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Abstract Based on the weighted total variation model and
its analysis pursued in Hintermüller and Rautenberg 2016,
in this paper a continuous, i.e., infinite dimensional, pro-
jected gradient algorithm and its convergence analysis are
presented. The method computes a stationary point of a
regularized bilevel optimization problem for simultaneously
recovering the image as well as determining a spatially
distributed regularization weight. Further, its numerical real-
ization is discussed and results obtained for image denoising
and deblurring as well as Fourier and wavelet inpainting are
reported on.
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1 Introduction

The following novel duality-based bilevel optimization
framework is proposed in [31] for the development of a
monolithic variational, i.e., optimization approach to simul-
taneously recovering an image u : � → R and a spatially
varying regularization weight α : � → R+ from measure-
ment data f ∈ L2(�):

minimize J (p, α) over (p, α) ∈ H0(div) × Aad (P)

subject to (s.t.) p solves D(α),

where J (·, ·) is defined in (P̃) belowalongwith themotivation
for its choice. Specifically, it contains a term involving a
localized variance estimator and a H1-regularization term.
We define K(α) as

K(α) := {q ∈ H0(div) : |q(x)|∞ ≤ α(x) f.a.a. x ∈ �},

and the lower level problem D(α) is given by

minimize JD(p) := 1

2
| div p + K ∗ f |2B (D(α))

s.t. p ∈ K(α),

with div(·) = ∑
i

∂(·)i
∂xi

the divergence operator, and K a lin-

ear and continuous transfer operator from L2(�) to L2(�),
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i.e., K ∈ L(L2(�)), and K ∗ standing for its adjoint. Spe-
cific examples for K are the identity (denoising), convolution
(deblurring), and Fourier or wavelet transforms. The image
domain� ⊂ R

�, where � = 1 or 2 (unless stated differently),
is a bounded connected open set with Lipschitz boundary
∂�. The given datum satisfies f = Kutrue + η ∈ L2(�),
where utrue denotes the original image and η additive “noise,”
which has zero mean on � and satisfies |η|2

L2(�)
≤ σ 2|�|

with σ 2 > 0 and | · | the (Lebesgue) measure of �. Fur-
ther, |w|2B := (w, B−1w)L2(�) with B = K ∗K , which—for
simplicity—is assumed invertible, and | · |∞ denotes the
maximum norm on R

�. We use (·, ·)L2(�) to denote the
L2(�)-inner product, for which we sometimes also write
(·, ·)L2 or just (·, ·). Note also that with inner products and
pairings we do not distinguish notationwise between scalar
functions and vector fields. The underlying function space is

H0(div):= {v ∈ L2(�)� :div v ∈ L2(�) and v · n|∂�=0},
(1.1)

where n denotes the outer unit normal vector and the bound-
ary condition is taken in the H−1/2(∂�)-sense. Endowed
with the inner product

(v, w)H0(div) := (v, w) + (div v, divw),

H0(div) is a Hilbert space. Moreover,

Aad := {α ∈ H1(�) : α ≤ α ≤ α, a.e. on �}, (1.2)

with scalars 0 < α < α < +∞, denotes the set of admis-
sible filtering weights. Further, we note already here that
throughout this work vector-valued quantities are written in
bold font, “s.t.” and “f.a.a.” stand for “subject to” and “for
almost all,” respectively. Moreover, we use standard notation
for Lebesgue spaces (L p(�), p ∈ [1,+∞]) and Sobolev
spaces (Ws,p(�), s ∈ [1,+∞), and Hs(�) = Ws,2(�));
see, e.g., [1] for more on this. We denote by 〈·, ·〉 the duality
pairings 〈·, ·〉H−1,H1

0
and 〈·, ·〉H1(�)∗,H1(�). For the sake of

completeness, we also mention that H−1/2(∂�) denotes the
dual space of H1/2(∂�).

Provided that α is regular enough, in [31] (see also [32])
it is argued that (D(α)) is the Fenchel pre-dual problem of
the following weighted total variation problem:

minimize JP (u, α) over u ∈ BV (�), (P)

with

JP (u, α) := 1

2

∫

�

|Ku − f |2dx +
∫

�

α(x)|Du|,

where BV (�) := {u ∈ L1(�) : Du ∈ M(�,R�)}, and with
Du representing the distributional gradient of u. Further, by
M(�,R�) we denote the space of �-valued Borel measures,
which is the dual of Cc(�;R�), the space of continuous R�-
valued functions with compact support in �. The quantity
|Du| stands for the smallest nonnegative scalar Borel mea-
sure associated with the sum of the total variation norms of
the component measures of Du.

The bilevel optimization problem (P) falls into the
realmofmathematical programswith equilibriumconstraints
(MPECs) (in function space); see, e.g., [41,44] for an account
of MPECs in R

n , [5,29,34] for infinite dimensional set-
tings, and [35,40,47] for recent applications in mathematical
image processing. This problem class suffers from notori-
ously degenerate constraints ruling out the applications of
the celebrated Karush–Kuhn–Tucker theory (compare, e.g.,
[52]) for deriving first-order optimality or stationarity condi-
tions.

As a remedy, for scalar parameters β, δ, ε, γ, λ > 0 the
following regularized version of (P) is studied in [31]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J (p, α) := F ◦ R(div p) + λ

2
|α|2H1(�)

over (p, α) ∈ H1
0 (�)� × Aad,

s.t. p ∈ argmin
w∈H1

0 (�)�

β

2
|w|2

H1
0 (�)�

+ γ

2
|w|2L2(�)�

+ JD(w) + 1

ε
Pδ(w, α),

(P̃)

where F : L2(�) → R
+
0 with

F(v) := 1

2

∫

�

max(v−σ 2, 0)2dx+1

2

∫

�

min(v−σ 2, 0)2dx,

and themax- andmin-operations are understood in the point-
wise sense. The choice of the bounds 0 < σ ≤ σ < ∞ is
based on statistical properties related to the noise contained in
the measurement f ; see Sect. 4.2.1 below for details. More-
over, R

R(v)(x) :=
∫

�

w(x, y) (K B−1v+(K B−1K ∗−I ) f )2(y)dy

(1.3)

with a normalized weight w ∈ L∞(� × �) with
∫
�

∫
�

w(x, y) dxdy = 1. Note that if p solves (D(α)), then we
have div p = Bu − K ∗ f , where u is the solution to (P) (see
[31, Theorem 3.4]). This implies that

R(div p)(x) =
∫

�

w(x, y) (Ku − f )2(y)dy,

where the right-hand side represents a convolved version of
the image residual Ku − f .
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We now provide the motivation and reasoning behind the
definition of (p, α) �→ J (p, α). We start with the functional
p �→ F ◦ R(div p): Since F penalizes violations above σ 2

and below σ 2, we induce residuals R(div p) to satisfy σ 2 ≤
R(div p) ≤ σ 2. The map R(div p)(x) = ∫

�
w(x, y)(Ku −

f )2(y)dy for x ∈ � may be considered a local variance (see
[23]) andnote that f = Kutrue+ηwhere

∫
�

|η|2dx = σ 2|�|.
Consequently, if for some α∗ we would have u(α∗) = utrue,
then we expect R(div p)  σ 2. Thus, by choosing σ <

σ < σ one would get F ◦ R(div p∗)  0, where div p∗ =
Bu(α∗) − K ∗ f . Secondly, the H1-regularity of α induced
by the term λ

2 |α|2
H1(�)

in the objective yields that (P) and
(D(α)) are dual to each other. This comes as a consequence
of Theorem 3.1 below.

The map Pδ : H1
0 (�)� × L2(�) → L2(�)� is defined as

Pδ(p, α) := (p − α1)+δ − (p + α1)−δ , (1.4)

where, for δ > 0, R � r �→ (r)+δ ∈ R is given by

(r)+δ =
⎧
⎨

⎩

r − δ/2, r ≥ δ;
r2/2δ, r ∈ (0, δ);
0, r ≤ 0.

(1.5)

The function r �→ (r)+δ is a differentiable approximation of
the positive part r �→ (r)+ := max(r, 0) and analogously,
for (r)−δ := (−r)+δ and the negative part (r)− := (−r)+.
Additionally, for δ = 0, (r)+δ := (r)+ and (r)−δ := (r)−.
For r ∈ R

�, (r)+δ is defined componentwise, i.e., (r)+δ =
((r1)

+
δ , (r1)

+
δ , , . . . , (rl)

+
δ ) and (r)−δ analogously. The func-

tional Pδ(·, α) : H1
0 (�)� → R

+
0 in (P̃) penalizes violations

of p ∈ K(α) and is defined as

Pδ(p, α) :=
∫

�

�∑

i=1

(
Gδ(−(pi + α)) + Gδ(pi − α)

)
dx,

(1.6)

with p = (p1, p2, . . . , pl) and Gδ : R → R,

Gδ(r) =
⎧
⎨

⎩

1
2r

2 − δ
2r + δ2

6 , r ≥ δ;
r3/6δ, r ∈ (0, δ);
0, r ≤ 0,

(1.7)

for δ > 0. The function Gδ is a primitive of (·)+δ defined
in (1.5), specifically Gδ(r) := ∫ r

−∞(s)+δ ds and hence Gδ is
twice continuously differentiable. For δ = 0, we use r �→
G0(r) := r2/2 for r ≥ 0 and G0(r) := 0 otherwise. Note
that the derivative of the map p �→ Pδ(p, α) is given by
Pδ(p, α) (see [31] for details).

Utilizing [52], an optimal solution (p∗, α∗) ∈ H1
0 (�)� ×

Aad of (P̃) can be characterized by an adjoint state (a
Lagrange multiplier) q∗ ∈ H1

0 (�)� such that

(J ′
0(div p∗), div p)+

〈

− β�q∗+γ q∗+Aq∗

+1

ε
D1Pδ(p∗, α∗)q∗, p

〉

= 0, (1.8a)

〈

λ(−+I )α∗+1

ε

(
D2Pδ(p∗, α∗)

)� q∗, α − α∗
〉

≥ 0,

(1.8b)

for all p ∈ H1
0 (�)� and all α ∈ Aad, where J0 := F ◦ R and

further

−β�p∗+γ p∗+Ap∗+f+1

ε
Pδ(p∗, α∗) = 0, in H−1(�)�,

(1.8c)

where A : H0(div) → H0(div)∗ is defined as Ap :=
−∇B−1 div p, with p ∈ H0(div) and f = −∇B−1K ∗ f ∈
H0(div)∗; see [31, Thm. 6.3]. Further, D1Pδ(p, α) and
D2Pδ(p, α) denote the Fréchet derivatives of p �→ Pδ(p, α)

and α �→ Pδ(p, α), respectively. The latter are given by

D1Pδ(p, α)r1 := (
G′′

δ (p − α1) + G′′
δ (−p − α1)

)
r1,

(1.9a)

D2Pδ(p, α)r2 := (
G′′

δ (−p − α1) − G′′
δ (p − α1)

)
1r2,

(1.9b)

with G′
δ : L2+ξ (�)� → L2(�)� (with ξ > 0) given

by G′
δ(p) = (G ′

δ(p1), . . . ,G
′
δ(pl)) and where G ′

δ :
L2+ξ (�) → L2(�) is the Nemytskii (superposition) opera-
tor induced by the real-valued function r �→ (r)+δ . In order to
facilitate navigation through the text, we provide a glossary
in Table 1.

Besides characterizing stationarity, another benefit of
(1.8) is related to the reduced bilevel problem. In fact, the
solutionmap α �→ p(α) for the regularized lower-level prob-
lem allows to reduce (P̃) to

minimize Ĵ (α) := J (p(α), α) over α ∈ Aad. (P̃red)

Then, the adjoint state q allows to compute the derivative of
the reduced objective Ĵ ′ at some α in an amenable way. In
fact, one has

Ĵ ′(α) = λ(− + I )α + 1

ε
(D2Pδ(p(α), α))� q(α), (1.10)

where α �→ q(α) solves (1.8a) for p∗ = p(α) and α∗ =
α. The expression for the derivative Ĵ ′(α) follows from the
optimality system (1.8), and the adjoint state formalism (see,
for example, [36]).

The starting point for the development in this paper is
the reduced problem (P̃red). It is the basis for developing a
projected gradient method for solving the problem algorith-
mically.
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Table 1 Glossary of functions
and variables

Glossary Description Location
Variable

Aad Admissible set for regularization functions α : � → R (1.2)

α, α Upper and lower bounds in Aad (1.2)

K(α) Constraint set for the pre-dual variable (D(α))—p. 1

K Data forming operator (D(α))—p. 1

B K ∗K (D(α))—p. 1

JD(·) Objective functional of the lower-level problem (pre-dual) (D(α))—p. 1

JP (·, ·) Objective functional of the lower-level problem (primal) (P)—p. 2

J (·, ·) Objective functional of the upper-level problem (P̃)—p. 3

λ H1-regularization parameter for α (P̃)—p. 3

β H1
0 -regularization parameter for pre-dual problem (P̃)—p. 3

γ L2-regularization parameter for pre-dual problem (P̃)—p. 3

ε Penalty parameter for violations above and below α and α, respectively (P̃)—p. 3

δ Smoothing parameter for max and min functions (1.5)—p. 3

Pδ(p, α) Derivative of the map p �→ Pδ(p, α) (1.4)—p. 3

(·)+δ Smooth version of r �→ max(0, r) function (1.5)—p. 3

Pδ(p, α) Penalty functional for violations of p ∈ K(α) (1.6)—p. 4

Gδ(·) Primitive of (·)+δ , i.e., Gδ(r) := ∫ r
−∞(s)+δ ds (1.7)—p. 4

Ĵ (·) Reduced upper-level objective functional (P̃red)—p. 4

Ĵ ′(α) Fréchet derivative of the reduced functional at α (1.10)—p. 4

PAad Minimal distance H1-projection operator onto Aad p. 6

∇ Ĵ (α) Gradient of Ĵ at α, i.e., R−1 Ĵ ′(α) where R is the Riesz map p. 9

σ, σ Local variance bounds p. 15

In order to study regularity properties of the solutions of
H1-projections ontoAad, in the following Sect. 2 we provide
higher-order regularity results for solutions of elliptic varia-
tional inequality problems. The projected gradient method is
defined in Sect. 3, and global convergence results are estab-
lished. Section 4 is devoted to the discrete version of our
algorithm and the proper choice of the variance bounds σ

and σ . Moreover, it contains a report on numerical tests for
image denoising, deblurring as well as Fourier and wavelet
inpainting.

Before we commence with our analysis, we close this
section by mentioning that total variation models of a gener-
alized type can be found in [38] and [3]. Moreover, spatially
adapted regularization or data weighting has been studied in
[2,6,21,22,24,33,37]. For a brief discussion of these refer-
ences, we refer to part I of this work; see [31]. The bilevel
formulation approach for inverse problems seems to have
been pioneered byHaber, Tenorio, andGhattas (see [11,28]).
In the context of image reconstruction, the bilevel approach
has also been studied by De Los Reyes, Schönlieb, Valkonen
and collaborators (see [12,18,19] and references therein).
In addition, splitting methods in image/signal processing
involving statistical estimators for parameter selection and
deconvolution have been successfully treated in [17,20,45]

and the references therein, for instance. It should be noted
that the present work does not deal with bilevel “learning” (as
inmany of the aforementioned references), but tackles image
reconstruction via a bilevel optimization approach where the
upper-level problem enforces local variances within a certain
range and the reconstruction itself is obtained in the lower-
level one.

2 An Obstacle Problem and Projection Results

Returning to (P̃red) we note that its associated first-order nec-
essary conditions are given by the variational inequality

Find α∗ ∈ Aad : 〈 Ĵ ′(α∗), α − α∗〉 ≥ 0, ∀α ∈ Aad.

(2.1)

Given the structure of the derivative Ĵ ′(α∗) in (1.10), (2.1)
becomes a so-called double obstacle problem. Hence, the
characterization of solutions to (P̃red) hinges on the study of
(2.1). In addition, using a gradient descentmethod for solving
problem (P̃red) yields the sequence {αn} of iterates defined as

αn+1 = PAad(αn − τn∇ Ĵ (αn)), for n = 0, . . . , (2.2)
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with α0 given . Here, PAad : H1(�) → Aad ⊂ H1(�) is the
minimum distance projector ontoAad and∇ Ĵ (αn) ∈ H1(�)

denotes the gradient of Ĵ at αn . From (2.2), it follows that
αn+1 solves: αn+1 solves: Find α∗ ∈ Aad such that

〈(− + I )α∗ + M(αn, τn), α − α∗〉 ≥ 0, ∀α ∈ Aad;

for some M(αn, τn), yet another double obstacle problem.
This motivates the following study of this type of problems.

The subsequent result establishes the H2(�) ∩ C0,r (�)

regularity of the solution to the bilateral obstacle problem
with Neumann boundary conditions. The H2(�)-regularity
for a single obstacle andwith aC∞-boundarywas established
by Brézis in [10]. Similar and related partial results can also
be found in the classical texts by Rodrigues [46] and Kinder-
lehrer and Stampacchia [39]. For dimensions � = 1, 2, 3
(note� ⊂ R

�), theC0,r (�)-regularity is implied by Sobolev
embedding results for H2(�) (see, for example, [1]). For
dimensions � ≥ 2, we show that the C0,r (�)-regularity can
also be obtained from estimates due to Serrin; see [48].

While this result may be considered of stand-alone impor-
tance in the regularity theory for solutions of elliptic varia-
tional inequalities, in our generalized total variation context
it is of particular relevance to guarantee continuity of iterates
αn of the regularizationweight generated by someprojection-
based descent method.

Theorem 2.1 Let � ⊂ R
�, with � = 1, 2, 3, be a bounded

convex subset, and let A = {α ∈ H1(�) : α ≤ α ≤
α a.e. on �} where α, α ∈ H2(�), such that

α ≤ α, a.e. on � and
∂α

∂ν
= ∂α

∂ν
= 0 in H1/2(∂�).

Then, for f ∈ L2(�), there exists a unique u∗ ∈ H2(�) ∩
C0,r (�) ∩ A for some r ∈ (0, 1) that solves: Find u ∈ A
such that

∫

�

∇u · ∇(v − u) + (u − f )(v − u)dx ≥ 0, ∀v ∈ A.

(2.3)

In addition u∗ solves uniquely: Find u ∈ A and ∂u
∂ν

= 0 on
∂� such that

〈Lu − f, v − u〉 ≥ 0, ∀v ∈ A, (2.4)

where L = − + I . Furthermore, for some constant C > 0
the following estimates hold:

max(|u∗|C0,r (�), |u∗|H2(�))

≤ C(| f |L2(�) + |Lα|L2(�) + |Lα|L2(�)). (2.5)

Proof For ρ > 0 consider the approximating problem: Find
u ∈ H1(�) such that

a(u, w) + (Fρ(u) − f, w) = 0, ∀w ∈ H1(�), (2.6)

where, for any v,w ∈ H1(�), a and Fρ are defined as

a(v,w) :=
∫

�

∇u · ∇w + uwdx

(Fρ(v), w) :=
∫

�

1

ρ
(v − α)+w − 1

ρ
(v − α)−wdx .

Note that (2.6) is the first-order optimality condition for the
problem:

minimize J (u) := 1

2
|u|2H1(�)

+ 1

2ρ
G(u) − ( f, u)

over u ∈ H1(�),

with G(u) := |(u − α)+|2
L2(�)

+ |(α − u)+|2
L2(�)

. The
existence and uniqueness of a solution are guaranteed since
J : H1(�) → R is bounded below, coercive, strictly con-
vex and weakly lower semicontinuous (for being convex and
continuous).

Note that (2.6) is the variational form of a semilinear Neu-
mann problem, i.e., the solution u∗

ρ to (2.6) satisfies

Lu∗
ρ + Fρ(u∗

ρ) − f = 0 in �, and
∂u∗

ρ

∂ν
= 0 on ∂�;

see [49,50] or [4]. Let fρ := f − Fρ(u∗
ρ). Then fρ ∈ L2(�)

and Lu∗
ρ = fρ in�with ∂u∗

ρ/∂ν = 0 on ∂�. From Theorem
3.2.1.3 and its proof in [25], it follows that u∗

ρ ∈ H2(�) and

|u∗
ρ |H2(�) ≤ C̃1| fρ |L2(�) for some C̃1 > 0 depending only

on �. Also, for � ≥ 2 we have u∗
ρ ∈ C0,r (�) (see [43,48] or

Theorem 3.1.5 in [42]) for some r ∈ (0, 1) depending only
on � such that |u∗

ρ |C0,r (�) ≤ C̃2(|u∗
ρ |L2(�) + | fρ |L2(�)) with

C̃2 independent on fρ . Therefore, we have

|u∗
ρ |H2(�) ≤ C̃1

(

| f |L2(�) +
∣
∣
∣
∣
1

ρ
(u∗

ρ − α)+
∣
∣
∣
∣
L2(�)

+
∣
∣
∣
∣
1

ρ
(u∗

ρ − α)−
∣
∣
∣
∣
L2(�)

)

, (2.7)

and

|u∗
ρ |C0,r (�) ≤ C̃2

(

|u∗
ρ |L2(�) + | f |L2(�) +

∣
∣
∣
∣
1

ρ
(u∗

ρ − α)+
∣
∣
∣
∣
L2(�)

+
∣
∣
∣
∣
1

ρ
(u∗

ρ − α)−
∣
∣
∣
∣
L2(�)

)
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≤ 2max(C̃2, C̃1)

(

| f |L2(�) +
∣
∣
∣
∣
1

ρ
(u∗

ρ − α)+
∣
∣
∣
∣
L2(�)

+
∣
∣
∣
∣
1

ρ
(u∗

ρ − α)−
∣
∣
∣
∣
L2(�)

)

. (2.8)

Note that by Green’s theorem, a(v,w) =
(Lv,w)H1(�)∗,H1(�) + ∫

∂�
( ∂v
∂ν

)(w)dS, and also Lα ∈
L2(�), ∂α/∂ν = 0 and α ≤ α. Then, by taking w =
1
ρ
(u∗

ρ − α)+ ∈ H1(�) in (2.6) together with adding and
subtracting (Lα,w) we observe that

1

ρ
a(u∗

ρ − α, (u∗
ρ − α)+) +

∣
∣
∣
∣
1

ρ
(u∗

ρ − α)+
∣
∣
∣
∣

2

L2(�)

= ( f − Lα,
1

ρ
(u∗

ρ − α)+), (2.9)

where we have used that (Fρ(u∗
ρ), w) = |w|2

L2(�)
. Further-

more,

a(u∗
ρ − α, (u∗

ρ − α)+)

= ∣
∣(u∗

ρ − α)+
∣
∣2
L2(�)

+ ∣
∣∇(u∗

ρ − α)+
∣
∣2
L2(�)�

.

Here we exploit that if v ∈ H1(�), then v+ ∈ H1(�), and
∇v+ = ∇v if v > 0 and ∇v+ = 0, otherwise. From this, we
infer

∣
∣
∣
∣
1

ρ
(u∗

ρ − α)+
∣
∣
∣
∣
L2(�)

≤ | f − Lα|L2(�).

Analogously, for w = − 1
ρ
(u∗

ρ − α)− in (2.6), we obtain

∣
∣
∣
∣
1

ρ
(u∗

ρ − α)−
∣
∣
∣
∣
L2(�)

≤ | f − Lα|L2(�).

Hence, it follows that (2.5) holds foru∗
ρ andC=6max(C̃1, C̃2).

The boundedness of {u∗
ρ}ρ>0 in H2(�) implies that

Lu∗
ρ ⇀ Lũ, u∗

ρ → ũ in L2(�) and u∗
ρ ⇀ ũ in H2(�),

along a subsequence that we also denote by {u∗
ρ}. The above

two inequalities imply that ũ ∈ A. Furthermore, since
u �→ 1

ρ
(u − α)+ − 1

ρ
(u − α)− is a monotone mapping,

using w = v − u∗
ρ with an arbitrary v ∈ A in (2.6) (note that

(v − α)+ + (v − α)− = 0) we observe

a(u∗
ρ, v − u∗

ρ) ≥ ( f, v − u∗
ρ).

Since a(v − u∗
ρ, v − u∗

ρ) ≥ 0, it follows from the above
inequality that a(v, v − u∗

ρ) ≥ ( f, v − u∗
ρ). Taking the limit

as ρ ↓ 0, we get

a(v, v − ũ) ≥ ( f, v − ũ), ∀v ∈ A.

Finally, since ũ ∈ A, Minty’s lemma [16,46] implies that ũ
solves (2.3) and uniqueness follows from standard results.

Additionally, the trace map H2(�) � u �→ ∂u/∂ν ∈
H1/2(∂�) is a continuous linear map, and hence, it is weakly
continuous. Moreover, since the norm is weakly lower semi-
continuous, |∂ ũ/∂ν|H1/2(∂�) ≤ lim infρ→0

∣
∣∂u∗

ρ/∂ν
∣
∣
H1/2(∂�)

= 0. From a(v,w) = (Lv,w)H1(�)∗,H1(�)+
∫
∂�

( ∂v
∂ν

)(w)dS
for all v,w ∈ H1(�), it follows that ũ solves (2.4), as well.

��

Remark 2.2 The boundary conditions ∂α/∂ν = 0 and
∂α/∂ν = 0 may be relaxed to ∂α/∂ν ≥ 0 and ∂α/∂ν ≤ 0,
respectively.

An important application of the previous result is related
to the preservation of regularity of the minimal distance pro-
jection operator in H1(�) onto A = {α ∈ H1(�) : α ≤
α ≤ α a.e. on �}.

Corollary 2.3 Let � and A be as in Theorem 2.1. Let
PA : H1(�) → A ⊂ H1(�) denote the minimal distance
projection operator, i.e., for ω ∈ H1(�),

PA(ω) := argminα∈A
1

2
|α − ω|2H1(�)

. (2.10)

Let ω∗ = PA(ω). Then it holds that

ω ∈ H2(�) and
∂ω

∂ν
= 0 �⇒ ω∗ ∈ H2(�) and

∂ω∗

∂ν
= 0,

and furthermore,

max(|ω∗|H2(�), |ω∗|C0,r (�))

≤ C(|Lω|L2(�) + |Lα|L2(�) + |Lα|L2(�)),

for some r ∈ (0, 1) and with L = − + I .

Proof The first-order optimality condition for (2.10) is
equivalent to

∫

�

∇(ω∗−ω)·∇(v−ω∗)+(ω∗−ω)(v−ω∗)dx ≥ 0, ∀v∈A.

Since ω ∈ H2(�) and ∂ω/∂ν = 0, by Green’s Theorem, the
previous variational inequality is equivalent to

∫

�

∇ω∗ ·∇(v−ω∗)+ (ω∗ − fω)(v−ω∗)dx ≥ 0, ∀v ∈ A,

with fω := (− + I )ω ∈ L2(�). The proof then follows
from a direct application of Theorem 2.1. ��
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3 Descent Algorithm and Its Convergence

In this section, we study a basic projected gradient method
for solving the regularized bilevel optimization problem (P̃).
We are in particular interested in its global convergence prop-
erties in the underlying function space setting as this suggests
an image resolution (or, from a discretization point of view,
mesh) independent convergence when solving discrete, finite
dimensional instances of the problem. As a consequence of
such a property, the number of iterations of the solver for
computing an ε-approximation of a solution (or stationary
point) should be expected to behave stably on all sufficiently
fine meshes resp. image resolutions.

One of the main focus points of our analysis is to provide
guarantee that the iterates αn remain in C(�̄) for all n ∈
N. This property keeps the primal/dual relation between (P)
and (D(α)) vital. We recall here also that for the study of
(D(α)) alone, αn ∈ L2(�) suffices, but does no longer allow
to link (D(α)) to (P) through dualization. This refers to the
fact that given a dual solution p one no longer can infer a
primal solution (recovered image) u from primal-dual first-
order optimality conditions.We also note here that, of course,
more elaborate techniques may be employed as long as the
aforementioned primal/dual relation remains intact.

We employ the following projected gradient method given
in Algorithm 1 where the steps {τn}, τn ≥ 0 for all n ∈ N,
are chosen according to the Armijo rule with backtracking;
compare step 1 of Algorithm 1 and see, e.g., [7,9] for further
details.

Algorithm 1 Projected Gradient Method in Function Space.

Require: α0 ∈ H2(�) with ∂α0
∂ν

= 0 in ∂�, 0 < μ ≤ μ0 ≤ μ < ∞,
0 < θ− < 1 ≤ θ+, 0 < c < 1, and set n := 0.

1: Compute mn as the smallest m ∈ N0 for which the following holds:

Ĵ (αn) − Ĵ (αn(θ
m− μn)) ≥ c(∇ Ĵ (αn), αn − αn(θ

m− μn))H1(�),

with

αn(θ
m− μn) = PAad (αn − θm− μn∇ Ĵ (αn)),

where PAad : H1(�) → Aad ⊂ H1(�) is the H1-projection oper-
ator onto the closed, convex set Aad.

2: Set τn = θ
mn− μn and compute

αn+1 = PAad (αn − τn∇ Ĵ (αn)). (3.1)

3: Check stopping criteria. Unless suitable stopping criteria are met,
set n := n + 1, μn = min(max(θ+τn−1, μ), μ) and go to step 1.

Recall that our duality result in [31, Thm. 3.4] requires
C(�)-regularity of the regularization weight. Below, αn+1

represents a suitable approximation. Since it results from an
H1(�)-projection, and H1(�) �↪→ C(�), unless � = 1, the
required regularity for dualization seems in jeopardy. Under

mild assumptions and in view of Theorem 2.1, our next result
guarantees αn+1 ∈ C0,r (�) for some r ∈ (0, 1), and thus the
required regularity property.

Theorem 3.1 Let {αn} be generated by Algorithm 1. Then,
αn ∈ H2(�)∩C0,r (�) for all n ∈ N, every limit point α∗ of
{αn} is stationary for (P̃red), i.e., α∗ = PAad(α

∗ − ∇ Ĵ (α∗)),
and belongs to H2(�) ∩ C0,r (�). Furthermore, we have

lim
n→∞ αn − PAad(αn − ∇ Ĵ (αn)) = 0, in H1(�). (3.2)

Proof Wesplit the proof into several steps. Step 1: Regularity
of α∗ and αn . Let (p∗, α∗) ∈ H1

0 (�)� × Aad be a solution
to problem (P̃). Setting K (p∗, α∗) := 1

ε
D2Pδ(p∗, α∗), by

[31, Prop. 6.3] (compare (1.8)) there exists an adjoint state
q∗ ∈ H1

0 (�)� satisfying

∫

�

∇α∗ · ∇(α − α∗) +
(

α∗ − 1

λ
K (p∗, α∗)�q∗

)

×
(α − α∗)dx ≥ 0, ∀α ∈ Aad.

Let G′
δ be the Nemytskii operator induced (componen-

twise) by r �→ G ′
δ(r) = (r)+δ where Gδ is defined

in (1.7). Since G ′
δ(r) ∈ C1(R), G ′′

δ is Lipschitz with
|G ′′

δ |L∞(R), |G ′′′
δ |L∞(R) ≤ max(1, δ), it follows that K

(p∗, α∗)Tq∗ ∈ W 1,1(�) ∩ L2(�) as (p∗, α∗) ∈ H1
0 (�)� ×

H1(�). The application of Theorem 2.1 yields α∗ ∈
H2(�) ∩ C0,r (�). Given that L2(�) � α �→ p(α) ∈
H1
0 (�)� is Lipschitz continuous, note also that, by compo-

sition with Lipschitz functions, the map H1(�) � α �→
K (p(α), α) ∈ L4(�)� for � ≤ 4 is Lipschitz continuous
too, and G ′′

δ : R → R is uniformly bounded and Lipschitz
continuous so that G′′

δ : L4(�)� → L4(�)� is Lipschitz con-
tinuous (see Lemma 4.1 in [51] and the remark at the end of
its proof).

Suppose that α ∈ H2(�) and ∂α
∂ν

= 0 in ∂�. Then we
have

〈 Ĵ ′(α), ω〉
=

∫

�

(λ(−α + α) − K (p(α), α)�q(α))ωdx, (3.3)

for ω ∈ H1(�). Hence, Ĵ ′(α) ∈ L2(�) and ∇ Ĵ (α) ∈
H2(�)with ∂∇ Ĵ (α)

∂n = 0 on ∂�. The application of Corollary

2.3 yields PAad(α − τ∇ Ĵ (α)) ∈ H2(�) ∩ C0,r (�) and that
it satisfies homogeneous Neumann boundary conditions. By
induction one showsαn ∈ H2(�)∩C0,r (�) and ∂αn/∂ν = 0
on ∂� for all n ∈ N.

Step 2: The limit in (3.2) holds. It is known that every
cluster point of {αn} is stationary (see [9]) and that αn −
PAad(αn − τn∇ Ĵ (αn)) → 0 as n → ∞ provided that
H1(�) � α �→ ∇ Ĵ (α) ∈ H1(�) is Lipschitz continuous
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(see Theorem 2.4 in [36]). We first prove the Lipschitz conti-
nuity of the map α �→ q(α). Let p1, q1 and p2, q2 (satisfying
the system in (1.8)) denote the states and adjoint states asso-
ciatedwithα1 andα2 inAad, respectively. Given the structure
of J0 = F ◦ R, we observe that

|(J ′
0(div p2) − J ′

0(div p1), div(q2 − q1))|
≤ C1| div(p2 − p1)|L2(�)| div(q2 − q1)|L2(�),

where C1 = C1(α1, α2) is bounded by

C1 ≤ M1

(

| div p2|L2(�) +
∫

�

|max(R(div p1) − σ 2
1 , 0)|

+|min(R(div p1) − σ 2
2 , 0)|dx

)
,

with M1 ≥ 0 depending on the filter kernel w and f ,
so that C1(α1, α2) ≤ M2 < ∞ uniformly in α1, α2.
Additionally, as stated before, the map H1(�) � α �→
1
ε
D2P(p(α), α) = K (p(α), α) ∈ L4(�)� is Lipschitz con-

tinuous, D1P(p(α), α) is a monotone operator (this follows
since H1

0 (�)� � p �→ Pδ(p, α) ∈ H−1(�)� is mono-
tone and differentiable), and by composition of maps one
shows that H1(�) � α �→ q(α) ∈ H1

0 (�)� is Lipschitz
continuous. This implies in turn that the map H1(�) �
α �→ K (p(α), α)Tq(α) ∈ L2(�) is Lipschitz, as well. Since
∇ Ĵ (α) = (− + I )−1 Ĵ ′(α), we have that H1(�) � α �→
∇ Ĵ (α) ∈ H1(�) is Lipschitz continuous. This ends the
proof. ��

The above convergence result can be strengthened. In fact,
the following theorem shows that under suitable assump-
tions one has αn → α∗ in H1(�) at a q-linear rate. In
particular, this requires that the sequence of step lengths
{τn} is non-increasing and bounded from below. We note
that the sequence {τn} can be made non-increasing by set-
ting μn := τn−1 for all n ∈ N in step 3 of Algorithm
1. Concerning proving the existence of a uniform lower
bound on the step lengths the Lipschitz continuity of the
map H1(�) � α �→ ∇ Ĵ (α) ∈ H1(�), as shown in the
proof of Theorem 3.1, suffices. In fact, in finite dimensions
and under simple constraints, the result can be found in [8]
and the proof there can easily be adapted to a Hilbert space
setting with arbitrary nonempty closed convex set. Further,
we make use of the following result which can be found in
Theorem 5.1 and Remark 5.1 in [31] that we state here as a
lemma.

Lemma 3.2 Given f ∈ L2(�) and let p(α, f ) be the solu-
tion to the lower-level problem in (P̃). Then, p(α, f ) → 0 in
H1
0 (�)� as f ↓ 0 in L2(�).

Theorem 3.3 Let {αn} be generated by Algorithm 1. If the
sequence of step lengths {τn} = {θmn− μn} is non-increasing

in the sense that μn = τn−1, then αn → α∗ q-linearly in
H1(�) provided that λ > 0 and the data f ∈ L2(�) are
sufficiently small, respectively.

Proof We first prove that the Lipschitz constant of the map
H1(�) � α �→ K (p(α), α)Tq(α) ∈ L2(�) denoted as L( f )
satisfies L( f ) → 0 as f → 0 in L2(�). Let pi := p(αi )

and qi := q(αi ). Then, by the triangle inequality

|K (p2, α2)
Tq2 − K (p1, α1)

Tq1|L2(�)

≤ |q1|L4(�)�C(|p2 − p1|L4(�)� + |α2 − α1|L4(�))

+ |K (p2, α2)|L4(�)� |q2 − q1|L4(�)� ,

for some C > 0. We know that H1(�) � α �→ q(α) ∈
H1
0 (�)� and L2(�) � α �→ p(α) ∈ H1

0 (�)� are Lipschitz
continuous. Furthermore, Lemma 3.2 implies p(α, f ) → 0
in H1

0 (�)� as f ↓ 0 in L2(�) and analogously, one shows
that q(α, f ) → 0 in H1

0 (�)� as f ↓ 0 in L2(�) since
K (p(α, f ), α) → 0 in L4(�)� and−∇ J ′

0(div p(α, f )) → 0
in H−1(�)� as f ↓ 0 in L2(�). Hence, since H1(�) ↪→
L4(�) for � ≤ 4, the map under investigation is Lipschitz
continuous with constant L( f ), and L( f ) → 0 as f → 0 in
L2(�).

Since H1(�) � α �→ ∇ Ĵ (α) ∈ H1(�) is Lipschitz con-
tinuous (see the proof of Theorem 3.1), it follows that step
sizes τn are bounded from below (see [8]). The sequence
{τn} is non-increasing by hypothesis and then, since τn =
θ
mn− τn−1, and mn ∈ N0, we have mn = 0 for n ≥ Ñ for

some Ñ ∈ N sufficiently large: Suppose there is no such an
Ñ . Then, there is a subsequence {mn j } such thatmn j ≥ 1 for

j ∈ N, which implies that τn j ≤ θ
j
−τ0. Hence, τn j → 0 as

j → ∞ and then {τn} is not bounded below.
Then, it is enough to consider {αn}n>Ñ and such that τn =

τ̃ for some fixed τ̃ > 0. Define Q(α) := K (p(α), α)Tq(α),
let� = PAad(ψ−τ̃∇ Ĵ (ψ)) and� = PAad(θ−τ̃∇ Ĵ (θ)) for
some ψ, θ ∈ Aad. Then, using that the projection map PAad

is non-expansive, ∇ Ĵ (α) = (−+ I )−1 Ĵ ′(α) = R−1 Ĵ ′(α)

(whereR is the Riesz map for H1(�)) and (3.3), we have

|� − �|2H1(�)

≤ |(1 − τ̃ λ)(ψ − θ) + τ̃R−1(Q(ψ) − Q(θ))|2H1(�)

The structure of the norm in H1(�) implies

|� − �|2H1(�)

≤ (1 − τ̃ λ)2|ψ − θ |2H1(�)
+ τ̃2|R−1(Q(θ) − Q(ψ))|2H1(�)

+ 2(1 − τ̃ λ)τ̃ (ψ − θ,R−1(Q(θ) − Q(ψ)))H1(�)

≤ (1 − τ̃ λ)2|ψ − θ |2H1(�)
+ τ̃2L( f )2|ψ − θ |2L2(�)

+ 2|1 − τ̃ λ|τ̃ L( f )|ψ − θ |H1(�)|ψ − θ |L2(�)

≤
(
(1−τ̃ λ)2 + τ̃2L( f )2+2(1 − τ̃ λ)τ̃ L( f )

)
|(ψ − θ)|2H1(�)

.
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Here, we have used the Lipschitz properties of the map
α �→ Q(α) described before. Finally, for λ > 0 and
f ∈ L2(�) sufficiently small, the map H1(�) � ϕ �→
PAad(ϕ − τ̃∇ Ĵ (ϕ)) ∈ H1(�) is contractive and the iteration
(3.1) converges linearly by Banach Fixed Point Theorem.

4 Numerical Experiments

In this section, we provide numerical results for image
denoising, deblurring, and Fourier as well as wavelet inpaint-
ing.

4.1 Implementation

Utilizing a finite difference discretization of the regularized
and penalized lower-level problem in (P̃), we arrive at the
discretized bilevel problem

⎧
⎨

⎩

minimize J (p, α) over p ∈ (R|�h |)2, α ∈ Aad,

s.t. g(p, α) :=−β�p+γ p+Ap+f+ 1

ε
Pδ(p, α)=0,

(4.1)

with Ap := −∇B−1 div p, and f = −∇B−1K ∗ f , andwhere
we set �h := {1, 2, ..., n1} × {1, 2, ..., n2} and define the
mesh size h := √

1/(n1n2). Assuming constant bounds in
Aad, the discrete admissible set, again denoted by Aad, is
given by

Aad := {α ∈ R
|�h | : α ≤ α j ≤ α, ∀ j = ( j1, j2) ∈ �h}.

The discrete objective reads

J (p, α) := 1

2

∣
∣
∣(R(div p) − σ 2)+

∣
∣
∣
2

�2(�ω)

+ 1

2

∣
∣
∣(σ 2 − R(div p))+

∣
∣
∣
2

�2(�ω)
+ λ

2
|α|2H1(�h)

,

R(div p) := w ∗ |K (μI + K ∗K )−1(div p + K ∗ f ) − f |2,

where �ω is the (index) domain for the acquired data f
(we use �ω = �h in denoising and deblurring), and define
| f |2

�2(�ω)
:= (

∑
j∈�ω

| f j |2)/|�ω|. In our experiments,w is a
(spatially invariant) averaging filter of size n(w)-by-n(w) (i.e.,
the local window size is n2(w) many pixels), and thus the com-
putation of the local variance estimator R(div p) becomes a
discrete convolution denoted by “∗”. The term “μI” in the
definition of R(div p), with 0 < μ � 1, serves as a regular-
ization of K ∗K .

We discretize the divergence operator as

(div p)( j1, j2) = 1

h

(
p1

( j1, j2) − p1
( j1−1, j2)

+p2
( j1, j2) − p2

( j1, j2−1)

)
, ∀( j1, j2) ∈ �h,

with p1
( j̃1, j̃2)

= p2
( j̃1, j̃2)

= 0 whenever ( j̃1, j̃2) /∈ �h in the

above formula. Accordingly, the discrete gradient operator
∇ is defined by the adjoint relation, i.e., ∇ := − div�.
The discrete vectorial Laplacian  is defined by p =
((D)p1,(D)p2) for each p ∈ (R|�h |)2, and (D),(N) ∈
R

|�h |×|�h | denote the discrete five-point-stencil Laplacians
with homogenous Dirichlet and Neumann boundary condi-
tions, respectively. For generating (N), the function value
on a ghost grid point (outside the domain) is always set to the
function value at the nearest grid pointwithin the domain. For
the discrete H1-norm of α ∈ R

|�h | (satisfying homogeneous
Neumann conditions) we use

|α|H1(�h)
:= h

√
α�(I − (N))α.

By considering the discrete H1(�)-to-H1(�)∗ Riesz map as
α �→ r = (I −(N))α, we define the discrete dual H1-norm
as

|r |H1(�h)
∗ :=

∣
∣
∣(I−(N))

−1r
∣
∣
∣
H1(�h)

= h
√
r�(I−(N))−1r .

The denoising problem is treated specially. In fact, we set
μ = 0 and discretize the operator ∇ ◦ div jointly by

(∇ div p)( j1, j2)

= 1

h2

(
p1

( j1+1, j2) − 2p1
( j1, j2) + p1

( j1−1, j2) + p2
( j1+1, j2)

− p2
( j1+1, j2−1) − p2

( j1, j2) + p2
( j1, j2−1), p2

( j1, j2+1)

− 2p2
( j1, j2) + p2

( j1, j2−1) + p1
( j1, j2+1) − p1

( j1−1, j2+1)

− p1
( j1, j2) + p1

( j1−1, j2)

)

for all ( j1, j2) ∈ �h , and p1
( j̃1, j̃2)

= p2
( j̃1, j̃2)

= 0 whenever

( j̃1, j̃2) /∈ �h in the above formula. Further, this is used to
compute the discrete dual H0(div)-norm as

|v|H0(div)∗ := h
√

v�(I − ∇ ◦ div)−1v, for v ∈ (R|�h |)2.

In our numerical tests, we use the discrete version ofAlgo-
rithm 1 as shown in Algorithm 2 below. For a given α, the
solution of the lower-level problem g(p, α) = 0 (compare
step 4 of Algorithm 2) is computed by a path-following
Newton technique. Its numerical realization can be found
in Algorithm 3. Besides, each projection onto Aad requires
solving an obstacle problem in H1(�), which is carried out
by the semismooth Newton method [30]. For convenience of
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the reader, in Algorithm 4 we tailor this semismooth New-
ton method to the requirements in this paper. The overall
algorithm is terminated once κn/κ0 < tol(b), where

κn :=
∣
∣
∣PAad(α

n − ∇ Ĵ (αn)) − αn
∣
∣
∣
H1(�h)

is our proximity measure and tol(b) > 0 is the user-set toler-
ance parameter.

Algorithm 2 Discretized projected gradient method.
Require: α, α, σ , σ , λ, β, γ, μ, ε, δ, τ 0, tol(b) > 0, 0 < c < 1, 0 <

θ− < 1 ≤ θ+, n(w) ∈ N.
1: Generate the averaging filter w of size n2(w).

2: Initialize α0 ∈ Aad and k := 0.
3: repeat
4: Compute pk ∈ (R|�h |)2 as the solution of g(pk , αk) = 0.
5: Compute uk := (μI + K ∗K )−1(div pk + K ∗ f ).
6: Solve the following adjoint equation for qk :

− ∇(μI + K ∗K )−1 div qk − βqk + γ qk

+ 1

ε
diag

(
G ′′

δ (p
k − αk1) + G ′′

δ (−pk − αk1)
)

qk

= ∇(μI + K ∗K )−1K ∗diag(Kuk − f )
(
w ∗ (

(R(div pk) − σ 2)+ − (σ 2 − R(div pk))+
))

.

7: Compute the reduced derivative Ĵ ′(αk) :=
(
diag

( − G ′′
δ (p

k −
αk1) + G ′′

δ (−pk − αk1)
)
qk

)
1 + λ(I − (N))α

k as well as the

reduced gradient ∇ Ĵ (αk) := (I − (N))
−1 Ĵ ′(αk).

8: Evaluate the proximity measure

κk :=
∣
∣
∣PAad (α

k − ∇ Ĵ (αk)) − αk
∣
∣
∣
H1(�)

.

9: if κk/κ0 < tol(b) then
10: return αk , pk , uk .
11: end if
12: Compute the trial point αk+1 := PAad (α

k − τ k∇ Ĵ (αk)).
13: while Ĵ (αk+1) > Ĵ (αk) + c Ĵ ′(αk)�(αk+1 − αk) do {Armijo

line search}
14: Set τ k := θ−τ k , and then re-compute αk+1 := PAad (α

k −
τ k∇ Ĵ (αk)).

15: end while
16: Update τ k+1 := θ+τ k and k := k + 1.
17: until some stopping criterion is satisfied.

4.2 Parameter Settings

Unless otherwise specified, the following parameters are
used throughout our numerical experiments: λ = 10−6,
β = γ = 10−4, ε = c = 10−8, δ = τ 0 = 10−3, θ− = 0.25,
θ+ = 2, n(w) = 7, tol(b) = 0.005. The choice of λ is
taken from the range [10−7, 10−5] inwhich final results seem
invariant. The parameters ε and δ are chosen to be sufficiently
small so that improvements are not significant upon further
reduction. Note that the sensitivity of parameters is studied in

Algorithm 3 Path-following Newton method for the lower-
level problem in step 4 of Algorithm 2 .

Require: inputs tol(l) > 0, 0 < θε < 1, α ∈ R
|�h |.

1: Initialize p0 ∈ (R|�h |)2, ε0 := 1, l̃ := 0, and l := 0.

2: while εl > ε or
∣
∣g(pl , α; εl)

∣
∣
H0(div)∗ ≥ tol(l)

∣
∣
∣g(pl̃ , α; εl )

∣
∣
∣
H0(div)∗

do
3: Compute the Newton step δpl by solving

− ∇(μI + K ∗K )−1 div δpl − βδpl + γ δpl

+ 1

εl
diag

(
G ′′

δ (p
l − α1) + G ′′

δ (−pl − α1)
)
δpl

= −g(pl , α; εl).

4: Update pl+1 := pl + δpl .

5: if
∣
∣g(pl+1, α; εl )

∣
∣
H0(div)∗ < tol(l)

∣
∣
∣g(pl̃ , α; εl )

∣
∣
∣
H0(div)∗

then

6: Set εl+1 := max(θεε
l , ε) and l̃ := l + 1.

7: else
8: Set εl+1 := εl .
9: end if
10: Update l := l + 1.
11: end while
12: Return pl .

Algorithm 4 α-projection.

Require: Inputs εα, tol(p) > 0, α̃ ∈ R
|�h |.

1: Initialize α0 ∈ R
|�h | and l := 0.

2: Compute the residual r0 := (I − (N))(α
0 − α̃) +

1

εα

(
(α0 − α)+ − (α0 − α)+

)
.

3: repeat
4: Compute the Newton step δαl by solving

(

I − (N) + 1

εα

diag(ξ l )

)

δαl = −rl ,

where ξ l ∈ R
|�h | is given by

ξ lj =
{
1 if αl

j > α or αl
j < α,

0 otherwise.

5: Update

αl+1 := αl + δαl ,

rl+1 := (I − (N))(α
l+1 − α̃)

+ 1

εα

(
(αl+1 − α)+ − (αl+1 − α)+

)
.

6: Set l := l + 1.
7: until

∣
∣rl

∣
∣
H1(�)∗ < tol(p)

∣
∣r0

∣
∣
H1(�)∗ .

8: Return αl .

Sect. 4.5 and results shown in Fig. 8 . The bounds α = 10−8

and α = 10−2 are chosen so that the interval [α, α] is suf-
ficiently large for proper selection of the spatially variant α.
The parameter μ is set to be zero for denoising and deblur-
ring, while μ = 10−4 for Fourier- and wavelet inpainting.
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Table 2 Comparison with
respect to PSNR and SSIM

(
PSNR
SSIM

)

Denoise Deblur Fourier Wavelet

σ = 0.1 σ = 0.2 Teeth Chest

Best scalar α̂ 27.1172 23.9003 25.5452 28.3300 29.1656 27.3100

0.7937 0.7112 0.7913 0.8136 0.8357 0.8566

SATV 27.9817 24.5544 25.8144 – – –

0.8042 0.6803 0.8004 – – –

Bilevel-(#1) 27.4184 23.5480 25.5760 28.3529 28.4044 27.5024

0.8154 0.7128 0.7916 0.8134 0.8210 0.8533

Bilevel-(#2) 27.5783 24.3556 26.0976 28.5605 28.8902 27.6311

0.8159 0.7031 0.8092 0.8258 0.8403 0.8554

Finally, concerning the initialization of α, the general
guideline is to choose α0 sufficiently large, depending on the
underlying problem, so that it yields a cartoon-like restora-
tion u0. This is analogous to the spatially adaptive total
variation method in [23]. The rationale behind this guide-
line lies in that a cartoon-like restoration typically injects
meaningful information into the local variance estimator,
which finally transfers into the spatial adaption of the reg-
ularization parameter. In our experiments, α0 = 2.5 × 10−3

seems universally good for all examples. In particular, our
choice of α0 will be illustrated for the denoising example in
Fig. 3.

All experiments reported in this section were performed
under MATLAB R2013b. The image intensity is scaled to
the interval [0, 1] in our computation. The displayed images
will be quantitatively compared with respect to their peak
signal-to-noise ratios (PSNR) and the structural similarity
measures (SSIM); see Table 2. In all examples, the “best”
scalar regularization parameter α̂ is selected via a bisection
procedure, up to a relative error of 0.02, to maximize the
following weighted sum of the PSNR- and SSIM values of
the resulting scalar-α restoration

PSNR(α)

max{PSNR(α̃) : α̃ ∈ I } + SSIM(α)

max{SSIM(α̃) : α̃ ∈ I }

over the interval I = [10−5, 10−3]. The maximal PSNR and
SSIM in the above formula are pre-computed up to a relative
error of 0.001.

4.2.1 Choices of σ and σ

Assuming that the noise levelσ is knownor estimated before-
hand, the local variance bounds σ and σ can be chosen
as follows. Let χ2(n2(w)) denote the Chi-squared distribu-

tion with n2(w) degrees of freedom. Ideally, if u = (μI +
K ∗K )−1(div p + K ∗ f ) is equal to the true image, then the
local variance estimator R(div p) = w ∗ |Ku − f |2 fol-

lows the (scaled) Chi-squared distribution componentwise
(see [23]), i.e., for each (i, j) ∈ �h we have

R(div p)(i, j) ∼ σ 2

n2(w)
χ2(n2(w)). (4.2)

This motivates our selection of the local variance bounds. In
the following, we describe two variants of the local variance
bounds based on Chi-squared statistics. Both of them will be
tested through our numerical experiments.

First choice of σ and σ Ignoring certain dependencies
of the random variables, our first local variance bounds are
based on extreme value estimation (in the sense of Gumbel,
see[26]). In fact, Gumbel’s theory allows to describe the sta-
tistical distribution of the maximum and minimum values of
a finite number of random variables. Within the theory, the
asymptotic distribution of the maximal and minimal values
is determined, and hence, the larger the sample, the more
accurate the description becomes. In light of this approach,
the upper bound σ was previously established in [23]. Under
conditions analogous to the ones in [23], here we derive the
value of the lower bound σ and argue that the choice of σ

is also proper in the setting where the localized residual is
enforced to the interval [σ , σ ].

Let f be the probability density function of χ2(n2(w)) and
F denote its cumulative distribution function, i.e., F(T ) :=∫ T
−∞ f(z)dz. The maximum and minimum values of N :=
n1n2 observations of independent and identically distributed
χ2(n2(w))-randomvariables are, respectively, denoted by Tmax

and Tmin. Following Gumbel (see [26], eq. 31’ on p. 133 and
eq. ’31 on p. 135 or [27]), the limiting distributions of the
maximum and minimum value fmax and fmin are given by

fmax(ymax(Tmax)) = N f(T̃max)e
−ymax(Tmax)−e−ymax(Tmax)

,

fmin(ymin(Tmin)) = N f(T̃min)e
ymin(Tmin)−eymin(Tmin)

,

where T̃min and T̃max are the “dominant values” defined as
F(T̃min) := 1/N and F(T̃max) := 1 − 1/N . Further, ymax(·)
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and ymin(·) represent the standardizations (of Tmax and Tmin)
defined by

ymax(T ) := N f(T̃max)(T − T̃max),

ymin(T ) := N f(T̃min)(T − T̃min).

The cumulative distributions Fmax(T ) := P (Tmax ≤ T ) and
Fmin(T ) := P (Tmin ≤ T )) satisfy

P (Tmax ≤ T ) = e−e−ymax(T )

,P (Tmin ≤ T ) = 1 − e−eymin(T )

,

see eq. 32’ on p. 133 and eq. ’32 on p. 135 in [26] or [27].
The corresponding expectations (E) and standard deviations
(d) for ymax(Tmax) and ymin(Tmin) are given by

E(ymax(Tmax)) = κ, d(ymax(Tmax)) = π√
6
,

E(ymin(Tmin)) = −κ, d(ymin(Tmin)) = π√
6
,

where κ  0.577215 is the Euler–Mascheroni constant (see
[26], p. 141). It follows from the standardizations of Tmax

and Tmin that

E(Tmax) = T̃max + κ

N fmax(T̃max)
, d(Tmax) = π√

6N fmax(T̃max)
,

E(Tmin) = T̃min + κ

N fmin(T̃min)
, d(Tmin) = π√

6N fmin(T̃min)
.

It can be straightforwardly proven (see [23]) that

P (Tmax ≤ E(Tmax) + d(Tmax)) = e−e
−k− π√

6  0.86,

and analogously, since ymin(E(Tmin) − d(Tmin)) = −κ −
π/

√
6, we have that

P (Tmin ≥ E(Tmin) − d(Tmin))

= 1 − P (Tmin ≤ E(Tmin) − d(Tmin))

= 1 − (1 − e−e
−k− π√

6
)  0.86.

Furthermore, although it is not possible to obtain closed-form
expressions forP (Tmax ≤ E(Tmin) − d(Tmin)) and P(Tmin ≥
E(Tmax)+d(Tmax)), it is obtained computationally that these
two quantities are almost zero in the range given by N =
162, 322, . . . , 10242 and n(w) = 3, 4, . . . , 11. This implies
that

P (E(Tmin) − d(Tmin) ≤ T ≤ E(Tmax) + d(Tmax))  0.86,

for T = Tmin or T = Tmax.

Based on the above derivation and (4.2), our first selection
of the local variance bounds is given as follows

σ 2
(l) := σ 2

n2(w)
(E(Tmax) + d(Tmax)), σ 2

(l) := σ 2

n2(w)
(E(Tmin) − d(Tmin)).

(#1)

Second choice of σ and σ Our second choice of the local
variance bounds is based onmean and variance estimation. It
is known that themean and the standard deviation ofχ2(n2(w))
can be, respectively, calculated as

E(χ2(n2(w))) = n2(w), d(χ2(n2(w))) = √
2n(w).

Based on this information, one can choose the local variance
bounds as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ 2
(t):=E

(
σ 2

n2(w)
χ2(n2(w))

)

+d

(
σ 2

n2(w)
χ2(n2(w))

)

= σ 2

(

1+
√
2

n(w)

)

,

σ 2
(t):=E

(
σ 2

n2(w)
χ2(n2(w))

)

−d

(
σ 2

n2(w)
χ2(n2(w))

)

= σ 2

(

1 −
√
2

n(w)

)

.

(#2)

4.3 Experiments on Denoising

We first test our method on a denoising problem. The
observed image is generated by adding Gaussian white noise

Fig. 1 “Cameraman” image. a True image. b Noisy blurry image.
c Noisy image (σ = 0.1). d Noisy image (σ = 0.2)
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Fig. 2 Denoising: σ = 0.1. a
Restor. via α̂ = 2.641e−4. b
Restor. via bilevel-(#1). c α via
bilevel-(#1). d Restor. via
SATV. e Restor. via bilevel-(#2).
f α via bilevel-(#2)

of standard deviation 0.1 to the test image “Cameraman”; see
subplots a and c in Fig. 1.We test our bilevelmethodwith two
different local variance bounds in (#1), i.e., σ 2

(l) = 0.00325

and σ 2
(l) = 0.02211, and in (#2), i.e., σ 2

(t) = 0.00798

and σ 2
(t) = 0.01202, which are, respectively, referred to as

“bilevel-(#1)” and “bilevel-(#2)” in what follows. In Fig. 2,
the corresponding restored images and the spatially vari-
ant regularization parameters are displayed. These results
are compared with the restoration via the best scalar α̂ =
2.641 × 10−4, as well as the restoration via the spatially
adaptive total variation approach (SATV) [23].

Subplot a in Fig. 2 indicates that the scalar α̂ can not simul-
taneously recover, to visual satisfaction, the detail regions
(e.g., where the camera and the tripod are placed) and the
homogenous regions (e.g., the background sky). The SATV
restoration yields significant improvement in this respect.
Our bilevel restorations in subplots b and e are visually even
better, especially in the homogenous regions. Comparing b
and e,we observe that the tighter bounds given by (#2) tend to
capture more information from the image and yield a slightly
better restored image. According to a quantitative compar-
ison in Table 2, the bilevel approaches are always superior
to the best scalar α̂ with respect to PSNR and SSIM. Com-
pared with SATV, the bilevel approaches lose in PSNR but
are better in SSIM.

We note that the α-plots in c and f are reversely scaled
for visualization purposes (i.e., a peak in the α-plot indicates
small value of α at the point), and similarly for all forthcom-
ingα-plots in Sect. 4. Notably, one can observe patterns in the

spatial distribution of α from our bilevel approach. In both
subplots c and f, α tends to be small in the detailed regions
while being large in the homogenous regions. This explains
why the restorations in b and e are superior to the one via the
best scalar-valued α̂.

We also illustrate the evolution of αk and uk along the
iterations of the projected gradient algorithm in Fig. 3. As
instructed by the guideline at the end of Sect. 4.1, the initial
guess α0 produces a cartoon-like image u0. As the itera-
tions proceed, it is observed that αk reveals more and more
apparent spatial pattern, and correspondingly the restora-
tion becomes sharper and sharper. The final αk and uk after
21 iterations are, respectively, given by subplots f and e in
Fig. 2.

To conclude the denoising example, we increase the noise
level, i.e., σ = 0.2, and repeat the above experiment. In this
case, the local variance bounds from (#1) and (#2) are given
by σ 2

(l) = 0.01302, σ 2
(l) = 0.08843, σ 2

(t) = 0.03192, σ 2
(t) =

0.04808. The corresponding results are shown in Fig. 4. From
these results, a general observation is that detection of spatial
patterns in α becomes more challenging as the noise level
increases. For relatively loose bounds such asσ 2

(l) andσ 2
(l), the

pattern in the spatially variant α becomes less significant. On
the other hand, artifacts due to strong noise tend to appear inα

via relatively tight bounds such as σ 2
(t) and σ 2

(t). Nevertheless,
the restorations via the bilevel approaches seem never worse
off than the restorations via scalar α̂ or SATV, both visually
and quantitatively.
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Fig. 3 Evolution of αk and uk

in bilevel-(#2)

Fig. 4 Denoising: σ = 0.2. a
Restor. via α̂ = 6.493e−4. b
Restor. via bilevel-(#1). c α via
bilevel-(#1) d Restor. via SATV.
e Restor. via bilevel-(#2). f α via
bilevel-(#2)

4.4 Experiments on Deblurring

We continue our experiments by deblurring the “Camera-
man” image. Here the image is blurred by Gaussian blur of
standard deviation 1 and then degraded by Gaussian white
noise of standard deviation 0.05; see Fig. 1b. Again, we
have implemented both bilevel-(#1) and bilevel-(#2), where
the local variance bounds are given by σ 2

(l) = 0.000814,

σ 2
(l) = 0.005527, σ 2

(t) = 0.001995, and σ 2
(t) = 0.003005.

In Fig. 5, the resulting images and α’s are displayed. These
results are compared with the restorations via the best scalar
α̂ = 4.698 × 10−5 and via SATV. In view of subplots c
and f, the spatially variant regularization parameters obtained
in deblurring share similar patterns to the ones in denois-
ing, particularly in the regions of the camera and the tripod.
Both bilevel-(#1) and bilevel-(#2) seem to outperform the
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Fig. 5 Deblurring. a Restor. via
α̂ = 4.698e−5. b Restor. via
bilevel-(#1). c α via bilevel-(#1).
d Restor. via SATV. e Restor. via
bilevel-(#2). f α via bilevel-(#2)

Fig. 6 Fourier inpainting:
“Chest.” a “Chest” image. b
Restor. via bilevel-(#1). c α via
bilevel-(#1). d Restor. via
α̂ = 6.978e−5. e Restor. via
bilevel-(#2). f α via bilevel-(#2)

best scalar α̂ in PSNR and SSIM; see Table 2. Note that the
blurring operator has a dampening effect on the artifacts con-
tained in the image. In this circumstance, bilevel-(#2) with
tighter local variance bounds is typically more favorable than
bilevel-(#1).

4.5 Experiments on Fourier Inpainting

Now we consider Fourier inpainting (restoration with miss-
ing samples in the Fourier domain), which is typically
encountered in parallel magnetic resonance imaging. For the
test image “Chest” in Fig. 6(a), the corresponding data f are
generated as f = K (u+η). Here K is defined by K = S◦F ,

where F is the 2D discrete Fourier transform and S is a sub-
sampling operator which collects Fourier coefficients along
120 radial lines centered at zero frequency. Since the subsam-
pled Fourier data are typically non-uniformly distributed, the
local variance estimator R(div p) is computed as a 1D con-
volution, i.e., w is a 1D averaging filter of size n2(w), and

|Ku − f |2 ∈ R
|�ω| is aligned lexicographically as a 1D

vector and then convolved with w. Besides, η ∈ R
|�h | is

Gaussian white noise of standard deviation 0.05. In contrast
to denoising and deblurring, here the acquired data f are
coded in the frequency domain rather than the image domain.
This renders the SATV method [23] inapplicable to Fourier
inpainting.
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Fig. 7 “Chest”: zoomed views Original Backprojection Scalar α̂ Bilevel-(#1) Bilevel-(#2)

(a)

(c) (d) (e)

(b)

Fig. 8 Sensitivity tests on “Teeth.” a “Teeth” image. b Sensitivity on n(w). c Sensitivity on α0. d Sensitivity on ε. e Sensitivity on δ

The results via bilevel-(#1) and bilevel-(#2) are displayed
in Fig. 6, where the corresponding local variance bounds are
given by σ 2

(l) = 0.00077, σ 2
(l) = 0.00570, σ 2

(t) = 0.00199,

σ 2
(t) = 0.00301. It is observed that the spatially distributed

α’s tend to be small in the regions of interest and large in the
backgrounds. For comparison, we also display the restora-
tions via scalar α̂; see subplot (c). To highlight the differences
among various restorations, we take zoomed views on two
framed regions in the “Chest” image; see Fig. 7 for visual
comparison. Favorably, the spatial distribution of α allows
to handle both local features properly, i.e., homogenize the
flat region while preserving the detailed region, which is not
attainable by either backprojection or scalar-valued α̂.

Wealso test on anothermedical image “Teeth”; seeFig. 8a,
under the same settings as in “Chest.” Similar conclusions
can be drawn as before. In addition, we perform sensitivity
tests on various parameters in bilevel-(#2) for the “Teeth”
example, namely n(w), α0, ε, δ, and λ. Here the parameter
n(w) determines the window size in the local variance estima-
tor, α0 is a scalar which initializes the search for a spatially
distributed α, ε controls the penalty term in the lower-level
problem, δ contributes to the smoothing of the max-function,
and λ weights the H1-regularization on α.

Figure 8 reports the sensitivity measured by PSNR and
SSIM. We remark that in general the choice of the window
size represents a tradeoff: Smallwindows typically reduce the
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Fig. 9 Wavelet inpainting:
“Pepper.” a “Pepper” image. b
Restor. via bilevel-(#1). c α via
bilevel-(#1). d Restor. via
α̂ = 1.334e−4. e Restor. via
bilevel-(#2). f α via bilevel-(#2)

reliability of the local variance statistics,while largewindows
render the local variance less “localized.” Observed from
subplot b, however, our bilevel approach appears quite stable
with respect to the window size in view of PSNR and SSIM.
Concerning the initialization of α, as remarked at the end
of Sect. 4.2, the bilevel approach benefits from relatively
large initial α which yields a blocky initial restoration. This
identifies with the test results reported in subplot c. Besides,
we observe from the numerical tests that the bilevel approach
is almost invariant, in terms of PSNR and SSIM, to λ in the
range [10−7, 10−5]. In contrast, the parameters ε and δ may
significantly affect the restoration in case they are too large;
see subplots d and e. The present parameters ε = 10−8 and
δ = 10−3 are chosen to be sufficiently small so that there
would be little marginal gain from any further reduction of ε

or δ.

4.6 Experiments on Wavelet Inpainting

We conclude this section by a wavelet inpainting (restora-
tion with missing samples) problem on the “Pepper” image;
see Fig. 9. Our task is to “inpaint” the missing Haar wavelet
coefficients due to lossy image transmission or communi-
cation; see [13,14] for more background information. The
given data are generated by f = K (u + η). Here η is Gaus-
sian white noise of standard deviation 0.05, and K is defined
by K = S ◦ W with the Haar wavelet transform W and
the operator S which randomly collects 80% of the wavelet
coefficients. Note that the data f are coded in the (wavelet)
transform domain rather than the original image domain.

Thus, analogous to Fourier inpainting, the local variance esti-
mator R(div p) is computed as a 1D convolution.

In this example, we set τ 0 = 10−5 for bilevel-(#1) and
bilevel-(#2). The local variance bounds in (#1) and (#1) are
given by σ 2

(l) = 0.00081, σ 2
(l) = 0.00553, σ 2

(t) = 0.00199,

σ 2
(t) = 0.00301. Their restorations, together with the restora-

tion from scalar α̂, are reported in Fig. 9. The spatially
adapted α’s via bilevel-(#1) and bilevel-(#2) are also shown
in subplots c and f, respectively. Although the three restora-
tions in b, d, e are visually close to each other, the bilevel
restorations are superior in PSNR but less good in SSIM
according to Table 2.

5 Conclusion

The choice of the regularization parameter for total variation-
based image restoration remains a challenging task. At the
expense of solving a bilevel optimization problem, this paper
generalizes and “robustifies” the classical TV-model by con-
sidering a spatially variant regularization parameter α. In
particular, an upper-level objective based on local variance
estimators is proposed. The overall bilevel model is solved
by a projected gradient-type algorithm and yields competi-
tive numerical results in comparison with existing methods.
In fact, the reconstructions are almost always better in PSNR
or SSIM than those obtained from scalar regularization.
Moreover, visually, image details get better preserved and
homogeneous regions better denoised for distributed regu-
larization than for scalar one.
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Potential future research may include alternative choices
for the upper-level objectives, although the statistics-based
variance corridors proposed in this work operate satisfac-
torily. From an analytical point of view, either passage to
the limit with the lower-level regularization parameter or
employing set-valued analysis tools would be of interest in
order to obtain sharp stationarity conditions for the original
bilevel formulation. Moreover, the framework may be gen-
eralized to other types of priors (such as Total Generalized
Variation (TGV)) or alternative noise types (such as random-
valued impulse noise). Also, the local adaptation of the filter
(e.g., by adjusting the window size according to some confi-
dence criterion) is of interest.
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