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Abstract We consider a class of linear integral operators
with impulse responses varying regularly in time or space.
These operators appear in a large number of applications
ranging from signal/image processing to biology. Evaluat-
ing their action on functions is a computationally intensive
problem necessary for many practical problems. We ana-
lyze a technique called product-convolution expansion: The
operator is locally approximated by a convolution, allow-
ing to design fast numerical algorithms based on the fast
Fourier transform. We design various types of expansions,
provide their explicit rates of approximation and their com-
plexity depending on the time-varying impulse response
smoothness. This analysis suggests novel wavelet-based
implementations of the method with numerous assets such
as optimal approximation rates, low complexity and storage
requirements as well as adaptivity to the kernels regularity.
The proposed methods are an alternative to more standard
procedures such as panel clustering, cross-approximations,
wavelet expansions or hierarchical matrices.
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1 Introduction

We are interested in the compact representation and fast eval-
uation of a class of space- or time-varying linear integral
operators with regular variations. Such operators appear in a
large number of applications ranging from wireless commu-
nications [28,37] to seismic data analysis [23], biology [22]
and image processing [38].

In all these applications, a key numerical problem is to effi-
ciently evaluate the action of the operator and its adjoint on
given functions. This is necessary—for instance—to design
fast inverse problems solvers. The main objective of this
paper is to analyze the complexity of a set of approxima-
tion techniques coined product-convolution expansions.

We are interested in bounded linear integral operators H :
L2(Ω) → L2(Ω) defined from a kernel K by:

Hu(x) =
∫

Ω

K (x, y)u(y) dy. (1)

for all u ∈ L2(Ω), where Ω = R \ Z is the one dimen-
sional torus. Extensions to bounded and higher-dimensional
domains will be mentioned at the end of the paper. Evalu-
ating integrals of type (1) is a major challenge in numerical
analysis, and many methods have been developed in the lit-
erature. Nearly, all methods share the same basic principle:
decompose the operator kernel as a sum of low-rank matri-
ces with a multi-scale structure. This is the case in panel
clustering methods [24], hierarchical matrices [6], cross-
approximations [35] or wavelet expansions [3,13,14]. The
method proposed in this paper basically shares the same idea,
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except that the time-varying impulse response T of the oper-
ator is decomposed instead of the kernel K . The time-varying
impulse response (TVIR) T of H is defined by:

T (x, y) = K (x + y, y), ∀(x, y) ∈ Ω × Ω. (2)

The TVIR representation of H allows formalizing the notion
of regularly varying integral operator: The functions T (x, ·)
should be “smooth” for all x ∈ Ω . Intuitively, the smoothness
assumption means that two neighboring impulse responses
should only differ slightly. Under this assumption, it is tempt-
ing to approximate H locally by a convolution. Two different
approaches have been proposed in the literature to achieve
this. The first one is called convolution-product expansion of
order m and consists of approximating H by an operator Hm

of type:

Hmu =
m∑

k=1

wk � (hk � u), (3)

where hk and wk are real-valued functions defined on Ω ,
� denotes the standard multiplication for functions and the
Hadamard product for vectors, and � denotes the convolution
operator. The second one, called product-convolution expan-
sion of order m, is at the core of this paper and consists of
using an expansion of type:

Hmu =
m∑

k=1

hk � (wk � u). (4)

Function wk is usually chosen as a windowing function
localized in space, while hk is a kernel describing the
operator on the support of wk . These two types of approx-
imations have been used for a long time in the field
of imaging (and to a lesser extent mobile communica-
tions and biology) and progressively became more and
more refined [1,17,21,22,27,28,33,34,40]. In particular,
the recent work [17] provides a nice overview of exist-
ing choices for the functions hk and wk as well as new
ideas leading to significant improvements. Many different
names have been used in the literature to describe expan-
sions of type (3) and (4) depending on the communities:
sectional methods, overlap-add and overlap-save methods,
piecewise convolutions, anisoplanatic convolutions, parallel
product-convolution, filter flow, windowed-convolutions...
The term product-convolution comes from the field of math-
ematics [7] 1. We believe that it precisely describes the set
of expansions of type (3) and therefore chose this naming.

1 With the terminology of [7], the name product-convolution would
have been convolution-product and vice-versa. The name product-
convolution seems more appropriate to describe a product followed
by a convolution.

It was already used in the field of imaging by [1]. Now that
product-convolution expansions have been described, natural
questions arise:

(i) How to choose the functions hk and wk?
(ii) What is the numerical complexity of evaluating prod-

ucts of type Hmu?
(iii) What is the resulting approximation error ‖Hm − H‖,

where ‖ · ‖ is a norm over the space of operators?
(iv) How many operations are needed in order to obtain an

approximation Hm such that ‖Hm − H‖ ≤ ε?

Elements (i) and (ii) have been studied thoroughly and
improved over the years in the mentioned papers. The main
questions addressed herein are points (iii) and (iv). To the
best of our knowledge, they have been ignored until now.
They are however necessary in order to evaluate the theoreti-
cal performance of different product-convolution expansions
and to compare their respective advantages precisely.

The main outcome of this paper is the following: Under
smoothness assumptions of type T (x, ·) ∈ Hs(Ω) for all
x ∈ Ω (the Hilbert space of functions in L2(Ω) with
s derivatives in L2(Ω)), most methods proposed in the
literature—if implemented correctly—ensure a decay of type
‖Hm − H‖HS = O(m−s), where ‖ · ‖HS is the Hilbert–
Schmidt norm. Moreover, this bound cannot be improved
uniformly on the considered smoothness class. By adding
a support condition of type supp(T (x, ·)) ⊆ [−κ/2, κ/2],
the bound becomes ‖Hm − H‖HS = O(

√
κm−s). More

importantly, bounded supports allow reducing the compu-
tational burden. After discretization on n time points, we
show that the number of operations required to satisfy

‖Hm − H‖HS ≤ ε varies from O
(
κ

1
2s n log2(n)ε−1/s

)
to

O
(
κ

2s+1
2s n log2(κn)ε−1/s

)
depending on the choices of wk

and hk . We also show that the compressed operator represen-
tations of Meyer [32] can be used under additional regularity
assumptions.

An important difference of product-convolution expan-
sions compared to most methods in the literature [3,6,20,24,
35] is that they are insensitive to the smoothness of T (·, y).
The smoothness in the x direction is a useful property to con-
trol the discretization error, but not the approximation rate.
The proposed methodology might therefore be particularly
competitive in applications with irregular impulse responses.

The paper is organized as follows. In Sect. 2, we describe
the notation and introduce a few standard results of approx-
imation theory. In Sect. 3, we precisely describe the class of
operators studied in this paper, show how to discretize them
and provide the numerical complexity of evaluating product-
convolution expansions of type (4). Sections 4 and 5 contain
the full approximation analysis for two different kinds of

123



J Math Imaging Vis (2017) 58:333–348 335

approaches called linear or adaptive methods. Section 6 con-
tains a summary and a few additional comments.

2 Notation

Let a and b denote functions depending on some parameters.
The relationship a 
 b means that a and b are equivalent,
i.e., that there exists 0 < c1 ≤ c2 such that c1a ≤ b ≤ c2a.
Constants appearing in inequalities will be denoted byC and
may vary at each occurrence. If a dependence on a parameter
exists (e.g., ε), we will use the notation C(ε).

In most of the paper, we work on the unit circleΩ = R\Z
sometimes identified with the interval

[− 1
2 ,

1
2

]
. This choice

is driven by simplicity of exposition, and the results can be
extended to bounded domains such as Ω = [0, 1]d (see
Sect. 6.2). Let L2(Ω) denote the space of square integrable
functions on Ω . The Sobolev space Hs(Ω) is defined as the
set of functions in L2(Ω)with weak derivatives up to order s
in L2(Ω). The k-th weak derivative of u ∈ Hs(Ω) is denoted
u(s). The norm and semi-norm of u ∈ Hs(Ω) are defined by:

‖u‖Hs (Ω) =
s∑

k=0

‖u(k)‖L2(Ω) and |u|Hs (Ω) =‖u(s)‖L2(Ω).

(5)

The sequence of functions (ek)k∈Z where ek : x �→
exp(−2iπkx) is an orthonormal basis of L2(Ω) (see, e.g.,
[29]).

Definition 1 Let u ∈ L2(Ω) and ek : x �→ exp(−2iπkx)
denote the k-th Fourier atom. The Fourier series coefficients
û[k] of u are defined for all k ∈ Z by:

û[k] =
∫

Ω

u(x)ek(x) dx . (6)

The space Hs(Ω) can be characterized through Fourier
series.

Lemma 1 (Fourier characterization of Sobolev norms)

‖u‖2Hs (Ω) 

∑
k∈Z

|û[k]|2(1 + |k|2)s . (7)

Definition 2 (B-spline of order α) Let α ∈ N andm ≥ α+2
be two integers. The B-spline of order 0 is defined by

B0,m = 1[−1/(2m),1/(2m)]. (8)

The B-spline of order α ∈ N
∗ is defined by recurrence by:

Bα,m = mB0,m � Bα−1,m = mα B0,m � . . . � B0,m︸ ︷︷ ︸
α times

. (9)

The set of cardinal B-splines of order α is denoted Bα,m

and defined by:

Bα,m =
{
f (·) =

m−1∑
k=0

ck Bα,m(· − k/m),

ck ∈ R, 0 ≤ k ≤ m − 1

}
.

(10)

In this work, we use the Daubechies wavelet basis for
L2(R) [15]. We let φ and ψ denote the scaling and mother
wavelets and assume that the mother wavelet ψ has α van-
ishing moments, i.e.,

∀0 ≤ m < α,

∫
[0,1]

tmψ(t)dt = 0. (11)

Daubechies wavelets satisfy supp(ψ) = [−α + 1, α], see
[31, Theorem 7.9, p. 294]. Translated and dilated versions of
the wavelets are defined, for all j > 0 by

ψ j,l(x) = 2 j/2ψ
(
2 j x − l

)
. (12)

The set of functions (ψ j,l) j∈N,l∈Z , is an orthonormal basis
of L2(R) with the convention ψ0,l = φ(x − l). There are
different ways to construct a wavelet basis on the interval
[−1/2, 1/2] from a wavelet basis on L2(R). Here, we use
boundary wavelets defined in [12]. We refer to [16,31] for
more details on the construction of wavelet bases. This yields
an orthonormal basis (ψλ)λ∈Λ of L2(Ω), where

Λ =
{
( j, l), j ∈ N, 0 ≤ l ≤ 2 j

}
. (13)

We let Iλ = supp(ψλ) and for λ ∈ Λ, we use the notation
|λ| = j .

Let u and v be two functions in L2(Ω), the notation u⊗v

will be used both to indicate the function w ∈ L2(Ω × Ω)

defined by

w(x, y) = (u ⊗ v)(x, y) = u(x)v(y), (14)

or the Hilbert–Schmidt operator w : L2(Ω) → L2(Ω)

defined for all f ∈ L2(Ω) by:

w( f ) = (u ⊗ v) f = 〈u, f 〉v. (15)

The meaning can be inferred depending on the context. Let
H : L2(Ω) → L2(Ω) denote a linear integral operators. Its
kernelwill always be denoted K and its time-varying impulse
response T . The linear integral operator with kernel T will
be denoted J .

The following result is an extension of the singular value
decomposition to operators.

123



336 J Math Imaging Vis (2017) 58:333–348

Lemma 2 (Schmidt decomposition [36, Theorem 2.2] or
[26, Theorem 1 p. 215]) Let H : L2(Ω) → L2(Ω) denote
a compact operator. There exists two finite or countable
orthonormal systems {e1, . . .}, { f1, . . .} of L2(Ω) and a finite
or infinite sequence σ1 ≥ σ2 ≥ . . . of positive numbers (tend-
ing to zero if it is infinite), such that H can be decomposed
as:

H =
∑
k≥1

σk · ek ⊗ fk . (16)

A function u ∈ L2(Ω) is denoted in regular font, whereas
its discretized version u ∈ R

n is denoted in bold font. The
value of function u at x ∈ Ω is denoted u(x), while the i-th
coefficient of vector u ∈ R

n is denoted u[i]. Similarly, an
operator H : L2(Ω) → L2(Ω) is denoted in upper-case
regular font, whereas its discretized version H ∈ R

n×n is
denoted in upper-case bold font.

3 Preliminary Facts

In this section, we gather a few basic results necessary to
derive approximation results.

3.1 Assumptions on the Operator and Examples

All the results stated in this paper rely on the assumption
that the TVIR T of H is a sufficiently simple function. By
simple, we mean that i) the functions T (x, ·) are smooth
for all x ∈ Ω , and ii) the impulse responses T (·, y) have a
bounded support or a fast decay for all y ∈ Ω .

There are numerous ways to capture the regularity of a
function. In this paper, we assume that T (x, ·) lives in the
Hilbert spaces Hs(Ω) for all x ∈ Ω . This hypothesis is
deliberately simple to clarify the proofs and the main ideas.

Definition 3 ( Class T s ) We let T s denote the class of func-
tions T : Ω × Ω → R satisfying the smoothness condition:
T (x, ·) ∈ Hs(Ω), ∀x ∈ Ω and ‖T (x, ·)‖Hs (Ω) is uniformly
bounded in x , i.e:

sup
x∈Ω

‖T (x, ·)‖Hs (Ω) ≤ C < +∞. (17)

Note that if T ∈ T s , then H is a Hilbert–Schmidt operator
since:

‖H‖2HS =
∫

Ω

∫
Ω

K (x, y)2 dx dy (18)

=
∫

Ω

∫
Ω

T (x, y)2 dx dy (19)

=
∫

Ω

‖T (x, ·)‖2L2(Ω)
dx < +∞. (20)

We will often use the following regularity assumption.

Assumption 1 The TVIR T of H belongs to T s .

In many applications, the impulse responses have a
bounded support, or at least a fast spatial decay allowing
to neglect the tails. This property will be exploited to design
faster algorithms. This hypothesis can be expressed by the
following assumption.

Assumption 2 T (x, y) = 0,∀|x | > κ/2.

3.2 Examples

We provide three examples of kernels that may appear in
applications. Figure 1 shows each kernel as a 2D image, the
associated TVIR and the spectrum of the operator J (the
linear integral operator with kernel T ) computed with an
SVD.

Example 1 A typical kernel that motivates our study is
defined by:

K (x, y) = 1√
2πσ(y)

exp

(
− (x − y)2

2σ 2(y)

)
. (21)

The impulse responses K (·, y) are Gaussian for all y ∈ Ω .
Their variance σ(y) > 0 varies depending on the position y.
The TVIR of K is defined by:

T (x, y) = 1√
2πσ(y)

exp

(
− x2

2σ 2(y)

)
. (22)

The impulse responses T (·, y) are not compactly supported,
therefore, κ = 1 in Assumption 2. However, it is possible
to truncate them by setting κ = 3 supy∈Ω σ(y) for instance.
This kernel satisfies Assumption 1 only if σ : Ω → R is
sufficiently smooth. In Fig. 1, left column, we set σ(y) =
0.08 + 0.02 cos(2πy).

Example 2 The second example is given by:

T (x, y) = 2

σ(y)
max(1 − 2σ(y)|x |, 0). (23)

The impulse responses T (·, y) are cardinal B-splines of
degree 1 and width σ(y) > 0. They are compactly supported
with κ = supy∈Ω σ(y). This kernel satisfies Assumption 2
only if σ : Ω → R is sufficiently smooth. In Fig. 1, cen-
tral column, we set σ(y) = 0.1 + 0.3(1 − |y|). This kernel
satisfies Assumption 1 with s = 1.

Example 3 The last example is a discontinuous TVIR. We
set:

T (x, y) = gσ1(x)1[−1/4,1/4](y)
+ gσ2(x)(1 − 1[−1/4,1/4](y)),

(24)
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Fig. 1 Different kernels K , the associated TVIR T and the spectrum of
the operator J . Left column corresponds to Example 1. Central column
corresponds to Example 2. Right column corresponds to Example 3. a

Kernel 1, b kernel 2, c kernel 3, d TVIR 1, e TVIR 2, f TVIR 3, g
spectrum 1, h spectrum 2, and i spectrum 3

where gσ (x) = 1√
2π

exp
(
− x2

σ 2

)
. This corresponds to the

last column in Fig. 1, with σ1 = 0.05 and σ2 = 0.1. For
this kernel, both Assumptions 1 and 2 are violated. Notice,
however, that T is the sum of two tensor products and
can therefore be represented using only four 1D functions.
The spectrum of J should have only 2 non zero elements.
This is verified in Fig. 1i, where the spectrum is 0 (up to
numerical errors of order 10−13), except for the first two
elements.

3.3 Product-Convolution Expansions as Low-Rank
Approximations

Though similar in spirit, convolution-product (3) andproduct-
convolution (4) expansions have a quite different interpreta-
tion captured by the following lemma.

Lemma 3 The TVIR Tm of the convolution-product expan-
sion in (3) is given by:

123



338 J Math Imaging Vis (2017) 58:333–348

Tm(x, y) =
m∑

k=1

hk(x)wk(x + y). (25)

The TVIR Tm of the product-convolution expansion in (4) is
given by:

Tm(x, y) =
m∑

k=1

hk(x)wk(y). (26)

Proof We only prove (26) since the proof of (25) relies on
the same arguments. By definition:

(Hmu)(x) =
(

m∑
k=1

hk � (wk � u)

)
(x) (27)

=
∫

Ω

m∑
k=1

hk(x − y)wk(y)u(y) dy. (28)

By identification, this yields:

Km(x, y) =
m∑

k=1

hk(x − y)wk(y), (29)

so that

Tm(x, y) =
m∑

k=1

hk(x)wk(y). (30)

��
As can be seen in (26), product-convolution expansions

consist of finding low-rank approximations of theTVIR. This
interpretation was already proposed in [17] for instance and
is the key observation to derive the forthcoming results. The
expansion (25) does not share this simple interpretation, and
we do not investigate it further in this paper.

3.4 Discretization

In order to implement a product-convolution expansion of
type 4, the problem first needs to be discretized. We address
this problem with a Galerkin formalism. Let (ϕ1, . . . , ϕn)

be a basis of a finite dimensional subspace V n of L2(Ω).
Given an operator H : L2(Ω) → L2(Ω), we can con-
struct a matrix Hn ∈ R

n×n defined for all 1 ≤ i, j ≤ n
by Hn[i, j] = 〈Hϕ j , ϕi 〉. Let Sn : H �→ Hn denote the dis-
cretization operator. From a matrix Hn , an operator Hn can
be reconstructed using, for instance, the pseudo-inverse Sn,+
of Sn . We let Hn = Sn,+(Hn). For instance, if (ϕ1, . . . , ϕn)

is an orthonormal basis of V n , the operator Hn is given by:

Hn = Sn,+(Hn) =
∑

1≤i, j≤n

Hn[i, j]ϕi ⊗ ϕ j . (31)

This paper is dedicated to analyzing methods denotedAm

that provide an approximation Hm = Am(H) of type (4),
given an input operator H . Our analysis provides guarantees
on the distance‖H−Hm‖HS depending onm and the regular-
ity properties of the input operator H , for different methods.
Depending on the context, two different approaches can be
used to implement Am .

– Compute the matrix Hn
m = Sn(Hm) using numerical

integration procedures. Then, create an operator Hn
m =

Sn,+(Hn
m). This approach suffers from two defects. First,

it is only possible by assuming that the kernel of H is
given analytically.Moreover, itmight be computationally
intractable. It is illustrated below.

H �Am
Hm �Sn

Hn
m

�Sn,+
Hn
m

– In many applications, the operator H is not given explic-
itly. Instead, we only have access to its discretization
Hn . Then, it is possible to construct a discrete approxi-
mation algorithm Am yielding a discrete approximation
Hn

m = Am(Hn). This matrix can then be mapped
back to the continuous world using the pseudo-inverse:
Hn
m = Sn,+(Hn

m). This is illustrated below. In this paper,
wewill analyze the construction complexity of Hn

m using
this second approach.

H �Sn
Hn �Am

Hn
m

�Sn,+
Hn
m

Ideally, we would like to provide guarantees on ‖H −
Hn
m‖HS depending on m and n. In the first approach, this is

possible by using the following inequality:

‖H − Hn
m‖HS ≤ ‖H − Hm‖HS︸ ︷︷ ︸

εa(m)

+‖Hm − Hn
m‖HS︸ ︷︷ ︸

εd (n)

, (32)

where εa(m) is the approximation error studied in this paper
and εd(n) is the discretization error. Under mild regularity
assumptions on K , it is possible to obtain results of type
εd(n) = O(n−γ ), where γ depends on the smoothness
of K . For instance, if K ∈ Hr (Ω × Ω), the error satis-
fies εd(n) = O(n−r/2) for many bases including Fourier,
wavelets andB-splines [10]. For K ∈ BV (Ω×Ω), the space
of functionswith bounded variations, εd(n) = O(n−1/4), see
[31, Theorem 9.3]. As will be seen later, the approximation
error εa(m) behaves like O(m−s). As will be seen later, the
proposed approximation technique will be of interest only in
the case m � n, since otherwise, it will require storing too
much data. Under this assumption, the discretization error
can be considered negligible compared to the approximation
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error. In all the paper, we assume that εd(n) is negligible
compared to εa(m) without mention.

In the second approach, the error analysis ismore complex
since there is an additional bias due to the algorithm dis-
cretization. This bias is captured by the following inequality:

‖H − Hn
m‖HS ≤ ‖H − Hn‖HS︸ ︷︷ ︸

εd (n)

+‖Hn − Am(Hn)‖HS︸ ︷︷ ︸
εa(m)

+ ‖Am(Hn) − Hn
m‖HS︸ ︷︷ ︸

εb(m,n)

.

(33)

The bias

εb(m, n) = ‖Am(Sn,+(Sn(H))) − Sn,+(Am(Sn(H)))‖HS

(34)

accounts for the difference between using the discrete or con-
tinuous approximation algorithm. In this paper, we do not
study this bias error and assume that it is negligible com-
pared to the approximation error εa .

3.5 Implementation and Complexity

Let Fn ∈ C
n×n denote the discrete inverse Fourier transform

and F∗
n denote the discrete Fourier transform. Matrix-vector

products Fnu or F∗
nu can be evaluated in O(n log2(n)) oper-

ations using the fast Fourier transform (FFT). The discrete
convolution-product v = h � u is defined for all i ∈ Z by
v[i] = ∑n

j=1 u[i − j]h[ j], with circular boundary condi-
tions.

Discrete convolution-products can be evaluated in
O(n log2(n)) operations by using the following fundamental
identity:

v = Fn · ((F∗
nh) � (F∗

nu)). (35)

Hence, a convolution can be implemented using three FFTs
(O(n log2(n)) operations) and a point-wise multiplication
(O(n) operations). This being said, it is straightforward to
implement formula (4) with an O(mn log2(n)) algorithm.

Under the additional assumption that wk and hk are sup-
ported onbounded intervals, the complexity canbe improved.
We assume that, after discretization, hk andwk are compactly
supported, with support length qk ≤ n and pk ≤ n, respec-
tively.

Lemma 4 A matrix-vector product of type (4) can be imple-
mented with a complexity that does not exceed

O

(
m∑

k=1

(pk + qk) log2(min(pk, qk))

)

operations.

Proof A convolution-product of type hk � (wk � u) can be
evaluated in O((pk + qk) log(pk + qk)) operations. Indeed,
the support of hk � (wk � u) has no more than pk + qk con-
tiguous nonzero elements. Using the Stockham sectioning
algorithm [39], the complexity can be further decreased to
O((pk + qk) log2(min(pk, qk))) operations. This idea was
proposed in [27]. ��

4 Projections on Linear Subspaces

We now turn to the problem of choosing the functions hk
and wk in Eq. (4). The idea studied in this section is to fix a
subspace Em = span(ek, k ∈ {1, . . . ,m}) of L2(Ω) and to
approximate T (x, ·) as:

Tm(x, y) =
m∑

k=1

ck(x)ek(y). (36)

For instance, the coefficients ck can be chosen so that Tm(x, ·)
is a projection of T (x, ·) onto Em . We propose to ana-
lyze three different family of functions ek : Fourier atoms,
wavelets atoms and B-splines. We analyze their complex-
ity and approximation properties as well as their respective
advantages.

4.1 Fourier Decompositions

It is well known that functions in Hs(Ω) can bewell approxi-
matedby linear combinationof low-frequencyFourier atoms.
This loose statement is captured by the following lemma.

Lemma 5 ([18,19]) Let f ∈ Hs(Ω) and fm denote its par-
tial Fourier series:

fm =
m∑

k=−m

f̂ [k]ek, (37)

where ek(y) = exp(−2iπky). Then

‖ fm − f ‖L2(Ω) ≤ Cm−s | f |Hs (Ω). (38)

The so-called Kohn–Nirenberg symbol N of H is defined
for all (x, k) ∈ Ω × Z by

N (x, k) =
∫

Ω

T (x, y) exp(−2iπky) dy. (39)
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Fig. 2 Kohn–Nirenberg symbols of the kernels given in Examples 1, 2
and 3 in log10 scale. Observe how the decay speed from the center (low
frequencies) to the outer parts (high frequencies) changes depending on

the TVIR smoothness. Note the lowest values of the Kohn–Nirenberg
symbol have been set to 10−4 for visualization purposes. a Kernel 1, b
kernel 2 and c kernel 3

Illustrations of different Kohn–Nirenberg symbols are pro-
vided in Fig. 2.

Corollary 1 Set ek(y) = exp(−2iπky) and define Tm by:

Tm(x, y) =
∑

|k|≤m

N (x, k)ek(y). (40)

Then, under Assumptions 1 and 2

‖Hm − H‖HS ≤ C
√

κm−s . (41)

Proof By Lemma 5 and Assumption 1,

‖Tm(x, ·) − T (x, ·)‖L2(Ω) ≤ Cm−s

for some constant C and for all x ∈ Ω . In addition, by
Assumption 2, ‖Tm(x, ·)−T (x, ·)‖L2(Ω) = 0 for |x | > κ/2.
Therefore:

‖Hm − H‖2HS =
∫

Ω

∫
Ω

(Tm(x, y) − T (x, y))2 dx dy (42)

=
∫

Ω

‖Tm(x, ·) − T (x, ·)‖2L2(Ω)
dx (43)

≤ κC2m−2s dx (44)

��
As will be seen later, the convergence rate (41) is optimal

in the sense that no product-convolution expansion of order
m can achieve a better rate under the sole Assumptions 1
and 2.

Corollary 2 Let ε > 0 and set m = �Cε−1/sκ1/2s�. Under
Assumptions 1 and 2, Hm satisfies ‖H − Hm‖HS ≤ ε and
products with Hm and H∗

m can be evaluated with no more
than O(κ1/2sn log nε−1/s) operations.

Proof Since Fourier atoms are not localized in the time
domain, the modulation functions wk are supported on
intervals of size p = n. The complexity of computing a
matrix vector product is therefore O(mn log(n)) operations
by Lemma 4. ��

Finally, let us mention that computing the discrete Kohn–
Nirenberg symbol N costs O(κn2 log2(n)) operations (κn
discrete Fourier transforms of size n). The storage cost of
this Fourier representation is O(mκn) since one has to store
κn coefficients for each of the m vectors hk .

In the next two sections, we show that replacing Fourier
atoms by wavelet atoms or B-splines preserves the optimal
rate of convergence in O(

√
κm−s), but has the additional

advantage of being localized in space, thereby reducing com-
plexity.

4.2 Spline Decompositions

B-Splines form a Riesz basis with dual Riesz basis of form
[8]:

(B̃α,m(· − k/m))0≤k≤m−1. (45)

The projection fm of any f ∈ L2(Ω) onto Bα,m can be
expressed as:

fm = argmin f̃ ∈Bα,m
‖ f̃ − f ‖22 (46)

=
m−1∑
k=0

〈 f, B̃α,m(· − k/m)〉Bα,m(· − k/m). (47)

Theorem 1 ( [4, p. 87] or [19, p. 420]) Let f ∈ Hs(Ω) and
α ≥ s, then

‖ f − fm‖2 ≤ C
√

κm−s‖ f ‖Ws,2 . (48)
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The following result directly follows.

Corollary 3 Set α ≥ s. For each x ∈ Ω , let (ck(x))0≤k≤m−1

be defined as

ck(x) = 〈T (x, ·), B̃α,m(· − k/m)〉. (49)

Define Tm by:

Tm(x, y) =
m−1∑
k=0

ck(x)Bα,m(y − k/m). (50)

If α ≥ s, then, under Assumptions 1 and 2,

‖Hm − H‖HS ≤ C
√

κm−s . (51)

Proof The proof is similar to that of Corollary (1). ��
Corollary 4 Let ε > 0 and set m = �Cε−1/sκ1/2s�. Under
Assumptions 1 and 2, Hm satisfies ‖H − Hm‖HS ≤ ε and
products with Hm and H∗

m can be evaluated with no more
than

O
((

s + κ1+1/2sε−1/s
)
n log2(κn)

)
(52)

operations. For small ε and large n, the complexity behaves
like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (53)

Proof In this approximation, m B-splines are used to cover
Ω . B-splines have a compact support of size (α + 1)/m.
This property leads to windowing vector wk with support of
size p = �(α + 1) n

m �. Furthermore, the vectors (hk) have a
support of size q = κn. Combining these two results with
Lemma 4 and Corollary 3 yields the result for the choice
α = s. ��

The complexity of computing the vectors ck is
O(κn2 log(n)) (κn projections with complexity n log(n),
see, e.g., [41]).

As shown in Corollary (4), B-splines approximations are
preferable over Fourier decompositions whenever the sup-
port size κ is small.

4.3 Wavelet Decompositions

Lemma 6 ([31, Theorem 9.5]) Let f ∈ Hs(Ω) and fm
denote its partial wavelet series:

fm =
∑

|μ|≤�log2(m)�
cμψμ, (54)

where ψ is a Daubechies wavelet with α > s vanishing
moments and cμ = 〈ψμ, f 〉. Then

‖ fm − f ‖L2(Ω) ≤ Cm−s | f |Hs (Ω). (55)

A direct consequence is the following corollary.

Corollary 5 Let ψ be a Daubechies wavelet with α = s + 1
vanishing moments. Define Tm by:

Tm(x, y) =
∑

|μ|≤�log2(m)�
cμ(x)ψμ(y), (56)

where cμ(x) = 〈ψμ, T (x, ·)〉. Then, under Assumptions 1
and 2

‖Hm − H‖HS ≤ C
√

κm−s . (57)

Proof The proof is identical to that of Corollary (1). ��
Proposition 1 Let ε > 0 and set m = �Cε−1/sκ1/2s�.
Under Assumptions 1 and 2, Hm satisfies ‖H − Hm‖HS ≤ ε

and products with Hm and H∗
m can be evaluated with nomore

than

O
((

sn log2
(
ε−1/sκ1/2s

)
+ κ1+1/2snε−1/s

)
log2(κn)

)

(58)

operations. For small ε, the complexity behaves like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (59)

Proof In (56), the windowing vectors wk are wavelets ψμ

of support of size min((2s + 1)n2−|μ|, n). Therefore, each
convolution has to be performed on intervals of size |ψμ| +
q+1. Since there are 2 j wavelets at scale j , the total number
of operations is:

∑
μ | |μ|<log2(m)

(|ψμ| + q + 1) log2(min(|ψμ|, q + 1)) (60)

≤
∑

μ | |μ|<log2(m)

((2s + 1)n2−|μ| + κn) log2(κn) (61)

=
log2(m)−1∑

j=0

2 j
(
(2s + 1)n2− j + κn

)
log2(κn) (62)

=
log2(m)−1∑

j=0

(
(2s + 1)n + 2 jκn

)
log2(κn) (63)

≤ (
(2s + 1)n log2(m) + mκn

)
log2(κn) (64)

=
(
(2s+1)n log2(ε

−1/sκ1/2s)+ε−1/sκ1+1/2sn
)
log2(κn).

(65)

��
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Fig. 3 “Wavelet symbols” of the operators given in Examples 1, 2
and 3 in log10 scale. The red bars indicate separations between scales.
Notice that the wavelet coefficients in kernel 1 rapidly decay as scales
increase. The decay is slower for kernels 2 and 3 which are less reg-
ular. The adaptivity of wavelets can be visualized in kernel 3: Some

wavelet coefficients are non zero at large scales, but they are all concen-
trated around discontinuities. Therefore, only a few number of couples
(cμ,ψμ) will be necessary to encode the discontinuities. This was not
the case with Fourier or B-spline atoms. a Kernel 1, b, kernel 2 and c
kernel 3 (Color figure online)

Computing the vectors cμ costs O(κsn2) operations (κn
discrete wavelet transforms of size n). The storage cost of
this wavelet representation is O(mκn) since one has to store
κn coefficients for each of the m functions hk .

As can be seen from this analysis, wavelet and B-spline
approximations roughly have the same complexity over the
class T s . The main advantage of wavelets compared to
B-splines with fixed knots is that they are known to charac-
terize much more general function spaces than Hs(Ω). For
instance, if all functions T (x, ·) have a single discontinuity at
a given y ∈ Ω , only a few coefficients cμ(x) will remain of
large amplitude. Wavelets will be able to efficiently encode
the discontinuity, while B-splines with fixed knots—which
are not localized in nature—will fail to well approximate the
TVIR. It is therefore possible to use wavelets in an adaptive
way. This effect is visible in Fig. 3c: Despite discontinuities,
only wavelets localized around the discontinuities yield large
coefficients. In the next section, we propose two other adap-
tive methods, in the sense that they are able to automatically
adapt to the TVIR regularity.

4.4 Interpolation VS Approximation

In all previous results,we constructed the functionswk and hk
in 4 by projecting T (x, ·) onto linear subspaces. This is only
possible if the whole TVIR T is available. In very large-scale
applications, this assumption is unrealistic, since the TVIR
contains n2 coefficients, which cannot even be stored. Instead
of assuming a full knowledge of T , some authors (e.g., [34])
assume that the impulse responses T (·, y) are available only
at a discrete set of points yi = i/m for 1 ≤ i ≤ m.

In that case, it is possible to interpolate the impulse
responses instead of approximating them. Given a linear sub-
space Em = span(ek, k ∈ {1, . . . ,m}), where the atoms ek

are assumed to be linearly independent, the functions ck(x)
in (36) are chosen by solving the set of linear systems:

m∑
k=1

ck(x)ek(yi ) = Tm(x, yi ) for 1 ≤ i ≤ m. (66)

In the discrete setting, under Assumption 2, this amounts to
solving �κn� linear systems of size m × m. The analysis of
such a method requires using very different tools. We refer
the interested reader to our recent work [5], where we inves-
tigate the rates of convergence with respect to the number of
impulse responses, their geometry and the level of noise on
the data.

4.5 On Meyer’s Operator Representation

Up to now, we only assumed a regularity of T in the y direc-
tion, meaning that the impulse responses vary smoothly in
space. In many applications, the impulse responses them-
selves are smooth. In this section,we show that this additional
regularity assumption can be used to further compress the
operator. Finding a compact operator representation is a key
to treat identification or estimation problems (e.g., blind
deblurring in imaging), see, e.g., [30].

Since (ψλ)λ∈Λ is aHilbert basis of L2(Ω), the set of tensor
product functions (ψλ ⊗ ψμ)λ∈Λ,μ∈Λ is a Hilbert basis of
L2(Ω×Ω). Therefore, any T ∈ L2(Ω×Ω) can be expanded
as:

T (x, y) =
∑
λ∈Λ

∑
μ∈Λ

cλ,μψλ(x)ψμ(y). (67)

The main idea of the construction in this section consists of
keeping only the coefficients cλ,μ of large amplitude. A sim-
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ilar idea was proposed in the BCR paper [3]2, except that the
kernel K was expanded instead of the TVIR T . Decompos-
ing T was suggested by Beylkin at the end of [2] without a
precise analysis.

In this section, we assume that T ∈ Hr,s(Ω × Ω), where

Hr,s(Ω×Ω) = {T :Ω×Ω → R, ∂α1
x ∂α2

y T ∈ L2(Ω×Ω),

∀α1 ∈ {0, . . . , r},∀α2 ∈ {0, . . . , s}}.
(68)

This space arises naturally in applications, where the impulse
response regularity r might differ from the regularity s of
their variations. Notice that H2s(Ω ×Ω) ⊂ Hs,s(Ω ×Ω) ⊂
Hs(Ω).

Theorem 2 Assume that T ∈ Hr,s(Ω × Ω) and satisfies
Assumption 2. Assume that ψ has max(r, s) + 1 vanishing
moments. Let cλ,μ = 〈T, ψλ ⊗ ψμ〉. Define

Hm1,m2 =
∑

|λ|≤log2(m1)

∑
|μ|≤log2(m2)

cλ,μψλ ⊗ ψμ. (69)

Let m ∈ N, set m1 = �ms/(r+s)�, m2 = �mr/(r+s)� and
Hm = Hm1,m2 . Then

‖H − Hm‖HS ≤ C
√

κm− rs
r+s . (70)

Proof First notice that

T∞,m2 =
∑

|μ|≤�log2(m2)�
cμ ⊗ ψμ, (71)

where cμ(x) = 〈T (x, ·), ψμ〉. From Corollary 5, we get:

‖T∞,m2 − T ‖L2(Ω×Ω) ≤ C
√

κm−s
2 . (72)

Now, notice that cμ ∈ Hr (Ω). Indeed, for all 0 ≤ k ≤ r , we
get:

∫
Ω

(∂kx cμ(x))2 dx (73)

=
∫

Ω

(
∂kx

∫
Ω

T (x, y)ψμ(y) dy

)2

dx (74)

=
∫

Ω

(∫
Ω

(∂kx T )(x, y)ψμ(y) dy

)2

dx (75)

≤
∫

Ω

‖(∂kx T )(x, ·)‖2L2(Ω)
‖ψμ‖2L2(Ω)

dx (76)

= ‖(∂kx T )‖L2(Ω×Ω) < +∞. (77)

2 This was also the basic idea in our recent paper [20].

Therefore, we can use Lemma 6 again to show:

‖T∞,m2 − Tm1,m2‖L2(Ω×Ω) ≤ C
√

κm−r
1 . (78)

Finally, using the triangle inequality, we get:

‖T − Tm1,m2‖HS ≤ C
√

κ(m−r
1 + m−s

2 ). (79)

By setting m1 = ms/r
2 , the two approximation errors in

the right-hand side of (79) are balanced. This motivates the
choice of m1 and m2 indicated in the theorem. ��
The approximation result in inequality (70) is worse than
the previous ones. For instance if r = s, then the bound
becomes O(

√
κm−s/2) instead of O(

√
κm−s) in all previ-

ous theorems. The great advantage of this representation is
the operator storage: Until now, the whole set of vectors (cμ)

had to be stored (O(κnm) values), while now, only m coef-
ficients cλ,μ are required. For instance, in the case r = s, for
an equivalent precision, the storage cost of the new represen-
tation is O(κm2) instead of O(κnm). Figure 4 illustrates the
compression properties of Meyer’s representations.

In addition, evaluating matrix-vector products can be
achieved rapidly by using the following trick:

Hmu =
∑

|λ|≤log2(m1)

∑
|μ|≤log2(m2)

cλ,μψλ � (ψμ � u) (80)

=
∑

|μ|≤log2(m2)

⎛
⎝ ∑

|λ|≤log2(m1)

cλ,μψλ

⎞
⎠ � (ψμ � u).

(81)

By letting c̃μ = ∑
|λ|≤log2(m1)

cλ,μψλ, we get

Hmu =
∑

|μ|≤log2(m2)

c̃μ � (ψμ � u). (82)

which can be computed in O(m2κn log2(κn)) operations.
This remark leads to the following proposition.

Proposition 2 Assume that T ∈ Hr,s(Ω × Ω) and that

it satisfies Assumption 2. Set m =
⌈(

ε
C

√
κ

)−(r+s)/rs
⌉
.

Then, the operator Hm defined in Theorem 2 satisfies ‖H −
Hm‖HS ≤ ε and the number of operations necessary to
evaluate a product with Hm or H∗

m is bounded above by

O
(
ε−1/sκ

2s+1
2s n log2(n)

)
.

Notice that the complexity of matrix-vector products is
unchanged compared to the wavelet or spline approaches
with amuchbetter compression ability.However, thismethod
requires a preprocessing to compute c̃μ with complexity
ε−1/sκ1/2sn (Fig. 4).
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Fig. 4 Meyer’s representations of the operators in Examples 1, 2 and 3 in log10 scale. a Kernel 1, b kernel 2 and c kernel 3

5 Adaptive Decompositions

In the last section, all methods shared the same principle:
project T (x, ·) on a fixed basis for each x ∈ Ω . Instead
of fixing a basis, one can try to find a basis adapted to the
operator at hand. This idea was proposed in [21] and [17].

5.1 Singular Value Decompositions

The authors of [21] proposed to use a singular value decom-
position (SVD) of the TVIR in order to construct the
functions hk and wk . In this section, we first detail this idea
and then analyze it from an approximation theoretic point of
view. Let J : L2(Ω) → L2(Ω) denote the linear integral
operator with kernel T ∈ T s . First notice that J is a Hilbert–
Schmidt operator since ‖J‖HS = ‖H‖HS . By Lemma 2 and
since Hilbert–Schmidt operators are compact, there exists
two orthonormal bases (ek) and ( fk) of L2(Ω) such that J
can be decomposed as

J =
∑
k≥1

σk · ek ⊗ fk, (83)

leading to

T (x, y) =
+∞∑
k=1

σk fk(x)ek(y). (84)

The following result is a standard.

Theorem 3 For a given m, a set of functions (hk)1≤k≤m and
(wk)1≤k≤m that minimizes ‖Hm − H‖HS is given by:

hk = σk fk and wk = ek . (85)

Moreover, if T (x, ·) satisfies Assumptions 1 and 2, we get:

‖Hm − H‖HS = O
(√

κm−s) . (86)

Proof The proof of optimality (86) is standard. Since Tm is
the best rank m approximation of T , it is necessarily better
than bound (41), yielding (86). ��

Theorem 4 For all ε > 0 and m < n, there exists an oper-
ator H with TVIR satisfying 1 and 2 such that:

‖Hm − H‖HS ≥ C
√

κm−(s+ε). (87)

Proof In order to prove (87), we construct a “worst case”
TVIR T .Wefirst begin by constructing a kernel T with κ = 1
to show a simple pathological TVIR. Define T by:

T (x, y) =
∑
k∈Z

σk fk(x) fk(y), (88)

where fk(x) = exp(2iπkx) is the k-th Fourier atom, σ0 = 0
and σk = σ−k = 1

|k|s+1/2+ε/2 for |k| ≥ 1. With this choice,

T (x, y) =
∑

|k|≤N

2σk cos(2π(x + y)) (89)

is real for all (x, y). We now prove that T ∈ T s . The k-
th Fourier coefficient of T (x, ·) is given by σk fk(x) which
is bounded by σk for all x . By Lemma 1, T (x, ·) there-
fore belongs to Hs(Ω) for all x ∈ Ω . By construction, the
spectrum of T is (|σk |)k∈N, therefore for any rank 2m + 1
approximation of T , we get:

‖T − T2m+1‖2HS ≥
∑

|k|≥m+1

1

|k|2s+1+ε
(90)

≥
∫ ∞

m+1

2

t2s+1+ε
dt (91)

= 1

2s + ε

2

(m + 1)2s+ε
(92)

= O(m−2s−ε), (93)
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proving the result for κ = 1. Notice that the kernel K of the
operator with TVIR T only depends on x :

K (x, y) =
∑

|k|≤N

2σk cos(2πx). (94)

Therefore, the worst-case TVIR exhibited here is that of a
rank 1 operator H . Obviously, it cannot bewell approximated
by product-convolution expansions.

Let us now construct a TVIR satisfying Assumption 2.
For this, we first construct an orthonormal basis ( f̃k)k∈Z of
L2([−κ/2, κ/2]) defined by:

f̃k(x) =
{

1√
κ
fk

( x
κ

)
if |x | ≤ κ

2 ,

0 otherwise.
(95)

The worst-case operator considered now is defined by:

T (x, y) =
∑
k∈Z

σ̃k f̃k(x) fk(y). (96)

Its spectrum is (|σ̃k |)k∈Z, and we get

|〈T (x, ·), fk〉| = |σ̃k f̃k(x)| = 1

κ
|σ̃k |. (97)

By Lemma 5, if σ̃k = κ
(1+|k|2)s |k|1+ε , then ‖T (x, ·)‖Hs (Ω) is

uniformly bounded by a constant independent of κ . More-
over, by reproducing the reasoning in (90), we get:

‖T − T2m+1‖2HS = O(κm−2s−ε). (98)

��

Even if the SVDprovides an optimal decomposition, there
is no guarantee that functions ek are supported on an interval
of small size. As an example, it suffices to consider the “worst
case” TVIR given in Eq. (88). Therefore, vectors wk are
generically supported on intervals of size p = n. This yields
the following proposition.

Corollary 6 Let ε > 0 and set m = �Cε−1/sκ1/2s�.
Then, Hm satisfies ‖H − Hm‖HS ≤ ε and a product
with Hm and H∗

m can be evaluated with no more than
O(κ1/2sn log nε−1/s) operations.

Computing the first m singular vectors in (84) can be
achieved in roughly O(κn2 log(m)) operations thanks to
recent advances in randomized algorithms [25]. The storage
cost for this approach is O(mn) since the vectors ek have no
reason to be compactly supported.

5.2 The Optimization Approach in [17]

In [17], the authors propose to construct the windowing func-
tions wk and the filters hk using constrained optimization
procedures. For a fixed m, they propose solving:

min
(hk ,wk )1≤k≤m

∥∥∥∥∥T −
m∑

k=1

hk ⊗ wk

∥∥∥∥∥
2

HS

(99)

under an additional constraint that supp(wk) ⊂ ωk with ωk

chosen so that ∪m
k=1ωk = Ω . A decomposition of type 99 is

known as structured low-rank approximation [9]. This prob-
lem is nonconvex, and to the best of our knowledge, there
currently exists no algorithm running in a reasonable time to
find its global minimizer. It can however be solved approxi-
mately using alternating minimization like algorithms.

Depending on the choice of the supportsωk , different con-
vergence rates can be expected. However, by using the results
for B-splines in Sect. 4.2, we obtain the following proposi-
tion.

Proposition 3 Set ωk = [(k − 1)/m, k/m + s/m] and let
(hk, wk)1≤k≤m denote the global minimizer of (99). Define
Tm by Tm(x, y) = ∑m

k=1 hk(x)wk(y). Then:

‖T − Tm‖2HS ≤ C
√

κm−s . (100)

Set m = �κ1/2sCε−1/s�, then ‖Hm − H‖HS ≤ ε and the
evaluation of a product with Hm or H∗

m is of order

O(κ1+1/2sn log(n)ε−1/s). (101)

Proof First notice that cardinal B-Splines are also supported
on [(k−1)/m, k/m+s/m]. Since themethod in [17] provides
the best choices for (hk, wk), the distance ‖Hm − H‖HS

is necessarily lower than that obtained using B-splines in
Corollary 3. ��

Finally, let us mention that—owing to Corollary 5—it
might be interesting to use the optimization approach (99)
with windows of varying sizes.

6 Summary and Extensions

6.1 A Summary of All Results

Table 1 summarizes the results derived so far under Assump-
tions 1 and 2. In the particular case of Meyer’s methods, we
assume that T ∈ Hr,s(Ω × Ω) instead of Assumption 1. As
can be seen in this table, different methods should be used
depending on the application. The best methods are:
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Table 1 Summary of the properties of different constructions

Method Approximation Product Construction Storage Adaptivity

Fourier 4.1 O
(
κ

1
2 m−s

)
O

(
κ

1
2s n log(n)ε− 1

s

)
O(κn2 log(n)) O(mκn) ✗

B-Splines 4.2 O
(
κ

1
2 m−s

)
O

(
κ

2s+1
2s n log(n)ε− 1

s

)
O(κn2 log(n)) O(mκn) ✗

Wavelets 4.3 O
(
κ

1
2 m−s

)
O

(
κ

2s+1
2s n log(n)ε− 1

s

)
O(κsn2) O(mκn) ✓

Meyer 4.5 O
(
κ

1
2 m− rs

r+s

)
O

(
κ

2s+1
2s n log(n)ε− 1

s

)
O(sn2) O(m) ✓

SVD 5.1 O
(
κ

1
2 m−s

)
O

(
κ

1
2s n log(n)ε− 1

s

)
O(κn2 log(m)) O(mn) ✓

[17] 5.2 O
(
κ

1
2 m−s

)
O

(
κ

2s+1
2s n log(n)ε− 1

s

)
High (iterative) O(mκn) ✓

Approximation ≡ approximation rates in terms of m. Product ≡ matrix-vector product complexity to get an ε approximation. Construction ≡
complexity of the construction of order m representation. Storage ≡ cost of storage of a given representation. Adaptivity ≡ ability to automatically
adapt to different input operators

– Wavelets: They are adaptive and have a relatively low
construction complexity, andmatrix-vector products also
have the best complexity.

– Meyer: This method has a big advantage in terms of stor-
age. The operator can be represented very compactlywith
this approach. It has a good potential for problems where
the operator should be inferred (e.g., blind deblurring). It
however requires stronger regularity assumptions.

– The SVD and the method proposed in [17] both share an
optimal adaptivity. The representation however depends
on the operator and it is more costly to evaluate it.

6.2 Extensions to Higher Dimensions

Most of the results provided in this paper are based on stan-
dard approximation results in 1D, such as Lemmas 5, 6 and 1.
All these lemmas can be extended to higher dimension, and
we refer the interested reader to [18,19,31,36] for more
details.

We now assume that Ω = [0, 1]d and that the diameter
of the impulse responses is bounded by κ ∈ [0, 1]. Using
the mentioned results, it is straightforward to show that the
approximation rate of all methods now becomes

‖H − Hm‖HS = O(κd/2m−s/d). (102)

The space Ω can be discretized on a finite dimensional
space of size nd . Similarly, all complexity results given in
Table 1 are still valid by replacing n by nd , ε−1/s by ε−d/s

and κ by κd .

6.3 Extensions to Least Regular Spaces

Until now, we assumed that the TVIR T belongs to Hilbert
spaces (see, e.g., Assumption 1). This assumption was delib-
erately chosen easy to clarify the presentation. The results

can most likely be extended to much more general spaces
using nonlinear approximation theory results [18].

For instance, assume that T ∈ BV (Ω × Ω), the space
of functions with bounded variations. Then, it is well known
(see, e.g., [11]) that T can be expressed compactly on an
orthonormal basis of tensor product wavelets. Therefore, the
product-convolution expansion 4 could be used by using the
trick proposed in 82.

Similarly, most of the kernels found in partial differential
equations (e.g., Calderòn–Zygmund operators) are singular
at the origin. Once again, it is well known [32] that wavelets
are able to capture the singularities and the proposedmethods
can most likely be applied to this setting too.

A precise setting useful for applications requires more
work and we leave this issue open for future work.

6.4 Controls in Other Norms

In all the paper, we only controlled theHilbert–Schmidt norm
‖ · ‖HS . This choice simplifies the analysis and also allows
getting bounds for the spectral norm

‖H‖2→2 = sup
‖u‖L2(Ω)

≤1
‖Hu‖L2(Ω), (103)

since ‖H‖2→2 ≤ ‖H‖HS . In applications, it often makes
sense to consider other operator norms defined by

‖H‖X→Y = sup
‖u‖X≤1

‖Hu‖Y , (104)

where ‖·‖X and ‖·‖Y are norms characterizing some function
spaces.We showed in [20] that this idea could highly improve
practical approximation results.

Unfortunately, it is not clear yet how to extend the pro-
posed results and algorithms to such a setting and we leave
this question open for the future. Let us mention that our pre-
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vious experience shows that this idea can highly change the
method’s efficiency.

7 Conclusion

In this paper, we analyzed the approximation rates and
numerical complexity of product-convolution expansions.
This approach was shown to be efficient whenever the time-
or space-varying impulse response of the operator is well
approximated by a low-rank tensor. We showed that this sit-
uation occurs under mild regularity assumptions, making the
approach relevant for a large class of applications. We also
proposed a few original implementations of this methods
based on orthogonal wavelet decompositions and analyzed
their respective advantages precisely. Finally, we suggested
a few ideas to further improve the practical efficiency of the
method.
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