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Abstract In two-view geometry, the essential matrix des-
cribes the relative position and orientation of two calibrated
images. In three views, a similar role is assigned to the
calibrated trifocal tensor. It is a particular case of the (uncal-
ibrated) trifocal tensor, and thus it inherits all its properties
but, due to the fewer degrees of freedom, satisfies a number of
additional algebraic constraints. Some of them are described
in this paper. More specifically, we define a new notion—the
trifocal essential matrix. On the one hand, it is a generaliza-
tion of the ordinary (bifocal) essential matrix, while, on the
other hand, it is closely related to the calibrated trifocal ten-
sor.We prove the two necessary and sufficient conditions that
characterize the set of trifocal essential matrices. Based on
these characterizations, we propose three necessary condi-
tions on a calibrated trifocal tensor. They have the form of 15
quartic and 99 quintic polynomial equations.We show that in
the practically significant real case the 15 quartic constraints
are also sufficient.

Keywords Multiple view geometry · Calibrated trifocal
tensor · Trifocal essential matrix · Quartic and quintic
constraints on calibrated trifocal tensor

1 Introduction

In multiview geometry, the fundamental matrix and the tri-
focal tensor describe the relative orientation of two and three
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(uncalibrated) images respectively. If the cameras are cali-
brated, i.e., we are given the calibration matrices for each
view, the fundamental matrix is transformed to the so-called
essential matrix. It was first introduced by Longuet-Higgins
in [14]. The essential matrix has fewer degrees of free-
dom and additional algebraic properties, compared to the
fundamental matrix. A detailed investigation of these prop-
erties is given by Demazure, Faugeras, Maybank and other
researchers in [6,7,12,13,15]. We shortly recall the most
important of them in the next section.

The object of study of the present paper is the tri-
focal tensor for calibrated cameras. We call this entity
the calibrated trifocal tensor (CTFT for short), although
some authors use the term Euclidean trifocal tensor. It first
appeared as a tool of scene reconstruction from line corre-
spondences in the papers by Spetsakis and Aloimonos [23]
and Weng et al. [27]. Later, Hartley [10] generalized the
trifocal tensor for uncalibrated cameras and showed that
it can be applied for projective scene reconstruction from
different combinations of point and line correspondences.
Afterward, the properties and applications of (uncalibrated)
trifocal tensors have been intensively investigated by Hart-
ley, Shashua, Triggs, and many other researchers in [3,11,
21,22,25,26].

One of the most important problems regarding multifocal
tensors is their algebraic characterization, i.e., a set of neces-
sary and sufficient conditions under which an arbitrary tensor
of suitable order becomes the multifocal tensor. The condi-
tions are usually given in a form of polynomial equations.
While the fundamental matrix is completely characterized
by the single equation—its determinant must be zero—the
set of essential matrices is characterized by the nine cubic
constraints, cf. [6,15] or Eq. (7) below. The significance of
this result lies in its practical applications. A few efficient
algorithms for some metric structure-from-motion problems
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have been developed based on the characterization of essen-
tial matrices; see, e.g., [16,24].

The investigation of constraints characterizing uncali-
brated trifocal tensors has received considerable attention in
the last two decades: see [4,17,20] and recent works [1,2,18]
for details. We would like to mention that the structure of the
set of trifocal tensors is muchmore complicated compared to
the bifocal case. In particular, the characterizations from [2]
and [1] consist of 36 and 2071 (!) polynomials, respectively.

On the other hand, constraints on trifocal tensors specific
to the calibrated case have not previously been studied in
the published literature. The present paper is a first step in
this direction. Its main contribution is the characterization of
the set of real CTFTs. Namely, we show that the necessary
and sufficient conditions for a real trifocal tensor to be cal-
ibrated consist of 15 quartic polynomial equations. Most of
them arise from the study of certain complex 3 × 3 matrix
associated with a CTFT. Alternatively, we propose the char-
acterization consisting of 99 quintic polynomial equations.

The rest of the paper is organized as follows. In Sect. 2, we
recall some definitions and results frommultiview geometry.
In Sect. 3, we introduce a new notion—the trifocal essential
matrix. On the one hand, it is a generalization of the ordi-
nary (bifocal) essential matrix, and, on the other hand, it is
closely related to the calibrated trifocal tensor. We prove the
two necessary and sufficient conditions that characterize the
set of trifocal essential matrices. In Sect. 4, we define the tri-
focal essential matrix associated with a CTFT and, based on
the characterizations from Sect. 3, we propose our three nec-
essary conditions. They have the form of 15 quartic and 99
quintic homogeneous polynomial equations in the entries of
a CTFT. In Sect. 5, we show that in the practically significant
real case the 15 quartic constraints are also sufficient. Com-
bining this result with the existing characterization of trifocal
tensors, we give a complete set of constraints characterizing
a real CTFT. In Sect. 6, we discuss the paper’s results and
propose further directions of research. In Appendix, we have
included some auxiliary lemmas used in the paper.

2 Preliminaries

2.1 Notation

We preferably use α, β, . . . for scalars, a, b, . . . for column
3-vectors or polynomials, and A, B, . . . both for matrices
and column 4-vectors. For a matrix A, the entries are (A)i j ,
the transpose is AT, the determinant is det A, and the trace
is tr A. For two 3-vectors a and b the cross product is a × b.
For a vector a the entries are (a)i , the notation [a]× stands
for the skew-symmetric matrix such that [a]×b = a × b for
any vector b. We use I for the identity matrix.

The group of n × n matrices subject to RTR = I and
det R = 1 is denoted by SO(n) in case R is real and SO(n,C)

if R is allowed to have complex entries.

2.2 Pinhole Cameras

Webriefly recall some definitions and results frommultiview
geometry; see [7,8,11,15] for details.

A pinhole camera is a triple (O,�, P), where � is the
image plane, P is a central projection of points in three-
dimensional Euclidean space onto �, and O /∈ � is the
camera center (center of projection P).

Let there be given coordinate frames in 3-space and in the
image plane �. Let Q be a point in 3-space represented in
homogeneous coordinates as a 4-vector, and q be its image
in � represented as a 3-vector. Projection P is then given
by a 3× 4 homogeneous matrix, which is called the camera
matrix and is also denoted by P . We have

q ∼ PQ,

where ∼ means an equality up to a scale. For the sake of
brevity, we identify further the camera (O,�, P) with its
camera matrix P .

The focal length is the distance between O and �, the
orthogonal projection of O onto � is called the principal
point. All intrinsic parameters of a camera (such as the focal
length and the principal point offsets) are combined into a
single upper-triangularmatrix,which is called the calibration
matrix. A camera is called calibrated if its calibration matrix
is known.

By changing coordinates in the image plane, the calibrated
camera can be represented in the form

P = [
R t

]
,

where R ∈ SO(3) and t ∈ R
3 are called the rotation matrix

and translation vector, respectively.

2.3 Two-View Case

Let there be given two cameras P1 = [
I 0

]
and P2 =[

A a
]
, where A is a 3×3 matrix and a is a 3-vector. Let Q

be a point in 3-space, and qk be its kth image. Then,

qk ∼ PkQ, k = 1, 2.

The incidence relation for a pair (q1, q2) says

qT2 Fq1 = 0, (1)

where matrix F = [a]×A is called the fundamental matrix.
It is important that relation (1) is linear in the entries of F ,
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so that given a number of point correspondences (eight or
more), one can estimate the entries of F by solving a linear
system.

It follows from the definition of matrix F that det F = 0.
One easily verifies that this condition is also sufficient. Thus
we have

Theorem 1 ([11]) A real nonzero 3 × 3 matrix F is a fun-
damental matrix if and only if

det F = 0. (2)

The essential matrix E is the fundamental matrix for cal-
ibrated cameras P̂1 = [

I 0
]
and P̂2 = [

R t
]
, where

R ∈ SO(3), t is a 3-vector, that is

E = [t]×R. (3)

The matrices F and E are related by

F ∼ K−T
2 EK−1

1 , (4)

where Kk is the calibration matrix of the kth camera. It fol-
lows that the incidence relation (1) for the essential matrix
becomes

q̂T2 Eq̂1 = 0,

where q̂k = K−1
k qk are the so-callednormalized coordinates.

Equality (3) can be thought of as the definition of the
essential matrix, i.e., it is a 3 × 3 nonzero skew-symmetric
matrix post-multiplied by a special orthogonal matrix.More-
over, we can even consider complex essential matrices
assuming that in (3) vector t ∈ C

3 andmatrix R ∈ SO(3,C).
The real fundamental matrix has seven degrees of free-

dom, whereas the real essential matrix has only five degrees
of freedom. It is translated into the following property [7,11,
13]: Two of the singular values of matrix E are equal, and the
third is zero. The condition is also sufficient. An equivalent
form of this result is given by

Theorem 2 ([6,7]) A real 3 × 3 matrix E is an essential
matrix if and only if

det E = 0, (5)

tr(EET)2 − 2 tr((EET)2) = 0. (6)

It should be mentioned here that constraints (5) and (6)
characterize only real essential matrices. There exist “non-
essential” complex 3×3 matrices which nevertheless satisfy
both conditions (5) and (6). The most general form of such
matrices will be given in the next section.

The following theorem gives another characterization
constraint on the entries of essential matrix E . It is also valid
in case of complex E .

Theorem 3 ([6,7,15]) A real or complex 3× 3 matrix E of
rank two is an essential matrix if and only if

(tr(EET)I − 2EET)E = 03×3. (7)

We note that there are “non-essential” rank one matrices
which satisfy (7). However, it can be shown that all of them
are limits of sequences of essential matrices [15]. Thus the
closure of the set of essentialmatrices constitutes an algebraic
variety generated by (7).

It is interesting to note that Theorem 3 is a key for devel-
oping efficient algorithms of the essential matrix estimation
from five-point correspondences in two views [16].

2.4 Three-View Case

A (2, 1) tensor is a valency-3 tensor with two contravariant
and one covariant indices. For a (2, 1) tensor T , wewrite T =[
T1 T2 T3

]
, where Tk are 3 × 3 matrices corresponding

to the covariant index.
Let there be given three cameras P1 = [

I 0
]
, P2 =[

A a
]
and P3 = [

B b
]
, where A and B are 3×3matrices,

a and b are 3-vectors. The trifocal tensor T = [
T1 T2 T3

]

is a (2, 1) tensor defined by

Tk = Aekb
T − aeTk B

T, (8)

where e1, e2, e3 constitute the standard basis in R
3. For a

trifocal tensor T matrices Tk are called the correlation slices.
It is clear that det Tk = 0. If matrices Tk are of rank two,

then let lk and rk be the left and right null vectors of Tk ,
respectively. It follows from (8) that lk = [a]×Aek and
rk = [b]×Bek . Therefore, the two (sextic in the entries of
T1, T2, T3) epipolar constraints hold [11,17]:

det
[
l1 l2 l3

] = det([a]×A) = 0,

det
[
r1 r2 r3

] = det([b]×B) = 0.
(9)

Moreover, for any scalarsα, β, γ , thematrixαT1+βT2+γ T3
is also degenerate (its right null vector is [b]×B(αe1+βe2+
γ e3)) meaning that

det(αT1 + βT2 + γ T3) = 0. (10)

This equality is referred to as the extended rank constraint.
It is equivalent to ten (cubic in the entries of T1, T2, T3)
equations each of which is the coefficient in αiβ jγ k with
i + j + k = 3.

Theorem 4 ([9,17]) Let T = [
T1 T2 T3

]
be a real (2, 1)

tensor such that rank Tk = 2, k = 1, 2, 3. Let T satisfy the
two epipolar (9) and ten extended rank (10) constraints. Let
the ranks of matrices

[
l1 l2 l3

]
and

[
r1 r2 r3

]
equal

two. Then T is a trifocal tensor.
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Remark 1 The additional rank constraints from Theorem 4
are sometimes referred to as the “general viewpoint assump-
tion.” The following example demonstrates that they cannot
be omitted. The (2, 1) tensor

T =
⎡

⎣

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦

⎤

⎦

satisfies both the epipolar and extended rank constraints.
However it is not a trifocal tensor, i.e., it cannot be repre-
sented in form (8). On the other hand, there exist degenerate
trifocal tensors such that at least one ofmatrices

[
l1 l2 l3

]
,[

r1 r2 r3
]
or even Tk is of rank less than two.

Also, it should bementioned that the characterization from
Theorem 4 is not unique. There exist other sets of constraints
characterizing trifocal tensors, cf. [1,2,4,18,20].

Let qk be the kth image of a point Q in 3-space. The
trifocal incidence relation for a triple (q1, q2, q3) says [11]

[q2]×
3∑

j=1

(q1) j Tj [q3]× = 03×3. (11)

Note that matrix relation (11) is linear in the entries of T . It
consists of nine scalar equations, but only four of them are
linearly independent.

The calibrated trifocal tensor (CTFT) T̂ is the trifocal
tensor for calibrated cameras P1 = [

I 0
]
, P2 = [

R2 t2
]

and P3 = [
R3 t3

]
, where R2, R3 ∈ SO(3), t2, t3 ∈ R

3, i.e.,

T̂k = R2ekt
T
3 − t2e

T
k R

T
3 . (12)

The CTFT is an analog of the essential matrix in three
views. The tensors T and T̂ are related by

Tj ∼ K2

3∑

k=1

(K−T
1 ) jk T̂k K

T
3 , (13)

where Kk is the calibration matrix of the kth camera.
For any invertible 3 × 3 matrix M and 3-vector t , the

following identity holds:

[M−1t]× = det(M−1)MT[t]×M.

Therefore, the trifocal incidence relation (11) for the CTFT
becomes

[q̂2]×
3∑

j=1

(q̂1) j T̂ j [q̂3]× = 03×3,

where q̂k = K−1
k qk are the normalized coordinates.

The tensors T and T̂ have 18 and 11 degrees of freedom,
respectively. It follows that matrices T̂k must satisfy a num-
ber of additional algebraic constraints. Some of them are
described in Sect. 4 below.

3 The Trifocal Essential Matrix and Its
Characterization

The trifocal essential matrix is, by definition, a 3×3matrix S
which can be represented in form

S = s1t
T
1 + t2s

T
2 , (14)

where t1, t2, s1, s2 ∈ C
3, and vectors s1, s2 are nonzero and

such that sTk sk = 0, k = 1, 2. It is clear that matrices S, ST

and RSQ, where R, Q ∈ SO(3,C), simultaneously are (or
are not) the trifocal essential matrices.

Theorem 5 Let a3×3matrix S bea trifocal essentialmatrix.
Then SST has one zero and two other equal eigenvalues.

Proof Let S be a trifocal essential matrix, i.e., it can be rep-
resented in form (14). The matrix SST has zero eigenvalue,
as det S = 0. Taking into account that sT2 s2 = 0, we get

SST = s1(μs
T
1 + νtT2 ) + νt2s

T
1 , (15)

wherewehavedenotedμ = tT1 t1,ν = sT2 t1.ByLemma7 (see
the Appendix), the potentially nonzero eigenvalues of (15)
are equal to the ones of 2 × 2 matrix

[
νtT2 s1 ν(μsT1 + νtT2 )t2
0 νsT1 t2

]
,

and the eigenvalues of the latter matrix are both equal to
νsT1 t2 = (sT1 t2)(s

T
2 t1). Theorem 5 is proved. ��

Theorem 6 A 3× 3 matrix S is a trifocal essential matrix if
and only if

det S = 0, (16)

tr(SST)2 − 2 tr((SST)2) = 0. (17)

Proof The“only if” part is due to Theorem 5 and Lemma 8
(see the Appendix). To prove the “if” part, let S be a 3 × 3
matrix satisfying (16), (17). We denote ck the kth column
of matrix S. Because S is degenerate, there exists a nonzero
vector a such that Sa = 0. There are two possibilities.
Case 1: aTa �= 0. Scaling a and post-multiplying S by an
appropriate matrix from SO(3,C), we assume without loss

of generality that a = [
0 0 1

]T
. Therefore c3 = 0.
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Suppose first that either cT1 c1 �= 0 or cT2 c2 �= 0. Without
loss of generality we assume cT2 c2 �= 0. Pre-multiplying S
by an appropriate rotation, we obtain

S =
⎡

⎣
λ μ 0
ν 0 0
0 0 0

⎤

⎦ .

The substitution of S into (17) gives

((μ + ν)2 + λ2)((μ − ν)2 + λ2) = 0.

It follows that λ = i(ε1μ + ε2ν), where εk = ±1. Thus,

S =
⎡

⎣
i(ε1μ + ε2ν) μ 0

ν 0 0
0 0 0

⎤

⎦ =
⎡

⎣
iε2
1
0

⎤

⎦[
ν 0 0

]

+
⎡

⎣
μ

0
0

⎤

⎦[
iε1 1 0

]
.

Consider the case cT1 c1 = cT2 c2 = 0. Due to Lemma 9 (see
Appendix), we can pre-multiply S by an appropriate rotation
to get

S =
⎡

⎣
α 1 0
β i 0
γ 0 0

⎤

⎦ ,

where α2 + β2 + γ 2 = 0. The substitution of S into (17)
yields

4(iα − β)2 = 0.

It follows that β = iα and γ = 0. Therefore, matrix S has
rank one and

S =
⎡

⎣
α 1 0
iα i 0
0 0 0

⎤

⎦ =
⎡

⎣
1
i
0

⎤

⎦[
α 1 0

] + 0sT,

where s is an arbitrary 3-vector satisfying sTs = 0. Thus in
either case S is a trifocal essential matrix, as required.
Case 2: aTa = 0. Due to Lemma 9, we can post-multiply S
by an appropriatematrix fromSO(3,C) and supposewithout

loss of generality that a = [
0 1 i

]T
. Therefore c3 = ic2.

By direct computation, equality (17) becomes (cT1 c1)
2 =

0, i.e., cT1 c1 = 0. This yields

S=
⎡

⎣
α λ iλ
β μ iμ
γ ν iν

⎤

⎦=
⎡

⎣
α

β

γ

⎤

⎦ [
1 0 0

] +
⎡

⎣
λ

μ

ν

⎤

⎦ [
0 1 i

]
,

where α2 +β2 +γ 2 = 0, i.e., S is a trifocal essential matrix.
Theorem 6 is proved. ��

We notice that constraints (16), (17) coincide with con-
straints (5), (6) from Theorem 2. Hence, if a trifocal essential
matrix is real, then it is an essential matrix.

In general, a trifocal essentialmatrix does not satisfy cubic
constraint (7). The proof consists in exhibiting a counterex-

ample. Let s1 = s2 = [
1 i 0

]T
, t1 = t2 = [

1 0 0
]T
.

Then S =
⎡

⎣
2 i 0
i 0 0
0 0 0

⎤

⎦ and the eigenvalues of SST are

0, 1, 1. However,

(tr(SST)I − 2SST)S = −4

⎡

⎣
1 i 0
i −1 0
0 0 0

⎤

⎦ �= 03×3.

Nevertheless, there exists an analog of identity (7) for tri-
focal essential matrices.

Theorem 7 A 3× 3 matrix S is a trifocal essential matrix if
and only if

(tr(SST)I − 2SST)2S = 03×3. (18)

Proof Let us denote

	(M) = (tr(MMT)I − 2MMT)2M

and

ϕ(M) = tr(MMT)2 − 2 tr((MMT)2).

Then it is straightforward to show that, for arbitrary 3 × 3
matrix M , the following identity holds:

	(M) = 4M∗ det M − Mϕ(M), (19)

where M∗ is meant the matrix of cofactors of M .
Let matrix S be a trifocal essential matrix. By Theorem 6,

det S = ϕ(S) = 0. Then it follows from (19) that 	(S) =
03×3, i.e., (18) holds. The “only if” part is proved.

Conversely, let a 3× 3 matrix S satisfy (18), i.e., 	(S) =
03×3. It suffices to show that det S = 0. Suppose, by hypoth-
esis, that det S �= 0. Then, post-multiplying (18) by S−1, we
get

(tr(SST)I − 2SST)2 = 03×3.

It follows that all the eigenvalues of tr(SST)I − 2SST are
zeroes and

tr(tr(SST)I − 2SST) = tr(SST) = 0.
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The substitution of this into (18) yields (det S)5 = 0 in con-
tradiction to the hypothesis det S �= 0. Thus, det S = 0 and,
by (19), ϕ(S) = 0. By Theorem 6, matrix S is a trifocal
essential matrix. Theorem 7 is proved. ��

To summarize, the above theorems imply the following
statements.

– The pair of scalar constraints (16), (17) of degrees 3
and 4 respectively is equivalent to the single matrix con-
straint (18) of degree 5.

– The most general form of a 3 × 3 matrix satisfying
Eqs. (16) and (17) is the trifocal essential matrix given
by (14).

– If a trifocal essential matrix is real, then it is an essential
matrix.

– Every essential matrix is a trifocal essential matrix, but
the converse is not true in general.

4 Three Necessary Conditions on a Calibrated
Trifocal Tensor

A new notion of trifocal essential matrix, introduced in the
previous section, turns out to be closely related to calibrated
trifocal tensors. The connection is established by the follow-
ing lemma.

Lemma 1 Let T̂ =
[
T̂1 T̂2 T̂3

]
be a CTFT. Then a 3 × 3

matrix ST̂ = αT̂1 + β T̂2 + γ T̂3, where numbers α, β, γ are
such that α2 + β2 + γ 2 = 0, is a trifocal essential matrix,
i.e., it can be represented in form (14).

Proof We notice that

ST̂ = αT̂1 + β T̂2 + γ T̂3 = R2st
T
3 − t2s

TRT
3

= s2t
T
3 + (−t2)s

T
3 ,

where s = [
α β γ

]T
, and sk = Rks are 3-vectors satis-

fying

sTk sk = sTRT
k Rks = sTs = 0.

It follows that ST̂ is a trifocal essential matrix. Lemma 1 is
proved. ��

The trifocal essential matrix associated with a CTFT T̂ =[
T̂1 T̂2 T̂3

]
is defined by

ST̂ (s) =
3∑

j=1

(s) j T̂ j = αT̂1 + β T̂2 + γ T̂3, (20)

where s = [
α β γ

]T
and sTs = 0. It is worth emphasizing

that ST̂ (s) is a 3×3 degenerate matrix which generically has
complex entries.

We are going to apply the two characterizations from
Sect. 3 to derive the necessary conditions on the entries of
CTFT T̂ .

In the rest of this section, calibrated trifocal tensors are
allowed to have complex entries, that is in (12) matrices
R2, R3 belong to SO(3,C), and vectors t2, t3 are in C3.

Let us introduce six symmetric matrices (k = 1, 2, 3):

Uk = T̂k T̂
T
k ,

Vk = T̂k T̂
T
k+1 + T̂k+1T̂

T
k .

(21)

Here k + 1 should be read as k (mod 3) + 1, i.e., V3 =
T̂3T̂ T

1 + T̂1T̂ T
3 .

Theorem 8 (First necessary condition) Let T̂ =
[
T̂1 T̂2 T̂3

]

be a CTFT, matrices Uk, Vk be defined in (21). Then the
entries of T̂ are constrained by the following equations:

ψ(U3 −U1,U3 −U1) − ψ(V3, V3) = 0, (22)

ψ(U3 −U1, V1) + ψ(V2, V3) = 0, (23)

ψ(U1 −U2, V1) = 0, (24)

where ψ(X,Y ) = tr(X) tr(Y ) − 2 tr(XY ). Six more equa-
tions are obtained from (22) to (24) by a cyclic permutation
of indices 1 → 2 → 3 → 1. The resulting nine equations
are linearly independent.

Proof Let ST̂ = αT̂1 + β T̂2 + γ T̂3 be a trifocal essential

matrix associated with T̂ . By Theorem 6, the following equa-
tion holds:

tr(ST̂ S
T
T̂
)2 − 2 tr((ST̂ S

T
T̂
)2) = 0. (25)

The definition of matrices Uk , Vk (see (21)) permits us to
write

ST̂ S
T
T̂

= α2U1 + β2U2 + γ 2U3 + αβV1 + βγ V2 + γαV3.

Substituting this into (25), we find the coefficients in α4, α3β

and αβ3 taking into account that γ 2 = −α2 − β2. Because
α and β are arbitrary, these coefficients must vanish:

α4 : ψ(U3 −U1,U3 −U1) − ψ(V3, V3) = 0, (26)

α3β : ψ(U1 −U3, V1) − ψ(V2, V3) = 0, (27)

αβ3 : ψ(U2 −U3, V1) − ψ(V2, V3) = 0. (28)

Thus we get (22)= (26), (23)= – (27), and (24) = (27) – (28).
It is clear that we can get sixmore constraints on T̂k from (22)
to (24) by a cyclic permutation of the indices.
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Finally, the resulting nine polynomials can not be lin-
early dependent, since each of them contains monomials that
are not contained in all the other polynomials. Examples of
such monomials for (22), (23) and (24) are (T̂3)211(T̂1)

2
11,

(T̂3)211(T̂1)11(T̂2)11 and (T̂1)311(T̂2)11 respectively. Theorem8
is proved.

From now on, the nine equalities from Theorem 8 will be
referred to as the eigenvalue constraints.

Lemma 2 Let T = [
T1 T2 T3

]
be a (2, 1) tensor satisfying

the ten extended rank and nine eigenvalue constrains. Then
matrix ST = αT1 + βT2 + γ T3 with α2 + β2 + γ 2 = 0 is a
trifocal essential matrix.

Proof The extended rank constraints imply det ST = 0. Tak-
ing into account that γ 2 = −α2 − β2, we conclude that the
expression

ϕ(ST ) = tr(ST S
T
T )2 − 2 tr((ST S

T
T )2)

contains 9 monomials:

α4, α3β, α3γ, α2β2, α2βγ, αβ3, αβ2γ, β4, β3γ.

It is directly verified that the coefficients in all of them are
linear combinations of the nine polynomials fromTheorem8,
i.e., ϕ(ST ) = 0. By Theorem 6, ST is a trifocal essential
matrix, as required. ��

Theorem 9 (Second necessary condition) Let T̂ =[
T̂1 T̂2 T̂3

]
be a CTFT. Then the entries of T̂ are constrained

by the 99 linearly independent quintic (of degree 5) polyno-
mial equations.

Proof Let ST̂ = αT̂1 + β T̂2 + γ T̂3 be a trifocal essential

matrix associated with T̂ . By Theorem 7, the following equa-
tion holds:

(tr(ST̂ S
T
T̂
)I − 2ST̂ S

T
T̂
)2ST̂ = 03×3. (29)

We notice that equality (29) is quintic in the entries of
matrix ST̂ . Taking into account that γ 2 = −α2 − β2, every
entry in the l.h.s. of (29) contains 11 monomials in vari-
ables α, β and γ . Because the coefficient in each of these
monomials must vanish, there are in total 99 quintic polyno-
mial constraints on the entries of T̂ . Theorem 9 is proved.

��

Remark 2 An explicit form of the quintic polynomial equa-
tions from Theorem 9 is as follows:

(�1(U13) − �1(V3))T̂1 − �2(U13, V3)T̂3 = 03×3, (30)

�2(U13, V3)T̂1 + (�1(U13) − �1(V3))T̂3 = 03×3, (31)

(�2(U13, V2) + �2(V1, V3))T̂1 + �2(U13, V3)T̂2

+ (�2(U13, V1) − �2(V2, V3))T̂3 = 03×3, (32)

(�2(U13, V1) − �2(V2, V3))T̂1 + (�1(U13) − �1(V3))T̂2

− (�2(U13, V2) + �2(V1, V3))T̂3 = 03×3, (33)

where matrices Uk , Vk are defined in (21), Ujk = Uj − Uk ,
and

�(X,Y ) = (tr(X)I − 2X)(tr(Y )I − 2Y ),

�1(X) = �(X, X),

�2(X,Y ) = �(X,Y ) + �(Y, X).

Equations (30)–(33) give 4×9 = 36 constraints on T̂ .We get
72 more equations from (30) to (33) by a cyclic permutation
of indices 1 → 2 → 3 → 1. In total, there are 108 quintic
constraints. Let Mk be the kth version of the L.H.S. of (32).
Then we have

M1 + M2 + M3 ≡ 03×3.

It follows that eqs. (30)–(33) give only 108 − 9 = 99 con-
straints. Their linear independence is verified directly.

Theorem 10 A (2, 1) tensor T = [
T1 T2 T3

]
satisfies the

ten extended rank and nine eigenvalue constrains if and only
if it satisfies the 99 quintic constraints from Theorem 9.

Proof The result immediately follows from Lemma 2 and
the two characterizations of trifocal essential matrices (The-
orems 6 and 7). ��

Theorem 10 implies the equivalence of the two sets of
constraints. From this point of view the quintic polynomials
contribute nothing new and seem to be redundant. Neverthe-
less, we expect them to be useful in deriving more (quintic)
polynomial constraints on CTFTs. We return to this question
in Sect. 6.

Finally, we propose the third necessary condition on a
CTFT. It seems not to be directly related to the matrix ST̂ .
However, this condition could be useful in applications, since
it consists of another set of quartic polynomial equations that
are satisfied by a calibrated trifocal tensor.

Theorem 11 (Third necessary condition) Let T̂ =[
T̂1 T̂2 T̂3

]
be a CTFT. Then the entries of T̂ satisfy the

following equations:

tr(U2)
2−tr(V3)

2−tr(U 2
2 − V 2

3 + (U3 −U1)
2) = 0, (34)

tr(V2) tr(U1 − 2U2 −U3) − tr(V1) tr(V3)+2 tr(V2U2)=0,
(35)
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where matrices Uk, Vk are defined in (21). Four more equa-
tions are obtained from (34) to (35) by a cyclic permutation
of indices 1 → 2 → 3 → 1. The resulting six equations are
linearly independent.

Proof Let tensor T̂ be represented in form (12). First we

replace T̂ with T̂ ′ =
[
RT
2 T̂1R3 RT

2 T̂2R3 RT
2 T̂3R3

]
. Then

the correlation slices of T̂ ′ are simplified to T̂ ′
k = ektT3 −

t2eTk . A straightforward computation proves that T̂ ′ satisfies
eqs. (34) – (35) and the four their consequences. Then so
does T̂ , since Uk = R2U ′

k R
T
2 and Vk = R2V ′

k R
T
2 .

The resulting six polynomials can not be linearly depen-
dent, as each of them contains monomials that are not con-
tained in all the other polynomials. Examples of such mono-
mials for (34) and (35) are (T̂3)211(T̂1)

2
11 and (T̂2)11(T̂3)311

respectively. Theorem 11 is proved. ��
The 15 equalities from Theorems 8 and 11 will be further

referred to as the quartic constraints.

Remark 3 Let us briefly describe the way by which the six
constraints from Theorem 11 were initially derived. The
nine eigenvalue polynomial equations consist in total of
2160 monomials. We constructed the dense matrix A of size
2160 × 2160 such that each row of A is the monomial vec-
tor taken on a randomly generated CTFT. Using the singular
value decomposition of A, we found that the null space of A
has dimension 15. It is meant that in addition to the eigen-
value constraints, there must exist six more quartic equations
linearly independent with them. The (small integer) coeffi-
cients of these equations were derived by the Gauss–Jordan
elimination on the basis vectors of the null space of A.

Remark 4 The eigenvalue constraints do not imply the six
equalities from Theorem 11. The following trifocal tensor
gives a counterexample:

T =
⎡

⎣

⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦

⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 0 1

−1 −1 0

⎤

⎦

⎤

⎦ .

One verifies that T satisfies the eigenvalue constraints, but
not the six ones from Theorem 11. Hence T is not calibrated.

Remark 5 Generically, over the field of complex numbers,
the quartic constraints are insufficient for a trifocal tensor T
to be calibrated. Here is a counterexample. Consider a (2, 1)
tensor

T =
⎡

⎣

⎡

⎣
i 0 0
0 i 0
0 0 0

⎤

⎦

⎡

⎣
0 0 i
−i −1 1
0 0 0

⎤

⎦

⎡

⎣
1 0 0
−i 0 0
i 1 0

⎤

⎦

⎤

⎦ .

(36)

It is trifocal, as

Tk =
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ ek
[
i 1 0

] −
⎡

⎣
i
1
0

⎤

⎦ eTk

⎡

⎣
0 −i 0
0 0 −1
i 0 0

⎤

⎦ .

Moreover, T satisfies all the 15 quartic constraints. Sup-
pose that T is calibrated. Then there must exist 3-vectors
uk, vk, t2, t3 such that uTk uk = vTk vk = 1 and

Tk = ukt
T
3 − t2v

T
k .

Let us define an ideal:

J = 〈Tk − ukt
T
3 + t2v

T
k , uTk uk − 1, vTk vk − 1 | k = 1, 2, 3〉.

Then J ⊂ C[ξ1, . . . , ξ24], where ξ j are the entries of vectors
t2, t3, u1, u2, u3, v1, v2 and v3. It is straightforward to show
by the computation of the Gröbner basis of J that 1 ∈ J .
It follows that the affine variety defined by J is empty, and
thus T cannot be calibrated.

5 A Characterization of Real Calibrated Trifocal
Tensors

In this section, we are going to obtain a three-view analog of
Theorem 2. First, it will be shown that a real trifocal tensor is
calibrated if and only if it satisfies the 15 quartic constraints
(Theorem 12). After that, it is straightforward to combine
this result with the characterization of trifocal tensors, e.g.,
from [2] to get a complete set of constraints characterizing a
real CTFT (Theorem 13).

First we prove several lemmas.

Lemma 3 Let T = [
T1 T2 T3

]
be a real or complex (2, 1)

tensor and T ′ = [
T ′
1 T ′

2 T ′
3

]
be a tensor defined by

T ′
j = Q2

3∑

k=1

(Q1) jkTk Q
T
3 , (37)

where Q1, Q2, Q3 ∈ SO(3,C). Then T and T ′ simultane-
ously

1. are (or are not) calibrated trifocal tensors;
2. satisfy (or do not satisfy) the 10 extended rank and 15

quartic constraints.

Proof 1. Let T be a CTFT, so that its correlation slices can
be represented in form (12). Then,
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T ′
j = Q2

3∑

k=1

(Q1) jkTk Q
T
3

= (Q2R2Q
T
1 )e j (Q3t3)

T − (Q2t2)e
T
j (Q3R3Q

T
1 )T,

i.e., T ′ is a CTFT as well. On the other hand, if T is not a
CTFT, then so is not T ′, since

Tk = QT
2

3∑

j=1

(Q1) jkT
′
j Q3. (38)

2. Let T be a (2, 1) tensor satisfying the 10 extended rank and
15 quartic constraints. Let us construct the matrix ST (s) =
3∑

k=1
(s)kTk , where s is an arbitrary 3-vector. The ten extended

rank constraints are then equivalent to det ST (s) = 0.We get

ST ′(s) =
3∑

j=1

(s) j T
′
j = Q2ST (QT

1 s)Q
T
3 , (39)

and thus det ST ′(s) = 0, i.e., tensor T ′ satisfies the ten
extended rank constraints as well.

Further, if the vector s is such that sTs = 0, then Lemma 2
implies that ST (s) is a trifocal essential matrix. It follows
from (39) that so is ST ′(s). After that, using the same argu-
ments as in the proof of Theorem 8, one shows that tensor T ′
satisfies the nine eigenvalue constraints.

It remains to prove that T ′ satisfies also the six constraints
from Theorem 11. We denote by pk(T ) the l.h.s. of the kth
quartic equation on tensor T so that p10, . . . , p15 are the six
polynomials from Theorem 11. Then, by a straightforward
computation, we get

p j (T
′) =

15∑

k=1

ξ jk pk(T ), j = 10, . . . , 15, (40)

where ξ jk are polynomial expressions depending only on the
entries of matrix Q1. It follows that if pk(T ) = 0 for all k,
then also p j (T ′) = 0 for all j .

Finally, if T does not satisfy the extended rank and quartic
equations, then due to (38) so does not T ′. This completes
the proof of Lemma 3. ��
Lemma 4 Let T = [

T1 T2 T3
]
be a real trifocal tensor. Then

there exist matrices Q1, Q2, Q3 ∈ SO(3) such that T can be
transformed by (37) to the trifocal tensor

T ′ =
⎡

⎣

⎡

⎣
0 0 λ1
0 0 0
ν1 ρ1 σ1

⎤

⎦

⎡

⎣
0 0 0
0 0 μ2

ν2 ρ2 σ2

⎤

⎦

⎡

⎣
0 0 0
0 0 0
0 ρ3 σ3

⎤

⎦

⎤

⎦ ,

(41)

where λ1, μ2, ν1, ν2, ρk , σk are real scalars.

Proof We are going to explicitly construct rotations Q1, Q2

and Q3 such that T is transformed to T ′ by (37). Since T is
a trifocal tensor, we have

Tk = A2eka
T
3 − a2e

T
k A

T
3 .

Let Hj ∈ SO(3)be theHouseholdermatrix such that Hja j =
[
0 0 γ j

]T
, j = 2, 3. First we pre- and post-multiply each Tk

by H2 and HT
3 , respectively, and denote by Bj a 2×3 matrix

consisting of the first two rows of Hj A j . After that, we make
the singular value decomposition of γ3B2 to decompose it in
form

γ3B2 = U

[
λ1 0 0
0 μ2 0

]
V T,

where U ∈ SO(2) and V ∈ SO(3). Finally, let W ∈ SO(2)
be a rotation such that (WB3V )13 = 0. We set

Q1 = V T, Q2 =
[
UT 0
0 1

]
H2, Q3 =

[
W 0
0 1

]
H3.

(42)

One verifies that the trifocal tensor T is transformed to (41)
by the rotations Q1, Q2 and Q3 defined in (42). Lemma 4 is
proved. ��

We denote by p1, . . . , p15 the 15 quartic polynomials on
the trifocal tensor T ′ defined by (41) and consider the ideal

J =〈p1, . . . , p15〉⊂ C[λ1, ν1, ρ1, σ1, μ2, ν2, ρ2, σ2, ρ3, σ3].
(43)

Let
√
J be the radical of J . We are going to derive several

polynomials that belong to
√
J . For convenience we divide

them into two parts presented in Lemmas 5 and 6.

Lemma 5 The polynomials

(λ21 − μ2
2)(λ

2
1 + σ 2

1 ), (44)

(λ21 − μ2
2)(μ

2
2 + σ 2

2 ), (45)

ρ3(ν1σ1 + ν2σ2), (46)

ρ3(ν1ρ1 + ν2ρ2), (47)

ρ3(ρ
2
3 + σ 2

3 )(ν21 + ν22 − ρ2
1 − ρ2

2 − ρ2
3 ), (48)

(ρ2
3 + σ 2

3 )(ρ1σ1 + ρ2σ2 + ρ3(σ3 + μ2))

× (ρ1σ1 + ρ2σ2 + ρ3(σ3 − μ2)), (49)

ρ3(ρ
2
3 + σ 2

3 )(ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 + μ2)
2)

× (ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 − μ2)
2) (50)

belong to
√
J , where J is defined in (43).
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Proof Let p be any polynomial from (44) to (50). We con-
struct an ideal J̃ = J+〈1−τp〉 ⊂ C[λ1, . . . , σ3, τ ], where τ

is a new variable. By direct computation of the Gröbner basis
of J̃ , we get 1 ∈ J̃ . Hence, by Lemma 10 (see Appendix),
p ∈ √

J . Lemma 5 is proved. ��

Remark 6 Surprisingly, the computation of the Gröbner
basis of each J̃ takes only a few seconds in Maple even
over the field of rationals. In our computations, we used the
graded reverse lexicographic order [5]:

λ1 > ν1 > ρ1 > σ1 > μ2 > ν2 > ρ2 > σ2 > ρ3 > σ3 > τ.

Lemma 6 The polynomials

(ν21 + ρ2
1 + σ 2

1 )(σ 2
1 + σ 2

2 − ρ2
3 + λ21 − μ2

2), (51)

(ν22 + ρ2
2 + σ 2

2 )(σ 2
1 + σ 2

2 − ρ2
3 − λ21 + μ2

2), (52)

ν1ν2 + ρ1ρ2 + σ1σ2, (53)

ν21 + ρ2
1 + σ 2

1 − ν22 − ρ2
2 − σ 2

2 + λ21 − μ2
2, (54)

(ν21 + ρ2
1 + σ 2

1 − ρ2
3 − (σ3 + μ2)

2 + λ21 − μ2
2)

× (ν21 + ρ2
1 + σ 2

1 − ρ2
3 − (σ3 − μ2)

2 − λ21 + μ2
2) (55)

belong to
√
J , where J is defined in (43).

Proof See the proof of Lemma 5. ��

Theorem 12 A real trifocal tensor T = [
T1 T2 T3

]
is cal-

ibrated if and only if it satisfies the 15 quartic constraints
from Theorems 8 and 11.

Proof The “only if” part is due to Theorems 8 and 11. We
now prove the “if” part.

Let T = [
T1 T2 T3

]
be a real trifocal tensor satisfying the

15 quartic equations p1 = . . . = p15 = 0. By Lemmas 3
and 4, there exist matrices Q1, Q2, Q3 ∈ SO(3) such that the
trifocal tensor T ′ defined by (37) has form (41) and satisfies
the 15 quartic equations as well.

First we note that if λ21 − μ2
2 �= 0, then, as the trifocal

tensor is real, we get from Lemma 5:

λ1 = σ1 = μ2 = σ2 = 0.

However, this is in contradiction to λ21 −μ2
2 �= 0. As a result,

a real solution to the 15 quartic equations on T ′ exists if and
only if λ21 = μ2

2. Let us consider two cases: ρ3 �= 0 and
ρ3 = 0.
Case 1: ρ3 �= 0. Then, ρ2

3 + σ 2
3 �= 0 and, by Lemma 5, the

entries of tensor T ′ are constrained by

ν1σ1 + ν2σ2 = ν1ρ1 + ν2ρ2 = ν21 + ν22 − ρ2
1 − ρ2

2 − ρ2
3

= (ρ1σ1 + ρ2σ2 + ρ3(σ3 + μ2))(ρ1σ1 + ρ2σ2

+ρ3(σ3 − μ2))

= (ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 + μ2)
2)

×(ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 − μ2)
2) = 0. (56)

The correlation slices of T ′ can be represented in form

T ′
k = A2ek

[
0 0 μ2

] −
⎡

⎣
0
0

−1

⎤

⎦ eTk A
T
3 ,

where

A2 =
⎡

⎣
ε1 0 0
0 1 0
0 0 ε2

⎤

⎦ , A3 =
⎡

⎣
ν1 ν2 0
ρ1 ρ2 ρ3
σ1 σ2 σ3 − ε2μ2

⎤

⎦ ,

and εk = ±1. It follows that A2 = ±R2, where R2 ∈ SO(3).
Hence it suffices to show that A3 = θR3,where θ is a nonzero
scalar and R3 ∈ SO(3). If we suppose that

ρ1σ1 + ρ2σ2 + ρ3(σ3 − ε2μ2)

= ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 − ε2μ2)
2 = 0,

then we are done, since due to (56) A3AT
3 = θ2 I with θ2 =

ρ2
1 + ρ2

2 + ρ2
3 �= 0.

On the other hand, if

ρ1σ1 + ρ2σ2 + ρ3(σ3 − ε2μ2)

= ν21 + ν22 − σ 2
1 − σ 2

2 − (σ3 + ε2μ2)
2 = 0, (57)

then we add these polynomials to J and denote the resulting
ideal by J1. By the computation of the Gröbner basis of J1,
we get (ρ3μ2σ3)

3 ∈ J1. Since ρ3 �= 0, it follows that either
μ2 = 0 or σ3 = 0. In both cases, equalities (56) and (57)
imply A3AT

3 = θ2 I with θ2 = ρ2
1 +ρ2

2 +ρ2
3 �= 0, and hence

tensor T ′ is calibrated.
Case 2: ρ3 = 0. By Lemma 6, the entries of tensor T ′ are
constrained by (we take into account that λ21 = μ2

2).

(ν21 + ρ2
1 + σ 2

1 )(σ 2
1 + σ 2

2 ) = (ν22 + ρ2
2 + σ 2

2 )(σ 2
1 + σ 2

2 )=0.

Since tensor T ′ is real, it follows that σ1 = σ2 = 0. Again
by Lemma 6, we have

ν1ν2 + ρ1ρ2 = ν21 + ρ2
1 − ν22 − ρ2

2

= (ν21 + ρ2
1 − (σ3 + μ2)

2)(ν21 + ρ2
1 − (σ3 − μ2)

2) = 0.

Suppose first that ν21 + ρ2
1 �= 0. Then the correlation slices

of T ′ can be represented in form

T ′
k = A2ek

[
0 0 μ2

] −
⎡

⎣
0
0

−1

⎤

⎦ eTk A
T
3 ,
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where

A2 =
⎡

⎣
ε1 0 0
0 1 0
0 0 ε2

⎤

⎦ , A3 =
⎡

⎣
ν1 ν2 0
ρ1 ρ2 0
0 0 σ3 − ε2μ2

⎤

⎦ ,

εk = ±1. So that A2 = ±R2 and A3 = θR3, where R2, R3 ∈
SO(3) and θ2 = ν21 + ρ2

1 �= 0.
Finally, if ν21 + ρ2

1 = 0, then ν1 = ρ1 = ν2 = ρ2 = 0
and T ′ is calibrated as well, since

T ′
k =

⎡

⎣
ε1 0 0
0 1 0
0 0 ε2

⎤

⎦ ek
[
0 0 μ2

] − 0eTk R
T
3 ,

where R3 is arbitrary rotation matrix.
Thuswehave shown that the trifocal tensor T ′ is calibrated

in either case. By Lemma 3, the tensor T is calibrated too.
Theorem 12 is proved. ��

Finally, combining Theorem 12 with the characterization
of trifocal tensors from [2], we get the following three-view
analog of Theorem 2.

Theorem 13 A real (2, 1) tensor is a CTFT if and only if it
satisfies the following constraints:

– 10 extended rank constraints;
– 20 equations of degree 9 and 6 of degree 12; see [2,
Theorem 2.3];

– 15 quartic constraints.

6 Discussion

Here are some remarks on the results of the paper andpossible
further directions of research.

1. We have defined a new notion—the trifocal essential
matrix. Algebraically, it is a complex 3× 3 matrix asso-
ciated with a given CTFT T̂ by the contraction of T̂ and
an arbitrary 3-vector whose squared components sum to
zero. In this paper, the trifocal essential matrix plays a
technical role. However its deeper investigation should
help to explain why its properties are so close to the prop-
erties of an ordinary (bifocal) essential matrix. It is also
interesting to what extent the trifocal essential matrix can
be generalized in case of quadrifocal geometry.

2. Based on the characterization of trifocal essential matri-
ces, we have derived the three necessary conditions on
a CTFT (Theorems 8, 9 and 11). They have form of 15
quartic and 99 quintic polynomial equations. It is worth
emphasizing again that these constraints relate to the cal-
ibrated case only and do not hold for arbitrary trifocal

tensors.Moreover,wehave shown that the 15quartic con-
straints are also sufficient for a real trifocal tensor to be
calibrated (Theorem 12). Combining this result with the
36 polynomial equations from [2], we get the character-
ization of a real CTFT (Theorem 13). On the other hand,
some of new 36 constraints may be redundant in the real
calibrated case. This question requires more research.

3. As we have seen at the end of Sect. 4, the quartic con-
straints do not characterize CTFTs over the field of
complex numbers. Hence, there must exist other polyno-
mial equations not related to the trifocal essential matrix.
In degree 5, we can expect to derive some of them from
the 99 quintic constraints using similar arguments as in
Remark 3.

4. The characterization of real calibrated trifocal tensors
provides a new tool in investigating three-view metric
structure-from-motion problems such as relative pose
estimation and self-calibration. This could be a promising
direction of future research, since we know that similar
results for essentialmatrices have led to the efficient algo-
rithms for analogous two-view problems [16,24].
The approach could be as follows. The linear incidence
relations are first used to parameterize the trifocal tensor.
Then the system of 51 polynomial equations is con-
structed and solved using eitherGröbner bases or numeri-
calmethods. Theorem13guarantees that the true solution
(which is always real) is a root of that system. However,
a number of spurious complex solutions may occur. For
example, the problem of relative pose estimation from
four points and one line correspondences in three views
is known to have a unique solution in general [19]. We
constructed the Gröbner basis for that problem and found
that it has 192 (!) spurious complex roots.
To improve the practical applicability of the paper’s
results we need a characterization of CTFTs over the
field of complex numbers. The present paper provides a
basis for that future research.

Appendix

We collect here some technical results that we used through-
out the paper.

Lemma 7 Let a, b, c, d ∈ C
n. Then the (possibly) nonzero

eigenvalues of matrix M = acT + bdT coincide with the
eigenvalues of 2 × 2 matrix

N =
[
cTa cTb
dTa dTb

]
.

Proof The rank of matrix M is at most 2. Let λ1, λ2 be the
(possibly) nonzero eigenvalues of M . Then,

123



332 J Math Imaging Vis (2017) 58:321–332

λ1 + λ2 = tr(M) = cTa + dTb = tr(N ),

2λ1λ2 = (λ1 + λ2)
2 − (λ21 + λ22) = tr(M)2 − tr(M2)

= 2(cTa)(dTb) − 2(cTb)(dTa) = 2 det N .

We see that λ1, λ2 are the eigenvalues of matrix N , as
required. ��
Lemma 8 Let M be a degenerate 3×3matrix. Then the two
(possibly) nonzero eigenvalues of M coincide if and only if
the entries of M are subject to

tr(M)2 − 2 tr(M2) = 0. (58)

Proof Let 0, λ1, λ2 be the eigenvalues of M . Then,

tr(M)2 − 2 tr(M2) = (λ1 + λ2)
2 − 2(λ21 + λ22) = −(λ1 − λ2)

2.

It follows that λ1 = λ2 if and only if (58) holds. Lemma 8 is
proved. ��
Lemma 9 ([15]) Let s1, s2 ∈ C

3 be any nonzero vectors
satisfying sT1 s1 = sT2 s2 = 0. Then there exists a matrix R ∈
SO(3,C) such that Rs1 = s2.

Recall that the radical of an ideal J , denoted
√
J , is given

by the set of polynomials which have a power belonging to J :

√
J = {p | pk ∈ J for some integer k ≥ 1}.

The following lemma gives a convenient tool to check
whether a given polynomial is in the radical or not.

Lemma 10 ([5]) Let J = 〈p1, . . . , ps〉 ⊂ C[ξ1, . . . , ξn] be
an ideal. Then a polynomial p ∈ √

J if and only if 1 ∈ J̃ =
〈p1, . . . , ps, 1 − τp〉 ⊂ C[ξ1, . . . , ξn, τ ].
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