� ∈ Ω:

Q(p) =
⎡

⎣
f 0 −u
0 f −v

0 0 1

⎤

⎦ . (4.3)

System (4.2) is a system of quasi-linear PDEs in (ρ̃, z̃),
because ti (z̃) only depends on z̃, and not on ∇ z̃. Once ρ̃ and
z̃ are estimated, it is straightforward to recover the “real”
albedo ρ using (4.1).

Let us now denote j ∈ {1, . . . , n} the indices of the
pixels inside Ω , I ij the gray level of pixel j in image I i ,
ρ̃ ∈ R

n and z̃ ∈ R
n the vectors stacking the unknown values

ρ̃ j and z̃ j , tij (z̃ j ) ∈ R
3 the vector ti (z̃) at pixel j , which

smoothly (though nonlinearly) depends on z̃ j , and Q j the
matrix defined in Eq. (4.3) at pixel j . Then, the discrete coun-
terpart of System (4.2) is written as the following system of
nonlinear equations in (ρ̃, z̃):

I ij = ρ̃ j

[
Q j tij (z̃ j )

]
·
[
(∇ z̃) j
−1

]

,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (4.4)

where (∇ z̃) j ∈ R
2 represents a finite differences approxi-

mation of the gradient of z̃ at pixel j13.
Our goal is to jointly estimate ρ̃ ∈ R

n and z̃ ∈ R
n from the

set of nonlinear equations (4.4), as solution of the following
discrete optimization problem:

min
ρ̃, z̃

E(ρ̃, z̃) :=
n∑

j=1

m∑

i=1

φ
(
r ij (ρ̃, z̃)

)
, (4.5)

where the residual r ij (ρ̃, z̃) depends locally (and linearly) on
ρ̃, but globally (and nonlinearly) on z̃:

r ij (ρ̃, z̃) = ρ̃ j

{
ζ ij ( z̃)

}

+ − I ij , (4.6)

with

ζ ij ( z̃) =
[
Q j tij (z̃ j )

]
·
[
(∇ z̃) j
−1

]

. (4.7)

An advantage of our formulation is to be generic, i.e., inde-
pendent from the choice of the operator {·}+ and of the
functionφ. For fair comparisonwith the algorithms inSect. 3,
one can use {x}+ = x and φ(x) = φLS(x) = x2. To improve
robustness, self-shadows can be explicitly handled by using
{x}+ = max{x, 0}, and the estimator φ can be chosen as any

13 In our experiments, we use the same discretization as in Sect. 3.2,
for fair comparison.

R → R
+ function which is even, twice continuously differ-

entiable, and monotonically increasing over R+ such that:

φ′(x)
x

≥ φ′′(x), ∀x ∈ R. (4.8)

A typical example is Cauchy’s robust M-estimator14:

φCauchy(x) = λ2 log

(

1 + x2

λ2

)

, (4.9)

where the parameter λ is user-defined (we use λ = 0.1).

4.2 Alternating Reweighted Least-Squares for
Solving (4.5)

Our goal is to find a local minimizer (ρ̃∗, z̃∗) for (4.5), which
must satisfy the following first-order conditions15:

∂E
∂ρ̃

(ρ̃∗,z̃∗) =
n∑

j=1

m∑

i=1

φ′(r ij (ρ̃
∗, z̃∗))

∂r ij
∂ρ̃

(ρ̃∗, z̃∗) = 0,

(4.10)

∂E
∂ z̃

(ρ̃∗,z̃∗) =
n∑

j=1

m∑

i=1

φ′(r ij (ρ̃
∗, z̃∗))

∂r ij
∂ z̃

(ρ̃∗, z̃∗) = 0,

(4.11)

with:

∂r ij
∂ρ̃l

(ρ̃∗, z̃∗) =
{

{ζ ij ( z̃∗)}+ if l = j,

0 if l = j,
(4.12)

∂r ij
∂ z̃

(ρ̃∗, z̃∗) = ρ̃∗
j χ(ζ ij ( z̃

∗)) ∂ζ ij ( z̃
∗). (4.13)

In (4.13),χ is the (sub-)derivative of {·}+, which is a constant
function equal to 1 if {x}+ = x , and the Heaviside function
if {x}+ = max{x, 0}.

For this purpose, we derive an alternating reweighted
least-squares (ARLS) scheme. Suggested by its name,
the ARLS scheme alternates Newton-like steps over ρ̃

and z̃, which can be interpreted as iteratively reweighted
least-squares iterations. Similar to the famous iteratively
reweighted least-squares [63] (IRLS) algorithm, ARLS
solves the original (possibly non-convex) problem (4.5)
iteratively, by recasting it as a series of simpler quadratic
programs.

14 See [58] for some discussion and comparison with state-of-the-art
robust methods [31,41,65].
15 We use the notation ∂

∂
to avoid the confusion with the spatial deriva-

tives denoted by∇, and neglect the fractionwhen the derivation variable
is obvious.
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Given the current estimate (ρ̃(k), z̃(k)) of the solution,
ARLS first freezes z̃ and updates ρ̃ by minimizing the fol-
lowing local quadratic approximation of E(·, z̃(k)) around
ρ̃(k)16:

E(·, z̃(k)) ≈
n∑

j=1

m∑

i=1

{

φ
(
r ij (ρ̃

(k), z̃(k))
)

+ φ′(r ij (ρ̃
(k), z̃(k)))

r ij (ρ̃
(k), z̃(k))

r ij (·, z̃(k))2 − r ij (ρ̃
(k), z̃(k))2

2

}

,

(4.14)

where we set
φ′(r ij (ρ̃

(k), z̃(k)))

r ij (ρ̃
(k), z̃(k))

= 0 if r ij (ρ̃
(k), z̃(k)) = 0.

Then, ρ̃ is freezed and z̃ is updated by minimizing a
local quadratic approximation of E(ρ̃(k+1), ·) around z̃(k),
which is in all points similar to (4.14). Iterating this proce-
dure yields the following alternating sequence of reweighted
least-squares problems:

ρ̃(k+1) = argmin
ρ̃∈Rn

Eρ̃(ρ̃; ρ̃(k), z̃(k))

:= 1

2

n∑

j=1

m∑

i=1

wi
j (ρ̃

(k), z̃(k)) r ij (ρ̃, z̃(k))2, (4.15)

z̃(k+1) = argmin
z̃∈Rn

E z̃( z̃; ρ̃(k+1), z̃(k))

:= 1

2

n∑

j=1

m∑

i=1

wi
j (ρ̃

(k+1), z̃(k)) r ij (ρ̃
(k+1), z̃)2. (4.16)

Here, the functions Eρ̃ and E z̃ are the above local quadratic
approximations minus the constants which play no role in
the optimization, and the following (lagged) weight variable
w is used17:

wi
j (ρ̃, z̃) =

⎧
⎪⎨

⎪⎩

φ′(r ij (ρ̃, z̃))

r ij (ρ̃, z̃)
if r ij (ρ̃, z̃) = 0,

0 otherwise.

(4.17)

4.2.1 Solution of the ρ̃-Subproblem

Problem (4.15) can be rewritten as the following n indepen-
dent linear least-squares problems, j ∈ {1, . . . , n}:

ρ̃
(k+1)
j = argmin

ρ̃ j∈R
1

2

m∑

i=1

wi
j (ρ̃

(k), z̃(k)) r ij (ρ̃, z̃(k))2. (4.18)

16 The right hand side function in Eq. (4.14) is a majorant of E(·, z̃(k)),
and it is easily verified that its value and gradient are equal to those of
E(·, z̃(k)) in ρ̃(k). It is therefore suitable as approximation.
17 Since φ is supposed even and monotonically increasing over R+,
this variable can be used as weight because, ∀x ∈ R\{0}, φ′(x)/x ≥ 0
and thus wi

j (ρ̃, z̃) ≥ 0.

Each problem (4.18) almost always admits a unique solution.
When it does not, we set ρ̃

(k+1)
j = ρ̃

(k)
j . The update thus

admits the following closed-form solution:

ρ̃
(k+1)
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=1 wi

j (ρ̃
(k), z̃(k))

{
ζ ij ( z̃

(k))
}

+ I ij
∑m

i=1 wi
j (ρ̃

(k), z̃(k))
{
ζ ij ( z̃

(k))
}2

+
if
∑m

i=1 wi
j (ρ̃

(k), z̃(k))
{
ζ ij ( z̃

(k))
}2

+ > 0,

ρ̃
(k)
j if

∑m
i=1 wi

j (ρ̃
(k), z̃(k))

{
ζ ij ( z̃

(k))
}2

+ = 0.

(4.19)

The second case in (4.19) means that ρ̃(k+1) is set to be the
solution of (4.15) which has minimal (Euclidean) distance
to ρ̃(k).

The update (4.19) can also be obtained by remarking that,
since (4.15) is a linear least-squares problem, the solution of
the equation ∂Eρ̃(ρ̃; ρ̃(k), z̃(k)) = 0 is attained in one step of
the Newton method:

ρ̃(k+1) = ρ̃(k) − Hρ̃(ρ̃(k), z̃(k))† ∂Eρ̃(ρ̃(k); ρ̃(k), z̃(k)).
(4.20)

In (4.20), the n-by-n matrix Hρ̃(ρ̃(k), z̃(k)) is the Hessian of
Eρ̃(·; ρ̃(k), z̃(k)) at ρ̃(k)18, i.e.:

δρ̃�Hρ̃(ρ̃(k), z̃(k)) δρ̃ =
n∑

j=1

m∑

i=1

wi
j (ρ̃

(k), z̃(k))

(
δρ̃ j {ζ ij ( z̃(k))}+

)2
(4.21)

for any δρ̃ = [
δρ̃1, . . . , δρ̃n

]� ∈ R
n . Since the n prob-

lems (4.18) are independent, it is a diagonalmatrixwith entry

( j, j) equal to e j = ∑m
i=1 wi

j (ρ̃
(k), z̃(k))

{
ζ ij ( z̃

(k))
}2

+. This
matrix is singular if one of the entries e j is equal to zero,
but its pseudo-inverse always exists: it is an n-by-n diagonal
matrix whose entry ( j, j) is equal to 1/e j as soon as e j > 0,
and to 0 otherwise. The updates (4.19) and (4.20) are thus
strictly equivalent.

4.2.2 Solution of the z̃-Subproblem

The depth update (4.16) is a nonlinear least-squares problem,
due to the nonlinearity of r ij (ρ̃, z̃)with respect to z̃.We there-
fore introduce an additional linearization step, i.e., we follow
aGauss-Newton strategy. A first-order Taylor approximation

18 Lemma 1 shows that it is a positive semi-definite approximation of

the Hessian ∂2E
∂ρ̃2 (ρ̃(k), z̃(k)), hence the notation.
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of r ij (ρ̃
(k+1), ·) around z̃(k) yields, using (4.13):

E z̃( z̃; ρ̃(k+1), z̃(k)) ≈ E z̃( z̃; ρ̃(k+1), z̃(k))

:= 1

2

n∑

j=1

m∑

i=1

wi
j (ρ̃

(k+1), z̃(k))
(
r ij (ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζ ij ( z̃

(k))) ( z̃ − z̃(k))�∂ζ ij ( z̃
(k))

)2
. (4.22)

Therefore, we replace the update (4.16) by

z̃(k+1) = argmin
z̃∈Rn

E z̃( z̃; ρ̃(k+1), z̃(k)), (4.23)

which is a linear least-squares problem whose solution is
attained in one step of the Newton method19:

z̃(k+1) = z̃(k) − Hz̃(ρ̃
(k+1), z̃(k))† ∂E z̃( z̃

(k); ρ̃(k+1), z̃(k)),
(4.24)

where the n-by-n matrix Hz̃(ρ̃
(k+1), z̃(k)) is the Hessian of

E z̃(·; ρ̃(k+1), z̃(k)) at z̃(k), i.e.:

δ z̃�Hz̃(ρ̃
(k+1), z̃(k))δ z̃ =

n∑

j=1

m∑

i=1

wi
j (ρ̃

(k+1), z̃(k))

(
ρ̃

(k+1)
j χ(ζ ij ( z̃

(k)))δ z̃�∂ζ ij ( z̃
(k))

)2
(4.25)

for any δ z̃ ∈ R
n .

In practice, Hz̃(ρ̃
(k+1), z̃(k))† ∂E z̃( z̃

(k); ρ̃(k+1), z̃(k)) in
Eq. (4.24) is computed (inexactly) by preconditioned con-
jugate gradient iterations up to a relative tolerance of 10−4

(less than fifty iterations in our experiments).

4.2.3 Implementation Details

The proposed ARLS algorithm is summarized in Algo-
rithm 3.

Algorithm 3 (alternating reweighted least-squares)
1: Initialize ρ̃(0), z̃(0) ∈ R

n. Set k := 0.
2: loop
3: Compute ρ̃(k+1) by using (4.19).
4: Compute z̃(k+1) by using (4.24).
5: If the stopping criterion is not satisfied, then set k :=

k + 1.

In our experiments, we use constant vectors as initializa-
tions for z̃ and ρ̃, i.e., the surface is initially approximated

19 Similar to the ρ̃-subproblem, z̃(k+1) is taken to be ofminimal distance
to z̃(k) whenever non-uniqueness of the solution in (4.23) is encountered.
The pseudo-inverse operator in (4.24) takes care of such cases [19,
Theorem 5.5.1].

by a plane with uniform albedo. Iterations are stopped when
the relative difference between two successive values of the
energy E defined in (4.5) falls below a threshold set to 10−3.
In our setup using m = 8 HD images and a recent i7 proces-
sor at 3.50 GHz with 32 GB of RAM, each depth update (the
albedo one has negligible cost) required a few seconds, and
10–50 updates were enough to reach convergence.

4.3 Convergence Analysis

In this subsection, we present a local convergence theory
for the proposed ARLS scheme. The proofs are provided in
appendix.

When we write A � B (resp. A � B), this means that the
difference matrix A − B is positive semi-definite (resp. pos-
itive definite). The spectral radius of a matrix is denoted by
sr(·).

4.3.1 ARLS as Newton Iterations

It is easily deduced from Eqs. (4.10), (4.15) and (4.17) that
∂Eρ̃(ρ̃(k); ρ̃(k), z̃(k)) = ∂E

∂ρ̃
(ρ̃(k), z̃(k)), and thus (4.20) also

writes

ρ̃(k+1) = ρ̃(k) − Hρ̃(ρ̃(k), z̃(k))†
∂E
∂ρ̃

(ρ̃(k), z̃(k)), (4.26)

which is a quasi-Newton step with respect to the ρ̃-
subproblem in (4.5), provided that Hρ̃(ρ̃(k), z̃(k)) is a “rea-

sonable” approximation of ∂2E
∂ρ̃2 (ρ̃(k), z̃(k)). Lemma 1 will

clarify what “reasonable” means here.
Regarding the z̃-update, let us remark that the Gauss-

Newton step (4.23) for (4.16) can also be viewed as an
approximate solution of the z̃-subproblem in (4.5), linearized
around z̃(k) as follows:

min
z̃∈Rn

Ẽ z̃( z̃; ρ̃(k+1), z̃(k)) :=
n∑

j=1

m∑

i=1

φ
(
r ij (ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζ ij ( z̃

(k))) ( z̃ − z̃(k))�∂ζ ij ( z̃
(k))

)
. (4.27)

Since ∂E z̃( z̃
(k); ρ̃(k+1), z̃(k)) = ∂ Ẽ z̃( z̃(k); ρ̃(k+1), z̃(k)) [see

Eqs. (4.17), (4.22), (4.27)], (4.24) also writes

z̃(k+1) = z̃(k) − Hz̃(ρ̃
(k+1), z̃(k))† ∂ Ẽ z̃( z̃(k); ρ̃(k+1), z̃(k)),

(4.28)

which is a quasi-Newton step for (4.27)20, provided that
matrix Hz̃(ρ̃

(k+1), z̃(k)) is a “reasonable” approximation of

20 And thus a quasi-Newton step with respect to the z̃-subproblem
in (4.5), since ∂ Ẽ z̃( z̃(k); ρ̃(k+1), z̃(k)) = ∂E

∂ z̃ (ρ̃(k+1), z̃(k)).
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the Hessian ∂2Ẽ z̃(·, ρ̃(k+1), z̃(k)) at z̃(k). Let us now explain
our meaning of “reasonable”.

4.3.2 A majorization Result

The following lemma establishes the (local) majorization
properties of Hρ̃ and Hz̃ over the Hessian matrices ∂2E

∂ρ̃2 and

∂2Ẽ z̃ , respectively.
Lemma 1 If the following condition holds at (ρ̃∗, z̃∗):

ζ ij ( z̃
∗) = 0, ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, (4.29)

then we have

{
Hρ̃(ρ̃, z̃) � ∂2E

∂ρ̃2 (ρ̃, z̃),

Hz̃(ρ̃, z̃) � ∂2Ẽ z̃( z̃; ρ̃, z̃),
(4.30)

whenever (ρ̃, z̃) lies in some small neighborhood of (ρ̃∗, z̃∗).

4.3.3 Convergence Proof for ARLS

The next theorem contains the main result of our local con-
vergence analysis.

Theorem 1 Assume that, for some iteration k, the iterate
(ρ̃(k), z̃(k)) generated by Algorithm 3 is sufficiently close to
some local minimizer (ρ̃∗, z̃∗) where, in addition to (4.29),
the following conditions hold:

∂E
∂ρ̃

(ρ̃∗, z̃∗) = 0,
∂E
∂ z̃

(ρ̃∗, z̃∗) = 0, (4.31)

⎡

⎢
⎢
⎣

∂2E
∂ρ̃2 (ρ̃∗, z̃∗) ∂2E

∂ρ̃∂ z̃
(ρ̃∗, z̃∗)

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗) ∂2E
∂ z̃2

(ρ̃∗, z̃∗)

⎤

⎥
⎥
⎦ � O, (4.32)

∂2Ẽ z̃( z̃∗; ρ̃∗, z̃∗) � O, (4.33)

sr

(

∂2Ẽ z̃( z̃∗; ρ̃∗,z̃∗)−1
(
∂2E
∂ z̃2

(ρ̃∗,z̃∗) − ∂2Ẽ z̃( z̃∗; ρ̃∗,z̃∗)
))

<1.

(4.34)

Then we have limk→∞(ρ̃(k), z̃(k)) = (ρ̃∗, z̃∗).

As a remark, conditions (4.31) and (4.32) assumed in The-
orem 1 are typically referred to as the first-order and the
second-order sufficient optimality conditions, while condi-
tions (4.33) and (4.34) are similar to the local convergence
criteria for Gauss-Newton method, see, e.g., [21, Theorem
1]. They always seem satisfied in our experiments, i.e., the
convergence of ARLS in form of Algorithm 3 is always
observed. If needed, these conditionsmay however be explic-
itly enforced by replacing {·}+ by its (smooth) proximity

operator, and incorporating a line search step into ARLS,
see [57].

4.4 Experimental Validation

For fair comparison with the methods discussed in Sect. 3,
we first consider least-squares estimation without explicit
self-shadows handling, i.e., φ(x) = x2 and {x}+ = x . The
results in Figs. 13 and 14 show that, unlike the previous least-
squares differential method from Sect. 3.2, the new scheme
always converges toward a similar solution for a wide range
of initial estimates.

Although the accuracy of the results obtained with this
new scheme is not improved, the influence of the initializa-
tion ismuch reduced and convergence is guaranteed.Besides,
it is straightforward to improve robustness by simply chang-
ing the definitions of the function φ and of the operator
{·}+, while ensuring robustness of the ratio-based approach
is not an easy task [41,60]. Figure 15 shows the result
obtained using Cauchy’s M-estimator ΦCauchy and explicit
self-shadows handling, i.e., {x}+ = max{x, 0}.

5 Estimating Colored 3D-Models by Photometric
Stereo

So far, we have considered only gray level images. In this sec-
tion, we extend our study to RGB-valued images, in order to
estimate colored 3D-models using photometric stereo. Sim-
ilar to Sect. 2, we will first establish the image formation
model and discuss calibration. Then, we will show how to
modify the algorithm from Sect. 4 in order to handle RGB
images.

5.1 Spectral Dependency of the Luminous Flux Emitted
by a LED

We need to introduce a spectral dependency in Model (2.7)
to extend our study to color. It seems reasonable to limit this
dependency to the intensity (λ denotes the wavelength):

s(x, λ) = Φ(λ) cosμ θ
xs − x

‖xs − x‖3 . (5.1)

Model (5.1) is more complex than Model (2.7), because the
intensity Φ0 ∈ R

+ has been replaced by the emission spec-
trumΦ(λ), which is a function (cf. Fig. 16a). The calibration
of Φ(λ) could be achieved by using a spectrometer, but we
will show how to extend the procedure from Sect. 2.2, which
requires nothing else than a camera and two calibration pat-
terns.

Given a point x of a Lambertian surface with albedo ρ(x),
under the illumination described by the lighting vector s(x),
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Fig. 13 a Evolution of the energy E of the proposed approach, defined
in (4.5), using least-squares estimation, in function of the iterations,
for the data of Fig. 2. As long as the initial scale is not over-estimated
too much, the proposed scheme converges toward similar solutions for
different initial estimates (cf. Fig. 14), though with different speeds. b

3D-model obtained at convergence, using z0 = 750mm. cHistogramof
point-to-point distances between (b) and the ground truth (cf. Fig. 7c).
As in the experiment of Fig. 12, the median value is 1.2 mm, yet this
result is almost independent from the initialization, and is obtained using
a provably convergent algorithm

Fig. 14 3D-reconstructions after 50 iterations of the proposed scheme,
taking as initial guess different fronto-parallel planes z ≡ z0 and using
least-squares estimation. Similar results are obtained whatever the ini-

tialization, at least as long as the initial scale is not over-estimated
too much. a z0 = 500 mm, b z0 = 650 mm, c z0 = 700 mm, d
z0 = 750 mm and e z0 = 900 mm

we get from (2.8), (2.9) and (2.10) the expression of the
illuminance ε(p) of the image plane in the pixel p conjugate
to x:

ε(p) = β cos4 α(p)
ρ(x)
π

{s(x) · n(x)}+ . (5.2)

This expression is easily extended to the case where s(x) and
ρ(x) depend on λ:

ε(p, λ) = β cos4 α(p)
ρ(x, λ)

π
{s(x, λ) · n(x)}+ . (5.3)

The one-to-one correspondence between the points x and
the pixels p allows us to denote ρ(p, λ) and n(p), in lieu of
ρ(x, λ) and n(x). In addition, the light effectively received
by each cell goes through a colored filter characterized by its

transmission spectrum c�(λ), � ∈ {R,G, B}, whose maxi-
mum lies, respectively, in the red, green and blue ranges (cf.
Fig. 16b). To define the color levels I�(p), � ∈ {R,G, B}, by
similarity with the expression (2.12) of the (corrected) gray
level I (p), we must multiply (5.3) by c�(λ), and integrate
over the entire spectrum:

I�(p) = γ β

π

{[∫ +∞

λ=0
c�(λ) ρ(p, λ) s(x, λ) dλ

]

· n(p)

}

+
.

(5.4)

Using a Lambertian calibration pattern which is uniformly
white i.e., such that ρ(p, λ) ≡ ρ0, allows us to rewrite (5.4)
as follows:
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Fig. 15 Same as Fig. 13, but using Cauchy’s robust M-estimator and
explicit self-shadows handling.Despite the non-convexity of the estima-
tor, convergence is similar to that obtained in the previous experiment.

However, the median value of the 3D-reconstruction error is now
0.91 mm, which is to be compared with the previous value 1.2 mm
(cf. Fig. 13)

I�(p) = γ β
ρ0

π

{[∫ +∞

λ=0
c�(λ) s(x, λ) dλ

]

· n(p)

}

+
,

(5.5)

which is indeed an extension of (2.17) to RGB images, since
(5.5) can be rewritten

I�(p) = γ β
ρ0

π
{s�(x) · n(p)}+ , (5.6)

provided that the three colored lighting vectors s�(x) are
defined as follows:

s�(x) =
∫ +∞

λ=0
c�(λ) s(x, λ) dλ, � ∈ {R,G, B}. (5.7)

Replacing the lighting vector s(x, λ) in (5.7) by its expression
(5.1), we obtain the following extension of Model (2.7) to
color:

s�(x) = Φ� cosμ θ
xs − x

‖xs − x‖3 , � ∈ {R,G, B}, (5.8)

where the colored intensities Φ� are defined as follows:

Φ� =
∫ +∞

λ=0
c�(λ)Φ(λ) dλ, � ∈ {R,G, B}. (5.9)

The spectral dependency of the lighting vector s(x, λ)

expressed in (5.1) is thus partially described byModel (5.8),
which contains nine parameters: three for the coordinates
of xs , two for the unit-length vector ns , plus the three col-
ored intensities ΦR , ΦG , ΦB , and the anisotropy parameter
μ. Nonetheless, since the definition (5.9) of Φ� depends on
c�(λ), it follows that the parameters ΦR , ΦG and ΦB are not
really characteristic of the LED, but of the camera-LED pair.
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Fig. 16 a Emission spectrum Φ(λ) of the LEDs used. b Camera
response functions in the three channels R, G, B, for the Canon EOS
50D camera [33] (which is similar to the Canon EOS 7D we use). Our
extension to RGB images of the calibration procedure from Sect. 2.2
requires nothing else than a camera and two calibration patterns. There-
fore, we do not need any of these diagrams in practice. Source: http://
www.lumileds.com/uploads/28/DS64-pdf

5.2 Spectral Calibration of the Luminous Flux Emitted
by a LED

We use again the Lambertian planar calibration pattern from
Sect. 2.2. Since it is convex, the incident light comes solely
from the LED. We can thus replace s�(x) by its defini-
tion (5.8) in the expression (5.6) of the color level I�(p).
Assuming that xs is estimated by triangulation and that the
anisotropy parameter μ is provided by the manufacturer, we
then have to solve, in each channel � ∈ {R,G, B}, the fol-
lowing problem, which is an extension of Problem (2.19) (q
is the number of poses of the Lambertian calibration pattern):

min
ms,�

q∑

j=1

∑

p∈Ω j

⎡

⎣ms,� · (x j − xs) −
[

I j� (p)
‖xs − x j‖3+μ

{
(xs − x j ) · n j

}

+

] 1
μ

⎤

⎦

2

,

(5.10)

123

http://www.lumileds.com/uploads/28/DS64-pdf
http://www.lumileds.com/uploads/28/DS64-pdf


J Math Imaging Vis (2018) 60:313–340 333

Table 1 Parameters of one of the LEDs of our setup, estimated by
solving (5.10) in each color channel

Red channel Green channel Blue channel

n̂s,R =
⎡

⎣
0.205

−0.757
0.621

⎤

⎦ n̂s,G =
⎡

⎣
0.194

−0.769
0.608

⎤

⎦ n̂s,B =
⎡

⎣
0.188

−0.844
0.503

⎤

⎦

Ψ̂R = 3.10 × 107 Ψ̂G = 5.49 × 107 Ψ̂B = 3.37 × 107

where ms,� is defined by analogy withms (cf. (2.18)):

ms,� = Ψ�

1
μ ns, (5.11)

and Ψ� is defined by analogy with Ψ (cf. (2.14)):

Ψ� = γ β
ρ0

π
Φ�. (5.12)

Each problem (5.10) allows us to estimate a colored intensity
ΦR , ΦG or ΦB (up to a common factor) and the principal
direction ns , which is thus estimated three times. Table 1
groups the values obtained for one of the LEDs of our setup.
The three estimates of ns are consistent, but instead of arbi-
trarily choosing one of them, we compute the weightedmean
of these estimates, using spherical coordinates.

In Table 1, the values of Ψ̂R , Ψ̂G and Ψ̂B are given without
unit because, from the definition (5.12) ofΨ�, only their rela-
tive values are meaningful. As it happens, the value of Ψ̂G is
roughly twice as much as those of Ψ̂R and Ψ̂B , but this does
not mean that Φ(λ) is twice higher in the green range than
in the red or in the blue ranges, since the definition (5.9) of a
given colored intensity Φ� also depends on the transmission
spectrum c�(λ) in the considered channel.

Our calibration procedure relies on the assumption that the
calibration pattern is uniformlywhite, i.e., that ρ(p, λ) ≡ ρ0,
which may be inexact, yet in no way does this question our
rationale. Indeed, if we assume that the color of “white” cells
from the Lambertian checkerboard (cf. Fig. 4) is uniform i.e.,
ρ(p, λ) = ρ(λ), ∀p ∈ Ω j , and if we denote ρ0 themaximum
value of ρ(λ), Eq. (5.5) is still valid, provided that c�(λ) is
replaced by the function c�(λ) defined as follows21:

c�(λ) = ρ(λ)

ρ0
c�(λ). (5.13)

21 Since each colored intensity Φ� depends on the transmission spec-
trum c�(λ) by its definition (5.9), (5.13) implies thatΦ� also depends on
the color of the paper upon which the checkerboard is printed. Hence,
the color of the paper will somehow influence the estimated color of the
observed scene.

5.3 Photometric Stereo Under Colored Point Light
Source Illumination

If we pretend to extend Model (2.21) to RGB images, then it
must be possible to write the color level at p, in each channel
� ∈ {R,G, B}, in the following manner:

I�(p) = Ψ�

ρ�(p)

ρ0

[
ns · (x − xs)

‖x − xs‖
]μ {(xs − x) · n(p)}+

‖xs − x‖3
(5.14)

where the colored albedos ρ�(p) are some extensions of the
albedo ρ(p) to the RGB case. Equating both expressions
of I�(p) given in (5.4) and in (5.14), and using the defini-
tion (5.1) of s(x, λ), we obtain:

Ψ�

ρ�(p)

ρ0
= γβ

π

∫ +∞

λ=0
c�(λ) ρ(p, λ)Φ(λ) dλ. (5.15)

Using the definitions (5.12) and (5.9) of Ψ� and Φ�, (5.15)
yields the following expression for the colored albedos:

ρ�(p) =
∫ +∞
λ=0 c�(λ) ρ(p, λ)Φ(λ) dλ
∫ +∞
λ=0 c�(λ)Φ(λ) dλ

, � ∈ {R,G, B},
(5.16)

which is the mean of ρ(p, λ) over the entire spectrum,
weighted by the product c�(λ)Φ(λ). In addition, although
the transmission spectrum c�(λ) depends only on the camera,
the emission spectrum Φ(λ) usually varies from one LED to
another. Thus, generalizing photometric stereo under point
light source illumination to RGB images requires to super-
script the colored albedos by the LED index i . Hence, it
seems that we have to solve, in each pixel p ∈ Ω , the fol-
lowing problem:

I i�(p) = Ψ i
�

ρi
�(p)

ρ0

[
nis · (x − xis

)

‖x − xis‖

]μi {
(xis − x) · n(p)

}

+
‖xis − x‖3 ,

i ∈ {1, . . . ,m}, � ∈ {R,G, B}. (5.17)

System (5.17) is underdetermined, because it contains 3m
equations with 3m + 3 unknowns: one colored albedo ρi

�(p)

per equation, the depth z(p) of the 3D-point x conjugate to
p (from which we get the coordinates of x), and the normal
n(p). Apart from this numerical difficulty, the dependency on
i of the colored albedos is puzzling: while it is clear that the
albedo is a photometric characteristic of the surface, indepen-
dent from the lighting, it should go the same for the colored
albedos. This shows that the extension to RGB images of
photometric stereo is potentially intractable in the general
case. However, such an extension is known to be possible in
two specific cases [56]:
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• For a non-colored surface i.e., when ρ(p, λ) = ρ(p), we
deduce from (5.16) that ρR(p) = ρG(p) = ρB(p) =
ρ(p). Problem (5.17) is thus written:

I i�(p) = Ψ i
�

ρ(p)

ρ0

[
nis · (x − xis

)

‖x − xis‖

]μi {
(xis − x) · n(p)

}

+
‖xis − x‖3 ,

i ∈ {1, . . . ,m}, � ∈ {R,G, B}. (5.18)

If the albedo is known, and if a channel dependency
is added to the sources parameters xis , n

i
s and μi , then

System (5.18) has 3 unknowns and 3m independent equa-
tions: a single RGB image may suffice to ensure that
the problem is well-determined. This well-known case,
which dates back to the 90’s [35], has been applied to real-
time 3D-reconstruction of a white painted deformable
surface [23].

• When the sources are non-colored i.e., when Φ i (λ) ≡
Φ0, ∀i ∈ {1, . . . ,m}, (5.16) gives:

ρ�(p) =
∫ +∞
λ=0 c�(λ) ρ(p, λ) dλ
∫ +∞
λ=0 c�(λ) dλ

, � ∈ {R,G, B}. (5.19)

Since this expression is independent from i , Problem
(5.17) is rewritten:

I i�(p) = Ψ�

ρ�(p)

ρ0

[
nis · (x − xis

)

‖x − xis‖

]μi {
(xis − x) · n(p)

}

+
‖xis − x‖3 ,

i ∈ {1, . . . ,m}, � ∈ {R,G, B}. (5.20)

In (5.20), the parameter Ψ� is independent from i , but it
really depends on the channel �, although the sources are
supposed to be non-colored, since in the definition (5.12)
of Ψ�, the colored intensity Φ� is channel-dependent (cf.
Eq. (5.9)). System (5.20), which has 3m equations and
six unknowns, is overdetermined ifm � 3. Ifm = 2, it is
well-determined but rank-deficient, since in each point,
the 6 lighting vectors are coplanar. Additional informa-
tion (e.g., a boundary condition) is required [43].

Another case where the colored albedos are independent
from i is when the m LEDs all share the same emis-
sion spectrum, up to multiplicative coefficients (Φ i (λ) =
κ i Φ(λ), ∀i ∈ {1, . . . ,m}). Under such an assumption, the
colored albedos ρ�(p) do not have to be indexed by i ,
according to their definition (5.16). Note however that the
parameters Ψ� still have to be indexed by i , in this case.
Using the notation

ρ�(p) = ρ�(p)

ρ0
, � ∈ {R,G, B}, (5.21)

we obtain the following result:

Under the same hypotheses as in Eq. (2.1), if the m light
sources share the same emission spectrum, up to amultiplica-
tive coefficient, then the m RGB images can be modeled as
follows:

I i�(p) = Ψ i
� ρ�(p)

[
nis · (x − xis

)

‖x − xis‖

]μi {
(xis − x) · n(p)

}

+
‖xis − x‖3 ,

i ∈ {1, . . . ,m}, � ∈ {R,G, B}. (5.22)

where:

• I i� is the (corrected) color level in channel �;
• Ψ i

R , Ψ i
G and Ψ i

B are the colored intensities of the i th
source, multiplied by an unknown factor, which is com-
mon to all the sources and depends on several camera
parameters and on the albedo ρ0 (cf. Eqs. (5.9) and
(5.12));

• ρ� is the colored albedo in channel �, relatively to ρ0 (cf.
Eq. (5.21)).

For the setup of Fig. 2a, the m = 8 LEDs probably do not
exactly share the same spectrum, although they come from
the same batch, yet this assumption seemsmore realistic than
that of “non-colored sources”, and it allows us to better justify
the use of (5.22), whichmodels both the spectral dependency
of the albedo and that of the luminous fluxes.

The calibration procedure described in Sect. 5.2 pro-
vides us with the values of the parameters xis , n

i
s and Ψ i

� ,
i ∈ {1, . . . ,m}, and the parameters μi , i ∈ {1, . . . ,m},
are provided by the manufacturer. The unknowns of Sys-
tem (5.22) are thus the depth z(p) of x, the normal n(p) and
the three colored albedos ρ�(p), � ∈ {R,G, B}. Resorting
to RGB images allows us to replace the system (2.1) of m
equations with four unknowns, by the system (5.22) of 3m
equations with six unknowns, which should yield more accu-
rate results.

5.4 Solving Colored Photometric Stereo Under Point
Light Source Illumination

The alternating strategy from Sect. 3.1 is not straightfor-
ward to adapt to the case of RGB-valued images, because
the albedo is channel-dependent, while the normal vector
is not. Principal component analysis could be employed [5],
but we already know from Sect. 3 that a differential approach
should be preferred anyway.

A PDE-based approach similar to that of Sect. 3.2 is advo-
cated in [56]: ratios between color levels can be computed
in each channel � ∈ {R,G, B}, thus eliminating the colored
albedos ρ�(p) and obtaining a system of PDEs in z simi-
lar to (3.23). The PDEs to solve remain quasi-linear, unlike

123



J Math Imaging Vis (2018) 60:313–340 335

in [30]. Yet, we know that the solution strongly depends on
the initialization.

On the other hand, it is straightforward to adapt themethod
recommended in Sect. 4, by turning the discrete optimization
problem (4.5) into

min
ρ̃R ,ρ̃G ,ρ̃B , z̃

∑

�∈{R,G,B}

n∑

j=1

m∑

i=1

φ
(
r i�, j (ρ̃�, z̃)

)
, (5.23)

with the followingnewdefinitions,whichuse straightforward
notations for the channel dependencies:

r i�, j (ρ̃�, z̃) = ρ̃�, j

{
ζ i�, j ( z̃)

}

+ − I i�, j , (5.24)

ζ i�, j ( z̃) =
[
Q j ti�, j (z̃ j )

]
·
[
(∇ z̃) j
−1

]

. (5.25)

The actual solution of (5.23) follows immediately from
the algorithm described in Sect. 4.2. The depth update simply
uses three times more equations, which improves its robust-
ness, while the estimation of each colored albedo is carried
out independently in each channel in exactly the same way
as in Sect. 4.2.

Since the depth estimation now uses more data, the 3D-
model of Fig. 17, which uses RGB images, is improved in
two ways, in comparison with that of Fig. 15: it is not only
colored, but also more accurate.

6 Conclusion and Perspectives

In this article, we describe a photometric stereo-based 3D-
reconstruction setup using LEDs as light sources. We first
model the luminous flux emitted by a LED, then the resulting
photometric stereo problem.Wepresent a practical procedure
for calibrating photometric stereo under point light source
illumination, and eventually, we study several numerical
solutions. Existing methods are based either on alternating
estimation of normals and depth, or on direct depth estima-
tion using image ratios. Both these methods have their own
advantages, but their convergence is not established. Hence,
we introduce a new, provably convergent solution based on
alternating reweighted least-squares. Finally, we extend the
whole study to RGB images.

The result of Fig. 18 suggests that our goal, i.e., the estima-
tion of colored 3D-models of faces by photometric stereo, has
been reached. Of course, many other types of 3D-scanners
exist, but ours relies only on materials which are easy to
obtain: a relatively mainstream camera, eight LEDs and an
Arduino controller to synchronize the LEDs with the shutter
release. Another significant advantage of our 3D-scanner is
that it also estimates the albedo.

Fig. 17 a 3D-model estimated from them = 8 images of Fig. 2, which
are RGB images. b Histogram of the distances between this 3D-shape
and the ground truth (cf. Fig. 7c). Using RGB images improves the
result, in comparison with the experiment of Fig. 15: the median of the
point-to-point distances to the ground truth is now equal to 0.85 mm

However, there may still be some points where the shape,
and therefore the albedo, are poorly estimated. In the example
of Fig. 19, the area under the nose, which is dimly lit, is
poorly reconstructed (this problem does not appear in the
example of Fig. 18, because the face is oriented in such a way
that it is “well” illuminated). Although such artifacts remain
confined, thanks to robust estimation, future extensions of
our work could get rid of them by resorting to an additional
regularization term in the variational model.

Besides dealing with these defects, other questions arise.
In particular, could we extend our 3D-scanner to full
3D-reconstruction, by coupling the proposed method with
multi-view 3D-reconstruction techniques [24]? Aside from
obtaining a more complete 3D-reconstruction, this would
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Fig. 18 a–c Three RGB images (out of m = 8) of a face captured
by our setup. d Estimated 3D-shape. e Colored 3D-model. Since their
estimation is relative to the Lambertian planar calibration pattern, the
colored albedos of the 3D-model may appear different from the colors
of the images

Fig. 19 a–c Three images (out of m = 8) of a face. d Estimated 3D-
shape. e Colored 3D-model. The 3D-reconstruction is not satisfactory
under the nose, which is a dimly lit area. Robustness of the proposed
method to shadows could still be improved

circumvent the difficult problem of handling possible dis-
continuities in a depth map, although Fig. 19 suggests that
employing a non-convex estimator already partly allows the
recovery of such sharp structures [14].

Eventually, the proposed numerical framework could be
extended in order to automatically refine calibration. Sev-
eral steps in that direction were already achieved in [38,44,
51,57], but either without convergence analysis [38,44,51]
or in the restricted case where only the source intensities
are refined [57]. Providing a provably convergent method
for uncalibrated photometric stereo under point light source
illumination would thus constitute a natural extension of our
work.
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Appendix A: Proof of Lemma 1

Proof First note that, under the condition (4.29), the function
E(·, z̃) (resp. Ẽ z̃(·; ρ̃, z̃)) is twice continuously differentiable
at ρ̃ (resp. z̃), whenever (ρ̃, z̃) is sufficiently close to (ρ̃∗, z̃∗).
The corresponding second-order derivatives are calculated as
follows:

δρ̃� ∂2E
∂ρ̃2 (ρ̃, z̃)δρ̃ =

n∑

j=1

m∑

i=1

φ′′(r ij (ρ̃, z̃))
(
δρ̃ j {ζ ij ( z̃)}+

)2
,

(A.1)

δ z̃�∂2Ẽ z̃( z̃; ρ̃, z̃)δ z̃

=
n∑

j=1

m∑

i=1

φ′′(r ij (ρ̃, z̃))
(
ρ̃ j χ(ζ ij ( z̃)) δ z̃�∂ζ ij ( z̃)

)2
.

(A.2)

Comparing the above two formulas with (4.21) and (4.25),
the conclusion follows from condition (4.8). ��

Appendix B: Proof of Theorem 1

Proof First note that condition (4.32) implies that

∂2E
∂ρ̃2 (ρ̃∗, z̃∗) � O, (B.1)

∂2E
∂ z̃2

(ρ̃∗, z̃∗) − ∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗) ∂2E
∂ρ̃2 (ρ̃∗, z̃∗)−1 ∂2E

∂ρ̃∂ z̃
(ρ̃∗, z̃∗) � O.

(B.2)
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Utilizing Lemma 1 in conjunction with (B.2) and (4.33), we
obtain

Hρ̃(ρ̃∗, z̃∗) � O, Hz̃(ρ̃
∗, z̃∗) � O, (B.3)

∂2E
∂ z̃2

(ρ̃∗, z̃∗) − ∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1 ∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗) � O.

(B.4)

Now consider the iteration

z̃(k+1) = z̃(k) − Hz̃

(
ρ̃(k+1), z̃(k)

)−1 ∂E
∂ z̃

(ρ̃(k+1), z̃(k))

= z̃(k) − Hz̃

(

ρ̃(k) − Hρ̃(ρ̃(k), z̃(k))−1 ∂E
∂ρ̃

(ρ̃(k), z̃(k)), z̃(k)
)−1

∂E
∂ z̃

(

ρ̃(k) − Hρ̃(ρ̃(k), z̃(k))−1 ∂E
∂ρ̃

(ρ̃(k), z̃(k)), z̃(k)
)

(B.5)

as a map z̃(k) �→ z̃(k+1). By the Ostrowski theorem [50,
Proposition 10.1.3], the local convergence of { z̃(k)} to z̃∗ fol-
lows if the spectral radius of the Jacobian

∂ z̃(k+1)

∂ z̃(k)
(ρ̃∗, z̃∗) = id − Hz̃(ρ̃

∗, z̃∗)−1 ∂2E
∂ z̃2

(ρ̃∗, z̃∗)

+ Hz̃(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂ z̃
(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗) (B.6)

is strictly less than 1. Using the similarity transform with

Hz̃(ρ̃
∗, z̃∗) 1

2 , we derive:

sr

(
∂ z̃(k+1)

∂ z̃k
(ρ̃∗, z̃∗)

)

= sr

(

Hz̃(ρ̃
∗, z̃∗)

1
2
∂ z̃(k+1)

∂ z̃k
(ρ̃∗, z̃∗)Hz̃(ρ̃

∗, z̃∗)−
1
2

)

(B.7)

= sr

(

id − Hz̃(ρ̃
∗, z̃∗)−

1
2
∂2E
∂ z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2

+ Hz̃(ρ̃
∗, z̃∗)−

1
2

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2

)

(B.8)

= sup
‖v‖=1

∣
∣
∣
∣‖v‖2

− v�Hz̃(ρ̃
∗, z̃∗)−

1
2
∂2E
∂ z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 v

+ v�Hz̃(ρ̃
∗, z̃∗)−

1
2

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 v

∣
∣
∣
∣. (B.9)

It follows from condition (4.34) that

∂2E
∂ z̃2

(ρ̃∗, z̃∗) ≺ 2∂2Ẽ z̃( z̃∗; ρ̃∗, z̃∗) � 2Hz̃(ρ̃
∗, z̃∗), (B.10)

and hence

id − Hz̃(ρ̃
∗, z̃∗)−

1
2
∂2E
∂ z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 � −id.

(B.11)

Consequently, there exists ε1 ∈ (0, 1) such that the following
inequality holds for an arbitrary v:

‖v‖2 − v�Hz̃(ρ̃
∗, z̃∗)−

1
2
∂2E
∂ z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 v

≥ −(1 − ε1)‖v‖2. (B.12)

Meanwhile, condition (B.4) implies that, for some ε2 ∈
(0, 1):

v�Hz̃(ρ̃
∗, z̃∗)−

1
2
∂2E
∂ z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 v

− v�Hz̃(ρ̃
∗, z̃∗)−

1
2

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1

∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1
2 v

= (Hz̃(ρ̃
∗, z̃∗)−

1
2 v)�

( ∂2E
∂ z̃2

(ρ̃∗, z̃∗) − ∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃∗, z̃∗)−1 ∂2E
∂ρ̃∂ z̃

(ρ̃∗, z̃∗)
)

(
Hz̃(ρ̃

∗, z̃∗)−
1
2 v
)

(B.13)

≥ ε2‖v‖2. (B.14)

Altogether, we conclude

sr

(
∂ z̃(k+1)

∂ z̃k
(ρ̃∗, z̃∗)

)

≤ 1 − min(ε1, ε2), (B.15)

and hence the convergence of { z̃(k)}. The convergence of
{ρ̃(k)} to ρ̃∗ follows from a similar argument. ��
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