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Abstract With the advent of novel 3D image acquisition
techniques, their efficient and reliable analysis becomesmore
and more important. In particular in 3D, the amount of data
is enormous and requires for an automated processing. The
tasks aremanifold, starting from simple image enhancement,
image reconstruction, image description and object/feature
detection to high-level contextual feature extraction. One
important property thatmost of these tasks have in common is
their covariance to rotations. Spherical TensorAlgebra (STA)
offers a general framework to fulfill these demands. STA
transfers theories from mathematical physics and harmonic
analysis into the domain of image analysis and pattern recog-
nition. The main objects of interest are orientation fields.
The interpretations of the fields are manifold. Depending
on the application, they can represent local image descrip-
tors, features, orientation scores or filter responses. STAdeals
with the processing of such fields in the domain of the irre-
ducible representations of the rotation group. Two operations
are fundamental: the extraction/projection of the features
by convolution-like procedures and the nonlinear covariant
combination by spherical products. In this paper, we pro-
pose an open-source toolbox that implements, in addition to
fundamental STA operators, advanced functions for feature
detection and image enhancement and makes them accessi-
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ble to the 3D image processing community. The core features
are implemented in C (CPU and GPU) with APIs in C++ and
MATLAB. As examples, we show applications for medical
and biological images.
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1 Introduction

The analysis of three-dimensional images has gained more
and more importance in recent years. In particular, new
acquisition techniques in the medical and biological sciences
produce an enormous amount of 3D data calling for auto-
mated analysis. In this article, we show how the harmonic
analysis of the 3D rotation group offers a convenient frame-
work for rotation covariant image processing and analysis.

A typical rotation covariant processing pipeline may con-
sidered as a kind of image filter. An example is illustrated
in Fig. 1. First, local image features are extracted. These
features are then processed in order to gather, combine and
generate relevant information. Finally, one or more resulting
images are created. We call such a pipeline rotation covari-
ant, if the same filter, when applied to a rotated version of the
input image, leads to a rotated version of the output. Since
Cartesian tensors are rotation covariant by definition, they
are widely used as the basic tool to design covariant filters.

Up to now, most algorithms rely on “low”-order fea-
tures from Cartesian tensors like local intensities, intensity
gradients or second-order derivatives and their products.
For example, consider a lesion detection/segmentation prob-
lem in a T1-weighted magnetic resonance image. A typical
approach would be to gather certain kind of features for each
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Fig. 1 Typical pipeline consists of three steps: (1) feature extraction:
local image features are represented in an angular-dependent manner in
terms of spherical tensors. (2) computations are performed in the spher-
ical tensor domain (here a anisotropic smoothing, we see the crossing
in the center). (3) The results are transformed back into an interpretable
image

voxel, an example is a Laplacian- or a Gaussian pyramid,
to determine the distribution of such features in a healthy
state. This distribution can be used to find probabilities for
certain voxels to contain a lesion or not. Instead of using
zero-order features, like theLaplacian-pyramid, higher-order
features, as the smoothed intensity gradient magnitudes (1-
order features) or the eigenstructure of the Hessian matrix
and the structure tensor (2-order features), can improve the
performance. However, features of order 3 and beyond are
rarely used because it is not trivial to identify linearly inde-
pendent higher-order features [105,118]. The redundancies
in the Cartesian tensor representation are cumbersome and
hard to be handled operationally [105].

This article proposes a unified framework based on spher-
ical tensors, which incorporates higher-order features in a
systematicway. Spherical tensors are a common, exhaustedly
studied object in the angular momentum theory. However,
they are, so far, rarely used in the 3D image processing
community. A reason for this might be the fact that for spher-
ical tensors Cartesian directional information is, in contrast
to Cartesian tensors, obscured by a complex-valued unitary
coordinate transform between the Cartesian and the spheri-
cal representation. Moreover, unlike for tensors in Cartesian
space, which can simply be extended to arbitrary dimensions,
spherical tensors are strongly connected to the representation
of the 3D rotation group and thus only exist in 3D space.

The main difference between spherical and 3D Cartesian
tensors is that spherical tensors have afixednumber of indices
no matter which order they are. In Cartesian representation,
the number of indices is determined by the order of the tensor.
ACartesian tensor of order n has n indices of fixed dimension
of 3. In spherical representation, there exists only one index.
With growing order, the dimension of this index is growing as
well:A spherical tensor of order n has one index of dimension

2n+1. This property is, from an algorithmic point of view, a
strong advantage.Wecan always dealwith high-order tensors
in the same way as with low-order tensors. This eases an
optimized implementation.

Cartesian tensors, with their many indices, are reducible
in the sense that indices can be folded together to form other
indices, which still have a valid rotation behavior. An exam-
ple is the trace. It let vanish two indices of a Cartesian tensor.
The result is a new tensor with a reduced number of indices.
For instance, the rotation corresponding to the trace of a
second-orderCartesian tensor is trivial: It is the identity trans-
formation.

For spherical tensors, since they only have one index, such
operations, like the trace, do not exist. There exists no linear
transformation (apart from the orthogonal/unitary ones) that
can qualitatively change the rotation behavior of a spherical
tensor. Spherical tensors are called irreducible. A conse-
quence of the irreducibility is that spherical tensors are a
kind of Fourier coefficients of spherical functions. They are,
dependent on their order, associated with attributes like rota-
tion symmetry, sharpness, richer in details, but also attributes
like noise or less relevant (high frequency) details, the typical
characteristics of image Fourier coefficients. We talk about
the details later in this article.

In summary, it can be stated that in comparison with
ordinary Cartesian tensor analysis, the algorithms and the
handling are operationally much more clearer for spherical
tensors. The combinatorial issues arising with Cartesian ten-
sors are eliminated by the group representation theory of
3D rotations, though the involved representation theory is
not easily accessible for the non-experienced. However, it
allows the creation of efficient algorithms, particularly when
higher-order tensors are involved.

In this work, we propose an open-source toolbox which
covers all basic operations involved in spherical tensor alge-
bra. The focus on the toolbox lies on the feature and object
detection in large volumetric, biomedical images, and on the
processing of tensor-valued images like diffusion-weighted
MRI1. The toolbox is written in C and has a C++ and MAT-
LAB/Octave API. A parallel CPU and GPU implementation
is available as well. A repository with the source code is
publicly available [98].

The article is divided into five sections. First, in Sect. 2, we
introduce the basic theoretical concepts. We show the rela-
tionship between spherical and ordinary Cartesian tensors.
We introduce the notion and properties of spherical tensors
and address their relation to Fourier analysis.

In Sect. 3, we introduce orientation and spherical tensor
fields. We propose two fundamental operations: spherical
products and spherical derivatives, both important for image
feature extraction and image filtering. Further, we introduce

1 Magnetic Resonance Imaging
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tensor-valued basis functions for the efficient computation
of rotation covariant and invariant features. In focus are a
Gauss–Laguerre basis and a Gabor basis. Both are known to
be important in pattern analysis [13,16,24,27,39,40,47,56,
57,63,66,67,69,74,77,89,92,104,118,120].

Section 3 comes with two novel contributions. (1) We
transfer knowledge about symmetries of angular momen-
tum states known in angular momentum theory to a feature
description problem: We show how to avoid redundancies in
spherical bi-spectra using a set of associativity rules in ten-
sor products; this problem has, as far as we know, not been
addressed so far. Since this saves both memory and computa-
tion time, it is, froman application point of view, an important
aspect. (2) We also show how the diffusion equation in the
position/orientation space can be efficiently solved via STA.
Details about this topic have been presented in a technical
report, which is available online [87].

Implementation concepts and implementation details are
explained in Sect. 4. Finally, Sect. 5 reviews applications
of STA, or extends, in the case of steerable deconvolution
[86], existing algorithm from 2D to 3D. In this section, we
give implementation examples, which can directly serve as a
skeleton for biologically or medically relevant feature detec-
tion or image processing tasks.

1.1 Related Work

In two dimensions, the representation of orientation and ten-
sor fields in terms of circular harmonics (or, the irreducible
representations of SO(2)) is relatively simple and quite
frequent in the literature [25,45,53–55,64,79,80,96,119].
Complex calculus offers a well-founded background: The
ordinary Cartesian partial derivatives ∂x , ∂y are replaced by
the complex derivatives ∂z = (∂x − i∂y)/2 and ∂z = (∂x +
i∂y)/2. In [82,103], three-dimensional derivative operators
are introduced that behave similar to complex derivatives,
that is, they are compliant with the rotation behavior of
spherical harmonics in 3D. In Refs. [22,23], the Fourier
transform of SE(3) is used in the context of engineering
applications. For the efficient computation of the SE(3)-
convolution, functions are expressed in terms of the unitary
irreducible representations (UiR) of SE(3). In the context of
line and contour enhancement in 2D, there are various works
about orientation fields [30,31,113,114]. It can be used to
set up a scale space theory. More recently, extensions to
3D of these concepts appeared [29]. While the applications
in 2D are typically related to feature detection and image
enhancement, the 3D extension offers a new application
field: the processing of diffusion-weighted magnetic reso-
nance images (DWI). In DWI, the acquired measurements
are already functions on R

3 × S2. Based on the directional
dependency ofwater diffusivity in fibrous tissue of the human
brain, it is possible to reveal underlying connectivity infor-

mation. One of the main challenges in DWI is the estimation
of so-called fiber/diffusion orientation distributions. There
are numerous methods for estimating orientation distribu-
tions: classical Q-ball imaging [111], constrained spherical
deconvolution [108], proper probability density estimation
[2,11,18,109] and spatially regularized density estimations
for tensor-valued images [9,17,49,84,90,110]. Most of the
employed algorithms rely on tensorial or spherical harmonic
representation of the orientation distributions.However,most
of the algorithms for orientation distribution estimation that
consider the local surrounding of a voxel, i.e., using inter-
voxel information, rely on a discretization of the two-sphere
[10,28,29,84].

The work on classical, rotation invariant 3D features, like
3D extensions of SIFT and SURF, ismanageable and focused
on solving point matching and registration problems. Refer-
ences [20,21] have proposed the N–D Sift descriptor, which
has been used for the co-registration of volumetric medi-
cal 3D and 3D+time images. This includes the 3D-SIFT
descriptor of [4]. The proposed 3D-SIFT descriptors have
also been used for the registration of volumetric spectral
OCT2 images of the retina [73], or the co-registration of
3D + time CT scans of lung vessel trees [75,76]. Further
applications on object recognition include the scanning of
volumetric CT scans of bags in airports for security rea-
sons [38] and a voting-based classification of objects in
volumetric images [65] based on 3D SURF. In contrast,
the usage of STA for the rotation invariant feature detec-
tion has remarkably increased the last years; for instance
[34–37,59,60,70,81,91,93,94,99,102,103]. We will intro-
duce examples later in the application section.

2 From Cartesian to Spherical Tensors

Cartesian tensors are often used to describe spatial properties
of physical systems. In image analysis, Cartesian tensors are
an indispensable tool for representing image characteristics
with respect to the Cartesian coordinate system. Typical 3D
Cartesian tensors are image gradients, local Hessian matri-
ces or structure tensors [3,12,41,52]. 3D Cartesian tensors
clearly exhibit directional information with respect to the
Cartesian coordinates. This is particularly true for low-rank
Cartesian tensors or tensors with certain symmetries. For
instance, the eigensystem of a Hessian matrix directly repre-
sents the local image main curvatures in terms of directions
andmagnitudes,which is awidely used feature for the numer-
ical computation of maxima of lower-order steerable image
filters [3,5,42].

Every Cartesian tensor is associated with an order n ∈ N0.
A Cartesian tensor Tn in 3D of order n is a mathematical

2 Optical Coherence Tomography.
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object with 3n independent values t (n)
j1,..., jn

∈ R with jk ∈
{0, 1, 2}.

We say that it has 3n degrees of freedom (DOF). An order
0 tensor is a scalar. Tensors of order one and two are often
written as vectors or matrices, respectively, whereas

T1 =
⎛
⎝
t0
t1
t2

⎞
⎠ and T2 =

⎛
⎝
t00 t01 t02
t10 t11 t12
t20 t21 t22

⎞
⎠. (1)

Let R(g) ∈ R
3×3 be the standard representation of the rota-

tion group. With g, we denote an element of the 3D rotation
group SO(3). Just think of it as a given triple of Euler
angles (θ, φ, ψ). The characteristic of a Cartesian tensor is
its behavior with respect to rotations. If the rotation acts in
a certain way on the numbers t (n)

j1,..., jn
, we say it is a ten-

sor. For first- and second-order tensors, these actions can be
expressed in ordinary matrix calculus by

(gT1) := R(g)T T1 and

(gT2) := R(g)T T2R(g).

Here gT denotes the ’action’ of the rotation group. For the
general case, we need index representations:

(gt (n))i1,...,in =
∑

j1,..., jn

R(g)i1, j1 . . . R(g)in , jn t
(n)
j1,..., jn

, (2)

that is, all components t (n)
j1,..., jn

do “mix” under a rotation.
In Cartesian, as well as in spherical tensor calculus, there

are two basic operations that combine tensors or create new
tensors: derivatives and products.

Differentiation is a natural way to map 3D image infor-
mation to 3D Cartesian tensors. For instance, given an image
I : R3 → R and successively differentiating along theCarte-
sian X -,Y -, and Z -axis creates an (n + 1)-th order derivative
which is given by

t (n+1)
i1,··· ,in+1

:= ∂
∂xi1

· · · ∂
∂xin+1

I. (3)

The results of (3) transform according to (2) and thus are 3D
Cartesian tensors of order (n + 1).

Derivatives of different orders can be combined with ten-
sor products to form features like the inner product of a
gradient, an indicator for the presence of edges, or the trace
of a Hessian matrix, a measure for blob-like structures.

InCartesian tensor calculus, severalways exist to combine
tensors. The outer product (the Kronecker-products) multi-
plies all elements of a tensor Tn with the elements of a tensor
Tm . This results in a new tensor of the order n+m. For exam-
ple, the outer product t (2)i j := t (1)i t (1)j creates a matrix out of
two vectors.

There are two tensors which are fix points under rotations:
the symmetric delta tensor δi j := δ(i − j), which corre-
sponds to the identity matrix, and the antisymmetric epsilon
tensor εi jk (see Definition 6 in appendix). Due to their spe-
cial rotation behavior, they can be used to build tensors out
of existing ones. With the delta tensor, we can determine the
sum over a pair of indexes (i j). This operation is called a
tensor contraction, or the trace of a tensor. It reduces a tensor
order by 2. An example is the trace of a second-order tensor
tr(T2) :=∑i, j δi, j t

(2)
i, j . On the other hand, the combination

of the product and the delta tensor increases the tensor rank
by two.With t (2)i j := δi j t0, we obtain the second-order tensor

T0I3×3 out of the zero-order tensor T0, where I3×3 is the 3D
identify matrix. Note that increasing the order in this way
“embeds” lower-order tensor information into higher-order
tensors.

In 3D space, the cross product creates a vector orthogo-
nal to two existing vectors. The so-called epsilon tensor (or
Levi-Cevita symbol) is underlying the cross product. It is a
traceless, antisymmetric tensor of order three. It can be used
in a similar way to the delta tensor to contract tensor indices,
or to increase the tensor rank. In terms of the epsilon tensor
εi jk , the cross product is written as u(1)

i := ∑
i εi jks

(1)
j t (1)k .

Or think of the matrix T2
anti =

⎛
⎝

0 t3 −t2
−t3 0 t1
t2 −t1 , 0

⎞
⎠, which is the

result of t (2)jk :=∑i εi jk t
(1)
i and represents the matrix whose

application is a cross product with the vector t (1).
Similar to derivatives, tensor products can be used to

successively create higher-order tensors. With an order one
tensor as an example, we get

t (n+1)
i1,··· ,in ,in+1

:= t (n)
i1,··· ,in t

(1)
in+1

. (4)

We can imagine that with 3n , the DOF grows drastically
with an increasing order n. For n = 5 for example,we already
have a DOF of 243. However, in most applications, tensors,
like the derivatives and tensors based on outer products as in
(4) and (3), have symmetries of the form t (n)

i, j,··· = t (n)
j,i,···, or

antisymmetries of the form t (n)
i, j,··· = −t (n)

i, j,···. So, usually the
actual DOF is often by far lower than possible.

For general higher-order Cartesian tensors however, it
might be tricky to identify symmetries and redundancies,
particularly when it comes to implementation and real data.

Whether a tensor has certain symmetries or not, and
thus, can be represented by a fewer number of components,
depends on the fact that a tensor of order n may or may not
contain vanishing low-order tensor information. Let us con-
sider a second-order tensor T2 with a maximum of 9 DOF,
which can be uniquely decomposed into three components:
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T2 = (tr(T2)/3)I3×3︸ ︷︷ ︸
T2
tr

+ (T2 − (T2)T )/2︸ ︷︷ ︸
T2
anti

+ (T2 + (T2)T )/2 − T2
tr︸ ︷︷ ︸

T2
sym

. (5)

The first component T2
tr represents the trace of T2. Since it

has only one DOF, it can be represented by a scalar; T2
anti,

an antisymmetric matrix with three DOF, can be written as
a first-order tensor lifted by the epsilon tensor, and finally,
Tsym is a traceless symmetric matrix, a second-order tensor
with only five DOF (DOF = 6 minus one for the vanishing
trace: tr(T2

sym) = 0). Under a rotation, the elements T2
tr,

T2
anti and Tsym of T2 do not mix and hence form invariant

subspaces. An invariant subspace which cannot be decom-
posed further into even smaller invariant subspaces is called
irreducible. This brings us now to spherical tensors, which
are just representations of the tensor within these irreducible
subspaces.

2.1 The Irreducible Spherical Tensors

With the decomposition into irreducible subspaces, we can
separate independent components by their rotation behavior.
This helps to decrease memory requirements due to elimi-
nated redundancies and can lead to more efficiency.

As an example, consider a fully traceless, symmetric
Cartesian tensor T2

sym of rank 2. Rotating a second-order

tensor according to (2) requires 32 × 3 × 2 = 54 multi-
plication. However, we already know that such a tensor has
just 5 DOF. The rotation is acting in fully linear manner on
these five numbers. So there has to be a 5 × 5 matrix act-
ing on these five numbers which accomplishes the same task
with just 52 = 25 multiplications. And this vectorized rep-
resentation of the symmetric, traceless matrix is exactly its
spherical tensor representation. And in fact, this idea can be
generalized to arbitrary order. For higher-orderCartesian ten-
sors, the number of irreducible components becomes large
quite quickly [15]: A general order five tensor can already
be decomposed into up to 51 irreducible parts; see Table 1
in appendix. The family of these irreducible components is,
just like in the order two case, the family of fully symmet-
ric, traceless Cartesian tensors. The DOF of such a tensor
of order n is only 2n + 1 (making it symmetric, reduces the
DOF from 3n to

(
3 + n − 1

n

)
, and then minus

(
n
2

)
(removing all

traces) leads to 2n + 1). Figure 2 illustrates the rotation of
the irreducible components in comparison with the reducible
representation of an order two tensor. We refer to [6,106] for
further details.

Let us now bemore explicit: A spherical tensor a j of order
j ∈ N0 is represented by a vectorwith 2 j+1 complex-valued
elements (a j

− j , · · · , a j
j )

T ∈ C
2 j+1. Note that due to the irre-

Fig. 2 Cartesian tensors (left) can be reduced into irreducible repre-
sentation which do not mix with each other under rotations (right).
Irreducible representations foster the development of efficient algo-
rithms

ducibility a contraction of tensors does not exist, which is
expressed by the fact that there is just a single subindex m.
Spherical tensors are, as their Cartesian counterparts, rotation
covariant. Spherical tensors of order j are rotated by the so-
called Wigner-D rotation matrices D j (g) ∈ C

(2 j+1)×(2 j+1)

by

(ga j ) = D j (g)a j . (7)

TheWigner-D rotationmatrices (or spherical group represen-
tations) are all possible group representations of the rotation
group SO(3).

2.2 Clebsch–Gordan Coefficients

The explicit connection between spherical and Cartesian
tensors is, despite for the order one tensor, not trivial. Let
S ∈ C

3×3 be the unitary transformation that maps the
ordinary rotation matrix to the first-order Wigner-D matrix,
where

D1(g) = SR(g)S� and S = 1√
2

⎛
⎝

1 −i 0
0 0

√
2

−1 −i 0

⎞
⎠. (8)

With the matrix S, we have a one-to-one mapping between
Cartesian and spherical tensors of order one.

For higher orders, the connection is determined by the
so-called Clebsch–Gordan coefficients. They form the basis
of the representation theory of 3D rotations. The Clebsch–
Gordan coefficients are combinatorial coefficients, which
couple two group representations D j1 and D j2 to form a new
representation. The general law is

D j
mn

=
∑

m1+m2=m
n1+n2=n

D j1
m1n1D

j2
m2n2 〈 jm| j1m1, j2m2〉〈 jn| j1n1, j2n2〉.

(9)

With 〈 jm | j1m1, j2m2〉 ∈ R, we denote the Clebsch–
Gordan coefficients; see Sect. 1 in appendix for further
details.

Equations (8) and (9) implicitly define the connection
between the Cartesian and spherical representations. For
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instance, let T2 be a second-order, Cartesian tensor. Let fur-
ther, for convenience, beTs = ST2S�. Then the components
of the corresponding spherical tensors b j , j = 0, 1, 2, are

b j
m =

∑
m1+m2=m

〈1m1, 1m2| jm〉(−1)m2 t sm1(−m2)
, (10)

where b0 corresponds to T2
tr, b1 to T2

anti and b2 to T2
sym; see

(5). The inverse of this “Cartesian to spherical” transforma-
tion is

t sm1m2
=
∑
j=0,2

m= j∑
m=− j

〈1m1, 1(−m2)| jm〉(−1)m2b j
m . (11)

In “Cartesian Tensors” section in appendix, we give the
explicit expressions of (10) and (11).

2.3 Relation to Fourier Analysis

In contrast to Cartesian tensors, directional information of
spherical tensors is rather obscured. However, we can always
interpret spherical tensors as expansion coefficients of a
spherical Fourier expansion of a square-integrable orienta-
tion function f : S2 → C, an angular-dependent function
on the sphere. In contrast to the tensors themselves, such ori-
entation functions can be indeed interpreted in an intuitive
manner. They can be meaningfully visualized in 3D space
in tandem with the original image. In STA, the design and
interpretation of orientation functions f is, in our opinion, the
important objective; the spherical tensors are just the tool to
achieve the goals in a numerical manner. The Fourier expan-
sion connecting the tensors with f is given by

f (n) :=
L∑
j=0

m= j∑
m=− j

a j
mY

j
m(n) =

L∑
j=0

(a j )T Y j (n), (12)

with L = ∞. The vector n ∈ S2 is a direction (unit) vector
in 3D space. The Y j : S2 → C

2 j+1 are vectors of 2 j + 1
orthogonal spherical Fourier basis functions Y j

m of order j ,
the so-called spherical harmonics (see “Spherical Harmon-
ics” section of Appendix for definition). Figure 3 visualizes
spherical harmonics up to order 3.

An example of an orientation function is the angular-
dependent distribution of gradient directions in a local
Gaussian-windowed neighborhood of a voxel. Typical exam-
ples are the structure tensor [12,41,52], or with higher-order
tensors, spherical histograms of oriented gradients (SHOG)
[101]. Figure 4 depicts such local orientation functions. In
this example, they represent the local gradient orientation
distribution at different image locations in top of the corre-
sponding image.

Fig. 3 Spherical harmonic expansion for functions on the sphere f :
S2 → C. The upper row visualizes the real part of the harmonics, the
bottom row the imaginary parts

Fig. 4 Orientation functions representing the local distribution of gra-
dient orientations in a Gaussian neighborhood around a crossing. We
show local expansions at each voxel, each up to order L = 8; see (12).
For L = 2, the tensors of the expansion are the spherical counterparts of
the 3D structure tensor. Only with higher orders, the orientation func-
tions become sharp and can capture the crossing in the center correctly.
For better visualization, we have removed themean from the expansions
( j = 0)

With (12), the spherical tensors gain some nice properties
known from Cartesian Fourier analysis:

Symmetry and DOF Fourier coefficients are encoding the
real and imaginary part of complex-valued signals in a sep-
arable manner. As a consequence, the Fourier coefficients of
real-valued functions f : S2 → R have the characteristic
symmetry

a j
−m = (−1)ma j

m . (13)

Wecall the space of such tensors the “real” linear subspaceVj .
We call the orthogonal complement iVj ofVj the “imaginary”

subspace which fulfills a j
m = (−1)m+1a j

−m . The space iVj

corresponds to the expansion coefficients of purely imaginary
functions f : S2 → C; see “Real and Imaginary Tensor
Fields” section in Appendix for details.

As a result, in conformity with irreducible Cartesian ten-
sors, the DOFs of the “real” and “imaginary” spherical
tensors of order j shrink from 2(2 j + 1) to 2 j + 1: the first
j complex-valued components and the solely real, or solely
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Fig. 5 A rotation of an orientation function in the spatial domain is
accomplishedwith a coordinate transform.The correspondingoperation
in Fourier domain is a rotation of the expansion coefficients

imaginary, valued center a j
0 , respectively.

Note that for any tensor a j ∈ Vj exists the tensor ia j ∈ iVj.
Tensors in Vj can be associated with irreducible symmetric
Cartesian tensors and tensors in iVj with irreducible anti-
symmetric Cartesian tensors. Hence, an arbitrary irreducible
symmetric Cartesian tensor can be expressed by an irre-
ducible antisymmetric Cartesian tensor and vice versa.

Finite Signal Representation Fourier coefficients represent
image details in a coarse-to-fine order. We obtain a finite
representation of a function f with infinite support by cutting
off higher-order frequencies. For this, we set L to a finite
number in our applications.
Products The product of two Fourier coefficients is again a
Fourier coefficient of an orientation function. We call these
products as spherical products. They will be discussed later
in this manuscript.
Rotations In theCartesian Fourier domain, cyclic translations
along the Cartesian axis can be accomplished with a rotation
(a phase shift) of the corresponding Fourier coefficients. The
corresponding transformation for functions on the sphere is
the rotation. An orientation function f can be rotated accord-
ing to the coordinate transform (g f )(n) := f (R(g)T n).
Similar to a cyclic translation, f can be rotated in spherical
Fourier domain by rotating the Fourier coefficients according
to

(g f )(n) :=
L∑
j=0

(D j (g)T a j )T Y j (n). (14)

That is, the coefficients of (g f ) are the rotated coefficients
of f . This relationship is illustrated in Fig. 5.

Axial Symmetric Functions The spherical harmonic expan-
sion of any axial symmetric orientation function of the form
f (θ, φ) = f (φ) (z-axis aligned) has only scalar-valued
expansion coefficients (all remaining tensor components are
vanishing). The expansion simplifies to

f (n) :=
L∑
j=0

a jY j
0 (n). (15)

In Fig. 21, we show three examples with relevance for image
processing applications.

Convolution and Correlation With spherical tensors as
Fourier coefficients, spherical convolutions are just products
between tensors. The spherical convolution between a spher-
ical function f , with expansion coefficients a j , and an axial
symmetric orientation function f ′, with scalar-valued expan-
sion coefficients b j (see 15), is the simple product

( f ∗ f ′)(n) :=
L∑
j=0

(b ja j )T Y j (n). (16)

3 Spherical Tensor Fields

For images, a tensor typically changes with the location
within the image.We call a tensorwhich changeswith respect
to the position a tensor field. We call the corresponding field
of spherical functions (12) orientation fields. The creation,
processing and interpretation of orientation fields in terms of
spherical tensors is the base of all introduced algorithms. In
this section, we first explore the rotation of orientation fields,
the key property of rotation covariant algorithms. Then we
introduce the theoretical background of twomajor operations
of the toolbox: the spherical counterparts of tensor products
(4) and derivatives (3). They are used tomap images to spher-
ical tensor fields and vice versa.

Orientation fields are functions f : R3 × S2 �→ C that
assign to each point r ∈ R

3 in 3-space an orientation function
(12). We can write any square-integrable orientation field f
according to (12) with respect to its second argument (the
direction) as an expansion

f (r, n) =
∞∑
j=0

a j (r)�Y j (n). (17)

The expansion coefficients a j (r) are tensors which vary with
respect to their location in 3D space.

Any orientation field can be rotated with (g f )(r, n) :=
f (R(g)�r, R(g)�n) in a “classical” way. The first argu-
ment is a coordinate transformation, and the second argument
rotates the local spherical function accordingly. With (14),
the rotation can be accomplished in the Fourier domain
according to

(g f )(r, n) =
∞∑
j=0

(
D j (g)a j

(
R(g)�r

))�
Y j (n). (18)

That is, if an orientation field f is rotated, the underlying
expansion fields a j of expansion coefficients a j (r) undergo
the transformation
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a j (r) �→
(

D j (g)a j
(

R(g)�r
))

. (19)

We will call any function with this kind of transformation a
spherical tensor field of order j .

Definition 1 (Spherical Tensor Field) A function f j : R3 �→
C
2 j+1 is called a spherical tensor field of order j if it trans-

forms with respect to rotations as

(gf j )(r) := D j (g)f j
(

R(g)�r
)

(20)

for all g ∈ SO(3). The space of all spherical tensor fields of
rank j is denoted by T j .

In this context, it is important noting that an image I :
R
3 → R is a spherical tensor field of order 0.

3.1 Spherical Tensor Coupling

With the delta and epsilon tensor, there exist various ways
to combine Cartesian tensors. Since Cartesian and spherical
tensors can basically express the same quantities, there must
exist a counterpart of the products in the spherical tensor
domain as well. Thanks to the irreducibility, there neither
exists an operator for tensor contraction (there exists no
trace), nor a way to represent lower-order tensors in terms
of higher-order tensors. As a consequence, there exists only
one single inner product-like bilinear form in the spherical
tensor domain. We call this operation the spherical product.

For example, both a Cartesian and a spherical tensor of
order one are irreducible. In this case, there exists a one-to-
one relation between the Cartesian and spherical products.
Let U1 and S1 be two Cartesian tensors of order one.
The inner product t (0) = ∑

i j δi j u
(1)
i s(1)

j , the cross prod-

uct t (1)i = ∑
jk εi jku

(1)
j s(1)

k and the traceless outer product

t (2)i j = u(1)
i s(1)

j − δi j t (0)/3 combine the two tensors and cre-
ate new irreducible, Cartesian tensors of order zero, one and
two.

In the spherical tensor domain, with spherical tensors
u1, s1 ∈ V1, the corresponding products can be performed
with one spherical product (u1 ◦j s1), where j ∈ 0, 1, 2. It is
defined by a family of bilinear forms:

Definition 2 (Spherical Products) For every j ≥ 0, we
define a family of bilinear forms, a tensor product

◦j : C2 j1+1 × C
2 j2+1 �→ C

2 j+1 , (21)

where j1, j2 ∈ N has to be chosen according to the triangle
inequality | j1 − j2| ≤ j ≤ j1 + j2. The product is defined
by

(e j
m)�(v ◦j w) :=

∑
m=m1+m2

〈 jm | j1m1, j2m2〉vm1wm2 .

With e j
m , we denote the unit vectors in C

2 j+1, where e jmn =
δ(m − n).

The spherical products are, like their Cartesian counter-
parts, rotation covariant.

Proposition 1 Let v ∈ C
2 j1+1 and w ∈ C

2 j2+1, then for any
g ∈ SO(3)

(D j1(g)v) ◦j (D j2(g)w) = D j (g)(v ◦j w) (22)

holds.

That is, it does not matter whether we first rotate the factors
or the final product.

The spherical products are nonlinear transformations that
can combine whole spherical tensor fields in a point-by-point
manner. For example, given two tensor fields v ∈ T j1 and
w ∈ T j2 and j chosen such that | j1 − j2| ≤ j ≤ j1 + j2,
then (v◦j w)(r) := v(r)◦j w(r) is in T j ; it is spherical tensor
field of order j . Later in this article, products are used in
convolutions as well. Convolutions can be used to map local
image patches to spherical tensor-valued basis functions, an
important step to generate local descriptors.

The spherical product naturally commutes between the
“real” and “imaginary” spaces Vj and iVj . It reflects the
parity by its (anti-)symmetry. The toolbox makes uses of
these properties in order to save memory and computation
time.

Proposition 2 Let v ∈ Vj1 and w ∈ Vj2 , then

j + j1 + j2 is even ⇒ v ◦j w = w ◦j v ∈ Vj

j + j1 + j2 is odd ⇒ v ◦j w = −(w ◦j v) ∈ iVj ,

With the spherical products, we can define a rotation
covariant spatial convolution between tensor fields of dif-
ferent orders.

Definition 3 (Tensor Convolution) For two tensor fields v ∈
T j1 and w ∈ T j2 , the operation

(ṽ◦jw)(x) :=
∫
R3

(v(r) ◦j w(x − r))dr (23)

defines the tensor convolution.

Proposition 3 (Convolution Theorem) The convolution the-
orem

(ṽ◦jw) = FT−1(FT(v) ◦j FT(w)) (24)

holds for the tensor convolution.With FT, we denote the ordi-
nary spatial 3D Fourier transform which maps tensor fields
to their Fourier counterpart in a component-by-component
manner.
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3.2 Covariant Feature Extraction

In many cases, we start with a scalar-valued input image, a
spherical tensor field of order zero. An initial step is the rota-
tion covariant feature extraction. This procedure maps local
image patches to tensor-valued coefficients. In the Cartesian
domain, the image derivatives (see 3) often build the basis for
covariant or invariant feature extraction. Image derivatives
are encoding, with increasing order, local image appear-
ance in a coarse-to-fine manner. Spatially smoothing the
derivatives with a kernel, like a Gaussian Gσ , steer the level-
of-detail, or the local image patch size. Since the convolution
commutes with the differentiation, such a scale-dependent
analysis can be realized with only one initial smoothing; i.e.,

Gσ ∗
(

∂
∂xi1

· · · ∂
∂xin+1

I
)

︸ ︷︷ ︸
instead of

one convolution per derivative

→= ∂
∂xi1

· · · ∂
∂xin+1

(Gσ ∗ I )
︸ ︷︷ ︸
one convolution in total (fast)

(25)

This is a big advantage, particularly for large images, because
image derivatives can be implemented efficiently in terms
of finite differences. In our context, (25) is the connection
between scalar-valued images and tensor-valued features. In
fact, (25) can be interpreted as a projection on Cartesian
tensor-valued basis functions K(n), where

t (n)
i1,··· ,in (x) :=

((
∂

∂xi1
· · · ∂

∂xin+1
Gσ

)
︸ ︷︷ ︸
basis function k(n)

i1,··· ,in

∗ I
)
(x)

=
(
k(n)
i1,··· ,in ∗ I

)
(x). (26)

Equation 26 is also called a sliding dot product. This
projection maps images in a sliding window manner to
tensor-valued feature fields. Each tensor at each voxel rep-
resents local image features in a rotation covariant manner.
The basis functions in the example (26) are known as the
Gaussian-windowed Hermite polynomials; see, e.g., [67]. A
Gaussian kernel Gσ , however, is not the only possible way
to build basis functions with such rotation covariant differen-
tial relationship. In fact, any differentiable radial symmetric
kernel is a possible candidate.

In this section, we introduce two examples of spherical
tensor-based basis functions with differential relationship.
This is, on the one hand, the spherical counterpart of the 3D
Hermite polynomials. Further, we briefly introduce a spher-
ical tensor-valued Gabor basis.

3.2.1 Spherical Derivatives

The homogeneous polynomials R j
m(r) = r jY j

m(n) of order
j are called the “solid harmonics”; see Sect. 1 for details.
With r = |r|, we denote the distance to the center, and with

Fig. 6 Finite differences are faster than convolutions based on the
Fourier transform. For a kernel with differential, a projection up to order
L can be accomplished in two manners: (1) upper row projection with
((L + 1)(L + 2))/2 convolutions and (2) bottom row with one convo-
lution followed by differentiation. The latter one significantly reduces
the computation time

n = r/r the direction. You may consider them as the bridge
between the spherical harmonics, which only exist on the
sphere (S2), and the 3D image space (R3). With the operator
transformation R j

m(∇), we map the Cartesian gradient oper-
ator ∇ = (∂x , ∂y, ∂z)

T to the spherical domain. We define

the spherical differential operator ∂ j := (∂
j
− j , · · · , ∂

j
j )

T by

∂
j
m := R j

m(∇). (27)

The operator ∂1, with ∂1 = R1(∇), is, as its Carte-
sian counterpart, a 3D vector, namely ( 1√

2
(∂x − i∂y), ∂z,

1√
2

(−∂x − i∂y))T .
We can treat ∂ j like a spherical tensor of order j . Similar

to its Cartesian counterpart, higher-order derivative operators
can be built out of lower-order ones with

∂ j =
√

j !
(2 j−1)!! ∂1 ◦j (. . . ◦3 (∂1 ◦2 ∂1) . . .). (28)

This property is of particular importance from a computa-
tional perspective, because we can compute tensor features
in increasing order j = 0, 1, 2, · · · in a successive manner:

Let K j ∈ T j be a spherical tensor-valued basis function
with the differential relationshipK j = ∂ jK0. Then, the slid-
ing dot product between an image I and the basis functions
K j , j = {0, 1, . . . } can be successively computed, similar
to (25) and (26), with one convolution in combination with
finite differences:

a j = (K j ∗ I ) = ∂ j (K0 ∗ I ). (29)

This relationship is visualized in Fig. 6.

Gauss–LaguerreGaussian derivatives play an important role
in the context of scale space analysis and feature extraction
in many image processing tasks; e.g., [39,40,66,67,92,104,
118]. Cartesian Gaussian derivatives are called the Hermite
polynomials. The spherical counterpart of the 3D Hermite
polynomials is the Laguerre polynomials [67]. Gaussian-
windowed Laguerre polynomials are, as their Cartesian
counterparts, optimal for local smooth processes; see sec-
tion 5.1.2 in [97].
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Fig. 7 Images showing the center slice of the real-valued coefficient
(m = 0) of Gauss–Laguerre and Gabor kernels. For these coefficients,
the angular patterns around the Z -axes are 2D circular harmonics of
order j

The Gaussian-windowed Laguerre basis functions L j
n of

order j are spherical tensor fields of order j . They are defined
by

L j
n(r) =

√
j !

(2 j−1)!!
(−σ 2)n+ j

n!2n R j (r)L
j+ 1

2
n ( r2

(2σ 2)
)e− r2

2σ2 , (30)

with the differential relationship

L j
n = 	n∂ jL0

0; (31)

see [103] for details. Note that L0
0 is the 3D Gaussian func-

tion. With 	, we denote the Laplace operator, and with Lα
n

the associated Laguerre polynomial [1].

Gabor Functions The functions

B j (r, k) = (−k) j

√
j !

(2 j − 1)!!Y j (n)J j (kr) (32)

are the natural radial basis functions appearing in the spher-
ical expansion of the plane wave; see (70) in appendix. With
J j , we denote the spherical Bessel functions [1]. With

B j (k) = ∂ j J0(kr) (33)

we have a differential relationship similar to the Gauss–
Laguerre functions. In our applications, we use a Gaussian-
windowed version B j (k)Gσ with local support, a Gabor
wavelet. See [103] for the exact expression and differen-
tial formulation in terms of Gabor wavelets. Figure 7 shows
examples for B j (k) and L j

n .

3.3 Rotation Invariant Features

We call any zero-order tensor a0 rotation invariant in the
sense that with

(ga0) = D0(g)a0 = a0, (34)

the transformation is the identity transform. The correspond-
ing tensor fields f ∈ T0 transform like ordinary 3D images;

Fig. 8 Power spectrum and the (even) bi-spectrum features of an
image. The image has been projected to a Gaussian derivative basis
with coefficients up to order three

i.e., they rotate according to (gf)(x) := f(U(g)x). Hence,
the quantities, the tensors themselves, are not altered. We
call this property local rotation invariance. All 3D biological
images with scalar-valued intensities are fields with locally
rotation invariant zero-order tensors.

In a 3D biological or medical feature detection tasks, it
is often desired to detect objects, or specific structures, in a
rotation invariant manner. With STA, it is possible to create a
set of zero-order tensor fields. Each of them contains discrim-
inative, mutually exclusive features of local image structures
in a rotation invariant manner. The idea is that even if the
location or the orientation of an object varies, only the loca-
tion of the set of corresponding invariant features undergoes
a coordinate transform—the feature itself stays constant.

A set of locally rotation invariant features is a signature of
local image structures. Any state-of-the-art classifier can be
used in this context in a sliding window approach to identify
the objects at any location and in any orientation. In Fig. 8,
we show two examples of rotation invariant features based on
the spherical power spectrum and the spherical bi-spectrum
of an image.

Given Fourier coefficients, the power spectrum might
be the most commonly used invariant feature. The power
spectrum represents the energy distribution, or power, with
respect to the frequencies, in our case the tensor orders.

Definition 4 (Power Spectrum) The power of an order a j

tensor can be computed with the spherical product

p{a j } = (a j ◦0 a j ). (35)

The power spectrum is often sufficient when objects
clearly differ in symmetry. It reduces the characteristics of
a function to a small number of coefficients. However, this
might sometimes not be enough. For instance, although the
functions

f (n) =
∞∑
j=0

(a j )�Y j (n) and

f ′(n) =
∞∑
j=0

(b j )�Y j (n); b j :=
{

a j if j �= 2

D(g) ja j else
(36)
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Fig. 9 Odd bi-spectrum features can discriminate point reflections. In
the feature images, positive contributions are visualized in red, negative
contributions in blue

differ in the orientation of the order two tensor coefficient,
their power spectra are identical, see Proposition 1. This is
because the power spectrum does not preserve any infor-
mation about connections between the relative directional
information of the coefficients. This is a disadvantage over
the bi-spectrum.

Definition 5 (Bi-Spectrum) Let a j ∈ C
2 j+1, j =

{0, 1, 2, . . .} be the spherical expansion coefficients of some
spherical function. The bi-spectrum, we refer to [61] for
details, is formed by all possible spherical products of order
3 that return a scalar (a tensor of rank 0):

b{a j1 , a j2 , a j3} = (a j1 ◦ j3 a j2) ◦0 a j3 . (37)

Thebi-spectrumhas a variety of nice properties. For exam-
ple, contrarily to the power spectrum, it can discriminate
point reflections: The odd products ( j1 + j2 + j3 is odd)
change their signs if a the underlying object undergoes a
point reflection (or any other orthogonal transformation with
negative determinant), see Fig. 9 for an example.

The spherical bi-spectrum is a specific case of the bi-
spectrum over the rotation group SO(3) (The functions over
all three Euler angles (θ, φ, ψ); we only deal with spherical
functions over the two angles (θ, φ)). For SO(3), the bi-
spectrum is complete [61,62]. This is a powerful property. It
means the object can be fully recovered from the bi-spectrum
(up to the rotation). However, in case of SO(3), it is a rather
large object, and many possible redundancies exist. Restrict-
ing on spherical functions, the bi-spectrum becomes a rather
simple object and redundancies can be avoided easily by fol-
lowing some specific coupling rules for triple products,which
we discuss in the next subsection. Further details regarding
its properties are found in [61].

3.3.1 Symmetries in Triple Products

Computing all permutations of products between three spher-
ical tensors, as in the bi-spectrum, leads to a set of linearly
dependent tensors. Fortunately, thanks to the broad usage
of spherical tensors in the angular momentum theory, the
symmetric relationships of angular momentum states have
been studied exhaustedly in detail [15,88]. In our case, the

relationship between three states is important, see (98) in
appendix.

Considering the symmetries can resolve those linear
dependencies. In fact, the bi-spectrum is independent of the
ordering of the arguments j1, j2, j3, that is, there are only (

L
3 )

independent bi-spectral invariants, if the spherical signal is
band-limited by L . The following corollary summarizes the
most important cases. Theorem 1 covering the general case
together with the proofs is found in appendix.

Corollary 1 (Associativity of Tensor Products) For the
triple tensor products, there exist coupling rules that are one-
to-one, see [97]. These rules are:

(Bi-spectrum) If | j1 − j2| ≤ j3 ≤ j1 + j2, then

((
u j1 ◦ j3 v j2

)
◦0 w j3

)
=
((

w j3 ◦ j2 u j1
)

◦0 v j2
)

=
((

v j2 ◦ j1 w j3
)

◦0 u j1
)

. (38)

(Upper Bound) If j1, j2, j3 ∈ N, then

((
u j1 ◦( j1+ j2) v j2

)
◦( j1+ j2+ j3) w j3

)

=
((

u j1 ◦( j1+ j3) w j3
)

◦( j1+ j2+ j3) v j2
)

=
((

v j2 ◦( j2+ j3) w j3
)

◦( j1+ j2+ j3) u j1
)

. (39)

(Lower Bound) If additionally ( j3 − j2 − j1) ≥ 0, then

((
w j3 ◦( j3− j1) u j1

)
◦( j3− j2− j1) v j2

)

=
((

w j3 ◦( j3− j2) v j2
)

◦( j3− j2− j1) u j1
)

=
((

u j1 ◦( j1+ j2) v j2
)

◦( j3− j2− j1) w j3
)

. (40)

3.4 Steerable Voting

In Sect. 3.2, we mapped local image patches to spherical
tensor-valued basis functions K j . A result was a set of
expansion coefficients {a j }. In this section, we introduce
the dual operation, which “renders” patches into a scalar-
valued image. Applications can be steerable filters, where
an elongated filter kernel is rendered into a target image in
consistency with tubular structures in a source image; see,
e.g., [50]. Or, as we will see as an example in the application
section, to create object specific saliency maps, we call them
voting maps, for the generic detection of 3D objects.

In Refs. [71,81,91,101], this idea was used in the spirit
of a generalized Hough transform [8]. Let {a j }, with j =
{0, 1 · · · }, be the set of expansion fields of a local voting
function. Then, the process of “rendering” the votes into an
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Fig. 10 Finite differences are faster than convolutions based on the
Fourier transform. For a kernel with differential relationship, steer-
able voting can be accomplished in two manners: (1) upper row many
expensive projections with convolutions (2) bottom row Differentiation
followed by one single convolution. The latter one significantly reduces
the computation time

image can be accomplished with a convolution-like opera-
tion:

V (r) =
∫
R3

∞∑
j=0

(a j (x))TK j (r − x)dx, (41)

where V ∈ T0 is a scalar-valued image. This operation is
rather computationally expensive. However, if K j is a ker-
nel with differential relationship, see 3.2, then (41) can be
computed in the following manner:

V =
L∑
j=0

(a j ◦̃0K j ) = K0 ∗
L∑
j=0

(∂ j ◦0 a j ); (42)

see Sect. (23) for the definition of the tensor convolution. By
computing the derivatives in a top-down manner, we only
need L first-order spherical derivatives in combination with
an ordinary, scalar-valued convolution to compute the final
result. This makes both feature computation and voting com-
putational efficient. Figure 10 illustrates the work flow.

3.5 Diffusion on R
3 × S2 with STA

Image enhancement/restoration schemes are often based on
diffusion/convection schemes. In this section, we shortly
describe the generators of diffusion and convection on R3 ×
S2, and we show how they can be implemented in terms of
spherical tensor algebra.

Most of the implementations solving R
3 × S2-diffusion

equations [10,28,29,84] rely on an equiareal discretization
of the two-sphere S2. Indeed, there are implementations
[29] that use spherical harmonics as an intermediate S2-
interpolation scheme, but due to their design they cannot
benefit from the advantages of the spherical harmonic repre-
sentation, like the efficient computations of S2-convolutions,
and the closedness under rotations. Below, we introduce a
common differential operators acting on functions R

3 ×
S2 �→ C in terms of spherical harmonics. In this way, we
can benefit from the advantages of the harmonic representa-
tions. The discretization of the S2 is avoided, and we are able
to implement diffusion on R

3 × S2 with reasonable mem-
ory consumption. In general, we are interested in solving or

propagating a partial differential equation of the form

∂t f (r, n, t) = H f (r, n, t) , (43)

where f is a time-dependent orientation field, and H a linear
differential operator in n and r. In [29], it is shown that if
H generates a diffusion/convection, then it is a quadratic
form in n�∇ (convection and anisotropic diffusion), and
linear in 	 = ∂2x + ∂2y + ∂2z and J 2, which denotes the
Laplace–Beltrami operator on the two spheres. Our goal is
to understand the action of the generator H , if the field f is
written in terms of a spherical harmonics expansion, see (17).
The spherical tensor fields a j , the expansion coefficients, are
obtained by the projections a j (r) = 1

2 j+1 〈Y j , f (r)〉. Hence,
we are interested in matrix elements Ĥ jm

j ′m′ = 〈Y j ′
m′ , HY j

m〉 of
H in spherical harmonic representation such that the propa-
gating equation can be written in the form

∂t a
j
m(r, t) =

∞∑
j=0

m= j∑
m=− j

Ĥ jm
j ′m′a

j ′
m′(r, t) (44)

where Ĥ jm
j ′m′ is a differential operator in r, but purely alge-

braic in the orientation coordinate. The spherical Laplace
operator is well known in this representation. It is defined by

〈
Y j
m,J 2 f

〉 = − j ( j + 1)a j
m . (45)

For the spatial Laplacian, the result is 〈Y j
m,	 f 〉 = 	a j

m .
For the directed convection n · ∇ and the directed diffusion
(n·∇)2 generator, the result is not that trivial. In [87], we give
the general result for SE(3) diffusion, but mention here the
more simple case for R3 × S2. For the convection generator,
one finds

〈
Y j
m, (n · ∇) f

〉

=
∑

j ′=−1,1
m=m′+q

2 j ′ + 1

2 j + 1
〈 jm| j ′m′, 1q〉〈 j0| j ′0, 10〉 ∂1qa

j ′
n′

=
∑

j ′=−1,1

2 j ′ + 1

2 j + 1
〈 j0| j ′0, 10〉∂1 ◦j a j ′ . (46)

On the other hand, the diffusion generator takes the form

〈
Y j
m, (n · ∇)2 f

〉 = 	

3
+ 2

3

×
∑

j ′=−2,0,2
m=m′+q

2 j ′ + 1

2 j + 1
〈 jm| j ′m′, 2q〉〈 j0| j ′0, 20〉 ∂2q a

j ′
n′

= 	

3
+ 2

3

∑
j ′=−2,0,2

2 j ′ + 1

2 j + 1
〈 j0| j ′0, 20〉∂2 ◦j a j ′ . (47)
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The diffusion generator is an ideal candidate for regularizing
inverse problems where line-like structure is of interest. In
[84], this regularizer is called ’fiber continuity’ (FC).

4 The STA-Toolbox

The STA-toolbox provides a set of operations and procedures
which ease the handling of spherical tensors. This includes
spherical tensor products, derivatives, as well as a Fourier
transformation respecting symmetries of spherical tensors.
It further provides higher-level API functions for feature
extraction, object detection or anisotropic filtering. For per-
formance reasons, the toolbox is mostly written in C and
C++, but provides a high-level API in MATLAB. The tool-
box has been successfully tested on a 64 bitWindows system
and a 64 bit Linux system. On Linux, multi-threaded tensor
operations are enabled by default. Tensor operations are also
available on the GPU, written in CUDA.

A stafield class encapsulates the data structure of orien-
tation fields. Most of the functions of the STA-toolbox have
a simple API in MATLAB, or in its open-source alternative
OCTAVE. In this section, we introduce the basic functional-
ity of the toolbox using the MATLAB interface. References
to the C++ and C interface can be found online on the project
webpage.

4.1 Spherical Tensor Fields

The basis of all calculations is a data container that stores
the expansion coefficients of an orientation field f : R3 ×
S2 → C; see (17) for the definition. The expansion coeffi-
cients are a (band-) limited number of spherical tensor fields
{a0, a1, · · · , aL}, where a j ∈ T j .

We call this data container a stafield. It is a multi-
dimensional array with attributes describing the properties
of the orientation field in terms of its expansion coefficients.
The data are stored in a five-dimensional, real-valued array
of size 2 × N × X × Y × Z . Figure 11 illustrates the mem-
ory alignment of the data. The first dimension is always two.
It represents the real and imaginary part of the tensor field.
The second dimension represents all tensor field components
a j
m ; we will give details about the storage order below. The
third, fourth and fifth dimensions are the image dimensions.

Fig. 11 Representation of stafields inmemory. It is an interleaved array
of the real and imaginary values of the tensor coefficients

Fig. 12 The toolbox provides four different types of orientation field
representation. The full field contains all coefficients up to a specified
order, while the single field contains only a single spherical tensor field

A tensor field is associated with the four attributes: storage,
L, type and element_size:

1. The element_size is a three-dimensional vector which
defines the extents of a voxel (e.g., in micrometers).
The default is (1, 1, 1)T . The voxel size is considered by
both the tensor derivatives and convolution kernel sizes.
We recommend to use this attribute to account for an
anisotropic image resolution.

2. The attribute L defines the upper limit of the expansion.
3. A stafieldmay contain only a single spherical tensor field,

or only a certain subset of coefficients with odd or even
order.
The toolbox distinguishes between four different field
types: “single,” “odd,” “even” and “full.” “Single” is
the standard type and defines an orientation field that is
defined by a single spherical tensor field of order L. With
“full,” the array contains L+1 tensor fields, ranging from
order 0 up to order L. “Odd” and “even” are basically
“full” tensor fields; however, in order to save memory,
all even, or odd tensors, respectively, are omitted in the
array. Figure 12 illustrates these four types.

4. Inmost of the applications, spherical tensor fields contain
only real tensors, see Sect. 2.3. In this case, the toolbox
stores only the lower l+1 parts (al−l , . . . , a

l
0)

T of a tensor
field of order l and sets the storage attributes to
“STA_FIELD_STORAGE_R”. Otherwise the full tensor
is stored (“STA_FIELD_STORAGE_C”).

A stafield in MATLAB is represented by the
stafieldStruct MATLAB structure.

The stafieldStruct constructor can turn any real-
valued image into an orientation field. Below an example for
a real-valued image called “img.”

>> size(img)
ans =

80 80 80

>> sfield=stafieldStruct(img)
sfield =

storage: 'STA_FIELD_STORAGE_R '
L: 0

type: 'STA_OFIELD_SINGLE'
data: [5-D single]

element_size: [1 1 1]
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Basic tensor operations, which may alter the tensor order,
like products and derivatives, can only be applied to stafields
of the type “single,” that is, single spherical tensor fields.
In order to apply such operations to all kinds of stafields,
the toolbox provides an interface to access the single com-
ponents, the spherical tensor fields, of a stafields container.
With the stafieldStruct, we can access single stafields
from full stafields. For example,

% extracting the order 3 field from the
% full stafield ifield
ofield=stafieldStruct(ifield ,3),
% ofield is a stafield of type
% `single ' of order 3

extracts the order three field component from ifield, and
we overwrite a single component in a full stafieldwith a given
single field with

% suppose ifield is an l-th order
% single stafield.
% overwriting the l-th order component
% in the full stafield ofield with
% ifield
ofield=stafieldStruct(ofield , ifield)

Note that in C and C++, these operations work without the
need for making expensive memory copies.

The stafield constructor can also initialize specific tensor
fields for feature extraction. In addition to the Gauss–
Laguerre and Gabor kernels L j

n and B j (k), see Sect. 3.2,
it supports Gaussian kernels [81] and Gaussian smoothed
spheres [101]. For example,

kernel=stafieldStruct('gauss' ,...
,[128 ,128 ,128] ,5)

initializes a stafield of order 0 using a Gaussian function with
a standard deviation of 5. By default, a kernel is centered
with respect to (0, 0, 0)T so that it can directly be used in
a tensor convolution. Optional parameters change the tensor
field order, define the storage type, or set the element_size.

The stafieldStruct offers many further ways to
construct or initialize empty tensor fields. Typing help
stafieldStruct lists detailed information about further
constructors.

4.1.1 Cartesian to Spherical Tensors and Vice Versa

Inmost applications, it is sufficient to either workwith Carte-
sian tensors OR with spherical tensors. Mixing both worlds
is, in general, from an implementation and computation point
of view, in our opinion, not recommended. Remember, table
1 gives some examples about the large number of the dif-
ferent possible irreducible components of a higher-order
Cartesian tensor. On the other hand, tensors of order one
or two are playing an important role in many existing algo-
rithms so that such a forward and backward transformation is,
indeed, demanded. According to (5), a second-order tensor

can always be decomposed into a unique triple of irreducible
order two, one and zero tensors.

The toolbox provides functions to connect first- and
second-order Cartesian tensor fields with their spherical
counterparts and vice versa. The toolbox provides both
the forward and backward transformation. The Cartesian-
to-spherical transformation can be accomplished with the
sta_c2s. For the back transformation, there exists the
sta_s2c function. The two functions sta_Grad and
sta_Hessian are serving as a reference for storage con-
vention of Cartesian tensor fields of order one and two,
respectively. The following example shows how to transform
a Cartesian gradient and Hessian field into their spherical
counterparts.

% gradient field to tensor field
field=sta_c2s(sta_Grad(img));
% and the back trafo
T1=sta_s2c(field);

% Hessian field to tensor field
field=sta_c2s(sta_Hessian(img));
% and the back trafo
T2=sta_s2c(field);

4.2 HARDI to Spherical Tensors and Vice Versa

Diffusion-weighted magnetic resonance imaging (MRI) can
noninvasively visualize the fibrous structure of the human
brain white matter [58]. Based on the directional dependency
of water diffusivity in fibrous tissue, it is possible to directly
acquire orientation information. The high angular resolution
diffusion imaging (HARDI) acquisition scheme, wheremore
than 60 diffusion directions per voxels are acquired, allows to
estimate the orientation distributions of local fiber bundles.
Such a measurement is essential for in vivo fiber tracking
[85]. The measurement is an orientation field, which is often
represented in terms of spherical tensor expansion coeffi-
cients for further processing steps like feature detection or
deconvolution. In its raw form, it is an orientation field rep-
resented by a four-dimensional array whose forth dimension
corresponds to the diffusion direction. The toolbox provides
the functions

% converting HARDI signal to
% an even stafield
[ofield ,b0avg ]=...

sta_hardi2stafield(data ,b_dir);
% b0avg is the b0 signal

% converts a stafield into a
% HARDI signal
data=sta_stafield2shardi(ofield ,...

b0avg ,b_dir);
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whichmap from a discrete HARDI signal to an even3 stafield
and vice versa.

4.3 Spherical Tensor Operations

The toolbox provides the following basic tensor operations
which are acting on the stafieldStruct container:

Operation Matlab function Interpretation

Spherical products sta_prod (f ◦j g), f ∈ T j , g ∈ Tk
Spherical derivatives sta_deriv (∂n ◦n+m f), n =

{−2, 1, 0, 1, 2}, f ∈
Tm

Laplace sta_lap 	f, f ∈ Tm
Tensor FFT sta_fft, sta_ifft f̃ = FT(f), f =

FT−1 (̃f); f, f̃ ∈
Tm

Multiplication sta_mult αf, α ∈ C, f ∈ Tm

Spherical Products Given two stafields ifield1 and
ifield2 of the type “single,” the spherical product can
be computed according to

ofield3=sta_prod(ifield1 ,ifield2 ,L),

where L is the tensor rank of the output ofield3. Optional
parameters can switch between a standard and a normalized
tensor product, or can weight the product by a given scalar.
Spherical Derivatives Given a stafield ifield1 of the type
“single,” the spherical derivative operator can be appliedwith

ofield2=sta_deriv(ifield1 ,n),

where n can be either -2 (two times down-derivative), -1 (one
time down-derivative), 0 (a curl like operation, which is not
changing the tensor order), 1 (one time up-derivative) and 2
(two dimes up-derivatives).

LaplaceOperator TheLaplace operator can be applied to any
type of stafield. The output is a field with the same attributes
like the input field.

Tensor FFT The FFT operator can be applied to any type of
stafield.

Multiplication The multiplication operator is a wrapper that
allows (complex valued) scalarmultiplicationswith stafields.
While for real-valued factors α ∈ R

field.data=field.data*alpha;

is a valid solution, the C-style of complex numbers requires
the usage of

field=sta_mult(field ,alpha_r +1i
*alpha_i );

for complex-valued factors.

3 The signal is symmetric.

4.3.1 An Introductory Example

A fundamental step in many applications involving STA is
the covariant feature extraction, see Sect. 3.2. For steerable
filters, for instance, as well as for the computation of rotation
invariant features, an image is locally expanded in terms of
a Gauss–Laguerre or Gabor basis.

That is, computing a stafieldofield := (a0, a1, · · · , a j ),
with a j := (K j ∗ I ) ,where K j has the differential rela-
tionship K j := ∂ jK j . The projection can be completely
performed in MATLAB using the basic STA-toolbox API.
For instance,

% img to tensor field
ifield=stafieldStruct(img)

% convolution kernel
kernel=stafieldStruct('gauss' ,...

ifield.shape ,5);

L=3;
% initializing a full orientation
% field of order L
ofield=stafieldStruct(ifield.shape ,
L,...

'STA_OFIELD_FULL ' ,...
'STA_FIELD_STORAGE_R ','single');

% convolution between image and kernel
ifield=sta_ifft(sta_prod (...

sta_fft(ifield),sta_fft(kernel),
0,...
{'alpha' ,1/prod(ifield.shape )}));

% defining the 0 order field
% of the full field
ofield=stafieldStruct(ofield ,ifield);

% iteratively computing the higher
order

% components
for l=1:L
ofield=stafieldStruct(ofield ,...

sta_deriv(stafieldStruct(ofield ,
l-1) ,1));

end;

computes a full stafield containing all the expansion coeffi-
cients up to order 3.

Particularly for large images of several gigabyte, the bot-
tleneck is rather memory allocation and de-allocation than
CPU performance. The same operations can be performed
using the sta_steerFilt function. The
sta_steerFilt has been designed in a memory friendly
way directly in C++. The example above can be shortened to

ifield=stafieldStruct(img);
L=3;
ofield=sta_steerFilt(ifield ,...

{'kname','gauss','kparams ',5,'BW',
L,...
'type','STA_OFIELD_FULL '});
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The sta_steerFilt function can be used to compute
Gaussian derivatives, Gauss–Laguerre expansion coeffi-
cients as well as Gauss–Bessel coefficients. There are further
optimized functions for specific applications, which will be
introduced in the application section.

It isworthmentioning that forMATLABusers, there exists
a convenient stafield class which mimics the C++ interface.
The stafield class implements all tensor operations asmember
functions. For instance,ofield = ∂1(G3∗I ) can bewritten
as

ofield=stafield(img).fft...
.prod (...

stafield('gauss',size(img),3).fft ,
... 0)...

.ifft (1/ numel(img)). deriv (1);

Unfortunately, this interface is currently not supported in
Octave.

The toolbox can be extended with further optimized func-
tions using the C++ or C interface of the stafield class. The
C++ stafield class can be used in a similar manner than
the MATLAB stafield class. The C interface is similar to
the stafieldStruct interface in MATLAB and Octave. Helper
functions for the exchange of data between MATLAB and
C are provided as well. The C++ stafield class also provides
member functions to transfer stafields fromCPU to GPU and
vice versa.

5 Applications

In the following, we give several application examples which
make use of STA. The focus lies on applications with value
for the biological and medical image analysis. As already
outlined in introduction, STA bridges the gap between low-
level feature detection of ridge and plane-like structures to
higher-order structures. In this section, we show examples of
covariant higher-order feature extraction. We further show
how to compute rotation invariant descriptor maps for invari-
ant feature detection. We also introduce an example of a
trainable polynomial filter. We demonstrate how to utilize
polynomial filters to detect complicated 3D image struc-
tures. Another example uses a model-based deconvolution
approach regularized by the S2 × R

3-diffusion generator to
enhance and detect tubular structures in 3D. We finally use
STA to estimate the neural fiber orientation distributions from
magnetic resonance images (MRI).

At the end of each subsection, youmayfind a simple skele-
ton that serves as a copy&paste example which runs even on
lightweight computer systems. The skeletons together with
the data can be found in the skel toolbox directory in the
repository as well.

5.1 Covariant Feature Extraction

TheSTA-toolboxprovides twocategories of covariant fea-
tures: projection-/convolution-like features and distribution-/
histogram-like features. The first group of features is intro-
duced in Sect. 3.2. Details for the latter features will be given
in this section. All features are computed densely on the
whole volume. Dense feature maps occupy a lot of memory,
and their computation is expensive. However, the features
we propose here can be computed efficiently with the local
spherical derivative and spherical product operators.

5.1.1 Projection Features

Projections on spherical tensor-valued kernels with differ-
ential relationship can be realized efficiently via spherical
derivatives, see Sect. 3.2.1. For the spherical derivatives, by
default, the toolbox uses finite differences of second-order
accuracy. They offer the best trade-off regarding computation
time and accuracy. For higher-order harmonics, we provide
higher-order approximations as well, see Fig. 15 for a com-
parison regarding time and accuracy.

The functionsta_steerFilt is an efficient implemen-
tation for projections of the kind a j := (K j ∗ I ), where
K j is a kernel with differential relationship according to
Sect. 3.2.1.

Gaussian Derivatives Simple spherical Gaussian derivatives
can be computed with

ofield=sta_steerFilt(stafieldStruct
(img),...

{'kernel','gauss','kparam',sigma ,...
'type','STA_OFIELD_FULL ','L',L});

The parameter L is the cutoff of the expansion, see Sect. 2.3.
The parameter sigma determines the width of the Gaussian.
For further details regarding spherical Gaussian derivatives,
see [81].

Gauss–Laguerre The Gauss–Laguerre coefficients can be
computed with

ofield=sta_steerFilt(stafieldStruct
(img),...

{'kernel','gaussLaguerre ' ,...
'kparam',[sigma ,n],...
'type','STA_OFIELD_FULL ','L',L});

The parameter pair [sigma, n] determines the width of the
Gaussian and the polynomial order of the radial Laguerre
polynomial, respectively.

Gabor Functions For the Gabor coefficients, we just change
the kernel parameter. For instance,

ofield=sta_steerFilt(ifield ,...
{'kernel','gaussBessel' ,...
'kparam',[sigma ,k,s],
'type','STA_OFIELD_FULL ','L',L});
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(a) (b) (c)

Fig. 13 In these images, the orientation fields are representations of
local image features, like edges, crossings, curvature. The orientation
functions have been visualized on top of the source image. From the left

to the right, we show orientation fields based on the expansion coeffi-
cients of three different types of features: a Gauss–Laguerre, b Gabor
and c SHOG

computes the projection of a Gabor with a radial frequency k.
The parameter sigma determines the scale of the kernel. The
third parameter, s, determines the Gaussian window size of
the kernel with respect to the wave frequency k. For details,
see [97].

5.1.2 Histogram Features

Histogram of oriented gradients features (HOG) [26]) are a
widelyused family of discriminative imagepatchdescriptors.
HOG features represent the gradient orientation distribution
in a local image patch. In their original form, they are not
rotation covariant. An extension to rotation covariant 3D
representations, which we call SHOG, has been proposed
in [70,101].

SHOG(SphericalHOG)Let g = ∇ I be the gradient image of
an image I . Let further Gs : R3 → R be a radial symmetric
window function (here a Gaussian). Then, the orientation
functions of the orientation field

f {I }(x, n) :=
∫
R3

‖g(r)‖γ δ2n(ĝ(r))Gs(x − r)dr (48)

are representing the local occurrence of gradient orientations,
weighted by their magnitude. The function ĝ := g/‖g‖ is the
normalized gradient direction field of g. With the Dirac delta
function δ2n : S2 → R (see (69) in appendix), wemask out all
gradients in the gradient image g with a different orientation

than n. With the parameter γ ≤ 1, the influence of large
outliers in the gradient magnitudes can be reduced, and edges
with low signal can be enhanced.

The fields of spherical tensor expansion coefficient of
f {I } (see (17)) can be computed with

a j =
((

‖g(r)‖γ (Y j (ĝ))
)

∗ Gs

)
; (49)

for details see (5.6.1) in [97].
The function f {I } maps gradient orientation information

onto a spherical function in a nonlinear fashion. Hence, a fast
projection in terms of derivatives, like for the kernelswith dif-
ferential relationship, is not possible. However, based on the
fact that higher-order spherical harmonics can be computed
in terms of lower order harmonics, see (64) in appendix, we
have developed a recursive algorithm for an efficient map-
ping, see Fig. 14.

The corresponding toolbox function is the sta_shog
function. A function call is

ofield=sta_shog(stafieldStruct(img),...
{'kernel','gauss' ,...
'kparam',s,'BW',L,'gamma' ,0.8});

This example computes the expansion coefficients up to order
L of local SHOG features in a Gaussian window of width s.

Copy&Paste Example The following example shows how to
computes covariant features and how to visualize the corre-
sponding orientation field. Figure 13 shows examples of the
visualization of orientation fields of various features.
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Fig. 14 Based on the gradient field g : R
3 → R

3 of an image, the
expansion coefficients of local gradient orientation distributions can
be computed in a recursive manner. In this sketch, ĝ := g

‖g‖ is the

gradient direction field of g; also note that ‖g‖Y1(ĝ) coincides with the
spherical derivative (∂ ◦1 I ) which can be computed with the toolbox
using the spherical derivative operator. (i) Higher-order representations
of the orientation fields, (ii) localweighting of the higher-order direction
fieldswith the gradientmagnitudes, and (iii) aggregation of contribution
from neighboring voxels using a radial symmetric window function
w : R3 → R

%% covariant descriptor field
load('skel_data.mat','dataset ');

img_id =1;
img=double(dataset{img_id }.img);
img=img +0.25* randn(size(img));

sigma =2.5;
ofield=sta_steerFilt(stafieldStruct(img),...

{'kernel ','gauss ','kparam ',[sigma ],...
'type','STA_OFIELD_FULL ','L' ,4});

% show the corresponding orientation field
sta_glyph(ofield ,'init_view ',3,'gamma ' ,-0.9);

5.2 Rotation Invariant Descriptor Fields

In volumetric images, objects like cells, neurites, blood ves-
sels, parts of tissue or bones may appear in any orientation.
In contrast to 2D, where a planar rotation has only one
degree of freedom, a 3D rotation has three of them. As a
consequence, operations that are feasible in 2D, like sliding
matched filters, are expensive in 3D so that invariant features
play an important role in 3D. Rotation invariance can either
be achieved by normalization or by group integration. In fact,
both operations can be reduced to spherical tensor products
[97]. As mentioned, the STA-toolbox provides functionality
to densely compute spherical tensor products. With tensor
products, the toolbox can compute angular power- and bi-
spectra from local image patches, which we have introduced
in Sect. 3.3.

Descriptor fields of spherical spectra have been used in
applications for cell detection [93,103], but also for fetal
brain and thorax analysis in MRI [59,60] and feature-based
tissue classification in HARDI [94,99]. An n-dimensional
descriptor image is amapping d : R3 → R

n , where the value
transform under rotation is the identity transform, namely

(gd)(x) := d(U(g)T x) . (50)

The n-dimensional vectors d(x) in d are called local (rota-
tion invariant) image descriptors. Given an image descriptor
d(x), any kind of classifier is able to perform a segmentation
or classification tasks in a rotation invariantmanner. The tool-
box provides the optimized function sta_invrts to either
compute descriptor fields based on the power spectra,

d j := p{a j }, (51)

or the bi-spectra

dk := b
{

a j1 , a j2 , a j3
}

, (52)

from the expansion coefficients of an orientation field. This
function automatically takes care of product associativities,
see Sect. 3.3.1.

HARDI Power-Spectrum Descriptors Given a high angular
resolution diffusion image (HARDI) [112]. Such a measure-
ment is essential for in vivo fiber tracking [85], see Sect. 4.2.
For fiber tracking, it is important to identify voxels which
corresponds to white matter or gray matter tissue. A typi-
cal approach is to co-register with mask images that have
been registered to a T1 image. A problem is that typical
HARDI images have a low spatial resolution and are suf-
fering from strong noise and distortion artifacts. This makes
the co-registration error-prune. The HARDI signal is a sym-
metric orientation field with an equidistant sampling of the
angular space. The symmetry implies that only the even coef-
ficients of a spherical harmonic expansion contribute to the
expansion. For HARDI signals, the expansion (17) simplifies
to

f (r, n) =
∞∑
j=0

a2 j (r)�Y2 j (n). (53)

Invariant features based on a tensor decomposition of
the HARDI signal have been explored quite frequently in
the literature; see for instance [46,48,51,72,95]. In [94], a
learning-based approach was introduced. The power spec-
trum of the spherical harmonic expansion coefficients of the
HARDI signal has been used to classify tissue into brain
matter, white matter and the background. With the STA-
toolbox, these features can be computed in only two steps:
first the conversion of the HARDI array representation into
an stafieldStruct, and then computing the invariants.

% converting HARDI signal to an even
% orientation field (default L=4)
ofield=sta_hardi2stafield(data ,b_dir);

% computing the local image descriptor
% image using power spectrum features
d=sta_invrts(ofield , 'power2',true);
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(a)

(b) (c)

Fig. 15 Accuracy and computation time of tensor derivatives. For fur-
ther details regarding the experiment, we refer to section 4.2.1 in [97]. a
Qualitative comparison. (a) Second-order and (b) fourth-order approxi-
mation. GT is the explicitly computed harmonic. [(The center slice of a
1123volume is shown.) b Accuracy (Normalized cross-correlation with
explicitly computed harmonics (GT).] (c) Computation speed (Intel
Quad Core i5-2400 CPU @ 3.1GHz)

Fig. 16 A voxel classification of a HARDI signal into four classes:
background (BG), cerebrospinal fluid (CSF) and brain gray/whitemat-
ter tissue (GM/WM).We show results for four different test images. On
the left, we show the classification results based on the features pro-
posed by Schnell et. al. On the right, the results of an extension with
local derivatives

On the left side of Fig. 16, we show the label predictions of
a random forest [14] on a test set. The forest has been trained
on five images using the power spectrum of the HARDI sig-
nal.

As shown in Fig. 16, this approach leads to a noisy, discon-
tinued segmentation of the HARDI images. HARDI features
can easily be enriched with local wavelet features which
improves the results. The idea is that not only the raw sig-
nal itself, but also rotation invariant representations of local
neighborhood descriptors are included into the feature vec-
tor. For this example, we use the function sta_wavelet.
The function sta_wavelet can project, in contrast to

sta_steerFilt, not only images, but also higher-order
spherical tensor fields f i ∈ Ti to expansion coefficients of
an orientation function. In our example here, we map the
coefficients from (53) to new coefficients {b j (0), · · · , b j (i)},
where

b�( j) :=
(
∂ |�− j | ◦� (a j ∗ Gσ )

)
. (54)

We then form power spectrum-based descriptor images from
those coefficients. For details regarding this projection, see
section 5.1.3.1 in [97].

In the following example, we extended the HARDI fea-
tures with the orientation fields of these wavelet features in
three different scales (σ = 0.5, 1 and 6).

% converting HARDI signal to an even
% orientation field (default L=4)
ofield=sta_hardi2stafield(data,b_dir);

% defining orientation field attributes.
% note that we include the raw signal itself
% (it is already an orientation field)
ofield_params={...

@(x)(x),...
@(x)sta_wavelet(stafieldStruct(x,0) ,...

{'kname ','gauss ','kparams ' ,0.5}) ,...
@(x)sta_wavelet(stafieldStruct(x,2) ,...

{'kname ','gauss ','kparams ' ,0.5}) ,...
@(x)sta_wavelet(stafieldStruct(x,4) ,...

{'kname ','gauss ','kparams ' ,0.5}) ,...
@(x)sta_wavelet(stafieldStruct(x,0) ,...

{'kname ','gauss ','kparams ' ,1.0}) ,...
@(x)sta_wavelet(stafieldStruct(x,2) ,...

{'kname ','gauss ','kparams ' ,1.0}) ,...
@(x)sta_wavelet(stafieldStruct(x,4) ,...

{'kname ','gauss ','kparams ' ,1.0}) ,...
@(x)sta_wavelet(stafieldStruct(x,0) ,...

{'kname ','gauss ','kparams ' ,6.0}) ,...
@(x)sta_wavelet(stafieldStruct(x,2) ,...

{'kname ','gauss ','kparams ' ,6.0}) ,...
@(x)sta_wavelet(stafieldStruct(x,4) ,...

{'kname ','gauss ','kparams ' ,6.0}) ,...
};

% computing orientation fields
for o=1:numel(ofield_params),

ofields{o}=ofield_params{o}
(ofield_HARDI);
end;

% computing the local image descriptor
% image using power spectrum features
d=sta_invrts(ofields, 'power2 ',true);

Figure 17 shows the feature images. Thanks to this additional
information, particularly the gray matter could be identified
more precisely, as shown on the right-hand side of Fig. 16.

Copy&Paste Example The following example shows how to
extract rotation covariant features, create rotation invariant
features to form a descriptor image and finally to train and
apply a classifier 
 to predict labels in an unseen image. The
procedure is illustrated in Fig. 18.
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Fig. 17 With only two lines of code, we can compute the band-limited
power spectrum p{a j } features of the HARDI signal (left column). This
can be used for tissue classification [94]. We can improve the classifica-
tion performance by including voxel neighborhood information into the

descriptor image. Therefore, we compute the power-spectrum features
of neighborhood descriptor fields b�( j) in three scales σ = {0.5, 3, 6}.
The green rectangle indicates the power spectrum feature images with
j = �. Note that wemasked out the air (black) for a clearer visualization

Fig. 18 Pipeline for a label prediction task based on rotation invariant
descriptor fields. (See the copy & paste example of Sect. 5.2 for an
implementation example). On the left the pair of image and labels for
training. On the right-hand side: the prediction of an unseen image

%% rotation invariant object detection
load('skel_data.mat','dataset ');
img_train =1; img_test =2;
d={}; img ={};

for img_id =1:2
img{img_id }= double(dataset{img_id }.img);
img{img_id }=img{img_id }+0.25* randn(size(img{img_id }));

ofields ={};
k=[pi ,pi/2]; sigma =4;
%% computing covariant features (Gabor) for two radial

frequencies
for a=1:2

ofields{a}= sta_steerFilt(stafieldStruct(img{img_id }) ,...
{'kernel ','gaussBessel ','kparam ',[sigma ,k(a),1],...
'type','STA_OFIELD_FULL ','L' ,5});

end;
%% computing the power spectrum
d{img_id }=sqrt(sta_invrts(ofields , 'power2 ',true ));

end;
%% TRAINING
%%1) preparing the ground truth
gt=double(dataset{img_train }.GT);

imwrite(gray2rgb(squeeze(img{img_train }(:,:,ceil(end /2))), gray )...
,'512 _train.png');

imwrite(gray2rgb(squeeze(gt(:,:,ceil(end /2))), jet),'512 _train_gr
.png');

%%2) sample some negative examples

neg_examples =(rand(size(gt )) >0.999).* bwdist(gt >0)>3;
neg_examples=neg_examples | ...

(rand(size(gt )) >0.8).*( bwdist(gt >0) >1).*( bwdist(gt >0) <6);
train_labels =[find(neg_examples (:)); find(gt(:) >0)];

%%3) train a classifiers
myClassifier = ClassificationKNN.fit(d{img_train}
(:, train_labels )',...

gt(train_labels)','NumNeighbors ' ,3);

%% TESTING
%%3) predict lables on test image
predict=reshape(myClassifier.predict(d{img_test }(: ,:)') ,...

size(img{img_test }));
imwrite(gray2rgb(squeeze(img{img_test }(:,:,ceil(end /2))), gray )...

,'512 _test.png');
imwrite(gray2rgb(squeeze(predict (:,:,ceil(end /2))), jet),...

'512 _test_pred.png');

5.3 Steerable Voting

The STA-toolbox implements the voting, dual to
sta_steerFilt, by sta_voteFilt (see Sect. 3.4).

There exists a high-level API, which combines the projec-
tion and the voting into a trainable filter. It implements filters
presented in [81,91,100–102]. Trainable filters are a family
of steerable filters. A common characteristic of these filters
is that the shape of the voting kernel can be adapted to a spe-
cific 3D object detection task in an image context-dependent
manner. The input is an image I ∈ T0, the output a saliency
map V ∈ T0 for the presence of 3D objects or shapes.

For example, a training step, where we have given
pairs of images and binary label images of the form
{img1,label_img1}. With the training data, we can train a
harmonic filter [81] with

model=sta_gfilter_train (...
{img1 ,img2 },...

%two training images
{label_img1 ,label_img2 },...

%two label images
5,...
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Fig. 19 A filter has been trained on two images A and B to detect four
types of landmarks in T1-weighted images of human brains. Each col-
umn corresponds to one landmark. The top row shows the binary-valued
label images, which mark the landmarks, on top of the input training
images. The landmarks are shown in X , Y and Z -slices, centered at the

landmark center. The two rows at the bottom show results on unseen
test images C and D. We show the voting map of the filter in top of the
input image. In blue, we show the maximum intensity projections of
the voting image V

%L=5
{'gauss' ,3},...

%use wavelet features
{'gauss' ,1.5,3,6},...

%use three voting functions
'options_combo ' ,...
{'o2_options_power ' ,[1,1,5,0,5],...
%second order products
'o3_options_power ' ,[1,0,1,1,5,
0 ,5]},...

%odd third order products
'featurefunc',@sta_wavelet_inorm);

%contrast normalized wavelets

We have trained the filter on a landmark detection task in
T1 weighted MR images; similar to [100], where they used
HARDI data. For the filter, we used second-order covariant
features as well as odd third-order covariant features. Due to
the reflection symmetry in the brain, odd third-order features
are necessary to distinguish the right and left hemisphere.We
applied the filter to unseen images with

H=sta_gfilter_apply(img ,model);

The results are shown in Fig. 19.

Copy&Paste Example The following example shows how to
train and apply a voting filter. The work flow of the voting is
illustrated in Fig. 20.
%% steerable voting with trainable filters
load('skel_data.mat','dataset ');

img_train =1; img_test =2;
d={}; img ={};

Fig. 20 The trainable voting filter is some kind of trainable steerable
filter. The coefficients a j are representing local image features of an
image I . The coefficients b j determine the shape of local voting kernels
that are rendered into a saliency map V in an image content dependent
manner. The weights w

j
( j1, j2)

are the free parameters. In a training step,
the weights are determined so that local patches determine the shape
of V . The processing step in the middle, here the products, has to be
a rotation covariant, in order to get good results, also nonlinear, step.
For the copy&paste example, we trained three sets of parameters for
the three different kinds of objects

for img_id =1:2
img{img_id }= double(dataset{img_id }.img);
img{img_id }=img{img_id }+0.25* randn(size(img{img_id }));

end;

for c=1:3;
gt=( dataset{img_train }.GT)==c;
% training a model
model=sta_gfilter_train (...

{img{img_train }},{gt},5,{'gauss ' ,[1.5] ,[2.5]} ,{'gauss ' ,5},...
'featurefunc ',@sta_wavelet ,'options_combo ' ,...
{'o2_options_power ' ,[1,1,5,1,5]});

imwrite(gray2rgb(squeeze(img{img_train }(:,:,ceil(end /2))),
gray ),...
['513 _train ',num2str(c),'.png']);

imwrite(gray2rgb(squeeze(gt(:,:,ceil(end /2))), jet),...
['513 _train ',num2str(c),'gt.png']);
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% predictions on unseen image
predict=max(sta_gfilter_apply(img{img_test},model ),0);

imwrite(gray2rgb(squeeze(img{img_test }(:,:,ceil(end /2))),
gray ),...
['513 _test ',num2str(c),'.png']);

imwrite(gray2rgb(squeeze(predict (:,:,ceil(end /2))), jet),...
['513 _test ',num2str(c),'pred.png']);

end;

5.4 Steerable Deconvolution

Usually, for low-level feature detection, a bank of steerable
filters is correlatedwith an image to obtain an orientationfield
[3,5,42]. The orientation field represents the evidence for the
presence of simple structures like lines, ridges or edges in
a position- and direction-dependent manner. The filter ker-
nels are typically axial symmetric kernels. In Fig. 21, we
have visualized examples of such kernels. The STA-toolbox
implements the sta_steerFilt command, which can
correlate an image with a variety of predefined kernels. In
the STA-toolbox, a kernel is represented in terms of spherical
tensor-valued basis functionsK j . As a consequence, the cor-
relation coincideswith projections of the form a j = (K j∗I );
it is an extraction of covariant features (Sects. 5.1.1 and 3.2).

In many low-level feature detection tasks, simple struc-
tures like tubular-shaped blood vessel or neurites are cor-
rupted by noise and artifacts. In such cases, a simple linear
filter may provide a noisy and corrupted orientation field
as well. Steerable deconvolution provides a way to obtain
a smooth, edge-preserving orientation field from corrupted
image data. For the toolbox, we have extended the existing
steerable deconvolution in [86] to 3D.

Steerable filters and steerable deconvolution are using the
same kind of filter bank. The difference between a steerable
filter and the steerable deconvolution is thewaywe obtain the
underlying orientation field. In case of the steerable filter, it
is a projection (Sect. 3.2). In the case of steerable deconvolu-
tion, we use the dual operation, the voting (Sect. 3.4). Let V f

be avotingfieldV f (r) = ∫
R3

∑∞
j=0(a

j (x))TK j (r−x)dx, as
defined in (41). Then, in steerable deconvolution, we search
the coefficients a j of the orientation field f (see (17)) which
minimize the energy function

Fig. 21 The toolbox provides a large set of predefined kernels for
image filtering and low-level feature detection. This includes kernels
for tube detection, 3D ridge detection and surface detection. The bot-
tom row shows the corresponding parameters for the steerable filter
function sta_steerFilt

Jvote( f ) :=
∫
R3

|V f (r) − I (r)|2dr. (55)

That is, steerable deconvolution interprets low-level feature
detection as an inverse problem: A steerable filter bank maps
a hidden ’orientation’ function f onto an observed intensity
image I . The corresponding optimization is a deconvolution
problem. As the problem is highly underdetermined, a reg-
ularization is necessary. The spherical diffusion generator,
which we introduced in Sect. 3.5, is an ideal candidate to do
so. That is, we want to find an orientation function f such
that

J ( f ) = Jvote( f ) + λ

∫∫

R3×S2

(n · ∇ f (r, n))2 drdn (56)

is minimized; an advantage of this ’inverse’ approach is that
spurious correlation can be suppressed. For example, in a line
detection task, crossings can be cleanly resolved, and contri-
butions at intermediate angles are avoided. The STA-toolbox
provides a simple API to apply steerable deconvolution to
lines, edges and planes.

In Figs. 24 and 25, we show quantitative and qualitative
results for both steerable filters and the steerable deconvolu-
tion approach.

Figure 22 shows an example obtained for neurites in a
drosophila fly brain. The results are obtained via

% load some data into an image img
y = sta_steerdeconv(img ,'lambda' ,0.1,
'L' ,6);

which uses the even part of a Gauss–Laguerre expansionL j
n

restricted to n = 0 up to order L = 6. One can nicely see how
with increasing expansion order L the resulting orientation
functions, particularly at crossings, become sharper.
Copy&Paste Example This example loads and performs the
steerable deconvolution on the image from Fig. 1.
%% steerable deconvolution

load('skel_data2.mat','img3D ');
img3D=exp(-bwdist(img3D ).^2/2);
img3D=img3D +0.25* randn(size(img3D ));

imwrite(gray2rgb(squeeze(img3D(:,:,ceil(end/2))), gray),'
514 _raw.png');

%% steerable deconvolution
res = sta_steerdeconv (stafieldStruct(img3D),'alpha ',2,
'maxit ' ,20);

%% local maxmima detection (is a direction)
m = getLocalMinMax(res.data ,res.L,1,true ,res.type ,res

.storage );
%% maginute
m = squeeze(sqrt(sum(m.^2 ,1)));

imwrite(gray2rgb(squeeze(m(:,:,ceil(end/2))), gray),'514 _filt
.png');

5.5 High Angular Resolution Diffusion Imaging and
Spherical Deconvolution

In diffusion-weighted magnetic resonance imaging (MRI)
exist high-quality schemes, like high angular resolution dif-
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Fig. 22 Varying intensities, gaps, blob-like structures and crossings of
presynaptic sites in an image of dopaminergic neurites in a drosophila
brain make the tracing of neurites difficult. The orientation field
from higher-order steerable deconvolution smoothes the neurites in an
anisotropic manner and provides the information to resolve the cross-
ings. The images show the estimation of the orientation field of the

neurites using steerable deconvolution. Upper row the orientation field
based on a band-limited expansion up to order two, four and six. Bottom
row A maximum intensity projection of the orientation field’s maxi-
mum responds along z-direction of an 128 × 128 × 40 fraction of a
3D micrograph (left), and a projection along y of an 128 × 40 × 128
fraction (right)

(a) (b) (c)

(d) (e) (f) (g)

Fig. 23 Application of spatially regularized spherical deconvolution:
a, b examples on a numerical phantom, on the one hand without reg-
ularization (a) and with regularization (b) for low-quality data (DTI).
d–g Other, more simple numerical phantoms for a crossing with the raw

data in d, f and deconvolution results regularized by FC (e) and AFC
(g). Finally, in c a in-vivo example is given. The background shows
the so-called fractional anisotropy (normalized standard deviation of
eigenvalues of the diffusion tensor) in gray scale

123



372 J Math Imaging Vis (2017) 58:349–381

fusion imaging (HARDI), where more than 60 directions per
voxels are acquired, which allow to estimate so-called fiber
orientation distributions (FOD). There also exist low-quality
datasets, suitable for clinical routine, that allow just the esti-
mation of a diffusion tensor (DTI). To obtain the FOD, a
physical diffusion model has to be inverted. The diffusion
generator used in the steerable deconvolution is perfectly
suited for the regularization of the inversion. It is used quite
frequently, for example in [32,33,43,44,84]. Basically, the
goal is to find a FOD f such that

J ( f ) =
∫∫

R3×S2

|(H f )(x, n) − S(x, n)|2 dxdn

+ λ

∫∫

R3×S2

(n · ∇ f )2 dxdn (57)

is minimized, where S denotes the MRI measurement. H
denotes the physical diffusion model, which is usually a
spherical convolution, i.e., a convolution on the sphere with
a rotationally symmetric kernel. The second term is the reg-
ularizer termed in [33] as contour enhancement kernel, or in
[84] as fiber continuity (FC). The STA-toolbox provides an
easy access to the commonly available kernels and meth-
ods. It further provides a positively constrained spherical
deconvolution similar to [107]. The following simple exam-
ple contained in the toolbox creates test data of a 45 fiber
crossing configuration and solves the inversion problem:

% create the phantom
ds = createTestCrossing (...

pi/8,pi/4+pi/8,1,0.1)
% compute spherical deconvolution
res = sta_spdeconv (...

ds.data ,ds.dirs ,ds.mask ,...
'verbose ',true ,'lambda' ,0.01)

The result of this example is shown in Fig. 23. Several
different spatial and spherical regularization kernels are pos-
sible, like the Laplace–Beltrami operator, or the asymmetric
contour enhancement (AFC) proposed in [83], which is an
extension of the diffusion generator that is used in the exam-
ple above. It introduces asymmetric orientation features due
to intra-voxel curvature of fibers. It can be used via

% create bending phantom
ds = createTestBending (5 ,1 ,0.01)
% compute asymmetric spherical
% deconvolution
res = sta_spdeconv (....
ds.data ,ds.dirs ,ds.mask ,...

'verbose ',true ,'lambda' ,0.01,...
'operation ','AFC')

In Fig. 23, we show qualitative results. Figure 23a, b shows
results on a phantom used on the ISBI HARDI reconstruc-
tion challenge in 2013. It was created with the Numerical
Fiber Generator described in [19]. We show results of a

Fig. 24 We randomly created 850 crossings, equally divided into 17
categories. Each category contains two tubular lineswhich are crossing
in a certain angle. The angles are ranging from 10◦ to 90◦ with a step
width of 5◦. We corrupted the images with a strong salt-and-pepper-like
noise which removed parts from the lines. We additionally added 15%
Gaussian noise to the data. We evaluated the orientation functions of
three types of tube detection filters at the center. The two largest local
maxima of the orientation function were extracted. The error was the
mean of the displacement of bothmaxima in orientation space compared
with the “true” line directions. The plot shows the mean error over all
samples with respect to the crossing degree. We also show the standard
deviation as error bars. SDL8 is a steerable deconvolution filter of order
eight. SFL8 a steerable filter of order 8, and SFL2 a standard steerable
filter of order two [3]. As expected, an order two filter cannot resolve
crossings

Fig. 25 We show the maximum intensity projection (MIP) of a gen-
erated 3D tubular network as it appears in images of neurites or blood
vessels.We have corrupted the image with noise.We then applied steer-
able deconvolution and a steerable filter [3]. The bottom row shows the
best results (MIP); we could obtain for both approaches
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non-regularized spherical deconvolution [107] in compari-
son with a FC-regularized deconvolution on a low-quality
DTI dataset (SNR = 10, #direction = 32). Figure 23d,e
shows a more simple crossing example, Fig. 23f,g a bending
example using AFC. Finally, in Fig. 23c an in vivo example
is shown (61 gradient directions at a b-value of 1 ms/µm2 at
a resolution 2mm3 acquired at a Siemens Tim Trio 3T).

6 Conclusion

The main contribution of this article is the provision of
an open-source toolbox which implements all the proposed
operations involved in spherical tensor algebra. We high-
lighted the relationship between Cartesian and spherical
tensors and introduced the fundamental spherical tensor oper-
ations which, in our opinion, are of high value for the image
processing community. We complemented the theory with
new, implementation relevant insights into the symmetries of
spherical bi-spectra. In a survey,wehave shownseveral appli-
cations where STA shows implementational advantages over
common Cartesian tensor implementations and discretiza-
tion of the two spheres.

With this toolbox, we want to foster the usage of STA in
the context of 3D image processing. The user can avoid the
gritty details of the mathematical intricate implementation
of spherical tensors operations. The fundamental operations,
differentiation and multiplication of spherical tensors are
efficiently implemented in C++, OpenMP and CUDA. The
API is easily accessible via C++ or MATLAB/OCTAVE.
New applications and/or extensions from the community are
always welcome!
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Appendix: Cartesian Tensors

Definition 6 (Epsilon Tensor) The epsilon tensor is defined
by

εi jk :=

⎧⎪⎨
⎪⎩

0, if any two labels are identical

1, if i, j, k is an even permutation of 1,2,3

−1, if i, j, k is an odd permutation of 1,2,3

Spherical two Cartesian Transformation: Let T2 be a Carte-
sian tensor of order 2. Then

b0 =
−
(
t (2)00 + t (2)11 + t (2)22

)
√
3

, b1 =

⎛
⎜⎜⎜⎝

1
2

(
t (2)20 − t (2)02 + i

(
t (2)12 − t (2)21

))

i√
2

(
t (2)01 − t (2)10

)

1
2

(
t (2)20 − t (2)02 − i

(
t (2)12 − t (2)21

))

⎞
⎟⎟⎟⎠

b2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

(
t (2)00 − t (2)11 + i

(
t (2)01 + t (2)10

))

1
2

(
(t (2)02 + t (2)20 ) + i

(
t (2)12 + t (2)21

))

−1√
6

(
t (2)00 + t (2)11 − 2t (2)22

)

1
2

(
−(t (2)02 + t (2)20 ) + i

(
t (2)12 + t (2)21

))

1
2

(
t (2)00 − t (2)11 − i

(
t (2)01 + t (2)10

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

are the irreducible representations of T2 according to (10).
The inverse, see (11), is

T2
tr = − b00√

3
I3×3,

T2
anti =

⎛
⎜⎜⎜⎜⎝

0 −i
b10√
2

− 1
2

(
b1−1 + b11

)

i
b10√
2

0 −i 12

(
b1−1 − b11

)

1
2

(
b1−1 + b11

)
i 12

(
b1−1 − b11

)
0

⎞
⎟⎟⎟⎟⎠

,

T2
sym =

⎛
⎜⎜⎜⎝

1
6

(
3b2−2 − √

6b20 + 3b22

)
1
2 i
(
b2−2 − b22

)
1
2

(
b2−1 − b21

)

1
2 i
(
b2−2 − b22

)
1
6 (−3b2−2 − √

6b20 − 3b22) 1
2 i(b2−1 + b21)

1
2

(
b2−1 − b21

)
1
2 i
(
b2−1 + b21

) √
2
3 b

2
0

⎞
⎟⎟⎟⎠.

(58)

Irreducible Components

In this paragraph, we give a brief sketch about the compo-
sition of Cartesian tensors with a full DOF in terms of their
irreducible counterparts. For a proof and further details, we
refer to section 4.4 in [15].

The order of all irreducible components of an order j
Cartesian is ≤ j . We start with the most simple tensor with
directional information, a spherical tensor of order one. The
idea is to, based on order one tensors, recursively construct
all possible spherical tensors up to order j . The number and
orders of the set of tensors are identical to the number and
orders of the irreducible components of an order j Cartesian
tensor.

In Sect. 3.1, we have seen that there are, for an order one
tensor, three possible operations in each step: decreasing the
order (inner product-like operation), keeping the order (cross
product-like) and increasing the order (an outer product).
With these three operations, we set up Algorithm 1. Table 1
shows the results for tensors up to order 5.

Spherical Harmonics

We always use Racah-normalized spherical harmonics such
that Y�(r)�Y�(r) = 1, or Y�(r)�Y�(r′) = P�(cos(r, r′)),
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Algorithm 1 Irreducible Components of Order n
X = {b1 ∈ V 1}
for j = 1 to (n − 1) do
X ′ = X
for each ak in X ′ do
Choose a new c1 ∈ V 1

X = X ∪ {(ak ◦k−1 c1)}
X = X ∪ {(ak ◦k c1)}
X = X ∪ {(ak ◦k+1 c1)}

end for
end for
return set of irreducible tensors X

Table 1 Relation between Cartesian and spherical (irreducible) tensors

Spherical Order: 0 1 2 3 4 5
DOF: 1 3 5 7 9 11

Cartesian Number of spherical tensors Total

OrderMax DOF

0 1 1 1

1 3 0 1 1

2 9 1 1 1 3

3 27 1 3 2 1 7

4 81 3 6 6 3 1 19

5 243 6 15 15 10 4 1 51

There always exists a unitary transformations from Cartesian tensor
space to the spherical tensor space. This transformation decomposes a
Cartesian tensor into a, quite large, number of spherical counterparts

where the P� are the Legendre polynomials:

P�(t) = 1

2��!∂
�
t (t

2 − 1)�. (59)

In terms of the associated Legendre polynomials, the com-
ponents Y �

m of the spherical harmonics are written as

Y �
m(φ, θ) =

√
(l − m)!
(l + m)! P

m
� (cos(θ))eimφ. (60)

The Racah-normalized spherical harmonics are orthogonal
with respect to

∫
S2
Y �1
m1(n)Y �2

m2
(n)dn = 4π

2 j + 1
δ j1, j2δm1,m2 . (61)

They can be turned into the orthonormal spherical harmonics

via
√

2 j+1
4π Y �

m .

Mostly, we write r ∈ S2 instead of (φ, θ). The Racah-
normalized solid harmonics4 can be written as

4 TheWolframFunctions Site, http://functions.wolfram.com/05.10.06.
0027.01.

R�
m(r) = √(� + m)!(� − m)!
×
∑
i, j,k

δi+ j+k,�δi− j,m

i ! j !k!2i2 j
(x − iy) j (−x − iy)i zk, (62)

where r = (x, y, z). They are related to spherical harmonics5

by R�
m(r)/r� = Y �

m(r).
The spherical harmonics rotate according to

Y j (U(g)n) = D(g) jY j (n). (63)

Coupling two spherical harmonics with each other gives
another spherical harmonic of desired order:

Y j1(n) ◦j Y j2(n) = 〈 j0| j10, j20〉Y j (n) . (64)

〈J0|�10, �20〉Y J
M

=
∑
m1,m2

〈JM |�1m1, �2m2〉Y �1
m1
Y �2
m2

(65)

〈�20|�10, J0〉Y J
M

=
∑
m1,m2

〈�2m2|�1m1, JM〉Y �1
m1Y

�2
m2

(66)

Y �1
m1
Y �2
m2

=
∑
J,M

〈JM |�1m1, �2m2〉〈J0|�10, �20〉Y J
M (67)

Y �1
m1Y

�2
m2

=
∑
J,M

2J + 1

2�1 + 1
〈�1m1|�2m2, JM〉〈�10|�20, J0〉Y J

M (68)

Spherical Expansion of the Dirac Delta Function Let n, n′ ∈
S2 and δ2n : S2 → R the delta function on the 2-sphere,
whereas δ2n(n′) = δ(θ −θ ′)δ(φ −φ′) and

∫
S2

δ2n(n′)dn′ = 1.
According to [7], page 792,

δ2n(n′) :=
∞∑
j=0

(2 j+1)
4π (Y j (n′))T Y j (n). (69)

The Plane Wave The plane wave expansion (see e.g [88], p.
136) in terms of spherical harmonics:

eikT r =
∞∑
j=0

(i) j (2 j + 1)J j (kr)Y j (r)T Y j (k). (70)

5 TheWolframFunctions Site, http://functions.wolfram.com/05.10.23.
0008.01.
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Clebsch–Gordan Coeffcients

The Clebsch–Gordan coefficients written in terms binomial
coefficients6 are defined by

〈 j1m1, j2m2| jm〉 = δm,(m1+m2)√(
2 j1

− j + j1 + j2

)(
2 j2

− j + j1 + j2

)

√(
j + j1 + j2 + 1
− j + j1 + j2

)(
2 j1

j1 − m1

)(
2 j2

j2 − m2

)(
2 j

j − m

)

×
k=min(− j+ j1+ j2, j1−m1, j2+m2)∑
k=max(0,− j+ j2−m1,− j+ j1+m2)

(−1)k

×
(− j + j1 + j2

k

)(
j + j1 − j2

−k + j1 − m1

)(
j − j1 + j2

−k + j2 + m2

)
; (71)

see also [1].
The Clebsch–Gordan coefficients of SO(3) fulfill several

orthogonality relations:

∑
j,m

〈 jm| j1m1, j2m2〉〈 jm| j1m′
1, j2m

′
2〉

= δm1,m′
1
δm2,m′

2
(72)

∑
j,m

2 j + 1

2 j1 + 1
〈 j1m1| jm, j2m2〉〈 j1m′

1| jm, j2m
′
2〉

= δm1,m′
1
δm2,m′

2
(73)

∑
m=m1+m2

〈 jm| j1m1, j2m2〉〈 j ′m′| j1m1, j2m2〉

= δ j, j ′δm,m′ (74)∑
m1,m

〈 jm| j1m1, j2m2〉〈 jm| j1m1, j
′
2m

′
2〉

= 2 j + 1

2 j ′2 + 1
δ j2, j ′2δm2,m′

2
(75)

For particular combinations, there are simple, explicit for-
mulas:

〈�m|(� − λ)(m − μ), λμ〉 =
(

� + m
λ + μ

)1/2 (
� − m
λ − μ

)1/2 (
2�
2λ

)−1/2

(76)

〈�m|(� + λ)(m − μ), λμ〉 =

× (−1)λ+μ

(
� + λ − m + μ

λ + μ

)1/2

×
(

� + λ + m − μ

λ − μ

)1/2 (
2� + 2λ + 1

2λ

)−1/2

(77)

6 TheWolframFunctions Site, http://functions.wolfram.com/07.38.06.
0003.01.

There are several symmetry relations

〈 jm| j1m1, j2m2〉 = 〈 j1m1, j2m2| jm〉 (78)

〈 jm| j1m1, j2m2〉 = (−1) j+ j1+ j2〈 jm| j2m2, j1m1〉 (79)

〈 jm| j1m1, j2m2〉
= (−1) j+ j1+ j2〈 j (−m)| j1(−m1), j2(−m2)〉 (80)

〈 jm| j1m1, j2m2〉

=
√

2 j + 1

2 j2 + 1
(−1) j1+m1〈 j2m2| jm, j1(−m1)〉, (81)

and associativity relations:

〈J, M | j1 + j2,m1 + m2, j3,m3〉
× 〈 j1 + j2,m1 + m2| j1,m1, j2,m2〉

= 〈J, M | j1 + j3,m1 + m3, j2,m2〉
× 〈 j1 + j3,m1 + m3| j1,m1, j3,m3〉 (82)

where J = j1 + j2 + j3 and M = m1 + m2 + m3. For
j3 > j1 + j2, there exist further associativities, namely

〈 j3 − j1 − j2,m1 + m2 + m3|
J − j1,m1 + m3, j2,m2〉

× 〈 j3 − j1,m1 + m3| j1,m1, J,m3〉
= 〈 j3 − j1 − j2,m1 + m2 + m3|

J − j2,m2 + m3, j1,m1〉
× 〈 j3 − j2,m2 + m3| j2,m2, J,m3〉 (83)

Wigner 6j-Symbols

Definition 7 (Wigner 6j-Symbols) The Wigner 6j-Symbols
are defined by

{
j1 j2 j4
J j3 j5

}
= (−1) j1+ j2+ j3+J

√
(2 j4 + 1)(2 j5 + 1)

×
∑

m1,m2,m3
m4,m5

〈 j1m1, j2m2| j4m4〉〈 j3m3, j4m4|JM〉

× 〈 j1m1, j3m3| j5m5〉〈 j2m2, j5m5|JM〉 . (84)

(see, e.g., [68], page 1, eq. (D.2))

The permutation of any pairs

j1
j2

}
�
{
j3
j4
or
j1
j2

}
�
{
j2
j1

(85)
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leaves the value of the 6j symbol unaltered (see [68]). Sim-
ilar to the Clebsch–Gordan coefficients, there exist simple,
explicit expressions for some special cases:7

{
j1 j2 ( j1 + j2)

( j1 + j2 + j5) j5 ( j1 + j5)

}

= (−1)2 j1+2 j2+2 j5
√
2( j1 + j2) + 1

√
2( j1 + j5) + 1

, (86)

{
j1 j2 j3
0 j5 j6

}
= (−1) j1+ j2+ j5δ j2, j6δ j3, j5√

2 j2 + 1
√

j3 + 1
(87)

and

{
j1 j2 ( j1 + j2)

( j3 − j2 − j1) j3 ( j3 − j1)

}

= 1√
2( j1 + j2) + 1

√
2( j3 − j1) + 1

; (88)

a conclusion from Theorem 1.

Wigner-D Matrix

The irreducible representation of SO(3) is called Wigner-D
matrices [115,116]. We denote them by the matrix D j (g) ∈
C

(2 j+1)×(2 j+1), where j ∈ N0, with j = {0, . . . ,∞}. The
j th order representation works on aC2 j+1-dimensional vec-
tor space. We denote the components of D j (g) by D j

mn(g).
In Euler angles in ZYZ convention, we have

D j
mn(γ, β, α) = e−imγ d j

mn(β)einα, (89)

where d j
mn(β) is the ’small’ Wigner-d matrix, which is real-

valued and explicitly written as

d j
mn(β) = [( j + m)!( j − m)!( j + n)!( j − n)!]1/2
∑
s

(−1)m−n+s

( j + n − s)!s!(m − n + s)!( j − m − s)!

×
(
cos

β

2

)2 j+n−m−2s (
sin

β

2

)m−n+2s

. (90)

The representations of different orders are connected via
the Clebsch–Gordan coefficients by:

D j1
m1n1D

j2
m2n2

=
∑
l,m,n

D j
mn〈 jm| j1m1, j2m2〉〈 jn| j1n1, j2n2〉; (91)

see equation 2.3.2 in [15].

7 TheWolframFunctions Site, http://functions.wolfram.com/07.40.03.
0017.01, http://functions.wolfram.com/07.40.03.0006.01.

Another important equality is

∫
SO(3)

D j1
m1n1(g)D

j2
m2n2(g)D

j3
m3n3(g)dg

= 8π2

2 j3 + 1
〈 j3m3| j2m2, j1m1〉〈 j3n3| j2n2, j1n1〉 (92)

Relation to Spherical Harmonics The Wigner-D matri-
ces build an orthogonal basis for functions in SO(3). Let
f (θ, φ, ψ) : SO(3) → C be a function with f (θ, φ, ψ) =
f (θ, φ). Let A j

m,n ∈ C be the expansion coefficients of f in
terms of the Wigner-D matrices. Then the expansion

f (ϕ, θ, ψ) =
∞∑
j=0

j∑
m,n=− j

A j
m,nD

j
mn(ϕ, θ, ψ)

= c( j)
∞∑
j=0

j∑
m=− j

a j
mY

j
m(ϕ, θ) (93)

is the spherical harmonic expansion (up to a constant
c( j)∈R).

Real and Imaginary Tensor Fields

For all spherical tensors, v j ∈ C
2 j+1 exits a conjugated

counterpart
(
v j
)‡ ∈ C

2 j+1, with
(
v
j
m

)‡ := (−1)mv
j
−m .

The tensor conjugation induces a unique decomposition of
the spherical tensor space C

2 j+1 into two vector spaces
Vj , iV j ⊂ C

2 j+1. Let v j ∈ C
2 j+1, then

v j = (v j + (v j
)‡

)

2︸ ︷︷ ︸
∈Vj

⊕ (v j − (v j
)‡

)

2︸ ︷︷ ︸
∈iV j

. (94)

Despite the fact that these vector spaces are complex valued,
we treat them as real-valued vector spaces, because they are
closed under weighted superposition for the real numbers;
i.e., if v j ∈ Vj , then ∀α ∈ R : αv j ∈ Vj . Same for iV j . With
this assumption, the spherical tensor space C2 j+1 is a direct
sum of these two subspaces, that is C2 j+1 = Vj ⊕ iV j . For
the sake of consistency to standard complex numbers, we call
the vector space Vj ⊂ C

2 j+1 the real spherical tensor space
and iV j ⊂ C

2 j+1 the imaginary spherical tensor space, i.e.,
we can always represent an v j ∈ iV j in terms of an iw j ,
where w j ∈ Vj (and vice versa).

Corollary 2 ( Symmetry) Let v j ∈ Vj and w j ∈ iV j . The
tensors v j and w j have the following symmetries

v
j
m = (−1)mv

j
−m and (real tensor space) (95)
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Fig. 26 (Coupling Three Spherical Tensors) The products defined in
each third of this circle are spanning the tensor space of the products
of the remaining two thirds. Which means they are mutually linear
dependent according to Theorem 1

w
j
m = (−1)m+1w

j
−m . (imaginary tensor space) (96)

This is a direct conclusion from the tensor conjugation prop-
erty.

Tensor Triple Products

Theorem 1 (Coupling Three Spherical Tensors) We have
the following identity when coupling three spherical ten-
sors u j1 ∈ C

2 j1+1, v j2 ∈ C
2 j2+1 and w j3 ∈ C

2 j3+1 to
form a tensor of rank J based on an intermediate rank
| j1 − j2| ≤ L12 ≤ j1 + j2 :

((u j1 ◦L12 v j2) ◦J w j3)

=
∑
L23

(u j1 ◦J (v j2 ◦L23 w j3))
√

(2L12 + 1)(2L23 + 1)

× (−1) j1+ j2+ j3+J
{
j2 j1 L12

J j3 L23

}
. (97)

With

{
j1 j2 j4
J j3 j5

}
∈ R, we denote the Wigner 6j-symbol

(see Sect. 1), which are the weighting factors playing a role
when coupling three spherical tensors. With Theorem 1, we
can identify the symmetries that exist when coupling three
spherical tensors. By exchanging the coupling order of the
three tensors,we see that each of the following sets of tensors,
{(u j1 ◦J (v j2 ◦L23 w j3))}∀L23 , {(w j3 ◦J (u j1 ◦L12 v j2))}∀L12

and {(v j2 ◦J (u j1 ◦L13 w j3))}∀L13 , can be formed via linear
combination of tensors of only one of the remaining sets.
That is, they are mutually linearly dependent. This fact is
illustrated in Fig. 26. That is, regarding the computation of
linearly independent features it is sufficient (and essential)
to compute only one set of features out of those three lin-

early dependent sets. We use this property for computing an
linearly independent set of bi-spectrum features in our appli-
cations.

Proof In the following, we derive Eq. (97). According to
[117], page 17, Eq. (90), there exists the recoupling rule

∑
M12

〈 j1m1, j2m2|L12M12〉〈L12M12, j3m3|JM〉

=
∑

L23,M23

√
(2L12 + 1)(2L23 + 1)W ( j1 j2 J j3, L12L23)

× 〈 j1m1, L23M23|JM〉〈 j2m2, j3m3|L23M23〉, (98)

where W ( j1 j2 J j3, L12L23) ∈ R is a Racah W-coefficient
[78]. Moreover, the following relation to the Wigner 6j-
symbols is known (see, e.g., [117], p. 17, Eqs. (93) and
(94))

{
j3 L12 J
j1 L23 j2

}
= (−1) j1+ j2+ j3+JW ( j1 j2 J j3, L12L23)

=
{
j2 j1 L12

J j3 L23

}
(using Eq. 85) (99)

By just writing out the tensor product of three spherical
tensors, and by substituting Eqs. (99) into (98), we can derive
the equation in Theorem 1, namely
[
((u j1 ◦L12 v j2 ) ◦J w j3 )

]
M

=
∑

M=M12+m3

u j1
m1v

j2
m2w

j3
m3

× 〈L12M12, j3m3|JM〉〈 j1m1, j2m2|L12M12〉
=
∑
m3

∑
M12

〈L12M12, j3m3|JM〉

× 〈 j1m1, j2m2|L12M12〉u j1
m1v

j2
m2w

j3
m3

=
∑
m3,L23,M23,L23

√
(2L12 + 1)(2L23 + 1)(−1) j1+ j2+ j3+J

×
{
j2 j1 L12

J j3 L23

}
〈 j1m1, L23M23|JM〉

× 〈 j2m2, j3m3|L23M23〉u j1
m1v

j2
m2w

j3
m3

=
∑

L23,m3,M23

〈 j1m1, L23M23|JM〉

× 〈 j2m2, j3m3|L23M23〉u j1
m1v

j2
m2w

j3
m3

×√(2L12 + 1)(2L23 + 1)

(−1) j1+ j2+ j3+J
{
j2 j1 L12

J j3 L23

}

=
∑
L23

[(u j1 ◦J (v j2 ◦L23 w j3 ))]M

×√(2L12 + 1)(2L23 + 1)

(−1) j1+ j2+ j3+J
{
j2 j1 L12

J j3 L23

}
. (100)

��
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Proving corollary 1 We show all three equalities using the
recoupling rule Eq. (97). In the first scenario, we have

((u j1 ◦( j1+ j2) v j2 ) ◦( j1+ j2+ j3) w j3 )

= (u j1 ◦( j1+ j2+ j3) (v j2 ◦( j2+ j3) w j3 ))

×√(2( j1 + j2) + 1)(2( j2 + j3) + 1)

{
j2 j1 ( j1 + j2)

( j1 + j2 + j3) j3 ( j2 + j3)

}

︸ ︷︷ ︸
=1 (According to Eq. (86))

(using Eq. (78))= (v j2 ◦( j1+ j2+ j3) (u j1 ◦ j1+ j3 w j3 )),

and in the second scenario

((u j1 ◦( j1+ j2) v j2 ) ◦( j3− j2− j1) w j3 )

= (u j1 ◦( j3− j2− j1) (v j2 ◦( j3− j2) w j3 ))

×√(2( j1 + j2) + 1)(2( j3 − j2) + 1)

{
j2 j1 ( j1 + j2)

( j3 − j2 − j1) j3 ( j3 − j2)

}

︸ ︷︷ ︸
=1 (According to Eq. (88))

.

Similarly, the third case can be shown:

((u j1 ◦ j3 v j2) ◦0 w j3) = (u j1 ◦0 (v j2 ◦ j1 w j3))

× (−1) j1+ j2+ j3
√

(2 j1 + 1)(2 j3 + 1)

{
j2 j1 j3
0 j3 j1

}

︸ ︷︷ ︸
=1 (According to eq. (87))

.

��
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