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Abstract The use of cross-diffusion problems as mathe-
matical models of different image processes is investigated.
Here the image is represented by two real-valued functions
which evolve in a coupled way, generalizing the approaches
based on real and complex diffusion. The present paper is
concerned with linear filtering. First, based on principles
of scale invariance, a scale-space axiomatic is built. Then,
some properties of linear complex diffusion are generalized,
with particular emphasis on the use of one of the compo-
nents of the cross-diffusion problem for edge detection. The
performance of the cross-diffusion approach is analysed by
numerical means in some one- and two-dimensional exam-
ples.

Keywords Cross-diffusion · Complex diffusion · Image
denoising

1 Introduction

This paper is devoted to the study of cross-diffusion sys-
tems in image processing. Cross-diffusion models consist
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of evolutionary systems of diffusion type for at least two
real-valued functions, where the evolution of each function
is not independent of the others. Their use is widespread in
areas like population dynamics (see Galiano et al. [10,11]
and references therein). In the case of image processing, two
previous related approaches must be mentioned. The first
one is the so-called complex diffusion [14]. Here the image
is represented by a complex function, and a filtering process
is governed by a (nonlinear in general) partial differential
equation (PDE) problem of diffusion type with a complex
diffusion coefficient. The main properties of this approach,
that will be relevant to the present paper, are briefly described
in the following (see Gilboa et al. [12–14] for details). On
the one hand, the use of complex diffusion to model the fil-
tering process assumes a distribution of the image features
between the real and the imaginary parts of a complex func-
tion which evolve in a coupled way. This mutual influence is
governed by the complex diffusion matrix. (In particular, the
initial condition of the corresponding PDE is always a com-
plex function with the real part given by the actual image
and zero imaginary part.) A second point to be emphasized
is that this distribution may give to the imaginary part of
the image a particular role as edge detector. In the linear
case, when the phase angle of the (constant) complex diffu-
sion coefficient is small, the imaginary part approximates a
smoothed Laplacian of the original image, scaled by time.
This property (called small theta approximation) can be used
in nonlinear models as well when, in order to control the dif-
fusion and the edge detection, the corresponding diffusion
tensor is taken to be dependent only on the imaginary part of
the image, instead of on the size of the image gradients as in
many nonlinear real diffusion models, with the consequent
computational advantages.

Complex diffusion can indeed be rewritten as a cross-
diffusion model for the real and imaginary parts of the image
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function. This approachwas considered by Lorenz et al. [24],
to analyse the existence of global solution of a related cross-
diffusion system. In addition to the theoretical advantage of
having a global solution, the numerical examples also sug-
gest that the filtering process with the cross-diffusion system
preserves better the textures of the image when compared to
Perona-Malik models [3,27].

The previous references were the starting point of our
research on cross-diffusion systems as mathematical models
for image filtering. The general purpose of the present paper
and the subsequent paper devoted to the nonlinear case is
to extend the complex diffusion approach to more general
cross-diffusion systems, analysing how to generalize known
properties and deriving new ones. We point out the main
contributions of the present paper.

– Our first purpose is to study the cross-diffusion approach
(regarding the complex diffusion as a particular case) as
a scale-space representation, see e.g. Iijima [16], Witkin
[32], Lindeberg [19,23], Florack [9], Duits et al. [7].
When the features of the image are distributed in two
components u = (u, v)T , we assume that the linear fil-
tering formulation is described by a matrix convolution
of the form

(K ∗ u)(x) =
(

(k11 ∗ u)(x) + (k12 ∗ v)(x)
(k21 ∗ u)(x) + (k22 ∗ v)(x)

)
, (1.1)

where

K =
(

k11 k12
k21 k22

)
, (1.2)

is the matrix kernel. For simplicity, and when no con-
fusion is possible, ∗ will denote both the matrix-vector
operation on the left-hand side of (1.1) and the usual con-
volution of the entries on the right-hand side,

( f ∗ g)(x) =
∫
R2

f (x − y)g(y)dy.

In scale-space theory, two main formulations can be
considered, see e.g. Weickert et al. [30,31] and Lin-
deberg [21]. The first one is based on causality [17].
This principle can be interpreted as non-enhancement of
local extrema. The characterization of those linear filters
in the continuous, one-dimensional case satisfying this
property was given by Lindeberg [18]. They consist of
compositions of two types of scale-space kernels: Gaus-
sian kernels (some already observed by Witkin [32]) and
truncated exponential functions.
Our approach to build the scale-space axiomatics makes
use of a formulation based on the principles of scale
invariance ([8,16,25,31]; see Lindeberg [21] for a com-
parison and synthesis of both theories). This theory

characterizes those linear filtering kernels satisfying
recursivity, grey-level shift, rotational and scale invari-
ance. Our first contribution in this paper generalizes that
of the scalar case (that is, when the image is represented
by only one real-valued function of two space variables)
in the sense that the kernels K = Kt , being t the scale
parameter, have a Fourier matrix representation of the
form

K̂ (ξ, t) = e−t |ξ |pd , p > 0, (1.3)

where K̂ (ξ, t) stands for the 2 × 2 matrix with entries
k̂i j (ξ, t), i, j = 1, 2, d = (di j )i, j=1,2 is a 2 × 2 positive
definite matrix and p is a positive constant. Additional
properties which are analysed here are the existence of
infinitesimal generator (and consequently the alternative
formulation of (1.1) as an initial value problem of PDEs)
and locality. The arguments in Pauwels et al. [25] and
Duits et al. [7] will be here adapted to show that lin-
ear cross-diffusion filtering with convolution kernels of
the form (1.3) admits an infinitesimal generator which is
local if and only if p is an even integer.

– Since complex diffusion models can be written as cross-
diffusion systems (for the real and imaginary parts of the
image) we develop a generalization of the most relevant
properties of the complex diffusion approach. They are
related to the way how diffusion affects different features
of the image, mainly the grey values and the edges. In this
sense, the paper generalizes the small theta approxima-
tion with the aim of assigning to one of the components
a similar role as edge detector to that of the imaginary
part of the image in some cases of linear complex diffu-
sion. The generalization is understood in the following
terms. When the matrix d approaches to a suitable spec-
tral structure (see Sect. 2) then one of the components of
the correspondingfiltered image by linear cross-diffusion
behaves as the operator A = −(−Δ)p/2 applied to a
smoothed version of the original image, determined by
A and the trace of d (the sum of the diagonal entries of
d).
A second point of generalization concerns the initial dis-
tribution of the image in two components. In the complex
diffusion case, linear (and nonlinear) filtering usually
starts from the real noisy image written as complex func-
tion (that is, with zero imaginary part). This may be
modified, in the cross-diffusion approach, by distribut-
ing the image in two components in different ways. This
distribution affects the definition of relevant quantities for
the problem in this context, such as the average grey-level
value.

– The previous results are complemented with a compu-
tational study dealing with the performance of linear
cross-diffusion filtering with kernels of the form (1.3).
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Our purpose here is to make a first approach to the
behaviour of the models, by numerical means, that may
be used in more exhaustive computational works in the
future. The numerical experiments that we present are
focused on the illustration of some properties of themod-
els, as the generalized small theta approximation, and the
influence of the initial distribution of the image features
as well as the parameter p and the matrix d in (1.3). The
numerical experiments suggest that when the eigenval-
ues of d are real and different, the blurring effect in the
filtering is delayed when compared with the linear com-
plex case (where the eigenvalues are complex). The first
choice leads to an improvement in the quality of filtering,
measured with the classical signal-to-noise ratio (SNR)
and peak signal-to-noise ratio (PSNR) indexes, and edge
detection which is independent of the parameter p, that
is, the local or nonlocal character of the infinitesimal gen-
erator.

The structure of the paper is as follows. Section 2 is devoted
to the theoretical analysis of linear cross-diffusion models.
In Sect. 2.1 the matrix convolution (1.1) is formulated as a
scaling process and, in order to define the space where the
convolution operators act, some assumptions on the kernels
are specified. The inclusion of a scaling enables to analyse,
in Sect. 2.2, the formulation of some scale-space properties
(grey-level shift invariance, rotational invariance, semigroup
property and scale invariance) under the cross-diffusion set-
ting. The derivation of (1.3) is then given in Sect. 2.3, along
with a discussion on the locality property. The generaliza-
tion of the small theta approximation, in Sect. 2.4, completes
the theoretical approach. Some of these properties are illus-
trated in the numerical study in Sect. 3, where the models are
applied to one- and two-dimensional examples of filtering
problems and their performance is analysed in terms of the
parameters of the kernels (1.3). Particular attention will be
paid on the comparison with Gaussian smoothing and linear
complex diffusion. The main conclusions and perspectives
are outlined in Sect. 4. A technical result on the reduction of
2 × 2 positive definite matrices, necessary for some proofs,
is included as lemma in “Appendix”.

The present paper will be followed by a companion paper
focused on nonlinear cross-diffusion models [2].

The following notation will be used throughout the paper.
Grey-scale images will be represented in this linear case by
real-valued mappings on R

2. (The nonlinear case will be
studied on bounded domains.) We denote by Hk = Hk(R2),
where k ≥ 0 an integer, the Sobolev space of order k, with
H0 = L2(R2). The inner product in Hk is denoted by 〈·, ·〉k

and the associated norm by || · ||k . The space of integrable
functions in R

2 will be denoted as usual by L1 = L1(R2),
as well as the space of real-valued infinitely continuously
differentiable functions in R

2 by C∞(R2) and the space of

continuous functions in R
2 vanishing at infinity by C0(R

2).
The vector and scalar real-valued functions on R

2 will be
distinguished by the use of boldface for the first. By X we
will denote the space where the scalar functions are, in such a
way that a vector representation of the image will be defined
in X × X , with associated norm

||u||X×X =
(
||u||2X + ||v||2X

)1/2
, u = (u, v)T .

Wewill assume that X = H0, although in some cases (which
will be specified in the paper) X = Hk , for k > 0, or X =
L1 ∩ H0 will be considered. For f ∈ X , f̂ will denote the
Fourier transform in R

2,

f̂ (ξ) =
∫
R2

f (x)e−ix·ξdx, ξ ∈ R
2,

where the dot · stands for the Euclidean inner product in R
2

with |·| as the Euclidean norm. Finally, on the space ofmatrix
kernels (1.2) with ki j ∈ L1, i, j = 1, 2 we consider the norm

||K ||∗ = max
i, j

{||ki j ||L1}, (1.4)

where || · ||L1 denotes the L1-norm.

2 Linear Cross-Diffusion Filtering

2.1 Formulation as Scaling Process

In order to formalize (1.1) as a scale-space representation we
introduce a family of convolution operators {Kt : X × X →
X × X, t ≥ 0} in such a way that (1.1) is rewritten as

u(x, t) = Ktu0(x) = (K (·, t) ∗ u0)(x), x ∈ R
2, (2.1)

where, from some original real-valued image f ∈ X , an
initial vector field u0(x) = (u0(x), v0(x))T ∈ X × X is
composed. Thus, u(x, t) = (u(x, t), v(x, t))T stands for the
grey-level value image at pixel x ∈ R

2 at the scale t . This
is obtained from a convolution with a 2 × 2 matrix kernel
K (·, t) with entries ki j (·, t), i, j = 1, 2 such that the vector
representation (2.1) is written as

u(x, t) = (k11(·, t) ∗ u0)(x) + (k12(·, t) ∗ v0)(x),

v(x, t) = (k21(·, t) ∗ u0)(x) + (k22(·, t) ∗ v0)(x),

t ≥ 0, x ∈ R
2. (2.2)

Recall that the convolution operator is distributive, associa-
tive but not commutative. Concerning the kernels ki j , i. j =
1, 2, a first group of assumptions is made:
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(H1) ki j (·, t) ∈ L1, k̂i j (·, t) ∈ L1, i, j = 1, 2, t > 0.
(H2) For each x ∈ R

2, i, j = 1, 2, ki, j (x, ·) : (0,∞) → R

is continuous.

Note that since k̂i j (·, t) ∈ L1 then ki j (·, t) : R
2 → R is

continuous and bounded.

Remark 1 Hypotheses (H1), (H2) will be required for tech-
nical reasons (definition of convolution, inversion of Fourier
transform) and also when some scale-space properties are
imposed in (2.1). The satisfaction of these properties will
require additional assumptions that will be specified in each
case in Sect. 2.2.

Remark 2 In a similar way to the scalar case [21,25,31], it
is not hard to see that the convolution kernel formulation
(2.1) can be derived from the assumptions of linear integral
operators (in the matrix sense)Kt , t ≥ 0 with matrix kernels
Kt such that

Kt f(x) =
∫
R2

Kt (x, y)f(y)dy, x ∈ R
2, t ≥ 0,

and satisfying the translation invariance

Kt (x − y, ·) = Kt (x, y + ·), x, y ∈ R
2, t ≥ 0.

Remark 3 The linear complex diffusion with coefficient c =
reiθ can be written as a convolution [12–14]

I (x, t) = (h(·, t) ∗ I0)(x), x ∈ R
2, (2.3)

with kernel

h(x, t) = gσ e
iα(x,t), gσ (x) = 1

2πσ 2 e
− |x|2

2σ2 ,

σ (t) =
√

2tr

cos θ
, α(x, t) = |x|2 sin θ

4tr
. (2.4)

If I0 = I0R + i I0I , I = IR + i II then (2.3) can be formu-
lated as (2.2) for u = IR, u0 = I0R, v = II , v0 = I0I and
k11(x, t) = k22(x, t) = h R(x, t), k12(x, t) = −k21(x, t) =
hI (x, t), where h R, hI stand, respectively, for the real and
imaginary parts of h in (2.4).

2.2 Scale-Space Properties

As mentioned in the Introduction, the image representation
as a scale-space will be here analysed by using the principles
of scale invariance. The purpose is then to characterize those
matrix kernels K (·, t), t ≥ 0 in such a way that (2.1) satisfies
shift invariance, rotational invariance, recursivity (semigroup
property) and scale invariance. These four properties will
be introduced in the context of cross-diffusion formulation
and the requirements for the kernels to satisfy them will be
imposed.

2.2.1 Grey-Level Shift Invariance

As in the scalar case, we assume that

(H3) The matrix kernel K (·, t), t > 0 is ‘mass preserving’,
Pauwels et al. [25], that is

k̂i i (0, t) =
∫
R2

kii (x, t)dx = 1, i = 1, 2,

k̂i j (0, t) =
∫
R2

ki j (x, t)dx = 0, i 
= j. (2.5)

Then, for any constant signal C ∈ R
2 and t ≥ 0 we have

K (·, t) ∗ C = C and therefore grey-level shift invariance
holds:

K (·, t) ∗ (f + C) = K (·, t) ∗ f + C, C ∈ R
2, t ≥ 0,

for any input image f ∈ X × X . Assumption (H3) has an
additional consequence:

Lemma 1 Assume that (H1)–(H3) hold. For u = (u, v) ∈
L1 × L1 we define M(u) = (m(u), m(v))T , where

m( f ) =
(∫

R2
f (x)dx

)
, f ∈ L1.

If u0 ∈ L1 × L1 and u(·, t), t ≥ 0 satisfies (2.1) then

M(u(·, t)) = M(u0), t ≥ 0. (2.6)

Proof Note that for any f ∈ L1(R2) and i, j = 1, 2,

∫
R2

∫
R2

ki j (x − y, t) f (y)dydx

=
∫
R2

(∫
R2

ki j (x − y, t)dx
)

f (y)dy

=
(∫

R2
ki j (x, t)dx

) (∫
R2

f (x)dx
)

. (2.7)

Now, if u0 ∈ L1 × L1 then the solution of (2.1) satisfies
u(·, t) ∈ L1 × L1, t ≥ 0; the application of (2.7) to (2.2) and
assumption (H3) imply (2.6). ��
Remark 4 Property (2.6) may be considered as the cross-
diffusion version of the average grey-level invariance, when
the image is represented by only one real-valued function
[29]. The use, from M, of a scalar to play a similar role of
average grey level in this case may however depend on the
initial data u0 = (u0, v0)

T of an original real image f in
two components. For example, in the case of linear complex
diffusion, u0 = ( f, 0)T is typically taken and due to the
properties of the fundamental solution (2.3) [12–14],
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∫
R2

h R(x, t)dx = 1,
∫
R2

hI (x, t)dx = 0,

for t ≥ 0, we have that I = IR + i II of (2.3) satisfies

m(IR(·, t)) = m( f ), m(II (·, t)) = 0.

Then, the role of average grey level might be played by the
integral of the real part of the image, that is the first com-
ponent in the corresponding formulation as a cross-diffusion
system. Some other choices of the initial distribution may
however motivate the change of the definition of average
grey level, e.g. m(u) + m(v).

Remark 5 (Flat kernels) A second consequence of mass pre-
serving assumption (H3) is that

lim
t→∞ ki j (·, t) = 0, i, j = 1, 2,

whichmeans that the kernels are flat as t → ∞, seeWeickert
et al. [30,31].

2.2.2 Rotational Invariance

The invariance of the image by rotation is obtained in a sim-
ilar way to that of the scalar case, see Pauwels et al. [25].

Lemma 2 Under the assumption

(H4) For any t > 0, i, j = 1, 2, there exists κi j (·, t) ∈ L1

such that ki j (x, t) = κi j (|x|, t), x ∈ R
2,

let Tθ : R
2 → R

2 be a rotation matrix of angle θ ∈ R and
for u ∈ X × X let us define Tθ : X × X → X × X as

(Tθu)(x) = u(Tθx), x ∈ R
2.

Then, for any u0 ∈ X × X and t > 0,

Kt (Tθu0) = Tθ (Ktu0). (2.8)

Proof The same arguments as those of the scalar case are
applied here, since (H4) implies ki j (Tθx, t) = ki j (x, t), t ≥
0, θ ∈ R and this leads to (2.8). ��
Remark 6 As in the scalar case, (H4) also implies that for
i, j = 1, 2, t > 0, there exists κ̃i j = κ̃i j (·, t) ∈ L1 such that
k̂i j (ξ) = κ̃i j (|ξ |), ξ ∈ R

2. Moreover

k̂i j (ξ, t) =
∫ ∞

0
κi j (ρ, t)J0(ρ|ξ |)dρ, t > 0,

where J0(z) is the zeroth order Bessel function, see Pauwels
et al. [25].

2.2.3 Recursivity (Semigroup Property)

Here we assume that:

(H5) The family of operators {Kt , t ≥ 0} satisfies the semi-
group properties:

lim
t→0+Kt f = f, f ∈ X × X,

Kt+s = KtKs, t, s ≥ 0.

Note that the first property in (H5) means that for i, j = 1, 2

lim
t→0+ ki j (·, t) =

{
0 i 
= j

δ(·) i = j,

where δ(·) denotes the Dirac’s delta distribution. In terms of
the convolution matrices, (H5) reads

K (·, 0) = δ(·)I,

(K (·, t + s) ∗ f)(x) = (K (·, t) ∗ K (·, s) ∗ f)(x),

x ∈ R
2,u ∈ X × X. (2.9)

On the other hand, the formulation of (2.1) as an initial value
problemofPDEforu is related to the existenceof an infinites-
imal generator of the semigroup {Kt , t ≥ 0}, defined as
[26,34]

Df = lim
h→0+

Khf − f
h

, f ∈ X × X, (2.10)

and with domain dom(D) consisting of those functions f ∈
X × X for which the limit in (2.10) exists. The existence of D
is guaranteed under the additional assumption of continuity:

(H6) If || · ||∗ is the norm defined in (1.4) then

lim
t→0+ ||K (·, t) − K (·, 0)||∗ = 0.

Lemma 3 Under the assumptions (H1), (H2), (H5) and (H6)
the function u(t) = u(·, t) given by (2.1) is a weak solution
of the initial value problem

ut (t) = Du(t), t > 0,

u(0) = u0(x), (2.11)

where D is the linear operator (2.10).

Proof Note that for f ∈ X × X (see e.g. Brezis [4], Pazy [26]
and Yosida [34])

||K (·, t) ∗ f − K (·, 0) ∗ f ||X×X

≤ ||K (·, t) − K (·, 0)||∗||f ||X×X .
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Therefore, by (H5), (H6) we have that {Kt , t ≥ 0} is a C0-
semigroup of bounded linear operators on X . This implies
that u(t) = Ktu0 is the unique weak solution of (2.11).
(If u0 ∈ dom(D) then u(t) is a strong solution, e.g. Pazy
[26]). ��

It is worth mentioning the Fourier representation of the
matrix operator (2.10). If we define

K̂ (ξ, t) =
(

k̂11(ξ, t) k̂12(ξ, t)
k̂21(ξ, t) k̂22(ξ, t)

)
, ξ ∈ R

2, t ≥ 0,

(2.12)

then the second property in (2.9) can be written as

K̂ (ξ, t + s) = K̂ (ξ, t)K̂ (ξ, s), t, s ≥ 0. (2.13)

Now, if D = (Di j )i, j=1,2 denotes the entries of D, then the
system (2.11) can be written in terms of the Fourier symbols
D̂(ξ) := {D̂i j (ξ)}i, j=1,2, as the linear evolution problem

d

dt

(
û(ξ, t)
v̂(ξ, t)

)
=

(
D̂11(ξ) D̂12(ξ)

D̂21(ξ) D̂22(ξ)

) (
û(ξ, t)
v̂(ξ, t)

)
,

ξ ∈ R
2, t > 0, (2.14)

with û(ξ, 0) = û0(ξ), v̂(ξ, 0) = v̂0(ξ). By taking the Fourier
transform in (2.2) and comparing with (2.14) we can write
(2.12) in the form of the Lie-group exponential map

K̂ (ξ, t) = et D̂(ξ), ξ ∈ R
2, t > 0. (2.15)

Remark 7 We also note that the assumption for rotational
invariance (H4) implies that thematrix D̂(ξ) only depends on
|ξ |. Furthermore, (H1) implies that k̂i j (·, t) ∈ C0(R

2), i, j =
1, 2. Then, k̂i j (ξ, t) → 0 as |ξ | → ∞. Due to the form of K̂
in (2.15), this necessarily leads to

lim|ξ |→∞ D̂i j (ξ) → −∞, i, j = 1, 2,

which forces D̂(ξ) to be negative definite for all ξ ∈ R
2 (that

is, the real part of its eigenvalues must be negative for all
ξ ∈ R

2).

2.2.4 Scale Invariance

The last property to formulate is the scale invariance [1]. We
define

Sλf(x) = f(λx), x ∈ R
2, f ∈ X × X,

and assume that:

(H7) For any λ ∈ R and t > 0 there is t ′ = φ(t) such that

SλKt ′ = Kt Sλ.

InLindeberg and terHaarRomeny [20] it is argued that, in the
context of image processing, the relation between t and the
scale represented by the standard deviation σ in the Gaus-
sian filtering (t = σ 2/2) can be generalized and assumed
to exist from the beginning of the process, by establishing
the existence of time (t) and scale (σ ) parameters and some
connection (ϕ) between them. Following this argument, we
first introduce a scale parameter σ , related to the semigroup
parameter t by a suitable transformation (to be specified later)

t = ϕ(σ). (2.16)

When viewed the kernels as functions of the new parameter
σ (and for which, for simplicity, the same notation is used)
then the second property in (H5) reads

K (·, σ1) ∗ K (·, σ2) = K (·, ϕ−1(ϕ(σ1) + ϕ(σ2))), (2.17)

while the first one implies ϕ(0) = 0. In order to preserve
the qualitative requirement (which is one of the bases of the
scale-space theory, see Lindeberg [22]) that increasing values
of the scale parameter should correspond to representations at
coarser scales, we must assume that ϕ : R+ → R+ is mono-
tonically increasing (in particular, invertible). (In Pauwels et
al. [25] this ϕ can be identified as ψ−1 defined there.)

2.3 Linear Filtering Characterization

The characterization of those matrix kernels K (·, t), t ≥ 0,
such that the scale-space representation (2.1) satisfies shift
invariance, rotational invariance, recursivity and scale invari-
ance is established in this section. Assume that in terms of
the scale σ , (2.1) is written in the matrix form

F(·, σ ) = K (·, σ ) ∗ f,

where f = ( f, g)T ,F = (F, G)T ; in Fourier representation
this is

F̂(ξ, σ ) = K̂ (ξ, σ )̂f(ξ). (2.18)

Theorem 1 If we assume that {Kt , t ≥ 0}, defined by (2.1),
satisfies (H1)–(H7) then there exist p > 0 and a positive
definite matrix d such that the kernels K (·, t), t > 0, must
have the Fourier representation (2.15) with

D̂(ξ) = −|ξ |pd. (2.19)

Proof The proof follows an adaptation of the steps given in
Lindeberg and ter Haar Romeny [20], for the scalar case.

(A) Dimensional analysis Scale invariance (H7) will allow
a simplification of (2.18) by using dimensional anal-
ysis, see e.g. Yarin [33]. In this case, taking e.g. the
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dimensionless variables ξ1σ, ξ2σ, f̂1 f̂ −1
2 (where ξ =

(ξ1, ξ2)
T ∈ R

2) and applying the Pi-Theorem, there is a
matrix K̃ : R

2 → R
2 × R

2 with K̃ (0) = I (in order to
have F̂(ξ, 0) = f̂(ξ)) such that the system (2.18) can be
written in the form

F̂(ξ, σ ) = K̃ (ξσ )̂f(ξ).

Furthermore, rotational invariance implies that K̃ (ξσ ) =
K̃ (|ξσ |) and therefore

F̂(ξ, σ ) = K̃ (|ξσ |)̂f(ξ), (2.20)

(B) Scale invariance According to (2.17) and (2.20), the
semigroup condition (H5) is of the form

K̃ (|ξσ1|)K̃ (|ξσ2|)
= K̃ (|ξϕ−1(ϕ(σ1) + ϕ(σ2))|), (2.21)

for σ1, σ2 ≥ 0. The same arguments as those in Lin-
deberg and ter Haar Romeny ([20], Section 1.5.6) can
be used to show that scale invariance implies that ϕ in
(2.16) must be of the form

ϕ(σ) = Cσ p,

for some constant C > 0 (which can be taken as C = 1)
and p > 0. (In Pauwels et al. [25], p is identified as α.)
Hence, if H(x p) ≡ K̃ (x) then (2.21) reads

H(|ξσ1|p)H(|ξσ2|p) = K̃ (|ξσ1|)K̃ (|ξσ2|)
= K̃ (|ξϕ−1(ϕ(σ1) + ϕ(σ2))|)
= K̃ ((|ξσ1|p + |ξσ2|p)1/p)

= H(((|ξσ1|p + |ξσ2|p)1/p)p)

= H(|ξσ1|p + |ξσ2|p),

which is identified as the functional equation

Ψ (α1)Ψ (α1) = Ψ (α1 + α2)

characterizing the matrix exponential function. There-
fore, K̃ must be of the form

K̃ (|ξσ |) = H(|ξσ |p) = e|ξσ |p A, p > 0,

for some 2× 2 real matrix A. Now the arguments given
in Remark 7 show that A must be negative definite or,
alternatively

K̂ (ξ, σ ) = K̃ (|ξσ |) = e−|ξσ |pd , ξ ∈ R
2, (2.22)

where d is a 2×2 positive definitematrix.Writing (2.22)
in terms of the original scale t leads to the representation
(2.15) with D̂(ξ) given by (2.19). ��

Remark 8 The form (2.19) corresponds to specific forms of
the infinitesimal generator D. Note that if f ∈ X × X then

̂
(Khf − f

h

)
(ξ) =

(
e−h|ξ |pd − I

h

)
f̂(ξ),

and formally

e−h|ξ |pd − I

h
=

∞∑
j=1

(−1) j h j−1|ξ | j p

j ! d j .

Thus,

lim
h→0+

e−h|ξ |pd − I

h
= −|ξ |pd,

and the limit is the Fourier symbol of the operator, [26]

Df = −(−Δ)p/2df, (2.23)

withΔ standing for the Laplace operator andwhere (−Δ)p/2

is multiplying each entry of d, cf. Pauwels et al. [25].
The explicit Formula (2.23) can be used to discuss the

additional scale-space property of locality [30,31]. A semi-
group of operators Tt , t ≥ 0, satisfies the locality condition
if for all smooth f, g in its domain and all x ∈ R

2

(Tt f − Ttg)(x) = o(t), t → 0+,

whenever the derivatives of f and g of any nonnegative order
are identical. Mathematically [1,25], the locality condition
implies that the corresponding infinitesimal generator is a
local differential operator, which in the case of (2.23) means
that p/2 must be integer, extending the result obtained in
Pauwels et al. [25] for the scalar case to the cross-diffusion
framework.

Remark 9 Note that when d has complex conjugate eigen-
values, Lemma 4 in “Appendix” shows that there is a basis
in R

2 such that d is similar to a matrix of the form
(

ν −μ

μ ν

)
, (2.24)

with ν > 0, μ 
= 0 andwhere the eigenvalues of d are ν±iμ.
Therefore, linear complex diffusion corresponds to the case
of (2.23) with p = 2 and a matrix d of the form (3.1). The
complex diffusion coefficient is given by c = ν + iν or
c = ν − iμ. Formula (2.23) shows that this linear complex
diffusion can be generalized by using other values of p.
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Remark 10 The nature of the semigroup {Kt , t ≥ 0} can be
analysed from the spectrumand regularity of the infinitesimal
generator (2.23) [26]. In this sense, the following result holds.

Theorem 2 Let k ≥ 0. The operator D in (2.23)with domain
dom(D) = Hk+1 × Hk+1 is the infinitesimal generator of a
C0-semigroup {Kt , t ≥ 0} and there exists M > 0 such that
the induced norm satisfies ||Kt || ≤ M. Furthermore, if d is
of one of the three reduced forms

d1 =
(

λ+ 0
0 λ−

)
, λ+ ≥ λ− > 0,

d2 =
(

α β

0 α

)
, α ≥ β > 0,

d3 =
(

ν −ν

μ ν

)
, ν > 0, μ 
= 0, (2.25)

then M ≤ 1.

Proof We first prove that for each reduced form d j , j =
1, 2, 3 in (2.24), {Kt , t ≥ 0} is a C0-semigroup of contrac-
tions. Consider the eigenvalue problem for D:

(λI − D)u = f, (2.26)

where I is the 2×2 identitymatrix,u = (u, v)T , f = ( f, g)T .
Assume that in (2.19) d = d1. In terms of the Fourier trans-
form, (2.26) reads

(λ + |ξ |pλ+)̂u(ξ) = f̂ (ξ),

(λ + |ξ |pλ−)̂v(ξ) = ĝ(ξ), ξ ∈ R
2.

Then, since λ+ > λ− > 0, for any λ > 0 we have

1

|λ + |ξ |pλ±| ≤ 1

λ
, ξ ∈ R

2. (2.27)

When d = d2, the Fourier system associated to (2.26) is now
of the form

(λ + |ξ |pα)̂u(ξ) + |ξ |pβv̂(ξ) = f̂ (ξ),

(λ + |ξ |pα)̂v(ξ) = ĝ(ξ), ξ ∈ R
2.

Now, since 0 < β < α then for any λ > 0,

|ξ |pβ

|λ + |ξ |pα| ≤ 1,
1

|λ + |ξ |pα| ≤ 1

λ
, ξ ∈ R

2. (2.28)

Finally, when d = d3, the Fourier representation of (2.26)
has the form

(λ + ν|ξ |p )̂u(ξ) − μ|ξ |pv̂(ξ) = f̂ (ξ),

μ|ξ |pû(ξ) + (λ + ν|ξ |p )̂v(ξ) = ĝ(ξ). (2.29)

Inverting (2.29) leads to

û(ξ) = (λ + ν|ξ |p)

m(ξ)
f̂ (ξ) + μ|ξ |p

m(ξ)
ĝ(ξ),

v̂(ξ) = −μ|ξ |p

m(ξ)
f̂ (ξ) + (λ + ν|ξ |p)

m(ξ)
ĝ(ξ),

m(ξ) = (λ + ν|ξ |p)2 + (μ|ξ |p)2.

Note now that since ν > 0, for any λ > 0 we have

(λ + ν|ξ |p)

m(ξ)
≤ 1

λ + ν|ξ |p
≤ 1

λ
, (2.30)

and also, since

|λ + ν|ξ |p||μ|ξ |p| ≤ m(ξ)

2
,

then

|μ|ξ |p|
m(ξ)

≤ 1

2(λ + ν|ξ |p)
≤ 1

2λ
. (2.31)

Finally, the application of Hille-Yosida theorem to each case,
using the corresponding estimates (2.27), (2.28) and (2.29)–
(2.31), proves the second part of the theorem. For the general
case, we note that, using the eigenvalues of d, there is a
nonsingular matrix P such that Λ = Pd P−1 is of one of
the three forms in (2.24) (see Lemma 4). Then, the theorem
follows by using M = ||P||||P−1||. ��

2.4 Generalized Small Theta Approximation

One of the arguments to consider complex diffusion as an
alternative for image processing is the so-called small theta
approximation [14]. This means that for small values of the
imaginary part of the complex diffusion coefficient, the cor-
responding imaginary part of the solution of the evolutionary
diffusion problem behaves, in the limit, as a scaled smoothed
Gaussian derivative of the initial signal. This idea can also
be discussed in the context of cross-diffusion systems (2.1),
where D is the infinitesimal generator (2.16), that is

u(x, t) = et Du0(x) = e−t (−Δ)p/2du0(x). (2.32)

By using the notation introduced in Lemma 4, we have the
following result.

Theorem 3 Define the operator A = −(−Δ)p/2, p > 0
and let d be a positive definite matrix with eigenvalues and
parameters given by (3.2). Assume that d satisfies one of the
cases (i), (iii) or (iv) in Lemma 4. Let f ∈ X be a real-valued
function. If u(x, t) = (u(x, t), v(x, t))T then (2.32) satisfies:
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(C1) If |s| → 0 and u0 = ( f, 0)T then

lim
d21→0

u(x, t) = e
q
2 t A f (x),

lim
d21→0

v(x, t)

d21
= t A

(
e

q
2 t A f (x)

)
.

(C2) If |s| → 0 and u0 = (0, f )T then

lim
d12→0

u(x, t)

d12
= t A

(
e

q
2 t A f (x)

)
,

lim
d12→0

v(x, t) = e
q
2 t A f (x),

where q = tr(d) is the trace of d.

Proof We can write (2.32) in the form

u(x, t) = Pet AΛ P−1u0(x), (2.33)

where P and Λ are the corresponding matrices specified in
Lemma 4 in each case. Specifically and after some tedious
but straightforward calculations, we have:

– In the case (i)

u(x, t) = e
q
2 t A

(
cosh(tμA) − r

2μ
sinh(tμA)

)
u0(x)

− e
q
2 t A

(
d12
μ

sin(tμA)

)
v0(x),

v(x, t) = e
q
2 t A

(
cosh(tμA) + r

2μ
sinh(tμA)

)
v0(x)

+ e
q
2 t A

(
d21
μ

sinh(tμA)

)
u0(x), (2.34)

– In the case (iii)

u(x, t) = e
q
2 t A

(
(1 − r t

2
A)u0(x) + d12t Av0(x)

)
,

v(x, t) = e
q
2 t A

(
(1 + r t

2
A)v0(x) + d21t Au0(x)

)
,

(2.35)

– In the case (iv)

u(x, t) = e
q
2 t A

(
cos(tμA) − r

2μ
sin(tμA)

)
u0(x)

− e
q
2 t A

(
d12
μ

sin(tμA)

)
v0(x),

v(x, t) = e
q
2 t A

(
cos(tμA) + r

2μ
sin(tμA)

)
v0(x)

+ e
q
2 t A

(
d21
μ

sin(tμA)

)
u0(x), (2.36)

where u0(x) = (u0(x), v0(x))T and the cosine, sine, hyper-
bolic cosine and hyperbolic sine of the operator A are defined
in the standardway from the exponential, see e.g.Yosida [34].
By using the approximations as z → 0,

cos(z) ≈ 1, sin(z) ≈ z, cosh(z) ≈ 1, sinh(z) ≈ z,

and the corresponding limits in (2.34)–(2.36) then (C1) and
(C2) hold. ��

Theorem 3 can be considered as a generalization of the
small theta approximation property of linear complex dif-
fusion. Under the conditions specified in the theorem, one
of the components behaves as the operator A applied to a
smoothed version of the original image f , scaled by t and
with the smoothing effect determined by A and the trace of
d. Actually, Formulas (2.34)–(2.36) can be used to extend
the result to other initial distributions u0. Finally, note that if
d is similar to a matrix of the case (ii) in Lemma 4 then

u(x, t) = e
q
2 t Au0(x), v(x, t) = e

q
2 t Av0(x),

and this property does not hold. This case could be considered
as a Gaussian smoothing for both components.

3 Numerical Experiments

This section is devoted to illustrate numerically the behaviour
of linear filters of cross-diffusion. More specifically, the
numerical experiments presented here, involving one- and
two-dimensional signals, will concern the influence, in a fil-
tering problem with processes (2.1) and kernels satisfying
(2.19), of the following elements:

– The matrix d: According to the analysis of Sect. 2, the
choice of d plays a role in the generalized small theta
approximation and the experiments will also attempt to
discuss if the influence is somehow extended to the qual-
ity of filtering. Note that the matrix d in (2.23) must be
positive definite, but not necessarily symmetric. (This
means that xT dx > 0 for all x 
= 0 or, equivalently, if
the symmetric part (d + dT )/2 is positive definite.) This
implies that the real part of each eigenvalue is positive.
In terms of the entries of d, the positive definite character
requires two conditions

d11 > 0, 4d11d22 − (d12 + d21)
2 > 0, (3.1)

or equivalently, being

λ± = 1

2

(
d11 + d22 ± √

s
)
,

s = r2 + 4d12d21, r = d22 − d11, (3.2)
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the eigenvalues of d, then Re(λ±) > 0. According to
this three types of matrices will be taken in the experi-
ments, covering the different form of the eigenvalues (see
Lemma 4).

– The initial distribution u0: Besides the generalized small
theta approximation, the choice of u0 is also relevant to
define the average grey value.

– The parameter p: Here the purpose is to explore numer-
ically if locality affects the filtering process, either in its
quality or computational performance.

As mentioned in the Introduction, these experiments are a
first approach to the numerical study of the behaviour of
the filters. All the computations are made with Fourier tech-
niques [6]. More presicsely, for the case of one-dimensional
signals, an interval (−L , L) with large L is defined and dis-
cretized by Fourier collocation points x j = −L + jh, j =
0, . . . , N , with stepsize h > 0 and the signal is represented
by the corresponding trigonometric interpolating polynomial
with the coefficients computed by the discrete Fourier trans-
form (DFT) of the signal values at the collocation points.
For experiments with images, the implementation follows
the corresponding Fourier techniques in two dimensions,
with discretized intervals (−Lx , Lx ) × (−L y, L y), being
Lx , L y large, by Fourier collocation points (x j , yk), with
x j = −Lx + jhx , j = 0, . . . , Nx , yk = −L y + khy, k =
0, . . . , Ny , and the image is represented by the trigonometric
interpolating polynomial at the collocation points, computed
with the corresponding two-dimensional version of the DFT.
In both cases, from the Fourier representation, the convo-
lution (2.1) is implemented in the Fourier space by using
(2.11).

The experiments can be divided in two groups. The first
one concerns the evolution of a clean signal. It illustrates
properties like the generalized small theta approximation and
the effect of locality. The second group deals with image
filtering problems, and the experiments are performed with
the following strategy: from an original image s we add some
noise of different types to generate an initial noisy signal.
From this noisy signal an initial distribution is defined and
then the restored image, givenby (2.1), ismonitored at several
times tn, n = 0, 1, . . ., in order to estimate the quality of
restoration. This quality has beenmeasured byusing different
standard metrics, namely:

– signal-to-noise ratio (SNR):

SN R(s, un) = 10 log10

(
var(un)

var(s − un)

)
. (3.3)

– peak signal-to-noise ratio (PSNR):

P SN R(s, un) = 10 log10

(
l2

||s − un||2
)

. (3.4)

In all the cases, un stands for the first component of the
restored image at time tn , l is the length of the vectors in
one-dimensional signals and l = 255 for two-dimensional
signals, || · || stands for the Euclidean norm in 1D and the
Frobenius norm in 2D and var(x) is the variance of the vec-
tor x (or the matrix disposed as a vector). According to the
formulas, the larger the parameter values the better the filter-
ing is. Other metrics, like the root-mean-square error or the
correlation coefficient, have been used in the experiments,
although only the results corresponding to (3.3), (3.4) will
be shown here.

3.1 Choice of Matrix d

3.1.1 Experiments in 1D

A unit function f is first considered. Taking u0 = ( f, 0)T ,
the evolution (2.1) with kernels satisfying Theorem 1 and
p = 2 is monitored at several times. Experiments with three
types of matrices d [covering the cases s > 0, s = 0, s < 0,
where s is given by (3.2] and for each type, with different
values (according to the size of |s|) were performed. They
are represented in Figs. 1, 2 and 3 and suggest two first con-
clusions:

1. The first component is affected by a smoothing effect.
We observed that the regularization is stronger as d11, d22
(which, by positive definiteness of d, must be positive)
and |d12|, |d21| grow.

2. Except in the case d12 = d21 = 0 (which may be associ-
ated to real Gaussian smoothing) the second component
develops a sort of small-amplitude Gaussian derivative-
type monopulse. Again, the height of the amplitude
depends on how large (in absolute value) the elements of
d are, with the larger the parameters the taller the wave
is. In particular, this property illustrates the effect of the
small theta approximation in complex diffusion (Fig. 3)
and in more general cross-diffusion models (Figs. 1, 2).

3.1.2 Experiments in 2D

The illustration of the influence of the matrix d in 2D signals
is focused on mainly two points: the small theta approxima-
tion and the behaviour of the filtering evolution of (2.1) with
respect to the blurring effect, the detection of the edges and
the treatment of textures of the image. From the experiments
performed, we observe the following:

– The property of generalized small theta approximation is
illustrated in Fig. 4, which corresponds to apply (2.1) at
t = 0.1 with p = 2 and matrices

d1 =
(

1 10−5

1.99 1

)
, d2 =

(
1 −10−5

1.99 1

)
, (3.5)
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Fig. 1 Cross-diffusion with p = 2 and for d11 = 1, d22 = 1.1, d12 =
0.1, d21 = 1. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

corresponding to the cases s > 0 and s < 0, respectively,
with |s| small. The initial condition isu0 = ( f, 0)T where
f is the original image displayed in Fig. 4a. Accord-
ing to Theorem 3, the entry d21 of d may be used as a
natural scale for the second component of the solution
of (2.1), which is shown in Fig. 4b, c for d = d1 and
d = d2, respectively. In this small theta approximation
property the processes displayed (and those that we per-
formed with matrices for which s = 0, not shown here)
do not have relevant differences: the second component
is affected by a slight blurring. A comparison with some
standard methods for edge detection [5,28] is given in
Fig. 5.

– When the image is affected by some noise, the behaviour
of the filtering process with (2.1) can show some dif-
ferences depending on the choice of the matrix d. The
first one concerns the blurring effect. Our numerical
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Fig. 2 Cross-diffusion with p = 2 and for d11 = 1, d22 = 1.1, d12 =
0.1, d21 = −0.25. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

experiments suggest a better evolution of the filtering for
matrices in the case (i) of Lemma 4 than that of matri-
ces in cases (ii)–(iv). (The last one includes the linear
complex diffusion.) This is illustrated by Fig. 6 that cor-
responds to the evolution of (2.1) from a noisy image f
(Fig. 6a) with p = 2,u0 = ( f, 0)T and matrices d = d1
(Fig. 6b) and d = d2 (Fig. 6c), now of the form

d1 =
(
1 0.9
1 1

)
, d2 =

(
1 −0.9
1 1

)
, (3.6)

at time t = 15. The experiment shows that filtering
with d1 delays the blurring effect with respect to the
behaviour observed in the case of d2. Similar experiments
suggest that using matrices d for which the parameter
s = (d22 − d11)2 + 4d12d21 is positive and moderately
large (always conditioned to the satisfaction of positive
definite character) improves the filtering in this way. This
is also confirmed by Fig. 7, where the evolution of the
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Fig. 3 Cross-diffusion with p = 2 and for d11 = d22 = 1, d12 =
−0.1, d21 = 0.1. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

corresponding SNR and PSNR indexes (3.3) and (3.4)
for (2.1) with d1 and d2 are shown, respectively.

– The delay of the blurring effect has also influence in other
features of the image. The first one is the edge detection
by using the second component of (2.1), as observed in
Fig. 8. The better performance of the process with d1
gives a less blurred detection of the edges than the one
given by d2. On the other hand, the delay of the blurring
effectmay improve the identification of the textures of the
image. Using nonlinear models, Lorenz et al. [24] sug-
gested a good behaviour of cross-diffusion with respect
to the textures. Numerical experiments in this sense were
performed here and they are illustrated in Table 1. This
shows the entropy as a measure of texture. The entropy
was computed as

Fig. 4 Generalized small theta approximation. a Original image f .
b, c Second component of the solution of (2.1) at t = 0.1 with p =
2,u0 = ( f, 0)T and b d = d1, (c) d = d2, see (3.5)
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Fig. 5 Edge detection from f in Fig. 4a provided by: a the Prewitt
method [28] and b the Canny method [5]

En =
∑
i, j

ci j log2 ci j , (3.7)

where ci j stands for the entries of the corresponding grey-
level occurrence matrix [15].

3.2 Choice of the Parameter p

3.2.1 Experiments in 1D

The influence of the values of p is first illustrated inFigs. 9, 10
and 11 for 1D signals and similar matrices to those of cases

Fig. 6 Image filtering problem. a Original noisy image f . b, c First
component of the solution of (2.1) at t = 15 with p = 2,u0 = ( f, 0)T

and b d = d1, c d = d2, see (3.6)
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Fig. 7 a SNR versus t and b PSNR versus t for a filter (2.1) with
p = 2,u0 = ( f, 0)T , f in Fig. 6a and for both d = d1 and d = d2, see
(3.6)

(i), (iii) and (iv) in Lemma 4. Note that as p grows the first
component develops small oscillations at the points with
less regularity. On the other hand, the second component
increases somehow the number of pulses.

3.2.2 Experiments in 2D

As in Sect. 3.1.2, a first point to study here is the effect of
p on the generalized small theta approximation property. A
similar experiment with d1 and d2 given by (3.5) illustrates
the assignment of the second component as edge detector,
under the conditions of Theorem 3 but when the operator
D in (2.23) is nonlocal. The results are shown in Fig. 12,
corresponding to p = 3. Compared to Fig. 4 (for which
p = 2) no relevant differences are observed.

Fig. 8 Image filtering problem. Second component of the solution of
(2.1) at t = 15 with p = 2,u0 = ( f, 0)T , f in Fig. 6a and: a d = d1,
b d = d2, see (3.6)

Table 1 Entropy (3.7) for the image in Fig. 4a and the corresponding
images obtained with (2.1) at t = 10 with p = 2,u0 = ( f, 0)T , being
f the corresponding original image, for both d = d1 and d = d2, see
(3.6)

Original d1 d2

Figure 4a 7.5477 7.5750 7.5200

The influence of the local or nonlocal character of (2.23)
on the quality of filtering was studied by numerical means
and some of the experiments performed are shown here. The
first one, displayed in Fig. 13, compares the SNR and PSNR
values as functions of p obtained by computing (2.1) from a
noisy image f with u0 = ( f, 0)T , d = d1 given by (3.6) and
at time t = 10. Note that both parameters attain a maximum
value by p = 4 (for which the operator D in (2.16) is local)
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Fig. 9 Cross-diffusion with p = 3 and for d11 = 1, d22 = 1.1, d12 =
0.1, d21 = 1. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

while among the nonlocal generators, those around the values
p = 3 (in the case of PSNR) and p = 5 (in the case of
SNR) show the best results. In all the related experiments
performed, the same behaviour was observed.

As for the evolution of the filtering, a similar experiment
to that of Fig. 7 but for different values of p is illustrated in
Fig. 14. The behaviour of the SNR and PSNR values suggest
that the advantages of using (2.1) with matrices of the type
of d1 are independent of p.

3.3 Choice of the Initial Distribution

Afinal question in this numerical study is the influence of the
initial distribution u0 in the small theta approximation and in
filtering problems in 2D with (2.1). As far as the first one is
concerned, note that Theorem 3 is applied for u0 = ( f, 0)T

or u0 = (0, f )T where f is the original image. As s → 0,
in all the cases (2.34)–(2.36) , u(x, t), v(x, t) behave as
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Fig. 10 Cross-diffusion with p = 4 and for d11 = 1, d22 = 1.1, d12 =
0.1, d21 = −0.25. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

u(x, t) ≈ e
q
2 t A

(
(1 − r t

2
A)u0(x) + d12t Av0(x)

)
,

v(x, t) ≈ e
q
2 t A

(
(1 + r t

2
A)v0(x) + d21t Au0(x)

)
. (3.8)

Then, the approximation (3.8) [which is actually exact in the
case of (2.35)] suggests to explore, at least numerically, some
other choices for u0. Among the ones used in our numerical
experiments, by way of illustration two are considered here,
namely

u(1)
0 = ( f, |∇ f |)T ,u(2)

0 = ( f,−|∇ f |Δ f )T , (3.9)

and we denote u(0)
0 = ( f, 0)T .

By making similar experiments to that of Fig. 4 in
Sect. 3.1.1, the results are illustrated in Fig. 15, which cor-
responds to initial data given by (3.9). As for the quality of
filtering, the experiments presented here can be compared
to those of Sect. 3.1.2 for u0 = u(0)

0 . Specifically, Figs. 16
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Fig. 11 Cross-diffusion with p = 5 and for d11 = d22 = 1, d12 =
−0.1, d21 = 0.1. Profiles of a u and b v at times t = 0, 0.25, 2.5, 25

and 17 correspond to the same experiment as in Fig. 6 but,
respectively, with u0 = u(1)

0 and u0 = u(2)
0 . In the three

experiments we observe that the results do not improve those
obtained by u(0)

0 in Sect. 3.1.2. This is confirmed by a last
experiment, where the original image from Fig. 4a is blurred
by adding Gaussian white noise with several values of stan-
dard deviation σ . Then, (2.1) with p = 2, d = d1 in (3.6)
and the three different initial distributions u( j)

0 , j = 0, 1, 2
is applied. Then, the SNR and PSNR values (3.3) and (3.4)
at time t = 5 are computed. The results are displayed in
Table 2 and show that the best values of the metrics are given
by u(0)

0 .

Fig. 12 Generalized small theta approximation. Second component of
the solution of (2.1) at t = 0.1 with p = 3,u0 = ( f, 0)T and b d = d1,
c d = d2, see (3.5)

4 Conclusions and Perspectives

In the present paper linear cross-diffusion systems for image
processing are analysed. Viewed as convolution processes,
those kernels satisfying fundamental scale-space properties
are characterized in terms of a positive definite matrix to
control the cross-diffusion and a positive parameter that
determines the local character of the infinitesimal generator.
The axiomatic is based on scale invariance and generalizes
that of the scalar case. The cross-diffusion approach, viewed
as a generalization of linear complex diffusion, is shown to
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Fig. 13 SNR (a) and PSNR (b) versus p for a filter (2.1) at t = 10 with
u(1)
0 = ( f, 0)T where f is the initial noisy image affected by additive

Gaussian white noise with σ = 40 and d = d1, see (3.6)

satisfy more general versions of the small theta approxima-
tion property to assign a role of edge detector to one of the
components.

In a second part, a numerical study of comparison with
kernels is made. This can be considered as a first approach,
by computational means, to the performance of linear cross-
diffusion models, to be analysed in a more exhaustive way
in future works. The numerical experiments, performed for
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Fig. 14 a SNR versus t and b PSNR versus t for a filter (2.1) with
p = 3,u0 = ( f, 0)T , f in Fig. 6a, for both d = d1 and d = d2, see
(3.6)

one- and two-dimensional signals, show the influence of the
choice of the initial distribution of the image in a vector of
two components, as well as of the matrix of the kernel on
the behaviour of the filtering process by cross-diffusion. The
numerical results suggest that suitable choices of the posi-
tive definite matrix give a delay of blurring which can also be
useful to a better identification of the edges and that is inde-
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Fig. 15 Generalized small theta approximation. Second component
of the solution of (2.1) at t = 0.1 with p = 2, d = d1 in (3.5) and: a
u0 = u(1)

0 ; b u0 = u(2)
0 , see (3.9)

pendent of the local or nonlocal character of the infinitesimal
generator. Additionally, other values of the initial distribu-
tion, different from the ones for which the generalized small
theta approximation holds, do not improve the results in our
experiments.

Fig. 16 Image filtering problem. First component of the solution of
(2.1) at t = 15 with p = 2,u0 = u(1)

0 and: a d = d1, b d = d2, see
(3.6)

The present paper will be continued in a natural way by
the introduction of nonlinear cross-diffusion models and the
study of their behaviour in image restoration (see Araújo et
al. [2]).
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Fig. 17 Image filtering problem. First component of the solution of
(2.1) at t = 15 with p = 2,u0 = u(2)

0 and: a d = d1, b d = d2, see
(3.6)

Table 2 SNR and PSNR values
for (2.1) at t = 5 with
p = 2, d = d1 in (3.6) and
u0 = u( j)

0 , j = 0, 1, 2

σ 15 25 35

SNR

u(0)
0 13.31 11.66 10.05

u(1)
0 12.92 11.24 9.62

u(2)
0 5.19 4.32 3.74

PSNR

u(0)
0 27.05 25.40 23.78

u(1)
0 26.66 24.97 23.34

u(2)
0 17.10 15.95 15.22
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Appendix

The following spectral analysis of a positive definite matrix
d is used in several results of the paper. The proof is straight-
forward by using the standard Jordan reduction theory.

Lemma 4 Assume that d = (di j )i, j=1,2 is a 2 × 2 positive
definite matrix with eigenvalues λ± given by (3.2). Then, one
of the following cases holds:

(i) If s > 0 then λ+ > λ− > 0 and d = PΛP−1 with

Λ =
(

λ+ 0
0 λ−

)
,

and P depends on the nondiagonal entries of d. Explic-
itly:

P =
(

d12
r+√

s
2

d12
r−√

s
2

)
, P =

(−r+√
s

2 d21
−r−√

s
2 d21

)
, P = I,

when, respectively, d12 
= 0, d21 
= 0 and d12 = d21 =
0, where I is the 2 × 2 identity matrix.

(ii) If s = 0 and d is diagonalizable, then α = λ+ = λ− >

0 and d = PΛP−1 with Λ = α I, P = I .
(iii) If s = 0 and d is not diagonalizable, then α = λ+ =

λ− > 0 and d = PΛP−1 with

Λ =
(

α 1
0 α

)
,

and

P =
(

d12
r
2

0 1

)
,

(− r
2 d21
1 0

)
,

when, respectively, d12 
= 0 and d21 
= 0.
(iv) If s < 0 then λ± = ν ± iμ with ν = (d11 + d22)/2 >

0, μ = √−s/2 
= 0 and d = PΛP−1 with

Λ =
(

ν −μ

μ ν

)
,
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and

P =
(

d12
r
2

0 −μ

)
,

(− r
2 d21

−μ 0

)
,

when, respectively, d12 
= 0 and d21 
= 0.

Note that in the case (iv) P is formed by using the invariant
subspace generated by the real and imaginary parts of a basis
of eigenvectors of d.
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