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Abstract Image segmentation with depth information can
be modeled as a minimization problem with Nitzberg–
Mumford–Shiota functional, which can be transformed into
a tractable variational level set formulation. However, such
formulation leads to a series of complicated high-order non-
linear partial differential equations which are difficult to
solve efficiently. In this paper, we first propose an equiva-
lently reduced variational level set formulation without using
curvatures by taking level set functions as signed distance
functions. Then, an alternating direction method of multi-
pliers (ADMM) based on this simplified variational level
set formulation is designed by introducing some auxiliary
variables, Lagrange multipliers via using alternating opti-
mization strategy. With the proposed ADMM method, the
minimization problem for this simplified variational level
set formulation is transformed into a series of sub-problems,
which can be solved easily via using the Gauss–Seidel
iterations, fast Fourier transform and soft thresholding for-
mulas. The level set functions are treated as signed distance
functions during computation process via implementing a
simple algebraic projection method, which avoids the tradi-
tional re-initialization process for conventional variational
level set methods. Extensive experiments have been con-
ducted on both synthetic and real images, which validate the
proposed approach, and show advantages of the proposed
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1 Introduction

The segmentation with depth information is a 2.1D sketch
problem [1–3] in computer vision. Its goal is to reconstruct
the complete shapes of occluded objects and their ordering
relation in a specific scene based on only one single image via
using segmentation techniques. Such segmentation plays an
important role in image analysis and computer vision, such
as object recognition and tracking. It is also a fundamental
preprocessing step to somemore complicated problems such
as illusory shape recovery [4,5].

In early 1990s, Nitzberg et al. [6] innovatively modeled
the segmentation with depth as a minimization problem
for an energy functional, which is called the NMS model.
This model combines the classical Mumford–Shah model
[7] for variational image segmentation and Euler’s elas-
tica terms [8]. In order to optimize the NMS model in
a tractable manner, authors in [6] have decomposed such
problem into three successive steps: finding the edges and
T-junctions in the image; hypothesizing the ordering rela-
tion of objects to be segmented and obtaining the associated
minimum of energy functional; determining the objects’
ordering and the reconstructed shapes according to the min-
imum functional in the second step. This NMS model is a
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foundation for this type of segmentation problems associ-
ated with depth information, and many possible solutions
have been proposed based on this model as described
below.

Instead of the tedious multiple step procedure aforemen-
tioned, Esedoglu and March [9] transformed the original
NMS model into an equivalent one based on �-convergence
concept [10,11] and its aim is to approximate the terms
associated with length and elastica. Such derived model
was claimed and demonstrated to be more tractable without
requirement of T-junctions detection. For the computational
efficiency, they designed a fast scheme by combing the
semi-implicit discretization and fast Fourier transform (FFT)
methods. But due to the over simplification of curvature-
related terms in quadratic form, their model cannot preserve
the corners of the recovered shapes, as they pointed out in
[9].

Another rigorous approximation for the NMS model is
based on variational level set method [13–16], which was
proposed by Zhu et al. [12]. By making use of the standard
variational method, they have derived a series of higher-
order evolution equations including level set functions and
then proposed the Smereka’s semi-implicit method [17] with
FFT solver. However, it is difficult to discretize the fourth-
order nonlinear partial differential equations (PDEs) in their
approach. Additionally, they did not consider the definition
of level set functions as signed distance functions during
computation process as did in [12].

Recently, another similar work was conducted by Zhu et
al. [18], where they proposed the Chan–Vese–Euler model
by combining the Chan–Vese model and Euler elastica reg-
ularizer with an aim to recover the missed parts of contours.
In order to minimize the proposed model efficiently, they
designed a fast alternating direction method of multipliers
(ADMM) [19,20]. Although this model can integrate the
missing parts to form a complete meaningful object, it was
designed only for one foreground shape recovery problem
without considering segmentation with depth information.
Moreover, their work was based on binary label function
method [22] or piecewise constant level set function method
[21].

The curvature-related terms play crucial roles in the
NMS model, but they also brought computational com-
plexity due to the nonlinear higher-order derivatives. This
issue also appears in other variational models of imaging
sciences on the non-texture image inpainting [23,24], illu-
sory contours reconstruction [4,5], image denoising [25–28]
with feature (edge, corner, smoothness, contrast, etc.) pre-
serving. In order to improve the computational efficiency
and avoid solving nonlinear higher-order PDEs, some fast
ADMM methods are systematically investigated in [27–30]
for energy minimization problems associated with curvature
terms.

Motivated by works in [27–30], in this paper, we focus on
developing a fast ADMM method for optimizing the NMS
model [6],which canbe rewritten as a variational level set for-
mulation [12]. The main difference between the variational
level set formulation and the models in [23–30] is that the
variational level set formulation in this paper is constrained
by some nonlinear Eikonal equations of level set functions
based on definition of signed distance functions. Usually,
these constrained equations are guaranteed to be satisfied
by solving a dynamic Hamilton–Jacobi equation using the
upwind finite difference scheme [31], fast sweeping method
[32], or they can be coped with penalty function method
[33,34] to get rid of these constraints.

The ADMM-projection (ADMM-P is used for abbrevia-
tion in the following parts of this paper) method proposed
in this paper is based on the simplified variational level set
formulation by replacing curvatures with Laplacians of level
set functions on the premise that the Eikonal equations are
satisfied during computation process. Another salient feature
of this method is that the Eikonal equations can be satisfied
indirectly by means of introducing auxiliary variables and
implementing a direct projection [35,36], which are suitable
for the simplified variational level set formulation.

The paper is organized as follows: in Sect. 2, the vari-
ational level set formulation of the NMS functional along
with its traditional gradient descentmethod (GDM is used for
abbreviation in the follows) is reviewed; in Sect. 3, we derive
the simplified variational level set formulation as an equiva-
lent one of theNMS, and then design a fastADMM-Pmethod
for the simplified variational level set formulation by trans-
forming it into some sub-minimization problems for efficient
computation in Sect. 4; in Sect. 5, extensive numerical exper-
iments on different type images are conducted to illustrate the
efficiency of the proposed model and its ADMM-P method.
Concluding remarks are presented in Sect. 6.

2 The Variational Level Set Formulation for the
NMS Model and its GDM Method

In this section, we will review the variational level set for-
mulation of the NMS model first and then highlight our
contributions clearly in Sects. 3 and 4. In [6], Nitzberg et
al. defined the problem of segmentation with depth informa-
tion as a problem of recovering occluded shapes and their
ordering relations based on a 2D image. This problem is
investigated with the following three assumptions: (1) there
is no self-occlusion on the surface of each object; (2) the
objects are not entangled with each other; (3) the pixel inten-
sities of each object are approximately constant and different
from each other. The variables defined in this problem are
in three folds: the shapes of the regions R1, R2, . . . , Rn to

123



J Math Imaging Vis (2018) 60:1–17 3

which different objects belong; the ordering relations among
objects; the pixel intensities of objects.

Without loss of generality, one can assume that the objects
R1, R2, . . . , Rn in an image are in ascending order, i. e., R1 is
the nearest object to the observer while Rn is the farthest one
(i. e. background). Let R′

i be defined as the visible part of Ri ,
i.e., R′

1 = R1, R′
i = Ri −⋃

j<i
R j , (i = 2, . . . , n). In addition,

R′
n+1 = � − ⋃

j<n+1
R j is defined as the visible background.

Based on the above assumptions and definitions, the NMS
functional is formulated as in [6]

E =
n∑

i=1

∫

∂Ri∩�

[α + βφ (κi )]ds

+
n+1∑

i=1

∫

R′
i

( f (x) − ci )
2dx . (1)

where α, β are two positive penalty parameters, s is arc
length, and ci ∈ Ri are pixel intensities of the i th object,
κ denotes the curvature of boundary for region Ri . While
one of the main difficulties in minimizing the above NMS
functional is to calculate the energy term.

Bymaking use of variational method [13–15] and level set
method [16], Zhu and Chan proposed the variational level set
formulation in [12] to replace the original NMS model. For
such purpose, a level set function representing an interface
�(t) (t represents time) is defined implicitly as the zero level
set of a Lipchitz continuous function ϕ : R2 → R, which in
turn can be defined in terms of time t as the following signed
distance function for efficient computation,

⎧
⎨

⎩

ϕ(x, t) = d (�(t), x) , if x is inside�(t)
ϕ(x, t) = 0, if x is at�(t)
ϕ(x, t) = −d (�(t), x) , if x is outside�(t)

. (2)

where d(�(t), x) denotes the shortest Euclidean distance
from x to�(t), and fromwhich its Eikonal equation is derived
as |∇ϕ(x, t)| = 1.

For an image defined in domain � with boundary �(t),
according to the co-area and area formulas in [31], we will
have

length(�) =
∫

�

|∇H(ϕ)| dx

=
∫

�

δ(ϕ) |∇ϕ|dx, (3)

area(�) =
∫

�

H(ϕ)dx . (4)

where H(ϕ(x)) and δ(ϕ(x)) are Heaviside function and
Dirac delta function, respectively, with the definitions given
below.

H(ϕ(x)) =
{
1, if ϕ(x) ≥ 0
0, otherwise

, (5)

δ(ϕ(x)) = ∂H(ϕ(x))

∂ϕ(x)
. (6)

In fact, these kinds of original definitions are difficult to cal-
culate as there exist non-differential functions. In practice,
these two functions are often approximated via introducing a
small positive parameter ε in (5) and (6) [10,11] by denoting
as Hε(ϕ(x)) and δε(ϕ(x)). In this way, we can obtain some
feasible computing forms of Heaviside function and Dirac
delta function in [13–16], given by

Hε(ϕ) = 1

2

(

1 + 2

π
arctan

(ϕ

ε

))

, (7)

δε(ϕ) = 1

π

ε

ε2 + ϕ2 . (8)

By making use of these level set functions ϕi (i = 1, 2,
. . . , n), we can represent objects Ri as Ri = {x : H(ϕi (x))
= 1}, each visible part as R′

i = Ri − ⋃

j<i
R j which is given

by R′
i = {x : H(ϕi )

i−1∏

j=1
(1 − H(ϕ j )) = 1}, thus the term

n+1∑

i=1

∫
R′
i
( f (x) − ci )2dx in (1) can be rewritten as

n∑

i=1

⎧
⎨

⎩

∫

�

( f − ci )
2 H (ϕi )

i−1∏

j=1

(
1 − H(ϕ j )

)
dx

⎫
⎬

⎭

+
∫

�

( f − cn+1)
2

n∏

j=1

(
1 − H(ϕ j )

)
dx . (9)

Andmore importantly, the curvature κi can be represented as
κi = ∇·( ∇ϕi|∇ϕi | ). Nowwe choose φ(κ) = |κ| as the authors of
[12] did with the reason that the NMSmodel (1) can preserve
the object corners when |κ| becomes large. Thus, the NMS
functional (1) can be reformulated with level set functions as
below and our major task is to solve the level set functions ϕi

E =
n∑

i=1

∫

�

[α + βφ(κi )]|∇ϕi |δ(ϕi )dx

+
n∑

i=1

⎧
⎨

⎩

∫

�

( f − ci )
2H(ϕi )

i−1∏

j=1

(1 − H(ϕ j ))dx

⎫
⎬

⎭

+
∫

�

( f − cn+1)
2

n∏

j=1

(1 − H(ϕ j ))dx (10)

Now, by using the standard variational method, one can
obtain the following GDM equations of level set functions
via minimization of functional (10).
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∂ϕi

∂t
= |∇ϕi | ∇ ·

[ ∇ϕi

|∇ϕi |(κi ) − 1

|∇ϕi |
(∇ (φ′ (κi ) |∇ϕi |

)

−
( ∇ϕi

|∇ϕi | · ∇(φ′(κi ) |∇ϕi |)
) ∇ϕi

|∇ϕi |
)]

− |∇ϕi | ( f − ci )
2
i−1∏

j=1

(
1 − H(ϕ j )

)

+ |∇ϕi |
n+1∑

s=i+1

⎧
⎨

⎩
( f − cs)

2 H (ϕs)

i−1∏

j=1

(
1 − H(ϕ j )

) s−1∏

j=i+1

(
1 − H(ϕ j )

)
⎫
⎬

⎭
(11)

where i = 1, 2, . . . , n denotes the number of objects in the
image, and H(ϕn+1) = 1 is introduced only for consis-
tency of description. In fact, (11) is a standard Hamilton–
Jacobi equation, which can be solved iteratively using some
explicit upwind-alike schemes. However, the convergence
of such iteration heavily depends on selected time step
size. In order to overcome this problem and improve the
computational stability, the authors in [12] employed the
Smereka’s semi-implicit iteration method [17] to relax the
Courant–Friedrichs–Lewy condition. In order to improve
the computational efficiency further, they employed the FFT
method to solve the discretized equations. But discretiza-
tion of the nonlinear fourth-order derivatives is tedious
and is prone to errors. More seriously, they did not pay
attention to the requirement of level set functions as the
signed distance functions during computational iteration.
In order to overcome these computational problems, we
will propose a new ADMM projection approach in this
paper.

3 ADMM-P Method for Simplified Variational
Level Set Formulation

Instead of solving (10) directly by using the conventional
variational method and solving the related GDM equations
as mentioned in previous section, in this section, we first
transform the original minimization problem into several
sub-optimization problems by introducing some auxiliary
variables and then solve them using the alternating direc-
tional optimization strategy.

First, we propose a simplified model of the original prob-
lem by considering the property of level set functions as the
signed distance functions. If the level set functions are treated
as the signed distance functions during computational pro-
cess with property |∇ϕi | = 1(i = 1, 2, . . .n), the curvatures
in (10) can be replaced by Laplacians of level set functions,

and in this case κi = ∇ · (
∇ϕi|∇ϕi | ) = ∇ · (∇ϕi ) = �ϕi can

be reduced to κi = ∇ · (∇ϕi ). Based on this observation,
the NMS functional (10) can be rewritten as the following
simplified version

E =
n∑

i=1

∫

�

[α + β |∇ · (∇ϕi )|]δ (ϕi ) dx

+
n∑

i=1

⎧
⎨

⎩

∫

�

( f − ci )
2 H (ϕi )

i−1∏

j=1

(
1 − H(ϕ j )

)
dx

⎫
⎬

⎭

+
∫

�

( f − cn+1)
2

n∏

j=1

(
1 − H(ϕ j )

)
dx (12a)

s.t. |∇ϕi | = 1. (12b)

Note that Eqs. (12a) and (12b) are equivalent to the origi-
nal problem (15). Therefore, some fast ADMM algorithms
can be directly applied to (12a) and (12b). For such purpose,
some auxiliary variables �wi = [wi1, wi2]T and vi with prop-
erty �wi ≈ ∇ϕi , vi ≈ ∇ · �wi and the Lagrangian multipliers
�λ1i , λ2i are introduced. In this case, the constraint |∇ϕi | = 1
will be replaced by | �wi | = 1, and this substitution can avoid
the traditional re-initialization process to satisfy |∇ϕi | = 1
by imposing the compulsory constraint for �wi . And | �wi | = 1
then can be guaranteed by implementing a projectionmethod
easily. Based this observation, we can transform (12a) and
(12b) into the following augmented Lagrangian functional
with some explicit constraints.

E(c, ϕ, �w, v, �λ1, λ2)

=
n∑

i=1

∫

�

[α + β |vi |]δ (ϕi ) dx +
n∑

i=1

∫

�

�λ1i · ( �wi − ∇ϕi )dx

+ μ1

2

n∑

i=1

∫

�

( �wi − ∇ϕi )
2dx +

n∑

i=1

∫

�

λ2i (vi − ∇ · �wi )dx

+ μ2

2

n∑

i=1

∫

�

(vi − ∇ · �wi )
2dx,

+
n∑

i=1

⎧
⎨

⎩

∫

�

( f − ci )
2H(ϕi )

i−1∏

j=1

(
1 − H(ϕ j )

)
dx

⎫
⎬

⎭

+
∫

�

( f − cn+1)
2

n∏

j=1

(
1 − H(ϕ j )

)
dx (13a)

s.t. | �wi | = 1, i = 1, 2, . . . , n. (13b)

where μ1, μ2 are positive penalty parameters, and c ={
c1 c2 . . . cn+1

}
, ϕ = {

ϕ1 ϕ2 . . . ϕn
}
, �w =

{ �w1 �w2 . . . �wn
}
, v = {

v1 v2 . . . vn
}
, �λ1

=
{�λ11 �λ12 . . . �λ1n

}
, λ2 = {λ21 λ22 . . . λ2n}. The approxi-

mations for �wi ≈ ∇ϕi and vi ≈ ∇ · �wi can be achieved by
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the maximization with respect to �λ1i and λ2i in the energy
functional (13.1). Meanwhile, the constraint |∇ϕi | = 1 is
replaced by | �wi | = 1, which can be guaranteed by the pro-
jection method directly. It is noteworthy that this constraint
can also be guaranteed via penalty functionmethod, in which
larger computational expense would be inevitable. Next we
will propose a new approach to solve this problem.

The proposed ADMM-P method can be implemented in
finite steps with stopping criteria. In each step, we can calcu-
late a sub-problem. Also, the sub-problem of minimization
is carried out with respect to one variable while keeping
other variables to be fixed temporarily. For the formula-
tions (13a) and (13b), we first initialize the unknown values
c0, ϕ0, �w0, v0, �λ01, λ02, and then, we start a procedure of opti-
mization step by step. In each step, the minimization of (13a)
and (13b) can be divided into following sub-problems

ck+1 = Argmin
c

{
ε0(c) = E

(
c, ϕk, �wk, vk, �λk1, λk2

)}
(14)

ϕk+1 = Argmin
ϕ

{
ε1(ϕ) = E

(
ck+1, ϕ, �wk, vk, �λk1, λk2

)}

(15)

�wk+1 = Argmin
�w

{
ε1 ( �w) = E

(
ck+1, ϕk+1, �w, vk, �λk1, λk2

)}

(16a)

s.t.
∣
∣
∣ �wk+1

i

∣
∣
∣ = 1, i = 1, 2, . . . , n (16b)

vk+1 = Argmin
v

{
ε1 (v) = E

(
ck+1, ϕk+1, �wk+1, v, �λk1, λk2

)}

(17)

�λk+1
1 = �λk1 + μ1

(
�wk+1 − ∇ϕk+1

)
(18)

λk+1
2 = λk2 + μ2(v

k+1 − ∇ · �wk+1) (19)

where (18) and (19) are responsible for updating of the
Lagrange multipliers. These functionals of the above men-
tioned sub-problems are given, respectively, below.

ε0(c) =
n∑

i=1

⎧
⎨

⎩

∫

�

( f −ci )
2 H

(
ϕk
i

) i−1∏

j=1

(
1 − H

(
ϕk
j

))
dx

⎫
⎬

⎭

+
∫

�

( f − cn+1)
2

n∏

j=1

(
1 − H

(
ϕk
j

))
dx (20)

ε1(ϕ) =
n∑

i=1

∫

�

[
α + β

∣
∣
∣vki

∣
∣
∣
]
δ (ϕi ) dx

+
n∑

i=1

∫

�

�λk1i ·
(

�wk
i − ∇ϕi

)
dx

+ μ1

2

n∑

i=1

∫

�

(
�wk
i − ∇ϕi

)2
dx

+
n∑

i=1

⎧
⎨

⎩

∫

�

(
f − ck+1

i

)2
H(ϕi )

i−1∏

j=1

(1 − H(ϕ j ))dx

⎫
⎬

⎭

+
∫

�

(
f − ck+1

n+1

)2 n∏

j=1

(1 − H(ϕ j ))dx (21)

ε2( �w) =
n∑

i=1

∫

�

�λk1i ·
(

�wi − ∇ϕk+1
i

)
dx

+ μ1

2

n∑

i=1

∫

�

(
�wi − ∇ϕk+1

i

)2
dx

+
n∑

i=1

∫

�

λk2i

(
vki − ∇ · �wi

)
dx

+ μ2

2

n∑

i=1

∫

�

(
vki − ∇ · �wi

)2
dx (22)

ε3(�v) =
n∑

i=1

∫

�

[α + β|vi |]δ(ϕk+1
i )dx

+
n∑

i=1

∫

�

λk2i (vi − ∇ · �wk+1
i )dx

+ μ2

2

n∑

i=1

∫

�

(vi − ∇ · �wk+1
i )

2
dx (23)

In summary, we can present the ADMM-P approach in a
pseudo-code format as follows.
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Algorithm: ADMM-P for segmentation with depth

Step 1: Initialize the unknown values . 

Step 2: For 1,k ≥  solve the following problems alternatively. 

2.1. Sub problem 1 about 1kc + : 

0 0 0 0 0 0
1 2, , , , ,c w vϕ λ λ

.                 

2.2. Sub problem 2 about 1kϕ + : 

. 

2.3. Sub problem 3 about 1kw + : 

,

1. .       1,  1,2,...k
is t w i n+ = = .   

2.4. Sub problem 4 about 1kv + : 

.       

2.5. Update Lagrange multiplier λ  via (18) and (19).

Step 3: The above iterations will terminate if the stopping criteria (described in 
section 4) are satisfied.

( ) ( ){ }1
0 1 2min , , , , ,k k k k k k

c
c Arg c E c w vε ϕ λ λ+ = =

( ) ( ){ }11
1 1 2min , , , , ,k k k k k kArg E c w v

ϕ
ϕ ε ϕ ϕ λ λ++ = =

( ) ( ){ }1 1 1
2 1 2min , , , , ,k k k k k k

w
w Arg w E c w vε ϕ λ λ+ + += =

( ) ( ){ }1 1 1 1
3 1 2min , , , , ,k k k k k k

v
v Arg v E c w vε ϕ λ λ+ + + += =

Whether the above proposed ADMMmethod can be suit-
ably applied for solving the non-convex and non-smooth
problems in computer vision has attracted extensive atten-
tion. The authors in [39,40] discussed this issue in detail
and provided many applications in which many similar algo-
rithms have been developed and successfully used to achieve
excellent performances via solving a variety of non-convex
problems. In addition, many other authors [18,19,26,27,
29,30] also have made a success of applying the ADMM
method to different problems. In this paper, we adopt a sim-
ilar research route to design a new algorithm to deal with the
non-convex and non-smooth problem for the segmentation
problem with depth.

Next we will consider each sub-problem in above algo-
rithm individually.

4 Minimization of Each Sub-problem

4.1 Estimation of the Piecewise Constant Parameters

In the (k + 1) step of the proposed ADMM, the average
image intensity values ci in different regions can be obtained
by using the standard variational method based on (14) and
(20), which are given by

ck+1
i =

∫
�

f H(ϕk
i )

i−1∏

j=1
(1 − H(ϕk

j ))dx

∫
�
H(ϕk

i )
i−1∏

j=1
(1 − H(ϕk

j ))dx

,

i = 1, 2, . . . , n, (24a)
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ck+1
n+1 =

∫
�

f
n∏

j=1
(1 − H(ϕk

j ))dx

∫
�

n∏

j=1
(1 − H(ϕk

j ))dx
. (24b)

4.2 Calculation of the Level Set Functions

For theminimization sub-problems (15) and (21)with respect
to the level set functions ϕi , the corresponding Euler–
Lagrange equations are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[α + β|vki |]δ′(ϕi ) + ∇ · �λk1i + μ1∇ · ( �wk
i − ∇ϕi )

+δ(ϕi )( f − ck+1
i )2

∏i−1
j=1 (1 − H(ϕ j ))

−δ(ϕi )
[∑n+1

s=i+1

{
( f − ck+1

s )2H(ϕs)

∏i−1
j=1(1 − H(ϕ j ))

∏s−1
j=i+1 (1 − H(ϕ j ))

}]
= 0 in �

(�λk1i + μ1( �wk
i − ∇ϕi )) · �n = 0 on ∂�

,

(25a)

where �wk
i , �vki are fixed temporarily when ϕk+1

i is calcu-
lated by using the semi-implicit difference scheme and
Gauss–Seidel iterative method. To be more specific, the
Gauss–Seidel iterative method can be used for the linear
terms of (25a)∇·�λk1i+μ1∇·( �wk

i − ∇ϕi ), while the nonlinear
terms:

[α + β|vki |]δ′(ϕi ) + δ(ϕi ) · ( f − ck+1
i )2

i−1∏

j=1

(1 − H(ϕ j )) − δ(ϕi )

⎡

⎣
n+1∑

s=i+1

⎧
⎨

⎩
( f − ck+1

s )2H(ϕs)

i−1∏

j=1

(1 − H(ϕ j ))

s−1∏

j=i+1

(1 − H(ϕ j ))

⎫
⎬

⎭

⎤

⎦

need to be calculated by an explicit difference scheme.
According to the standard technique introduced by Zhao and
Chan [13], we use |∇ϕi | to replace δ(ϕi ), which facilitates
accelerating the evolution process [37], and then directly uti-
lize |∇ϕi | = 1. The final calculation result of ϕi is shown as
follows

ϕk+1
i =

{(
ϕk+1
i(m−1,l) + ϕk+1

i(m,l−1) + ϕk
i(m+1,l) + ϕk

i(m,l+1)

)

−∇ · �wk
i − ∇ · �λk1i/μ1

−
(
f − ck+1

i

)2 i−1∏

j=1

(
1 − H

(
ϕk
j

))
/μ1

+
n+1∑

s=i+1

[(
f − ck+1

s

)2
H(ϕk

s )

i−1∏

j=1

(1 − H(ϕk
j ))

s−1∏

j=i+1

(1 − H(ϕk
j ))

⎤

⎦ /μ1

−
[
α + β|vki |

]
δ′(ϕk

i )/μ1

}
/4, (25b)

wherem = 1, 2, . . . , M, l = 1, 2, . . . , N andM×N denotes
the size of the image.

4.3 Minimization of the Auxiliary Variable �wi

The Euler–Lagrange equations with respect to �wi can be
derived from (16) and (22) via calculus of variation when
the variables ϕk+1

i , �vki are kept constant temporarily,

{ �λk1i + μ1

(
�wi − ∇ϕk+1

i

)
+ ∇λk2i +μ2 (vi −∇ · �wi ) = 0

s.t. | �wi | = 1
.

(26)

The first equation of (26) can be solved by using the fast
Fourier transform (FFT) [30]. We now detail the FFT imple-
mentation as follows

μ1 �wi − μ2∇ (∇ · �wi )

= −�λk1i − ∇λk2i + μ1∇ϕk+1
i − μ2∇vki (27a)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ1wi1 − μ2
(
∂xxwi1+∂xywi2

)

= μ1∂xϕ
k+1
i − λk1i1 − ∂xλ

k
2i − μ2∂xv

k
i

μ1wi2 − μ2
(
∂yxwi1 + ∂yywi2

)

= μ1∂yϕ
k+1
i − λk1i2 − ∂yλ

k
2i − μ2∂yv

k
i

. (27b)

For clarity, we introduce gi1 = μ1∂xϕ
k+1
i − λk1i1 − ∂xλ

k
2i −

μ2∂xv
k
i and gi2 = μ1∂yϕ

k+1
i −λk1i2−∂yλ

k
2i −μ2∂yv

k
i . Then

we can rewrite (27b) as

{
μ1wi1 − μ2

(
∂xxwi1+∂xywi2

) = gi1
μ1wi2 − μ2

(
∂yxwi1 + ∂yywi2

) = gi2
. (28)

As in [27,29,30], after introducing the identity operator
I f (m, l) = f (m, l) and shifting operators S±

x f (m, l) =
f (m ± 1, l), S±

y f (m, l) = f (m, l ± 1), (28) can be rewrit-
ten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ1wi1 − μ2
((
S−
x − 2I + S+

x

)
wi1

+
(
S+
x − S+

x S−
y − I + S−

y

)
wi2

)
= gi1

μ1wi2 − μ2

((
S+
y − S+

y S
−
x − I + S−

x

)
wi1

+
(
S−
y − 2I + S+

y

)
wi2

)
= gi2

. (29)

Based on the discrete Fourier transform, we have the follow-
ing FFT properties for the shifting operators

FS±
x f (ym, yl) = e±√−1Zm F f (ym, yl) , (30)
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FS±
y f (ym, yl) = e±√−1Zl F f (ym, yl) , (31)

where f (ym, yl) is the function in time domain, ym and yl are
discrete frequencies. Let Zm = 2π

N1
ym, ym = 1, 2, . . . , N1

and Zl = 2π
N2

yl , yl = 1, 2, . . . , N2, then (29) can be trans-
formed into the following algebraic equations

(
a11 a12
a21 a22

)(
F(wi1)

F(wi2)

)

=
(
F(gi1)
F(gi2)

)

. (32a)

where the coefficients are

a11 = μ1 − 2μ2 (cos Zm − 1) ,

a12 = −μ2

(
1 − cos Zl + √−1 sin Zl

)

(
−1 + cos Zm + √−1 sin Zm

)
,

a21 = −μ2

(
1 − cos Zm + √−1 sin Zm

)

(
−1 + cos Zl + √−1 sin Zl

)
,

a22 = μ1 − 2μ2 (cos Zl − 1) , (32b)

The determinant of this coefficient matrix is shown as fol-
lows, and more details can be referred to [29].

D = μ2
1 − 2μ1μ2 (cos Zm + cos Zl − 2) . (32c)

This value is always positive for all discrete frequencies if
μ1 > 0. Then, the discrete inverse Fourier transform can be
used to update �wk

i as follows

⎧
⎨

⎩

w̃k+1
i1 = �

(
F−1

(
a22F(gi1)−a12F(gi2)

D

))

w̃k+1
i2 = �

(
F−1

(−a21F(gi1)+a11F(gi2)
D

)) . (33)

Finally, a simple projection technique can be used to guar-
antee the constraint | �wi | = 1 to be satisfied if we define

�wk+1
i =

�̃wk+1
i∣

∣
∣ �̃wk+1

i

∣
∣
∣
. (34)

4.4 Minimization of the Auxiliary Variable vi

For theminimization problem of (17) and (23), we can derive
the Euler–Lagrange equation with respect to vi while fixing
the variables ϕk+1

i , �wk+1
i temporarily,

β
vi

|vi |δ
(
ϕk+1
i

)
+ λk2i + μ2

(
vi − ∇ · �wk+1

i

)
= 0. (35)

This equation can be solved by using the analytical soft
thresholding formula [19], which is given by

vk+1
i = Max

⎛

⎝

∣
∣
∣
∣
∣
∇ · �wk+1

i − λk2i

μ2

∣
∣
∣
∣
∣
−

βδ
(
ϕk+1
i

)

μ2
, 0

⎞

⎠

∇ · �wk+1
i − λk2i

μ2∣
∣
∣
∣∇ · �wk+1

i − λk2i
μ2

∣
∣
∣
∣

. (36)

4.5 Updating the Lagrange Multipliers

At the end of each step, we need to update the Lagrange
multipliers �λk1i and λk2i after all sub-minimization problems
have achieved their minimum, i.e.,

�λk+1
1i = �λk1i + μ1

(
�wk+1
i − ∇ϕk+1

i

)
, (37)

λk+1
2i = λk2i + μ2

(
vk+1
i − ∇ · �wk+1

i

)
. (38)

In summary, all the proposed sub-problems can be solved
effectively as discussed above. As in the alternating process,
each sub-problem is easy to solve as other variables are kept
as constants. As to the stopping criteria for each sub-problem,
we will discuss them in next section.

5 Numerical Experiments

In this section, some numerical experiments on synthetic,
and real images are presented to validate the performance and
efficiency of proposedmodel and algorithm. All experiments
are implemented using Matlab7.8 on a PC (Intel (R), CPU
2.60GHz). The proposed ADMM-P method will be com-
pared with a traditional GDM [12]. For the purpose of fair
comparison, the same initialization for both methods is used.

As described in [30], the iterations need to be terminated
when the following criteria are satisfied:

(I) We need to monitor the following constraint errors in
iterations:

(
Rk

�wi R
k
vi

) =
(∥
∥
∥ �wk

i − ∇ϕk
i

∥
∥
∥
L1

/∥∥
∥ �w0

i − ∇ϕ0
i

∥
∥
∥
L1

∥
∥
∥vki − ∇ · �wk

i

∥
∥
∥
L1

/∥∥
∥v0i − ∇ · �w0

i

∥
∥
∥
L1

)
,

(39)

where, ‖ · ‖L1 denotes the L1 norm on image domain �. All
components in (39) are calculated point by point. If Rk

i < ε(ε

is a small enough parameter) for i = 1, 2, . . . , n, the overall
iterationwill be stopped.These goodnumerical indicators are
also used to determinate the values of μi (i = 1, 2), which is
the basis of penalty parameter adjustment.

(II) During iteration, the relative errors of Lagrangemulti-
pliers and the solution ϕk

i should be monitored. They should
decrease to a sufficiently small level:
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(
Rk

�λ1i Rk
λ2i

)
=
(∥
∥
∥�λk1i − �λk−1

1i

∥
∥
∥
L1

/

∥
∥
∥�λk−1

1i

∥
∥
∥
L1

∥
∥
∥λk2i − λk−1

2i

∥
∥
∥
L1

/

∥
∥
∥λk−1

2i

∥
∥
∥
L1

)
, (40)

Rk
ϕi =

∥
∥
∥ϕk

i − ϕk−1
i

∥
∥
∥
L1

/

∥
∥
∥ϕk−1

i

∥
∥
∥
L1

. (41)

Note that (40) can be quite small if the penalty parameters are
large. This is due to the explicit dependency on the penalty
parameters.

(III) The relative energy error can be chosen as stopping
criterion:

Rk
e =

∣
∣
∣Ek+1 − Ek

∣
∣
∣/|Ek |. (42)

where Ek is the energy value of (13a). The computation
stops automatically when Rk

e is less than a predefined tol-
erance, which indicates that the energy approaches its steady
state.

Until now, the presentation of the proposed ADMM-P is
complete and we will show its effectiveness in next subsec-
tion with extensive experiments. Just keep in mind that all
numerical quantities are plotted in log scale.

Next, we introduce some specific methods to tune param-
eters in the process of implementing the proposed approach.
The two parameters in the NMS functional (1), α and β, con-
trol the length and curvature of the segmentation boundary.
The ratio between α and β is in relation to the connectiv-
ity and smoothness of the level lines. As discussed in [30],
the connection of disconnected level lines and smoothness
of level lines can be guaranteed by a larger parameter β. In
addition, another two parameters associated with Lagrange
multipliers are in the augmented Lagrange energy functional
(13): μ1 and μ2, and they can be determined according
to relative residuals (39), relative errors of the Lagrange
multiplier (40), relative errors of ϕk

i (41) and the energy
curve. One example is given to show such selection in
Experiment 5.1.

5.1 Experiment on a Synthetic Image (Two Objects and
One Background)

The first testing image is a synthetic image containing a bar
and a U-sharp object (size 128×128) as shown in Fig. 1a. In
this example, two level set functions are required to describe
the shapes. In order to speed up the evolution of contours, we
initialize the two level set functions inFig. 1busing the results
from the piecewise constant image segmentation by using
variational level setmethod. The final results of segmentation
with depth are presented in Fig. 1c.

In this experiment, the required parameters are selected as
α = 0.5, β = 3, μ1 = 3000, μ2 = 3, ε = 3, respectively,
for the proposed ADMM-P algorithm. In order to determine
the ordering relations of the bar and the U-shape object, we

Fig. 1 Segmentation with depth for a bar and a U-sharp object. a The
original image and the results using traditional piecewise constant image
segmentation model; b initialization for segmentation with depth; c
segmentation results using both GDM and ADMM-P method

Table 1 Minimal energies of different ordering relations

Possible order Minimum of
energy functional

Bar → U rod 19.81

U rod → Bar 21.34

minimize the energy functional based on the assumptions
that the U-shape object is occluded by the bar or the bar
is occluded by the U-shape object. The results are listed in
Table 1, from which we can deduce that the bar, the U-shape
object and the background are ordered from the nearest to
farthest with respect to the observer.

As to the case that the U-shape object is occluded by the
bar, we illustrate the relative residuals (39), relative errors of
the Lagrange multipliers (40), relative errors of ϕk

i (41) and
energy curve in Fig. 2. The graphs come from Fig. 1c. From
these plots, one can observe that the proposed algorithm has
converged before 30 iterations. They also give an important
clue about how to choose penalty parametersμi (i = 1, 2). In
order to guarantee convergence as well as the speed of con-
vergence, the constraint errors Rk

�wi , R
k
vi , R

k
�λ1i , R

k
λ2i should

converge steadily with nearly the same speed. If Rk
�wi , R

k
vi

go to zero faster than others, then one can decrease μi

and vice versa. Rk
�wi , R

k
vi will converge to zero with the

same speed as the iteration proceeds and the energy will
decrease to a steady constant value when μi are chosen
properly.
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Fig. 2 The relative residual plots of a auxiliary variables; b Lagrange multipliers; c level set functions; d the energy functional

Fig. 3 Plots of decaying energy by GDM and ADMM-P methods

Table 2 Number of iterations and time costs usingGDMandADMM-P
methods

Approaches Iterations Time (s)

Figure 1c: GDM 23 1.74

Figure 1c: ADMM-P 4 0.21

As to efficiency of the proposed algorithm, the energy
curves produced by using the GDM [12] and the proposed
ADMM-P are shown in Fig. 3 and the time costs are shown in
Table 2. It is easy to see that the ADMM-P has faster conver-
gence rate andhigher efficiency. The parameters for theGDM
method in this experiment are set as α = 0.5, β = 3, λ =
0.5, ε = 3, dt = 5 × 10−4. By considering the comparisons
of these two algorithms, we plot the energy functional of the
original NMS model.
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Fig. 4 Segmentationwith depth for an imagewith one bar and two circles. aThe original image and three regions via traditional image segmentation
model; b the initializations for segmentation with depth; c the results via GDM; d the results via ADMM-P

Table 3 Minimal energies of different ordering relations

Possible Order Minimum of
energy functional

Small circle → Big circle → Bar 20.17

Small circle → Bar → Big circle 21.56

Big circle → Small circle → Bar 25.81

Big circle → Bar → Small circle 26.49

Bar → Small circle → Big circle 26.74

Bar → Big circle → Small circle 26.72

Fig. 5 Comparison of energy curves obtained by GDM and ADMM-P
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Table 4 Number of iterations and time costs usingGDMandADMM-P

Approaches Iterations Time (sec)

Figure 4c: GDM 19 1.29

Figure 4d: ADMM-P 8 0.48

Fig. 6 Segmentationwith depth of a noise image. aThe original image
and the segmentation results via traditional image segmentation model;
b the initializations for segmentation with depth; c the results of GDM;
d final results of ADMM-P

5.2 Experiment on synthetic image (Three Objects and
a Background)

The second testing image is a synthetic one with two cir-
cles and a bar (size 128 × 128) shown in Fig. 4a. There are
totally four regions to be segmented including three objects
and a background. In this case, three level set functions are
required. In Fig. 4b, the results by piecewise constant seg-
mentation method are used as the initialization for the level
set functions. The final results obtained by the GDM and
ADMM-P are presented in Fig. 4c, d, respectively.

Table 5 Minimal energies of different ordering relations

Possible order Minimum of
energy functional

White circle → Gray circle 17.33

Gray circle → White circle 19.25

Fig. 7 Comparison of energy curves obtained by GDM and ADMM-P

Table 6 Number of iterations and cost time using GDM and ADMM-P

Approaches Iterations Time (s)

Figure 6c: GDM 14 0.85

Figure 6d: ADMM-P 11 0.46

The parameters used in the proposed ADMM-P method
are chosen asα = 0.3, β = 2, μ1=600, μ2=3, ε = 5. In this
experiment, there are 3! = 6 possible combinations shown in
Table 3 to be considered. After minimizing the energy func-
tional based on the six assumptions separately, the ordering
relations between the small circle, the big circle and the bar
can be determined. From Table 3, we know that the correct
ordering from the nearest to the most further is: small circle,
big circle, bar and the background.

In the case of correct ordering, we present the plots of
energy decay and time costs in Fig. 5 and Table 4, respec-
tively, by using the GDM and ADMM-P methods in order
to compare their computational efficiency. The parameters
for the GDM method in this experiment are α = 0.3, β =
2, λ= 0.1, ε = 3, dt = 1 × 10−4.

5.3 Experiment on a Noise Image (Two Objects and a
Background)

The third experiment is conducted on a noise image (size
100× 100) with two circles (two objects and a background)
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Fig. 8 Segmentation with depth for a color imagewith a pencil and a hand. aThe original image and two regions via traditional image segmentation
model; b the initializations; c the results via GDM; d final segmentation results using ADMM-P; e evolution process of pencil; f evolution process
of hand
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Table 7 Minimal energies of different ordering relations

Possible Order Minimum of
energy functional

Pencil → Hand 35.24

Hand → Pencil 38.56

as shown in Fig. 6a. The image is corrupted by Gaussian
white noise with standard deviation 0.01. Figure 6b presents
the initialization of the level set functions by using the results
of piecewise constant segmentation method. The final results
obtained by the GDM and ADMM-P are presented in Fig. 6c
through Fig. 6d, respectively. It can be observed that the seg-
mentation with depth is robust to noises.

In this experiment, the required parameters are selected
as follows: α = 3, β = 2, μ1 = 4, μ2 = 3, ε = 3 for
the proposed ADMM-P method. For the ordering relations
between the white circle and the gray circle, we minimize
the energy functional based on the assumptions that the
white circle occludes the gray circle and the gray circle
occludes thewhite circle, respectively. From the results listed
in Table 5, we can deduce that the correct ordering from the
nearest to the farthest is: white circle, gray circle and the
background.

In the case that white circle occludes gray circle, we fur-
ther present the energy decaying trends and time costs in
Fig. 7 and Table 6, respectively, obtained by using the GDM
and ADMM-P methods in order to compare their compu-
tational efficiency. The parameters for the GDM method in
this experiment are chosen as α = 3, β = 2, λ= 0.05, ε =
3, dt = 5 × 10−4.

5.4 Experiment on a Color Image (Two Objects and a
Background)

In the last experiment, a color image with a pencil and a
hand (size 256 × 242) shown in Fig. 8a is used. There
is a pencil and a hand in this image, so two level set
functions are required to represent the shapes. Figure 8b
gives the initialization for the level set functions, and it is
obtained by piecewise constant segmentation method. The
final results obtained by the GDM and ADMM-P are pre-
sented in Fig. 8c, d, respectively. Figure 8e, f shows the
process of evolution in details. It can be seen clearly that
the pencil in the front keeps stable while fingers of the
hand gradually connect behind the pencil. According to the
segmentation model for vector-valued images proposed in
[38], the averages of the data terms over all channels are
used for coupling. In fact, the model used to solve color
image segmentation with depth information can be stated as
follows:

Fig. 9 Comparison of energy decreasing curves obtained byGDMand
ADMM-P

Table 8 Number of iterations and time costs usingGDMandADMM-P

Approaches Iterations Time (s)

Figure 8c: GDM 86 4.63

Figure 8d: ADMM-P 29 1.75

E =
n∑

i=1

∫

�

[α + β |∇ · (∇ϕi )|]δ (ϕi ) dx

+
m∑

l=1

⎧
⎨

⎩

n∑

i=1

∫

�

( fl − cil)
2 H (ϕi )

i−1∏

j=1

(
1 − H(ϕ j )

)
dx

⎫
⎬

⎭

+
m∑

l=1

∫

�

(
fl − c(n+1)l

)2
n∏

j=1

(
1 − H(ϕ j )

)
dx (43a)

s.t. |∇ϕi | = 1 (43b)

where l = 1, 2, . . . ,m denotes the number of layers of a
vector-valued image.

In this experiment, the parameters for the ADMM-P are
selected as: α = 0.5, β = 10, μ1 = 85, μ2 = 3, ε = 3. In
order to determine the ordering relations of the pencil and
the hand, we minimize the energy functional based on the
assumptions that the pencil occludes the hand, or the hand
occludes the pencil, respectively. From the results listed in
Table 7, we can choose the correct ordering from the nearest
to the farthest is: pencil, hand and the background.

In the case that the pencil occludes the hand, we compare
the computational efficiency between theGDMandADMM-
P methods based on their energy decaying plots in Fig. 9
and the time costs in Table 8. The parameters for the GDM
method in this experiment are α = 2, β = 15, λ= 0.1, ε =
3, dt = 8 × 10−5.
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6 Conclusions

As it is known that the Nitzberg–Mumford–Shiota (NMS)
model for image segmentation with depth can be described
as the classical Mumford–Shah model, this model is com-
putational expensive and time consuming. In order to solve
this problem efficiently, for the variational level set formu-
lation of the NMS, we first propose its equivalent simplified
variational level set formulation by taking advantage of
the property of level set functions as signed distance func-
tions, then we develop the fast ADMM (alternating direction
method of multipliers) projection method by combining the
ADMM method and projection method. Thus, the original
complicated problem is decomposed into a series of simple
sub-problems of optimization, and each sub-problem can be
easily solved accordingly. Extensive experiments have vali-
dated the effectiveness of the proposed ADMM-P approach
as the ADMM-P method is much faster than the traditional
algorithms based on theGDMand thismay be due to themer-
its of the Gauss–Seidel method, soft thresholding formulas,
FFT method, projection method as well as model reduction.
Also, the strategies of model simplification and constraint
projection can be easily extended to other variational level
set models with/without curvatures.

In this paper, the number of objects in an image is known
and in future, we will investigate this problem without this
assumption.
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