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Abstract A class of linear degenerate elliptic equations
inspired by nonlinear diffusions of image processing is con-
sidered. It is characterized by an interior degeneration of the
diffusion coefficient. It is shown that no particularly natural,
unique interpretation of the equation is possible. This phe-
nomenon is reflected in the behavior of numerical schemes
for its resolution and points to similar issues that potentially
affect its nonlinear counterpart.

Keywords Degenerate diffusion · Nonuniqueness · Image
simplification

1 Introduction

The Perona–Malik equation has attracted a fair amount of
interest since its introduction in the early 1990s mainly
because of an apparent dichotomy between its mathematical
ill-posedness and its efficacy as an image processing tool. In
the mathematical literature, regularizations and relaxations
of various kinds have been proposed and analyzed; we refer
to [7] for an overview. Here the focus is on the regularization
introduced in [8] which replaces the gradient edge detection
of Perona–Malik with one using fractional derivatives. The
equation reads

{
u̇ = ∇ · ( 1

1+|∇1−εu|2 ∇u
)

in B for t > 0,

u(0) = u0 in B,
(1.1)
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for a given, fixed ε ∈ (0, 1] and an unknown curve of
periodic functions u(t, ·) : B → R on the normalized
unit box (of R2 in applications to image processing). The
initial datum u0 is a given corrupted image that needs to
be enhanced. The classical Perona–Malik equation corre-
sponds to setting ε = 0 in (1.1) and is known for its strong
edge preservation/sharpening capabilities. This is related
to its forward–backward nature (see [7] for instance). The
distinguishing feature of (1.1) is the combination of its math-
ematical forward parabolic character, albeit degenerate, and
its pronounced edge preserving properties. Latter are due to
the fact that characteristic functions of smooth sets, piecewise
constant functions more in general, turn out to be station-
ary solutions of (1.1). This was the motivation beyond the
introduction of (1.1). A transition between nontrivial dynam-
ical behavior for piecewise constant initial data has been
observed to occur in numerical experiments as the param-
eter ε crosses the threshold value 1

2 . If it is smaller, such
initial data are preserved, reflecting their equilibrium status
for (1.1). If it is larger, however, (numerical) solutions typi-
cally (more on this later) tend to exhibit fast convergence to
a uniform state. In the context of smooth solutions, this tran-
sition from local to global well-posedness was analytically
confirmed in [6], where global existence and convergence to
trivial steady states are established for smooth enough initial
data for a variant of (1.1) in a one-dimensional setting. This
is somewhat unsatisfactory since most interesting (numer-
ical) solutions of (1.1) are not smooth enough and, while
piecewise constant solutions can be viewed as stationary for
the evolution, no weak solvability theory is available for any
low regularity class of functions including them. A signif-
icant impediment to the development of a comprehensive
weak solvability theory is the (conjectured) nonexistence of
function spaces containing piecewise constant functions for
which weak solutions can be constructed. In this paper, the
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focus is on a class of linear equations closely related to a
modification of (1.1) given by

{
u̇ = ∇ · ( 1

1+N2
ε (|∇u|)∇u

) = ∇ · (aε(u)∇u
)

in B for t > 0,

u(0) = u0 in B,

(1.2)

where the convolution operator Nε is a Fourier multiplication
operator defined through

Nε = F−1 diag
[
(|k|−ε)k∈Zn\{0}

]F ∼ 1

|x |n−ε
∗, (1.3)

for n = 1, 2, where F denotes the Fourier transform on
L2

π (B) and 1
|x |n−ε ∗ the operator of convolution with the given

kernel. Latter is added in order to indicate the singular-
ity type of the pseudo-differential operator Nε. As a step
toward understanding this nonlinear equation for relevant
nonsmooth initial data, one can consider an initial datum in
the form of a characteristic function of a subset of the circle
(n = 1) or of the torus (n = 2), with smooth boundary Γ ,
and study the linear equation

{
u̇ = ∇ · (aε(u0)∇u

)
in B for t > 0,

u(0) = u0 in B,
(1.4)

It will be shown that in this case,

Nε(|∇u|)(x) ∼ 1

d(x, Γ )1−ε
as x ∼ Γ, (1.5)

for the distance d(x, Γ ) to the boundary Γ and thus that

aε(u0) = 1

1 + N 2
ε (|∇u0|) ∼ d(x, Γ )2−2ε as x ∼ Γ,

would hold for the corresponding diffusivity. It will be shown
that for ε > 1

2 , equation (1.4) possesses a unique solution
which instantaneously regularizes and eventually converges
to a trivial steady state. Since certain piecewise constant func-
tions can also be seen as steady states, nonuniqueness ensues.
While it seems natural to view (1.4) as “the” gradient flow
engendered by the energy functional given by

∫
B

α|∇u|2 dx,

for α = aε(u0) and ε > 1/2, latter does not appear
to have a preferred, unique domain of definition. For this
reason, it cannot be claimed that (1.4) possesses a natu-
ral and unambiguous interpretation. It is in fact possible to
construct three distinct gradient flows compatible with the
above energy which exhibit different behaviors. One which

regularizes initial data immediately and averages them out
exponentially fast, as is naturally expected of a heat equation,
and others, which preserves certain discontinuities forever.
This ambiguity is reflected at the numerical level as a grid-
choice phenomenon. In other words, different solutions can
be observed numerically even with the same type of dis-
cretization depending on the choice of discretization points.
In the “regularizing interpretation,” the degenerate elliptic
operator can be shown to generate an analytic semigroup on
L2

π . In this case, the evolution can be viewed as the vanishing
viscosity limit for the equation with diffusivity δ + aε(u0)
for δ > 0. While this is possibly the most natural interpreta-
tion of the degenerate equation, others cannot be neglected
as they could help explain numerical observations. In fact,
many nonlinear diffusions have been utilized in image pro-
cessing especially because of their ability to preserve edges.
This paper shows that even in the linear case, extreme care is
required when using such methods as they are not assured to
deliver consistent results, nor do they provide assurances that
the output images possess properties that are naturally con-
nected to the underlying “true” image that one is purportedly
trying to recover. This will be demonstrated with a simple
one-dimensional discretization.

Elliptic and parabolic equations with interior degenera-
tions have not been studied extensively in the literature. The
approach taken in this paper ismost akin to that utilized by [3]
in a one-dimensional context in that it shows, in particular,
generation of an analytic semigroup on L2. In higher dimen-
sions, an approach to existence based on the Arzéla-Ascoli
Theorem is found in [11]. Recently, a general framework for
linear and nonlinear degenerate parabolic equations has been
developed in [1] using different techniques based on the con-
cept of singular manifolds. These techniques can be adapted
to construct one of the possible solutions of the nonlinear
(1.1) context. It is referred to [9] for results in this direction.
Problems with boundary degeneration have beenmore inten-
sively studied and since the results are not directly relevant
for this paper, we point the interested reader to the references
contained in [3].

The paper is organized as follows. In the next two sections,
it is shown how the seemingly natural energy functional for
(1.4) admits distinct and valid interpretations which lead to
different evolutions. In the regularizing case, the associated
operatorwill be shown to generate analytic, contraction semi-
groups. Spectral properties related to compact embeddings
and the validity of a Poincaré inequality will be highlighted.
Additionally, two different flows will be presented which
can preserve singularities. In Sect. 4, the one-dimensional
case will be considered to show how numerical implemen-
tations can indeed produce at least two distinct types of
solutions. Interestingly, one of them is incompatible with
any of the interpretations presented in Sect. 3. It turns
out to be compatible with strongly degenerate equations.
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Section 5 deals with the vanishing viscosity limit via Γ -
convergence.

2 The Setup and the Energy Functional

The main focus of this paper is on linear weakly degener-
ate elliptic problems with diffusivity belonging to a specific
class of functions. Let n = 1, 2 and B = [−1, 1)n be
the periodicity box. Consider bounded periodic functions
α : B → [0,∞) which vanish only on a smooth closed
curve Γ ⊂ B, if n = 2, or on Γ = {±1/2}, if n = 1, and
satisfy

1

c
d(x, Γ )σ ≤ α(x) ≤ c d(x, Γ )σ , x ∈ B, (2.1)

for some 1 ≤ c < ∞, σ ∈ [0, 1) and that are otherwise
smooth on B \ Γ (at least Hölder continuous of exponent σ ,
if not stated otherwise). The function d(·, Γ ) given by

d(x, Γ ) = inf
y∈Γ

|x − y|, x ∈ B,

represents the distance function to the set Γ . The collection
of all coefficient functions α of the above type is denoted by
Dσ

π . For α ∈ Dσ
π consider the elliptic problem

{
−∇ · (α(x)∇u

) = f in B,

u periodic
(2.2)

for f ∈ L2
π (B), the space of functions which are square

integrable and periodic (hence the subscript π ). The corre-
sponding evolutionary problem, given by

{
u̇ − ∇ · (α(x)∇u

) = 0 in B,

u periodic,
(2.3)

is also of interest. In the case that σ = 0, the diffusivity
cannot obviously be required to vanish on Γ and equation
(2.2) is strongly elliptic, while for σ ∈ (0, 1), it is a so-called
weakly degenerate elliptic problem. For this nomenclature
and basic results in the elliptic case, it is referred to [10],
where a weakly degenerate equation of type (2.2) is charac-
terized in particular by the conditions that

0 ≤ α ∈ L1(B) and that
1

α
∈ L1(B).

Problems (2.2) and (2.3) are closely related to the energy
functional

Eα(u) =
∫
B

α|∇u|2 dx . (2.4)

Observe that this functional can be thought of as being
defined on the weighted space

H1
π,α(B) :=

{
u ∈ L2

π (B) : |∇u| ∈ L1
π (B)

and
∫

α(x)|∇u(x)|2 dx < ∞
}

which is a Banach space with respect to the norm

‖u‖H1
π,α(B) :=

(
‖u‖22 + ‖√α∇u‖22

)1/2
,

since the requirement that ∇u be a regular distribution does
not need to be reiterated in the norm in view of the validity
of∫
B

|∇u| dx ≤
(∫

B

1

α(x)
dx

)1/2(∫
B

α|∇u|2 dx
)1/2

,

u ∈ H1
π,α(B),

thanks to the Cauchy–Schwarz inequality. On the other hand,
if the requirement that |∇u| be integrable is dropped, the
energy functional can be viewed as being defined on

H̃
1
π,α(B) :=

{
u ∈ L2

π (B) : ∇u ∈ Mπ (B)

and
√

α|∇u| ∈ L2
π (B)

}
,

whereMπ (B) is the space of periodic (vector-valued)Radon
measures on B, dual to the space Cπ (B)n of periodic con-
tinuous functions on B, or, even on the larger space obtained
simply requiring that

√
α∇u be square integrable for the dis-

tributional gradient of u. The main reason to consider the
space H̃

1
π(B),α along with the functional Eα , which will be

denoted by Ẽα if considered with this domain, is that it con-
tains the characteristic function χΩ of the smooth domain
Ω bounded by the curve Γ for n = 2 or, of the interval
[−1/2, 1/2] for n = 1. Indeed, one has that

∇χΩ = νΓ δΓ and χ ′
Ω = δ1/2 − δ−1/2,

for n = 2 and n = 1, respectively, and therefore that√
α ∇χΩ = 0 as well as

√
α χ ′[−1/2,1/2] = 0. Here νΓ

denotes the unit outward normal toΓ , while δΓ represents the
line integral distribution along Γ . Observe that these func-
tions are nontrivial minimizers of Ẽα and they might play
a role in the evolution of the corresponding gradient flow.
Equation (2.2) could arguably also be interpreted as a sys-
tem for a pair (ui , uo) of functions defined on the connected
components Ω i = Ω (i for inner) and Ωo (o for outer) of
B \ Γ and belonging to the space

H
1
π,α(B) := H1

α(Ω i ) × H1
π,α(Ωo),
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and where the energy functional is now interpreted as

Eα(ui , uo) =
∫

Ω i
α|∇ui |2 dx +

∫
Ω0

α|∇uo|2 dx

= Eα(ui ) + Eα(uo), (2.5)

where the last identity holds with the understanding that
the energy functionals are for functions with the appropri-
ate domain of definition. This last interpretation is justified
by the fact that

L2
π (B) = L2(Ω i ) ⊕ L2

π (Ωo),

so that the energy functional, if extended by the value∞, can
be thought of as being defined on L2

π (B).

3 The Different Flows

3.1 The Regularizing Case

It is easily seen that compactly supported test functions
belong to H1

π,α(B), i.e., that

D(B) ⊂ H1
π,α(B),

and that

Dπ (B) = C∞
π (B) ⊂ H1

π,α(B),

where the subscript π in the first space indicates that periodic
test-functions are considered. It is natural to view (2.2) with
f ≡ 0 as the stationarity condition for Eα given by (2.4) and
defined on H1

π,α(B). Latter happens to be the natural space
which makes the functional coercive (see below). The form
associated with Eα is given by

aα(u, v) :=
∫
B

α∇u · ∇v dx, u, v ∈ H1
π,α(B), (3.1)

and induces the operator

Aα : H1
π,α(B) → H1

π,α(B)′ =: H−1
π,α(B), (3.2)

given by

Aαu :=
[
v �→

∫
B

α∇u · ∇v dx
]

∈ H−1
π,α(B).

Clearly the form aα is nonnegative and symmetric. Next a
few properties of the space H1

π,α(B) are collected which are
important for the understanding of the weakly degenerate
problem (2.2). Notice that proofs are mostly given for n = 2

since the one-dimensional case is simpler and can be handled
in a perfectly analogous manner.

Take a compactly supported, radial and radially decreas-
ing, nonnegative, smooth test function ϕ ∈ D(Rn) with
supp(ϕ) ⊂ B and with

∫
B

ϕ(y) dy = 1.

Define an associated mollifier ϕm in the usual way by setting
ϕm(x) = m ϕ(mx) and letting

um(x) = ϕm ∗π u(x) :=
∫
B

ϕm(x − y)u(y) dy, x ∈ B.

Alternatively, one can think of the convolution on the torus
and write∫
B

ϕm(x − y|2)u(y) dy, x ∈ B,

where (x − y|2) denotes addition modulo 2 component by
component. In order not to overburden the notation, the sub-
script π in the convolution will be dropped.

Lemma 3.1 It holds that α ϕm ∗ 1
α

∈ L∞
π (B)

Proof Consider first the one-dimensional case n = 1. Fix
δ > 0 such that

1

c
|x ± 1/2|σ ≤ α(x) ≤ c|x ± 1/2|σ ,

for c ≥ 1 and |x ± 1/2| ≤ 3δ. Now, if |x ± 1/2| ≥ 2δ, one
has that

α(x)ϕm ∗ 1

α
≤ c

2σ δσ
‖α‖∞,

provided m ≥ 1/δ. If, on the other hand |x − 1/2| < 2δ (the
case when |x + 1/2| < 2δ can be handled in the same way),
then

x ∈ [1/2 − 2/m, 1/2 + 2/m],

or

x ∈
⋃
k≥2

{
[1/2 − (k + 1)/m, 1/2 − k/m] ∪ [1/2

+ k/m, 1/2 + (k + 1)/m]
}
,

where the union ends when the interval [1/2−2δ, 1/2+2δ]
is completely covered. While a finite number of intervals
suffice for any finite m, the number increases with m. If x
belongs to the interval [1/2−2/m, 1/2+2/m], one has that
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α(x)
∫ x+1/m

x−1/m

ϕm(x − y)

α(y)
dy

≤ m
∫ x+1/m

x−1/m

|x − 1/2|σ
|y − 1/2|σ dy

≤ c m1−σ
[
(1/2 − x + 1/m)1−σ + (x + 1/m − 1/2)1−σ

]
≤ c < ∞.

If, on the other hand, x ∈ [1/2 + k/m, 1/2,+(k + 1)/m]
(or similarly, if x ∈ [1/2− (k + 1)/m, 1/2− k/m]), it holds
that

α(x)
∫ x+1/m

x−1/m

ϕm(x − y)

α(y)
dy ≤ m

∫ x+1/m

x−1/m

α(x)

α(y)
dy

≤ c m|x − 1/2|σ
∫ x+1/m

x−1/m

1

|y − 1/2|σ dy

≤ c
(k + 2

m

)σ( m

k − 1

)σ

≤ c
(k + 2

k − 1

)σ ≤ c < ∞, k ≥ 2.

Since there is no restriction on k, the estimate is valid for any
(large) m and the proof is complete for n = 1.

As for n = 2, since Γ is assumed to be a smooth, closed
curve, it possesses a tubular neighborhood TΛ(Γ )with coor-
dinates (y, λ) determined by

TΛ(Γ ) =
{
y + λνΓ (y)

∣∣ y ∈ Γ, λ ∈ (−Λ,Λ)
}
,

where νΛ is the unit outward normal to Γ . Then, for any
x ∈ TΛ(Γ ), it is possible to find a unique pair

(
y(x), λ(x)

) ∈
Γ × (−Λ,Λ) such that

x = y(x) + λ(x)νΓ

(
y(x)

)
.

It follows that any integral with respect to the two-
dimensional Lebesgue measure dxdy amounts to an inte-
gral in the new coordinates with respect to the measure
dσΓλ(y)dλ, where σΓλ is the line measure along

Γλ = {
y + λνΓ (y)

∣∣ y ∈ Γ
}

for λ ∈ (−Λ,Λ). Notice that

dσΓλ = |γ̇λ(t)|dt

for any parametrization γλ of Γλ. Denote by γ the arc-length
parametrization of Γ , then taking γλ = γ + λνΓ (γ ) yields
a parametrization of Γλ and

γ̇λ = γ̇Γ + λ
d

dt
νΓ (γ ) = [

1 + λκ(γ )
]
τΓ (γ ),

since d
dt νΓ (γ ) = κ(γ )τΓ (γ ) for the curvature κ along Γ . It

follows that

1

c
≤ ∣∣γ̇λ

∣∣ = ∣∣1 + λκ(γ )
∣∣ ≤ c, λ ∈ [−Λ,Λ],

for some c > 1 and Λ small enough. Consequently one has
that

1

c
dtdλ ≤ dσΓ dλ ≤ c dtdλ. (3.3)

With this in hand, it follows that∫
B(x,1/m)

ϕm(x − y)
α(x)

α(y)
dy

∼ m2
∫

Γ ∩B(x,1/m)

∫ λ(x)+1/m

λ(x)−1/m

α
(
y(x), λ(x)

)
α(ȳ, λ̄)

dλ̄dσΓ (ȳ)

∼ m
∫ λ(x)+1/m

λ(x)−1/m

|λ(x)|σ
|λ̄|σ dλ̄,

and the proof can be completed in a manner similar to that
used in the one-dimensional case by considering x in distance
layers around Γ . The assumption on α yielding δ > 0 such
that

α(x) ∼ d(x, Γ )σ = |λ(x)|σ in T3δ(Γ )

was of course used in the above estimates. ��
Lemma 3.2 (Density) The space Dπ (B) of periodic test
functions is dense in H1

π,α(B).

Proof Let um = ϕm ∗ u, so that um ∈ Dπ (B), that

um → u in L2
π (B) as m → ∞.

and that

∇um → ∇u ∈ L1
π (B)n as m → ∞

for any u ∈ H1
π,α(B). Without loss of generality, it can be

assumed that∇um → ∇u pointwise almost everywhere (oth-
erwise just take the appropriate subsequence). Then

α
∣∣∂ j um

∣∣2 −→ α
∣∣∂ j u

∣∣2 a.e. for j = 1, 2 as m → ∞.

If it were possible to show that

α
∣∣∂ j um

∣∣2 ≤ gm, m ∈ N, (3.4)

for nonnegative measurable functions gm which converge
pointwise almost everywhere to g ∈ L1

π (B) and for which

∫
B
gm dx −→

∫
B
g dx as m → ∞,
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then the generalized Dominated Convergence Theorem
would imply that

∫
B

α
∣∣∂ j um

∣∣2 dx −→
∫
B

α
∣∣∂ j u

∣∣2 dx as m → ∞,

which, together with the almost everywhere convergence,
would yield

√
α ∇um → √

α ∇u in L2
π (B)n as m → ∞,

and the claim. Going back to (3.4), Lemma 3.1 gives

α(x)
∣∣∣ ∫

B
ϕm(x − y)∂ j u(y) dy

∣∣∣2
≤

∫
B

ϕm(x − y)
α(x)

α(y)
dy

∫
B

ϕm(x − y)α(y)
∣∣∂ j u(y)

∣∣2 dy
≤ c ϕm ∗

(
α
∣∣∂ j u

∣∣2), j = 1, 2, m ∈ N,

and u ∈ H1
π,α(B) ensures that

ϕm ∗
(
α
∣∣∂ j u

∣∣2) −→ α
∣∣∂ j u

∣∣2 in L1
π (B) as m → ∞,

as desired. ��
Lemma 3.3 (Compact embedding)The embeddingH1

π,α(B)

↪→ L2
π (B) is compact.

Proof In view of assumption (2.1) on the weight function α,
an exponent p > 1 can be found such that

∫
B

1

α(x)p
dx < ∞.

Then one has that |∇u| ∈ L1+δ
π (B) for some δ > 0 small

enough since

∫
B

∣∣∇u(x)
∣∣1+δ dx ≤

∫
B

(√
α(x)√
α(x)

)1+δ∣∣∇u(x)
∣∣1+δ dx

≤
(∫

B
α(x)−

1+δ
1−δ dx

) 1−δ
2
(∫

B
α(x)

∣∣∇u(x)
∣∣2 dx) 1+δ

2

< ∞,

provided 1+δ
1−δ

< p, which is always possible for a small
enough δ. This shows that u ∈ W1,1+δ

π (B) and the claim
therefore follows from the compactness part of Sobolev
embedding theorem observing that 2 < (1 + δ)∗ = n(1+δ)

n−1−δ

is valid as long as n < 21+δ
1−δ

. This is always the case for
dimensions n = 1, 2. ��
Lemma 3.4 (Existence of traces)Any function u ∈ H1

π,α(B)

admits a trace γΓ (u) ∈ L2(Γ ) on the degeneration set Γ .

Proof Using the coordinates introduced in the proof of
Lemma 3.1 for the tubular neighborhood TΛ(Γ ) of Γ , take
u ∈ Dπ (B) and let (λm)m∈N be a sequence in (−Λ,Λ) \ {0}
such that λm → 0 as m → ∞. Then

u(y, λk) − u(y, λl) =
∫ λk

λl

∂λu(y, λ) dλ.

It follows that

‖u(·, λk) − u(·, λl)‖L2(Γ )

≤
∫

Γ

∣∣ ∫ λk

λl

∂λu(y, λ) dλ
∣∣2 dσΓ (y)

≤
∫

Γ

(∫ λk

λl

1

α(y, λ)
dλ

)
·

(∫ λk

λl

α(y, λ)|∂λu(y, λ)|2 dλ
)
dσΓ (y).

Noticing that

d(x, Γ ) = |λ(x)| for x ∈ TΓ (Λ),

assumption (2.1) on the diffusivity α now implies that

1

α(y, λ)
≤ c

1

|λ|σ , (y, λ) ∈ Γ × (−Λ,Λ),

for a constant c independent of (y, λ) and thus

∫ λk

λl

1

α(y, λ)
dλ → 0 as k, l → ∞.

As for the remaining integral one has

∫ λk

λl

∫
Γ

α(y, λ)
∣∣∂λu(y, λ)

∣∣2 dσΓ (y)dλ

≤ c
∫
TΛ

α
∣∣∇u

∣∣2 dxdy ≤ c ‖u‖2
H1

π,α(B)
,

using (3.3) and that ∂λu(y, λ) = ∇u(y, λ) · νΓ (y) ≤
|∇u(y, λ)|. This shows that

(
u(·, λm)

)
m∈N is a Cauchy

sequence in L2(Γ ) and thus there exists a limit, which we
denote by γΓ (u) ∈ L2(Γ ), such that

γΓλk
(u) → γΓ (u) as k → ∞.

Observe that the trace operators γΓλk
are well-defined for

any k ∈ N since u ∈ H1
(
B \ Tε(Γ )

)
for any ε > 0 and

Γλk ⊂ B \Tε(Γ ) for ε << 1. The construction of a trace for
u is therefore completed in the smooth case. The rest follows
by the density established in Lemma 3.2 ��
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Lemma 3.5 (Poincaré inequality) It holds that

‖u‖L2
π (B) ≤ c ‖α∇u‖L2

π (B), u ∈ H1
π,α,0(B)

where

H1
π,α,0(B) =

{
u ∈ H1

π,α(B)

∣∣∣ ∫
B
u(x) dx = 0

}
.

Proof Toward a contradiction assume that the inequality
does not hold, that is, that there is a sequence (uk)k∈N in
H1

π,α,0(B) such that

‖uk‖L2
π (B) ≥ k‖√α ∇uk‖L2

π (B).

Define vk = uk/‖uk‖L2
π (B) so that

‖vk‖L2
π (B) = 1 and

‖√α ∇vk‖L2
π (B) = ‖√α ∇uk‖L2

π (B)

‖uk‖L2
π (B)

≤ 1

k
, k ∈ N.

In particular, it holds that ‖vk‖H1
π,α(B) ≤ c < ∞ for k ∈ N

and, by the weak sequential compactness of bounded sets in
Hilbert spaces, there must be v∞ ∈ H1

π,α,0(B) such that

vk ⇀ v∞ in H1
π,α,0(B) along a subsequence.

The convergence of the norms then yields that vk → v∞
in H1

π,α,0(B) along the subsequence. In this case, ∇v∞ = 0

almost everywhere in the two connected componentsΩ i and
Ωo of B \ Γ since, by weak lower semicontinuity, it holds
that ‖α∇v∞‖L2

π (B) ≤ lim infk→∞ ‖α∇vk‖L2
π (B) along the

subsequence. Thus,

v∞(x) =
{
ci , x ∈ Ω i

co, x ∈ Ωo

and it can be inferred from Lemma 3.4 that necessarily
ci = co since otherwise v∞ would not possibly possess a
well-defined trace on Γ . The mean zero condition finally
yields that the constant must be 0. This clearly contradicts
the fact that ‖v∞‖L2

π (B) = 1 and concludes the proof. ��

The above lemma clearly implies that
∥∥√

α ∇ · ∥∥
L2π (B)

is

an equivalent norm on H1
π,α(B). The Poincaré inequality

implies that the restriction of the nonnegative, continuous,
and symmetric bilinear form (3.1) to H1

π,α,0(B)×H1
π,α,0(B)

is elliptic and therefore induces a self-adjoint linear operator

Aα,0 : H1
π,α,0(B) → H1

π,α,0(B)′ =: H−1
π,α,0(B),

u �→ aα(u, ·),

such that

Aα,0 : H1
π,α,0(B) → H−1

π,α,0(B)

is invertible and has, by Lemma 3.3, compact resolvent. Here
it holds that

H−1
π,α,0(B) = {

u ∈ H1
π,α(B)′

∣∣ 〈u, 1〉 = 0
}

where 1 denotes the constant functionwith value 1. It follows
that

Aα =
∞∑
k=1

μk(·|ϕk)ϕk,

for (μk, ϕk) eigenvalue/eigenvector pairs of Aα with

0 < μ1 ≤ μ2 ≤ · · · μk → ∞ (k → ∞),

and where 1√
2n
1 =: ϕ0, ϕ1, ϕ2, . . . is an orthonormal basis

for H−1
π,α(B). The L2

π (B)-realization Aα of Aα will be par-
ticularly useful and is defined by Aαu = Aαu for

u ∈ dom(Aα) =
{
u ∈ H1

π,α(B)
∣∣ aα(u, ·) is L2

π (B)-cont.
}

=
{
u ∈ H1

π,α(B)
∣∣ div(α∇u) ∈ L2

π (B)
}

=: H2
π,α(B). (3.5)

The second equality requires a proof. Assume that

div(α∇u) ∈ L2
π (B),

then∫
B

α ∇u︸︷︷︸
∈L2

π,α(B)

· ∇v︸︷︷︸
∈L2

π,α(B)

dx

= −
∫
B
div(α∇u)︸ ︷︷ ︸

∈L2
π (B)

v︸︷︷︸
∈L2

π (B)

dx, v ∈ Dπ (B),

and thus

|aα(u, v)| ≤ ‖ div(α∇u)‖L2
π (B)‖v‖L2

π (B), v ∈ Dπ (B).

Conversely, if

∣∣ ∫
B

α∇u · ∇v dx
∣∣ ≤ c ‖v‖L2

π (B), v ∈ Dπ (B),

then there is w ∈ L2
π (B) such that

∫
B

α∇u · ∇v dx =
∫
B

wv dx, v ∈ Dπ (B),
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which entails that div(α∇u) = −w ∈ L2
π (B). Clearly Aα :

dom(Aα) ⊂ L2
π (B) → L2

π (B) is given by

Aαu =
∞∑
k=1

μk (u|ϕk)︸ ︷︷ ︸
:=ûk

ϕk, u ∈ dom(Aα), (3.6)

and thus

e−t Aαu = û0 +
∞∑
k=1

e−μk t ûkϕk, u ∈ L2
π (B).

Notice that

‖u‖L2
π (B) = ‖(ûk)k∈N‖l2(N)

and that

‖e−t Aαu‖L2
π (B) = ∥∥(e−μk t ûk

)
k∈N

∥∥
l2(N)

≤ ∥∥(ûk)k∈N
∥∥
l2(N)

= ‖u‖L2
π (B).

Thus,
{
T1(t) := e−t Aα | t ≥ 0

}
is a contraction semigroup

and, since,

‖t Aαe
−t Aαu‖L2

π (B) = ∥∥(tμke
−μk t ûk

)
k∈N

∥∥
l2(N)

≤ c ‖u‖L2
π (B), t > 0,

it is also analytic (see [4]). Strong continuity can alsobe easily
derived via the spectral representation (3.6). Summarizing

Theorem 3.6 The operators Aα and Aα are the generators
of strongly continuous analytic contraction semigroups on
L2

π (B) and on H−1
π,α(B), respectively. In particular, for any

given u0 ∈ L2
π (B)

[
H−1

π,α(B)
]
, there is a unique solution

u ∈ C
([0,∞),L2

π (B)
) [∈ C

([0,∞),H−1
π,α(B)

)]
of the abstract Cauchy problem

{
u̇ = Aαu in L2

π (B)
[
u̇ = Aαu in H−1

π,α

]
, t > 0,

u(0) = u0,

satisfying

u ∈ C1((0,∞),L2
π (B)

) ∩ C
(
(0,∞),H2

π,α(B)
)

[
∈ C1((0,∞),H−1

π,α(B)
) ∩ C

(
(0,∞),H1

π,α(B)
)]

.

Moreover, one always has that

u(t, u0) −→ 1

2n
〈u0, 1〉 as t → ∞,

in L2
π (B)

[
H−1

π,α(B)
]
.

Remark 3.7 Depending on the functional setting chosen, the
above theorem yields a strong or weak solution of the initial
boundary value problem

{
u̇ = ∇ · (α(x)∇u

)
in B for t > 0,

u(0, ·) = u0 in B,
(3.7)

respectively.

Remark 3.8 Notice how a piecewise constant initial datum
is instantaneously regularized in spite of the fact that it is
a steady state of the equation. While the theorem ensures
well-posedness in the specified classes of functions, the exis-
tence of additional solutions is observed also in numerical
discretizations of the equation. More on this in Sect. 4.

Remark 3.9 While the semigroup is analytic, it does not fol-
low that solutions are C∞. This is due to the fact that the
eigenfunctions are not smooth where the coefficient α van-
ishes.

3.2 The Singular Case

It was already noticed that Ẽα has additional minimizers as
compared to Eα , for which only constant functions are min-
imizing. Let

h(x) :=
⎧⎨
⎩

1√
2n

|B\Ω|1/2
|Ω|1/2 , x ∈ Ω i ,

− 1√
2n

|Ω|1/2
|B\Ω|1/2 , x ∈ Ωo,

with the understanding that Ω i = Ω for n = 2, Ω i =
[−1/2, 1/2] for n = 1, that Ωo = Bn \ Ω for n = 1, 2,
and that |S| is the Lebesgue measure of the measurable set
S. Then h is a minimizer of Ẽα and satisfies∫
B
h(x) dx = 0 and

∫
B
h2(x) dx = 1.

It is then possible to consider the modified energy functional

Ẽα(u, c) :=
∫
B

α |∇u|2 dx, u ∈ H1
π,α(B), c ∈ R,

on the space H1
π,α(B) ⊕ Rh ⊂ L2

π (B) and the associated
gradient flow

{
u̇ = ∇ · (α∇u

)
ċ = 0.

In this case, the solution u to an initial value u0 + ch ∈
H1

π,α(B) ⊕ Rh would satisfy

u(t, ·) −→ 1

2n

∫
B
u0(x) dx + ch,
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thus preserving the singular component during the entire
evolution. While this is a perfectly acceptable interpretation
of equation (2.3), it has some serious shortcomings. Most
notably, the natural semigroup associated with it and given
by

T2(t) =
[
e−t Aα 0
0 1

]
on H1

π,α(B) ⊕ Rh

cannot be reasonably extended to L2
π (B) as it is not L2

π -
continuous as follows from

∥∥T2(t)[hm − h]∥∥2 = ∥∥e−t Aαhm − h
∥∥
2

=
∥∥∥ m∑
k=1

e−tλk ĥkϕk −
∞∑
k=1

ĥkϕk

∥∥∥
2

−→
[ ∞∑
k=1

(1 − e−tλk )2ĥ2k
]1/2 �= 0

for t > 0 as m → ∞, where

H1
π,α(B) � hm :=

m∑
k=1

ĥkϕk

−→ h in L2
π (B) as m → ∞.

3.3 The Split Case

Given the diffusion coefficient α ∈ Dσ
π , one can consider the

energy functional

Eα(ui , uo) = 1

2

∫
Ω i

α|∇ui |2 dx + 1

2

∫
Ωo

α|∇uo|2 dx,
(ui , uo) ∈ H1

α(Ω i ) × H1
α,π (Ωo),

where Ω i and Ωo have previously been defined. Arguments
perfectly analogous to those used in Sect. 3.1 can be used to
prove the following result.

Theorem 3.10 The restriction of the functional Eα to
H1

α,0(Ω
i ) × H1

α,π,0(Ω
o) → R is coercive and the opera-

tors induced by Eα

Aα = diag(Ai
α,Ao

α) :
H1

α(Ω i ) × H1
α,π (Ωo) → H−1

α (Ω i ) × H−1
α,π (Ωo)

and

Aα = diag(Ai
α, Ao

α) :
dom(Ai

α) × dom(Ao
α) → L2(Ω i ) × L2

π (Ωo) =̂L2
π (B)

with

dom(Al
α)

=
{
u ∈ L2(Ω l)

∣∣∣ div(α∇u
) ∈ L2(Ω l)

}
, l = i, o.

generate analytic contraction semigroups on H−1
α (Ω i ) ×

H−1
α,π (Ωo) and on L2

π (B), respectively. Call the latter T3(t).
It follows that the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uit = ∇ · (α∇ui
)

in Ω i for t > 0,

uot = ∇ · (α∇uo
)

in Ωo for t > 0,

limx→Γ α(x)∂νΓ u
i (x) = 0

limx→Γ α(x)∂νΓ u
o(x) = 0

ui (0, ·) = ui0 in Ω i

uo(0, ·) = uo0 in Ωo

(3.8)

is uniquely (weakly) solvable for any u0 ∈ L2
π (B) (or, more

in general, for an initial datum u0 ∈ H−1
α (Ω i )×H−1

α,π (Ωo)),
and the solution converges to a trivial steady state in each
subdomain, that is,

T3(t)u0 −→
( 1

|Ω i |
∫

Ω i
u0(x) dx

)
χΩ i

+
( 1

|Ωo|
∫

Ωo
u0(x) dx

)
χΩo ,

for u0 ∈ L2
π (Ω).

In this interpretation, one obtains an evolution on L2
π (B) for

which an initial datum that is constant on each of the domains
Ω l , l = i, o, is a stationary solution and won’t be regularized
nor evolved.

Remark 3.11 Taking the system point of view, it is possible
to recover the interpretation of Sect. 1 by defining the energy
functional Eα on

{
u = (ui , uo)

∣∣ u ∈ H1
α(Ω i ) × H1

α,π (Ωo)

and γΓ (ui ) = γΓ (uo)
}
.

This means that “continuity” across the interface has to be
explicitly enforced.

Remark 3.12 Notice that the behavior of solutions in this
interpretation is possibly what one would like to see from an
application to image processing point of view in that solu-
tions not only tend to become piecewise constant but the
constants are also the local averages of the initial datum in
the corresponding regions of constancy.
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4 A Numerical Remark

The nonuniqueness phenomenon highlighted above will be
investigated for a spatial semi-discretization of (2.2) in a
one-dimensional setting. The observation extends to the two-
dimensional setting with the appropriate modifications. It
is observed from the outset that, even the same numerical
scheme, can produce two distinct solutions. One is the dis-
crete counterpart of the regularizing solution of Sect. 3.1;
the other “feels” the presence of the singular solution h but,
interestingly, is not compatible with any of the three inter-
pretations of equation (2.3) given above. An explanation of
its origin will follow in the later part of this section.

Letting n = 1 and α ∈ Dσ
π as in the previous sections and

choosing

h = 1√
2
χΩ i − 1√

2
χΩo ,

Theorem 3.6 yields a solution

u ∈ C
([0,∞),L2

π (−1, 1)
) ∩ C1((0,∞),L2

π (−1, 1)
)

∩C
(
(0,∞),H2

π,α(−1, 1)
)
,

for⎧⎪⎨
⎪⎩
u̇ = ∂x

(
α(x)∂xu

)
in (−1, 1) for t > 0,

u periodic,

u(0, ·) = h,

(4.1)

where

H2
π,α(−1, 1) =

{
u ∈ H1

π,α(−1, 1)
∣∣∣αu′ ∈ H1

π (−1, 1)
}
,

as follows from characterization (3.5) of the previous section.
Theorem 3.6 then implies that

u(t, ·) = T1(t)h → 1

2

∫ 1

−1
h(x) dx = 0 as t → ∞.

It, however, also holds that

αh′ = α(δ−1/2 − δ1/2)

= α(−1/2)δ−1/2 − α(1/2)δ1/2 = 0,

so that u(t, ·) ≡ u0 is a stationary solution of (4.1). This
nonuniqueness is reflected at the numerical level. Indeed set

xmi = i

m
, i = −m,−m + 1, . . . ,m − 1,m,

dm = 1/m,

αm
i = α(xmi ).

Then

umt = Δm,−(
αmΔm,+(um)

)
(4.2)

is the gradient flow to the discrete energy functional given
by

Em
α (um) = 1

2

m−1∑
i=−m

[
αm
i Δ

m,+
i (um)

]2
dm (4.3)

where

Δ
m,+
i (um) = umi+1 − umi

dm
, i = −m, . . . ,m − 1,

Δ
m,−
i (um) = umi − umi−1

dm
, i = −m, . . . ,m − 1,

with the understanding that

um−m−1 = umm−1 and that umm+1 = um−m+1,

enforcing periodicity. The ordinary differential equation
(4.2) is a spatial semi-discretization of (4.1), and (4.3) is one
of the continuous energy functional (2.4) on H1

π,α(−1, 1).
This is seen by computing

d

dε

∣∣∣∣
ε=0

Em
α (um + εϕm)

=
m−1∑
i=−m

αm
i Δ

m,+
i (ϕm)Δ

m,+
i (um)dm

= −
m−1∑
i=−m

[
αm
i

umi+1 − umi
dm

− αm
i−1

umi − umi−1

dm

]
ϕm
i dm

= −
m−1∑
i=−m

Δ
m,−
i

[
αmΔm,+(um)

]
ϕm
i dm .

Using test-vectors ϕm = 1
dm

emi where emi ∈ R
m is the i-th

natural basis vector (which satisfies ϕm
i → δx if i

m → x as
m → ∞) yields

u̇m = −∇Em
α (um) = Δm,−[

αmΔm,+(um)
]
.

Notice that

2
d

dt
avg(um) = d

dt

m−1∑
i=−m

umi dm =
m−1∑
i=−m

u̇mi dm

=
m−1∑
i=−m

Δ
m,−
i

(
αmΔm,+(um)

)
dm

= −
m−1∑
i=−m

αm
i Δ

m,+
i (u)Δ

m,+
i (1)dm = 0
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for t ≥ 0, where avg(um) = ∑m−1
i=−m umi dm . This shows that

constant vectors are in the kernel ∇Em
α and thus minimizers

of Em
α .

When m is odd, these are the only minimizers of zero
energy since

αm
i ≥ min

j=−m,...,m−1
α(xmj ) � (dm

2

)σ
> 0,

and, consequently, Δm,+(um) ≡ 0 for any minimizer um .
Thus, for odd m, one has that

um(t) → 1

2

m−1∑
i=−m

um0 dm = avg(um0 ) as t → ∞,

if um0 is the initial vector, just as for T1(t)u0 at the continuous
level. On the other hand, whenm is even, vectors Hm(c1, c2)
defined by

Hm(c1, c2) =
{
c1, −m/2 < i ≤ m/2,

c2, i > m/2 and i ≤ −m/2

for any constants c1 and c2 also possess zero energy since
αm±m/2 = 0. In this case

um(t) → avg(um0 )+ dm
2

[
Hm(1,−1) ·um0

]
Hm(1,−1) (4.4)

This shows that two distinct solutions can be obtained numer-
ically and that Em

α does not have a well-defined unique
gradient flow associated with it as m → ∞ since the evolu-
tion clearly depends on the parity of m. Notice also that the
large time behavior of um is, for general initial data, incom-
patible with that of T2 and T3 as well, since

T2(t)(v0 + c h) −→ 1

2

∫ 1

−1
v0(x) dx + c h as t → ∞,

and

T3(t)(v0 + c h)

−→
(∫

Ω i
v0(x) dx + c

)
χΩ i

+
(∫

Ωo
v0(x) dx − c

)
χΩo as t → ∞,

if u0 = v0 + c h. Limit (4.4) is in general not the discrete
counterpart of any of these latter limits.

As it turns out, the behavior of the above discretization is
compatible with the behavior of solutions of strongly degen-
erate equations. To see that, assume that α is a periodic

function, which is Hölder continuous of a positive exponent,
positive everywhere away from ± 1

2 and satisfies

α(x) ∼ ∣∣x ± 1

2

∣∣1+σ as x � ∓1

2
,

for some σ > 0. It follows that 1
α

/∈ L1
π and that (2.2) is

strongly degenerate. Define again

H1
π,α(B) =

{
u ∈ L2

π (B)

∣∣∣√α u′ ∈ L2
π (B)

}
,

and notice, that now, not only h ∈ H1
π,α(B) but also that

∫ 1

−1
α
∣∣(ϕm ∗ h

)′
(x)

∣∣2 dx → ∥∥√
α h′∥∥2

2 = 0 as m → ∞.

This shows that, in the strongly degenerate case, the space

{
u ∈ L2

π (B)

∣∣∣ u′ ∈ L1
π (B) and

√
α u′ ∈ L2

π (B)
}

is not closed and can therefore not be viewed as the “nat-
ural” domain of the energy functional Eα as in the weakly
degenerate case. Let

H1
π,α,0(B) =

{
u ∈ H1

π,α(B)

∣∣∣ 〈u, 1〉 = 0, 〈u,h〉 = 0
}

Lemma 4.1 It holds that

∫ 1

−1
|u(x)|2 dx ≤ c

∫ 1

−1
α(x)|u′(x)|2 dx

for u ∈ H1
π,α,0(B).

Proof Assume that this is not the case. Then a sequence
(uk)k∈N in H1

π,α,0(B) can be found such that

1 = ‖uk‖22 ≥ k‖√α u′
k‖22, k ∈ N.

It follows that
√

αu′
k −→ 0 in L2

π (B). Now let

Bε =
[∣∣x ± 1

2

∣∣ ≥ ε
]

for small ε > 0. Then

∥∥χBεu
′
k

∥∥2
2 ≤ c

∥∥√
α u′∥∥2

2 ≤ c

k
, k ∈ N.

It follows that χBεuk → 0 as k → ∞ (along a subsequence)
in H1

π (Bε) and therefore that

χBεu
′ = 0 a.e.
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for any small ε > 0. It follows that u must be constant onΩ i

and on Ωo and, consequently, that

supp(u′) ⊂ {−1/2, 1/2}.

Since u ∈ L2
π (B), the distributional derivative u′ has at most

order 1 as follows from

∣∣〈u′, ϕ〉∣∣ = ∣∣〈u, ϕ′〉∣∣ ≤ ∥∥u∥∥2∥∥ϕ′∥∥
2

≤ c
∥∥u∥∥2∥∥ϕ′∥∥∞, ϕ ∈ Dπ (B).

Combining this with the support condition above, it is con-
cluded that

u′ = Aδ−1/2 + Bδ1/2 + Cδ′−1/2 + Dδ′
1/2,

for some constants A, B,C, D. Since u ∈ L2
π (B), it must

then hold that C = D = 0. One also has that

A + B = 〈u′, 1〉 = −〈u, 0〉 = 0,

and consequently that u = Ã + B̃h for some constants Ã
and B̃, which must both vanish since u ∈ H1

π,α,0(B). This
clearly yields a contradiction to ‖u‖2 = 1. ��

The form

aα(u, v) = 1

2

∫ 1

−1

(√
α u′)(x)(√α v′)(x) dx

defined on H1
π,α,0(B) × H1

π,α,0(B) is therefore coercive and
the associated operator Aα invertible. The solution u of the
corresponding heat equation (2.3)with initial datum u0 there-
fore satisfies

u(t, u0) −→ 1

2
〈u0, 1〉 + 〈u0,h〉h as t → ∞,

just as the numerical solution when m is even. It can be
concluded that at the discrete level, the distinction between
weakly and strongly degenerate equations can partly go lost
in certain cases.

Remark 4.2 Observe that it is more likely (especially in
higher dimensions) that a numerical scheme will deliver the
“smooth” solution of the continuous equation rather than the
stationary one (for piecewise constant initial data). This is
due to the fact that latter solution can only be captured if the
jumps are on (or close enough) to the grid and Dirac delta
functions at the jump locations discretize to discrete delta
functions (read natural basis vectors). This is the case in the
above example when m is even but could not hold, e.g., for

a centered difference scheme based on discretizing the first
derivative by

Δ
m,c
i (um) = umi+1 − umi−1

2hn
, i = −m, . . . ,m − 1,

i.e., for

Ẽm
α (um) = 1

2

m−1∑
i=−m

αm
i

[umi+1 − umi−1

2hn

]2
hn .

That said, the above example is not pathological. Indeed spec-
tral discretizations in combination with appropriate discrete
quadrature rules for the discretization of integrals (duality
pairings) also capture the “singular” rather than the regular
solution. This follows again from the fact that continuous
delta functions discretize to discrete delta functions as is
proved in [5].

5 Regularization

Next it is shown that the regularizing interpretation of (2.3)
can be viewed as the limit of the regularized problem

{
u̇ = ∇ ·

([
1/m + α

]∇u
)

in B for t > 0,

u(0) = u0 in B.
(5.1)

as m → ∞. Start with the regularized energy functional

Em
α (u) :=

{∫
B

[
1/m + α

] ∣∣∇u
∣∣2 dx, u ∈ H1

π (B),

∞, u ∈ L2
π (B) \ H1

π (B).

(5.2)

Proposition 5.1 It holds that Em
α

Γ−→ Eα (where Eα is
extended by∞ to L2

π (B)\H1
π,α(B)) as m → ∞with respect

to the weak topology of H1
π,α(B).

Remark 5.2 The reason to consider Γ -convergence is that
the domain of definition of the energy functional changes in
the limit. As a consequence convergence can only be proved
in a topology that is too weak to preserve the equation.

Proof Following, e.g., [2], Γ -convergence (with respect to
the weak topology) is defined by the validity of the following
estimates

(i) Eα(u) ≤ lim inf
m→∞ Em

α (um)

for any H1
π (B) � um ⇀ u in H1

π,α(B) and, for any
u ∈ H1

π,α(B), there is (um)m∈N in H1
π (B)

with um ⇀ u such that
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(ii) Eα(u) = lim
n→∞ Em

α (um).

Let (um)m∈N be any sequence in H1
π (B) converging to

u ∈ H1
π,α in the weak topology of the latter space. Then it

clearly holds that

Eα(um) ≤ Em
α (um), m ∈ N,

and thus

Eα(u) ≤ lim inf
m→∞ Eα(um) ≤ lim inf

m→∞ Em
α (um),

since the first inequality follows from the weak lower semi-
continuity of the norm on theHilbert spaceH1

π,α(B). In order
to verify the second condition, let ϕm be the mollifier intro-
duced immediately preceding the formulation of Lemma 3.1.
It will be shown that

∫
B

[
α(x) + 1/m

]∣∣∇um(x)
∣∣2 dx →

∫
B

α
∣∣∇u

∣∣2 dx,
as m → ∞ for um := ϕm ∗ u ∈ H1

π (B). It is a consequence
of Lemma 3.2 that

∫
B

α(x)
∣∣∇um(x)

∣∣2 dx →
∫
B

α
∣∣∇u

∣∣2 dx .
To deal with the second term, notice that

[∫
B

ϕm(· − x̄)∂ j u(x̄) dx̄
]2 ≤

∫
B

ϕm(· − x̄)

α(x̄)
dx̄ ·∫

B
ϕm(· − x̄)α(x̄)

[
∂ j u(x̄)

]2 dx̄ .
As the second factor on the right-hand side converges to
α|∂ j u|2 in L1

π (B) and the first can be estimated as follows

∫
B

ϕm(· − x̄)

α(x̄)
≤ m2

∫
B(x,1/m)

dx̄

α(x̄)

= m2
{ ∫

B(x,1/m)∩T1/m (Γ )c
+

∫
B(x,1/m)∩T1/m (Γ )

} dx̄

α(x̄)

≤ cm2
∫
B(x,1/m)

mσ dx̄

+cm2
∫ 1/m

−1/m

∫
Γ ∩B(x,1/m)

1

|s̄|σ dσΓ (ȳ)ds̄ = c mσ

it can be concluded that

1

m

∫
B

[∫
B

ϕm(x − x̄)∂ j u(x̄) dx̄
]2

dx

≤ c mσ−1
∥∥∥ϕm ∗ (

α|∂i u|2)∥∥∥
1

−→ 0 as m → ∞.

The proof is complete. ��
In spite of the fact that both the regularized problem and the
limiting one generate analytic semigroups, solutions of the
first do not converge to solutions of the latter in any strong
way. This is due to the loss of regularity in the limit, where
eigenfunctions (and,more in general, solutions) are no longer
smooth (on the degeneration set). In view of Proposition 5.1,
however,Γ -convergence proves a useful tool for the purpose.
In fact, known results for gradient flows showing that, if a
sequence of energies Γ -converges to a limiting energy, so
do the minimizing movements of the corresponding gradi-
ent flows, apply and yield a convergence result. Minimizing
movements u for a, in this context, convex energy functional
E on a Hilbert space H are constructed as (locally uniform)
limits

u(t) = lim
h→0+ uh(t),

of approximating piecewise constant functions

uh(t) = uh,�t/h�

obtained by recursive minimization

uh,k+1 = argminv∈H
{
E(v) + 1

2h
‖v − uh,k‖2H

}
(5.3)

starting from an initial datum uh0. Latter essentially amounts
to solutions of the Euler scheme with time step h > 0 for the
corresponding gradient flow.

Remark 5.3 Observe that, when E is a quadratic and there-
fore differentiable functional, and the linear operator
A = ∇E is the generator of a strongly continuous analytic
semigroup of contractions as is the case for Em

α and Eα , then
the minimization problem (5.3) is equivalent to

(1 + hA)v = uh,k in H−1
π (B) or H−1

π,α(B),

for A = Am
α or A = Aα , respectively. Consequently, one

has that

uh,k = (1 + hA)−1uh,k−1 = (1 + hA)−kuh0 .

When uh0 = u0 ∈ L2
π (B) and kh → t , semigroup theory (see

[4]) implies that

(1 + hA)−ku0 → e−tAu0 = T1(t)u0 as h → 0.
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In this case, theminimizingmovement originating in u0 coin-
cides with the solution that was previously constructed by the
semigroup approach.

The following theorem is stated andproved in [2,Chapter 11].

Theorem 5.4 Let (Fm)m∈N be a sequence of equi-coercive,
lower semicontinuous, positive convex energies which
Γ -converge to F, and let xm0 → x0 with

sup
m∈N

Fm(xm0 ) < ∞.

Then the sequence of minimizing movement um for Fm start-
ing in xm0 converges to the minimizing movement u for F
originating in x0.

This theorem yields the following result in the situation con-
sidered in this paper.

Theorem 5.5 Let H1
π (B) � um0 → u0 in H1

π,α(B) as m →
∞ be such that

sup
m∈N

‖um0 ‖H1
π,α(B) ≤ c < ∞.

Then the solution um(·, um0 ) : [0,∞) → H1
π (B) of (5.1)

with initial datum um0 converges to the solution of limiting
equation (1.4) with initial datum u0.

Proof It follows fromRemark 5.3 that theminimizingmove-
ments for Em

α and Eα coincide with the solutions Tm
α (t)um0

and Tα(t)u0 given by the analytic semigroups Tm
α and Tα

generated by Am
α = ∇ ·

([ 1
m + α

]∇·
)
and Aα on L2

π (B),

respectively.
Now equi-coercivity follows from

Em
α (u) ≥ Eα(u), u ∈ L2

π (B),

and the coercivity on Eα on H1
π,α(B). As for weak lower

semicontinuity of Em
α , take a sequence H1

π (B) � uk ⇀ u in
H1

π,α(B). It is easily verified that for any fixed ε > 0,

uk ⇀ u in H1
π

(
Tε(Γ )c

)
as k → ∞,

where as before, Tε(Γ ) is the tubular neighborhood of Γ of
“thickness” ε > 0. It follows that for any fixed ε > 0,

∫
Tε(Γ )c

[ 1
m

+ α
]∣∣∇u

∣∣2 dx
≤ lim inf

k→∞

∫
Tε(Γ )c

[ 1
m

+ α
]∣∣∇uk

∣∣2 dx
≤ lim inf

k→∞

∫
B

[ 1
m

+ α
]∣∣∇uk

∣∣2 dx .

Thus, if u ∈ H1
π (B), then

∫
B

[ 1
m

+ α
]∣∣∇u

∣∣2 dx = lim
ε→0+

∫
Tε(Γ )c

[ 1
m

+ α
]∣∣∇u

∣∣2 dx
≤ lim inf

k→∞

∫
B

[[ 1
m

+ α
]∣∣∇uk

∣∣2 dx,
whereas if u ∈ H1

π,α(B) \ H1
π (B), one has that

lim inf
k→∞

∫
B

[ 1
m

+ α
]∣∣∇uk

∣∣2 dx
≥

∫
Tε(Γ )c

[ 1
m

+ α
]∣∣∇u

∣∣2 dx → ∞ as ε → 0

��
Remark 5.6 Notice that the existence of approximating
sequences for initial data such as those needed for Theo-
rem 5.5 follows from the construction of recovery sequences
performed in the proof of Proposition 5.1.

6 Appendix

It remains to prove that (1.3) and (1.5) are valid. It is well
known that

F−1( 1

|ξ |ε
) = cε

|x |n−ε

onRn for n = 1, 2. Using this and classical arguments based
on the Poisson summation formula, it can be inferred that for
the discrete Fourier transform of periodic functions

F−1( 1

|k|ε
) = cε

|x |n−ε
+ hε(x),

for a C∞-function hε. Indeed we have the following kernel
characterizations.

Lemma 6.1 Let ε ∈ (0, 1) and assume that the fractional
derivative be given by

|∇|−ε|∇u| = F−1 diag
{ 1

|k|ε
}F(|∇u|) = Nε(|∇u|),

where ∇ is taken to be ∂ when n = 1. Then, for n = 1, 2,

|∇|−ε|∇u| =
∫
B
Gn

ε (x − x̃)|∇u|(x̃) dx̃,

for a periodic function Gn
ε satisfying

Gn
ε (x) = cε

1

|x |2−ε
+ hnε (x), x ∈ Bn,

and a function hnε ∈ C∞.
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Proof By definition, one has that

Ĝn
ε (k) = 1

|k|ε , k ∈ Z
2∗ := Z

n \ {0}.

This means that

Gn
ε (x) =

∑
k∈Zn∗

1

|k|ε e
π ik·x =

∑
k∈Zn∗

η(k)

|k|ε eπ ik·x ,

where η ∈ C∞(Rn) is a cutoff function with

η(x) =
{
0, |x | ≤ 1/4,

1, |x | ≥ 1/2.

Notice that Poisson’s summation formula yields

Gn
ε (x) =

∑
k∈Zn∗

η(k)

|k|ε eπ ik·x = gnε (x)

+
∑
k∈Zn∗

gnε (x + k), x ∈ Bn,

where gnε = F(
η| · |−ε

)
is rapidly decreasing (faster than the

reciprocal of any polynomial) as the Fourier transform of a
smooth function and satisfies

gnε = cε | · |ε−1 + F([η − 1]| · |−ε
)
, x ∈ R,

where the second addend is a smooth function as the Fourier
transform of a compactly supported function. Combining
everything together yields the claimed decomposition with

hnε = F([η − 1]| · |−ε
) +

∑
k∈Z∗

gnε (· + k).

��
The following lemma gives a proof of (1.5).

Lemma 6.2 If n = 1, set u0 = χ[−1/2,1/2] (or the character-
istic function of any interval) and, if n = 2, let u0 = χΩ for
a domain Ω ⊂ B with smooth boundary Γ (or a finite com-
bination of such characteristic functions of nonintersecting
domains). Then, for n = 1, 2, with the same interpretations
as in the previous lemma, one has that

|∇|−ε|∇u0|(x) ∼ d(x, Γ )ε−1 for d(x, Γ ) ∼ 0.

Proof Using the kernel representation given in Lemma 6.1
and the fact that ∂u0 = δ−1/2 − δ1/2 yields that(
G1

ε ∗ |∂u0|
)
(x)

= cε

[ 1

|x + 1/2|1−ε
+ 1

|x − 1/2|1−ε

]
+ smooth term, x ∈ (−1, 1),

and the claims follow. When n = 2, it is easily seen that
∇χΩ = νΓ δΓ for

〈νΓ δΓ , ϕ〉 =
∫

Γ

νΓ (x) · ϕ(x) dσΓ (x),

andwhere νΓ δΓ can be interpreted as a vectormeasure. Then
its total variation measure |νΓ δΓ | is simply given by δΓ . It
follows that

Nε

(|∇u0|
) =

∫
B
G2

ε(x − x̃)|∇u0|(x̃) dx̃

= cε

∫
Γ

1

|x − ỹ|2−ε
dσΓ (ỹ) + smooth term

Next fix a point x in the vicinity of Γ . Denote by yx the
point on Γ closest to x . Exploiting the fact that the curve Γ

is smooth and compact and has hence bounded curvature, it
is seen that

|x − ỹ|2 = (|x − yx | ± |ỹx − ỹ|)2 + |yx − ỹ|2
∼ (r ± cs2)2 + s2 ∼ r2 + s2,

for ỹ in a small fixed ball BΓ (yx , δ) uniformly in x ∈ Tδ(Γ )

for a (without loss of generality) common δ > 0. Here
r = d(x, Γ ) and s = |yx − ỹx | where ỹx is the orthogo-
nal projection of ỹ to the line spanned by τ(yx ) in the local
coordinate system given by τ(yx ) and ν(yx ), the unit tan-
gent and outward normal to Γ at yx , respectively. See figure
below. It follows that

Nε

(|∇u0|
)
(x) ∼

∫ δ

−δ

(s2 + r2)ε/2−1 ds

∼ rε−1
∫ ∞

−∞
(1 + σ 2)ε/2−1 dσ

= c d(x, Γ )ε−1,

which yields the claim since ε < 1. ��

Γ

•
yx

r

•x

s
•
ỹ

•
ỹx
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