
J Math Imaging Vis (2017) 58:130–146
DOI 10.1007/s10851-016-0694-0

Median Filtering: A New Insight

Sebastián A. Villar1 · Sebastián Torcida2 · Gerardo G. Acosta1,3

Received: 19 April 2016 / Accepted: 1 December 2016 / Published online: 27 December 2016
© Springer Science+Business Media New York 2016

Abstract Median filtering (MF) is a canonical image pro-
cessing operation truly useful in many practical applications.
The MF most appealing feature is its resistance to noise and
errors in data, but because themethod requireswindowvalues
to be sorted it is computationally expensive. In this work, a
new insight into MF capabilities based on the optimal break-
down value (BV) of the median is offered, and it is also
shown that the BV-based versions of two of the most popular
MF algorithms outperform their corresponding standard ver-
sions. A general framework for both the theoretical analysis
and comparison ofMF algorithms is presented in the process,
which will hopefully contribute to a better understanding of
theMFmany subtle features. The introduced ideas are exper-
imentally tested by using real and synthetic images.

Keywords Image processing · Median filter · Complexity
theory · Comparison and evaluation of algorithms ·
Breakdown value

B Sebastián A. Villar
svillar@fio.unicen.edu.ar

Sebastián Torcida
unisebas@gmail.com

Gerardo G. Acosta
g.acosta@uib.es; gerardo.acosta@ieee.org

1 INTELYMEC (UNCPBA) and CIFICEN
(UNCPBA-CICPBA-CONICET), Av del Valle 5737,
B7400JWI Olavarría, Argentina

2 Departamento de Matemática, Facultad de Ciencias Exactas
(Campus), UNCPBA, Tandil, Argentina

3 Grupd’ Enginyeria Electrònica (GEE), Departament de
Física, Universitat de les Illes Balears, Palma, Spain

1 Introduction

In computer science, algorithmic efficiency refers to the
amount of computational resources used by an algorithm.
Naturally, to achieve maximum efficiency the usage of
resources must be minimized; however, different resources
such as time and space cannot be directly compared and the
results of analyses depend on how efficiency is measured
[1]. Actual efficiency may be in addition affected by imple-
mentation choices; the programming language, the way the
algorithm is coded, the compiler or compilation options and
even the operating system being used can also have their
own effect. In summary, the efficiency of different algorithms
devised to solve the same problem may differ dramatically.
It is acknowledged that differences in design tend to be more
significant than differences due to hardware and/or software
[2], and because there is no globally unanimous agreement
on how algorithmic efficiency should be measured and/or
compared, the analysis of algorithmic efficiency is always a
major challenge.

In this context, a vast body of the literature has focused
on the efficiency of median filtering (MF) algorithms. MF is
a sliding-window nonlinear smoothing process, best known
for reducing impulsive or salt-and-pepper noise fromadigital
image while respecting its edges [3]. It is also the foun-
dation upon which more advanced image filters are built
[4], and some of its higher level applications include object
segmentation, speech and writing recognition, sonar and
radar, and others [5–11]. Briefly, the MF window visits each
image pixel and places its center on it; all the intensity val-
ues within the window are sorted, and the median intensity
value is then used to replace the window’s center in the fil-
tered image. By using the median value as a consensus, the
MF turns out to be more robust and stable than alternative
filters.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-016-0694-0&domain=pdf


J Math Imaging Vis (2017) 58:130–146 131

Probably the main drawback of MF is its computational
cost because sorting is a time-consuming task. Many authors
have tried to approach this problem; a rather thorough com-
parison is offered in [12]where (if a squaredwindowof radius
size r is assumed as usual) the efficiency of several sorting
methods is reviewed: insertion, with a O

(
r2

)
algorithmic

complexity; selection, which is also O
(
r2

)
; bubble sort,

O
(
r2

)
; bucket sort, whose complexity also downs to O

(
r2

)

when the pixel bit-depth is assumed constant, and more [13–
15].More recently, Tibshirani [16] binmedian algorithmused
recursive binning and a Chebyshev’s approximation of the
median by the mean to reach a O

(
r2

)
complexity in aver-

age; alternatively, the interesting idea a double-linked list is
introduced by Suomela [17] for MF in 1D, but the corre-
sponding extension to the 2D case is not detailed.

One of the MF main references is Huang et al. algorithm
[18] which was the first exhibiting a O (r) complexity. Dif-
ferent approaches have since tried to break this linearity:
the Weiss method [19] uses hierarchical histograms to reach
a O (log r) complexity but losing simplicity, and the Gil–
Werman method [20] has a O

(
log2 r

)
complexity and it is

based on trees. A O (log r) lower bound for the complexity
of any two-dimensionalMF algorithmwas also given in [20];
this claim was refuted by Perreault and Herbert [21], where a
variation of Huang et al. algorithm reaching an complexity of
O (b) (with b = 2image bit−depth, the number of scale levels)
is presented. In all these cases, complexity is computed per-
pixel (however, if Huang et al. algorithm were applied to an
image of, e.g., height by width Ax B it can be shown that its
global complexity would be in fact of O (Ax Bxr)). Among
all these algorithms, [18] and [21] are of special interest: the
latter claims the lowest complexity to date, while the former
is its core.

In this article, a new insight into MF capabilities based
on the optimal breakdown value (BV) of the median is
offered, and BV-based versions of two of the most popular
MF algorithms [18,21] are introduced. A general framework
to approach the theoretical analysis and comparison of MF
algorithms is presented in the process, which uses several
abstract and objective metrics that aid in understanding the
MF subtle features. All the introduced ideas are experimen-
tally tested by using real and synthetic images.

The structure of this article is the following: in Sect. 2,
the main features of Huang et al. and Perreault and Herbert
MF algorithms are reviewed. In Sect. 3, a new insight into
the MF features is offered based on the optimal BV of the
median; this concept is also used to present updated versions
of both reviewed algorithms. A rather comprehensive frame-
work for evaluating the theoretical efficiency of algorithms is
introduced in Sect. 4: through different metrics the four MF
versions at hand are analyzed and compared; experimental
results are also given based on actual and synthetic images.
The article ends with some final comments in Sect. 5.

2 The MF Algorithm

Let X be the matrix representing a digitized input image of
size Ax B (rows by columns), where X(i, j) denotes the pixel
value at the intersection of the image i-th row and the j-th
column. The basic scheme is the following: in each step, a
squared radius r window (alternative window’s shapes could
also be used, with the corresponding adaptations [21,22])
is centered at X(i, j); the (2r + 1)2 window values are then
sorted, their median is computed and then placed in pixel
Y(i, j) from the output image Y . The two most popular ver-
sions of the MF algorithm are reviewed next.

2.1 Huang et al. Algorithm

The key idea of Huang et al. algorithm (H_alg, in the fol-
lowing) is to use a kernel histogram H to store and update
all the values from the current window. Four basic steps can
be distinguished in the filtering process (the pseudocode is
shown in Algorithm A1):

1. Creating the kernel histogram H. In this step, the data
structure to store the kernel histogramH [line 5 in A1(a)]
is created, and the memory needed for an array of size
bx1 is reserved (b = 2image bit−depth indicates the number
of histogram bins).

2. Partial initialization (PI) of the kernel histogram H. This
step gives H most of its initial values [line 7 in A1(a)],
an action to be repeated for every row. It can be further
split into two substeps [lines 7.1–7.9 in A1(b)]:

i. The kernel histogramH is initializedwith zero values
[lines 7.1–7.3 in A1(b)].

ii. For every row, the kernel histogramH corresponding
to the window centered at the first pixel is partially
initialized with the appropriate image values [lines
7.4–7.9 in A1(b)]; this initialization will be com-
pleted through the first update step.

3. Updating the kernel histogram H. Here H is updated
while sliding through the image [lines 9–14 in A1(a)].
Figure 1 shows an example for a Ax B sized image with
a squared window of radius r = 2. When the window’s
center shifts one pixel to the right, e.g., from X(3,3)

to X(3,4), the update of H requires those values from
X(1,1), . . . , X(5,1) to be removed and those values from
X(1,6), . . . , X(5,6) to be added from H; 2r + 1 removals
and 2r + 1 additions thus need to be carried out.

4. Computing the median. Finally, the median value from
the updated kernel histogram H [line 15 in A1(a)] is
obtained. Computing the median is done by accumu-
lating frequencies from one extreme of the scale and

123



132 J Math Imaging Vis (2017) 58:130–146

Fig. 1 Each time the window’s center shifts to its right,H_alg requires
2r + 1 additions to and 2r + 1 removals from the kernel histogram H

stopping when the cumulative sum reaches the thresh-

old (2r+1)2+1
2 ; this is detailed next in Sect. 3 [A4(a)].

(a)

(b)

Note: for the sake of clarity when describing loops in algo-
rithms, these two cases are distinguished in the following: (i)
if a loop index is always used to refer to real elements or
structures (e.g., existing image pixels or image column his-
tograms) the corresponding strict range is used; this fact is
indicated by an underlined specification of the index; (ii)
instead, if a loop index sometimes refers to real elements or
structures but at others to artificial ones (e.g., pixel values
outside the image limits) all the needed values are included

in the corresponding range; in this case, the specification of
the index is not underlined.

2.2 Perrault and Hebert’s Algorithm

The advantages of the Perreault and Hebert algorithm
(P&H_alg in the following) over the H_alg can be under-
stood if some inefficiencies of the latter are first discussed
[21]. In H_alg each image pixel value is added to and sub-
tracted from2r+1 histograms, and no information is retained
between consecutive rows. Intuitively, if each pixel were
instead used a constant number of times it could be possible
to retain information between rows with the corresponding
efficiency increase. To do this, P&H_alg uses the additiv-
ity property of histograms [19], by which the histogram
of the union of two disjoint sets is simply the addition of
their respective histograms. The addition of histograms only
depends on the number of histogram bins b, itself a function
of the image bit-depth.

In this way, the P&H_alg reserves one histogram for each
image column; this set of histograms is preserved across
rows until the whole image is processed (see the pseudocode
in Algorithm A2). Essentially, the P&H_alg consists of six
steps:

1. Creating the kernel histogram H and column histograms
h j (1 ≤ j ≤ B). The data structures to store kernel
histogramH and column histograms h j [line 5 in A2(a)]
are created. The memory needed to store the bx1 bins
of H is reserved, just as in A1; in addition, the memory
needed to store the B column histograms h j of size bx1
is also reserved.

2. Partial initialization of column histograms h j (1 ≤ j ≤
B). This step consists of two substeps [lines 6.1 to 6.11
in A2(b)]:

i. The column histograms h j are initialized with zero
values [lines 6.1–6.5 in A2(b)].

ii. The values of the first r rows are added to every col-
umn histogram h j (1 ≤ j ≤ B) [lines 6.6–6.11 in
A2(b)]; this initialization will be completed through
the first update step.

3. Initializing the kernel histogramHand first update of col-
umn histograms h j (1 ≤ j ≤ B). This step is performed
on every row of the input image whenever the MF win-
dow shifts downward [lines 8.1–8.14 in A2(c)]. Three
substeps can be distinguished:

i. The columnhistogramsh j (−r ≤ j ≤ r) are updated
by removing and adding the r top and r bottom
window pixel values, respectively [lines 8.1–8.6 in
A2(c)].

123



J Math Imaging Vis (2017) 58:130–146 133

ii. The kernel histogramH is initializedwith zero values
[lines 8.7–8.9 in A2(c)].

iii. The updated first r column histograms h j are added
to the kernel histogramH [lines 8.10–8.14 in A2(c)].
Histograms H and h j (1 ≤ j ≤ r) are afterward
ready to be used to compute the median.

4. Updating the rightmost column histogram hcol+r (where
col indicates the column of the current window’s cen-
ter)when the window shifts to the right. This step is
applied every time the MF window shifts to the right
[lines 10–13 in A2(a)]. A top and a bottom pixel value
are, respectively, removed from and added to the right-
most column histogram hcol+r .‘

5. Updating the kernel histogram H. In this step, those val-
ues from the window’s leftmost column histogram are
removed from while those from the new rightmost col-
umn histogram are added to the kernel histogramH [lines
14 in A2(a)]; several operations are involved in this task
which depend on the image bit-depth but not on the
radius size r , as in H_alg [lines 14.1–14.3 in A2(a)].
Worth mentioning here that Perreault and Herbert use a
parallel processing SIMD (Single Instruction Multiple

Data) hardware optimization to improve runtime perfor-
mance; this fact was also noted by Alekseychuk [23], who
attempted to lower the runtime constant but could not
show practical improvements.

6. Computing the median. This step is analogous to that
from H_alg, [see line 15 in A1(a) and A2(a)], which is
detailed next in Sect. 3 [A4(a)].

3 A New Insight Into the MF Algorithm

It is acknowledged that as a summary measure, the median
is much more stable and hence highly more reliable than the
classical mean or average [24]. In fact, the mean of a set
of numbers changes when at least one of those numbers is
changed or replaced; the median, instead, does not necessar-
ily change even if almost 50% of the numbers are changed
or replaced. E.g., assume that n (odd) ordered numbers are
at hand; if the (n+1)

2 − 1 lowest numbers are replaced by

arbitrary other numbers but keeping them below the (n+1)
2

ranked number (the median), the newmedian will remain the
same.

(a)

(b) (c)

123



134 J Math Imaging Vis (2017) 58:130–146

This property can be described through the concept of
breakdown value: in general terms, it denotes the percent-
age of data in a set that could be arbitrarily replaced without
grossly modifying the value of an estimation or a computa-
tion. Clearly, the mean has a 0% BV while the median has
almost a 50% BV [24].

Each time the MF window shifts some of its values are
removed and simultaneously replaced by new values, and a
new median is computed. Two shortcomings can be iden-
tified in this task: first, the median computation typically
uses a bottom-up accumulating strategy (e.g., for an 8-bit
grayscale where values range from 0 to 255, frequencies
are accumulated from the zero value and upward) until the
(2r+1)2+1

2 ranked value is reached; in this way, if theMFwin-
dow eventually processes an image region with most values
near the top of the grayscale, the algorithm will get slower
(an analogous problem would take place if frequencies were
accumulated top-down and image regions with most of low
pixel values were eventually found). Second: it seems rather
inefficient not to take into account that successive win-
dows share most of their values and thus result in similar
medians. More precisely: the proportion of shared values
between consecutive radius r squared windows is essentially
(2r+1)2−2(2r+1)

(2r+1)2
(the exception being the case when the win-

dow shifts downward, assuming the typical left-right and
top-down image processing). The percentage of shared infor-
mation between successive windows thus increases really
fast with the radius: a 33% of shared values for a radius
r = 1; a 60% of shared values for a radius r = 2, a 90%
of shared values for a radius r = 10 and so on. Both men-
tioned inefficiencies can be overcome by making the most
of the median optimal BV: the median from a new win-
dow can be computed significantly faster by retaining the
median from the previously processed window and updating
it; in turn, this strategy enables a more efficient processing
of those image regions with values in any extreme of the
scale handling equally both cases. It is experimentally veri-
fied in Sect. 4 that this approach leads to a significant increase
in efficiency as the bit-depth, the radius size and even the
number of channels increases. Based on these considera-
tions, updated formulations of both H_alg and P&H_alg are
offered next.

3.1 BV-Based Version of H_alg

The H_alg (A1) is now revisited to incorporate the BV con-
cept either by adding or modifying some of its instructions;
the corresponding changes are light colored inAlgorithmA3.

(a)

(b)

Three main modifications can be distinguished:

1. Initializing the auxiliary variables Pm, Lm and Gm.
Through this step [line 7 in A3(a)], the kernel histogram
H is partially initialized and the new auxiliary variables
previous median Pm, lower than (previous) median Lm
and greater or equal than (previous) median Gm are all
initialized; this must be done for every image row. The

123



J Math Imaging Vis (2017) 58:130–146 135

initialization of H is just the same as in A1(b), while the
initialization of variables Pm, Lm and Gm consists of
two substeps:

i. Their values are set to zero [line 7.4 in A3(b)].
ii. Before its addition toH, each new pixel value is com-

pared with the previous median Pm: if the new value
is greater or equal than Pm, Gm is incremented in
one and otherwise Lm is incremented in one other-
wise [lines 7.9–7.13 in A3(b)]. Whenever a new row
is to be processed, variables Pm, Gm and Lm have
all to be initialized with 0; a more efficient proce-
dure is again to retain their values from the previous
processed row.

2. Updating the auxiliary variables Lm and Gm. Each time a
pixel value is either added to or removed from the kernel
histogram H after being compared with Pm, variables
Lm and Gm are correspondingly updated [lines 12–16
and 19–23 in A3(a)].

3. Computing the new median. This step computes the new
window’s median by using the kernel histogram H and
the auxiliary variables Lm, Gm and Pm [line 25 in
A3(a)]. For a better understanding of this step, an exam-
ple is given next which compares the standard median
computation [A4(a)] and the BV-based one [A4(b)].

In A4(a) the median is computed by accumulating frequen-
cies in H until a specific threshold T is reached [lines 7–10
in A4(a)]; the value of T naturally depends on the window’s
radius r , but also on the window’s shape and on the distribu-
tion of the updated pixel values in H. For a squared window

of radius r is T = (2r+1)2+1
2 for a complete window, and this

value decreases when incomplete windows are found at the
image edges. Algorithm A4(b) shows instead the BV-based
computation of median. First, the previous median Pm is
stored in the auxiliary variable m [line 5 in A4(b)]; next,
the threshold T is computed [line 6 in A4(b)] and compared
with Lm [line 7 in A4(b)]: if T ≤ Lm, the new median will
be lower than the previous one and it will be found moving
downward from the current Pm bin in the kernel histogram
H [lines 8–14 in A4(b)]; otherwise, the new median will
be greater than the previous one and will be found moving
upward from the current Pm bin inH [lines 16–21 in A4(b)].
The auxiliary variables Lm and Gm are accordingly updated
in the process [lines 11–13 or 18–20 in A4(b)].

Consider now this situation: a squaredwindowW of radius
r = 1 with (2r + 1)2 = 9 pixel values is given; then T =[
(2r+1)2+1

2

]
= 5. Assume that W = [1, 3, 3, 4, 5, 5, 7, 7, 9]

are current window’s ordered values, so Pm = 5, Lm = 4
andGm = 5.Assume next that (the right new column) values
1, 1 and 1 are added to W while (the leftmost column) values
7, 7 and 1 are removed from it. This update of W results in

W = [1, 1, 1, 3, 3, 4, 5, 5, 9] which in turn updates Lm = 6
and Gm = 3 following the comparison with Pm = 5. Since
T = 5 ≤ 6 = Lm, the new median will be found moving
downward from the Pm = 5 bin in the kernel histogram
H. Here, only two bin-displacements through H are needed
to obtain the new median value; the auxiliary variables are
accordingly updated to Pm = 3, Lm = 3 and Gm = 6,
respectively. Since T is now greater than Lm, the displace-
ment will next start from Pm and upward.

(a)

(b)

3.2 BV-Based Version of the P&H_alg

TheP&H_algA2 is now revisited to incorporate the BV con-
cept by either adding or modifying some instructions which
are light colored in Algorithm A5.

123



136 J Math Imaging Vis (2017) 58:130–146

(a)

(b)

Three main changes can be distinguished:

1. Partial initialization of the kernel histogram Hand ini-
tialization of auxiliary variables Pm, Lm and Gm. This

step is similar to step 3 from A2(c). Only two modifica-
tions are made [see A5(b)]:

i. The auxiliary variables Pm, Lm and Gm are all ini-
tialized with zero values [line 8.10 in A5(b)].

ii. Each pixel value in the window is compared with the
previous median Pm: if its value is greater or equal
Pm, variable Gm is incremented in one; otherwise,
variable Lm is incremented in one [lines 8.14–8.18
in A5(b)].

2. Updating the auxiliary variables Lm and Gm. This is
analogous to step 2 in Sect. 3.1 [lines 15–27 in A5(a)].

3. Computing the new median. This is analogous to step 3
in Sect. 3.1 [line 29 in A5(a)].

4 A Theoretical Framework for MF Analysis and
Comparison

A general framework for the analysis and comparison of MF
algorithms at the theoretical level is now presented, which is
used in the process to evaluate the four discussed versions.
As mentioned, algorithmic efficiency is an important part of
the computational complexity theory which aims to provide
estimates of the resources needed by any algorithm solving a
given computational problem, such estimates provide valu-
able insight to design more efficient algorithms.

The performance of algorithms can be studied inde-
pendently of specific languages or machines, and several
tools aid in assessing their efficiency without considering
implementation. Among them, the widely known asymp-
totic analysis of worst-case complexity [1,2] and the random
access machine abstract model of computation are indeed
relevant. Generally speaking, the latter is a rather simple the-
oretical model which helps to understand how an algorithm
performs on actual machines; although alternative theoreti-
cal models exist [25,26], the random access machine model
strikes a fine balance between capturing the essential behav-
ior of the computer and being simple to work with. In
addition, it has proven useful in practice: under this model,
the algorithmic analysis of efficiency seldom produces sub-
stantially misleading results. The framework presented next
is based on all these considerations.

4.1 Theoretical Framework

Table 1 exhibits the comparison for the two analyzed algo-
rithms both in their standard and BV-based versions. The
MF was applied to an input image X of size Ax B by using
a squared window of radius r that produced a filtered output
image Y of the same size.

To be consistent with the theoretical model described
above, this comparison should ideally be based on metrics

123



J Math Imaging Vis (2017) 58:130–146 137

Ta
bl

e
1

C
om

pa
ri
so
n
m
et
ri
cs

an
d
th
e
co
rr
es
po
nd
in
g
re
su
lts

fo
r
th
e
fo
ur

an
al
yz
ed

M
F
al
go
ri
th
m
s

A
lg
or
ith

m
A
C

D
M

SM
O
pe
ra
tio

n
Ty

pe
ca
se

D
M
A

A
O

L
C

T
E

H
_a

lg
O
(r
)

X
of

si
ze

A
x

B
Y
of

si
ze

A
x

B
H

of
si
ze

bx
1

r,
b,

v
,
ac

c,
T
,
m

H
is
to
gr
am

up
da
te

W
or
st
ca
se

6
(2

r
+

1 )
+

1
8
(2

r
+

1 )
(2

r
+

1 )
b

A
ve
ra
ge

ca
se

B
es
tc
as
e

M
ed
ia
n
co
m
pu

ta
tio

n
W
or
st
ca
se

b
2b

+
5

2b

A
ve
ra
ge

ca
se

b 2
b

+
5

b

B
es
tc
as
e

1
7

2

B
V

-b
as

ed
H

_a
lg

r,
b,

v
,

T
,
m
,

P
m
,

L
m
,

G
m
,

H
is
to
gr
am

up
da
te

W
or
st
ca
se

6
(2

r
+

1 )
+

1
10

(2
r

+
1 )

3
(2

r
+

1 )
2

A
ve
ra
ge

ca
se

B
es
tc
as
e

M
ed
ia
n
co
m
pu

ta
tio

n
W
or
st
ca
se

b
5b

+
5

2b
+

1

A
ve
ra
ge

ca
se

b 2
5b 2

+
5

b
+

1

B
es
tc
as
e

1
10

3

P
&

H
_a

lg
O
(b
)

X
of

si
ze

A
x

B
Y
of

si
ze

A
x

B
H

of
si
ze

bx
1

h
j (
1

≤
j
≤

B
)

of
si
ze

bx
1

r,
b,

v
,
ac

c,
T
,
m

H
is
to
gr
am

up
da
te

W
or
st
ca
se

4b
+

7
6b

+
11

b
b

A
ve
ra
ge

ca
se

B
es
tc
as
e

M
ed
ia
n
co
m
pu

ta
tio

n
W
or
st
ca
se

b
2b

+
5

2b

A
ve
ra
ge

ca
se

b 2
b

+
5

b

B
es
tc
as
e

1
7

2

B
V

-b
as

ed
P

&
H

_a
lg

r,
b,

v
,

T
,
m
,

P
m
,

L
m
,

G
m
,
v
1
,
v
2

H
is
to
gr
am

up
da
te

W
or
st
ca
se

4b
+

7
8b

+
11

3b
2

A
ve
ra
ge

ca
se

B
es
tc
as
e

M
ed
ia
n
co
m
pu

ta
tio

n
W
or
st
ca
se

b
5b

+
5

2b
+

1

A
ve
ra
ge

ca
se

b 2
5b 2

+
5

b
+

1

B
es
tc
as
e

1
10

3

123



138 J Math Imaging Vis (2017) 58:130–146

that are independent from specific languages or machine
implementations [25,26]. The chosen ones are capable of
capturing differences in the theoretical efficiency of the algo-
rithms; some of them are space metrics, while the remaining
ones are time metrics:

• algorithmic complexity (AC);
• dynamic memory (DM);
• static memory (SM);
• dynamic memory accesses (DMA);
• arithmetic operations (AO)
• logic comparisons (LC).

A last ad hoc time metric to specifically measure the effi-
ciency of the median computation was also included: the
transition effort (TE), interpreted as the effort rate associ-
ated with the transition between consecutive median values
in the MF dynamic, emerged as a useful tool to explain the
BV-based algorithms superior experimental performance.

For most of these metrics the worst, the average and the
best case (defined, respectively, by the maximum, the aver-
age and the minimum number of steps taken in any instance)
were considered, but only the worst case was used for the
introduced ad hoc metric. Metrics DM, SM and TE are glob-
ally quantified while AC, DMA, AO and LC are quantified
per-pixel, as usual.

As shown in Table 1, the AC for both the standard and the
BV-based versions of the H_alg (A1 and A3, respectively) is
simply O (r): i.e., theACdoes not varywith themedian com-
putation method. A similar pattern is found when comparing
the standard P&H_alg (A2) with the BV-based P&H_alg
(A5): both share an AC of O (b).

To compute the DM for each of the four MF algorithms
(A1-A3 and A5), the amount of memory needed to allocate
both the input and output images of size Ax B has to be
established and also the corresponding amount of memory
to store the kernel histogram H of size bx1. MF algorithms
A3 and A5 need extra DM due to the B column histograms
h j (1 ≤ j ≤ B). On the other hand, the BV-based MF
algorithms A2 and A5 need more SM involved in managing
variables Pm, Gm, Lm and the remaining auxiliary ones.

For each pixel value, the H_alg requires [lines 9–15 in
A1(a)]:

i. A loop of six instructions to update H. This loop needs
2r +1LC and 2r +1AO [used by the loop index k,where
−r ≤ k ≤ r ; line 9 inA1(a)]. Inside the loop, the addition
and the removal of values [lines 10–13 in A1(a)] require
six DMA (to read the pixel value from image X , to read
the previous value fromkernel histogramH and to update
thenewvalue inH) and sevenAO(to compute the indexes
from image X and for the addition/substraction opera-

tions) are needed. In total 6 (2r + 1) DMA, 8 (2r + 1)
AO and 2r + 1 LC, respectively.

ii. A function to calculate themedian value [line 15 in A1(a)
which uses A4(a)]. The initialization of the threshold T
requires five AO [line 6 in A4(a)] and a loop with four
instructions [lines 7–10 in A4(a)] is also needed to com-
pute the median. In general, the worst case needs 2b LC
(since 0 ≤ i < b and acc < T ), b DMA (to read the
pixel value fromH) and 2b AO (b increments of the loop
index i , and b additions to accumulate the kernel his-
togram values); the average case uses b LC, b

2 DMA and
b AO,while the best case uses twoLC, oneDMAand two
AO. Globally, the TE worst case for the standard compu-
tation of the median is obtained as the rate of maximum
effort transitions between consecutivemedian values: the
maximum effort takes place each time the new median is
exactly b when transitioning from any of the b possible
current median values. Therefore, b different maximum
effort transitions are associated with the worst case, an
occurrence rate that varies linearly with b.

iii. Finally, one DMA is required to store the median in the
output image Y [line 15 in A1(a)].

The BV-based H_alg [A3(a)] requires the same amount of
DMA but more AO and more LC than the standard H_alg
[A1(a)]:

i. Two LC and two AO are required to update the auxiliary
variables Lm and Gm [lines 12–16 and lines 19–23 in
A3(a)]. This results in 6 (2r + 1) DMA, 10 (2r + 1) AO
and 3 (2r + 1) LC, respectively.

ii. An additional function uses the BV concept to compute
themedian [line 25 inA3(a), usingA4(b)]. The initializa-
tion of the threshold T requires the same fiveAO as in the
standard version [line 6 in A4(b)]. In addition, one LC is
used to establish the direction of search [line 7 in A4(b)].
If the condition T ≤ Lm is true, a loop of seven instruc-
tions to obtain the median value [lines 8–14 in A4(b)] is
needed; more precisely, the worst case requires 2b LC
(since 0 ≤ i < b and T ≤ Lm − H (i)), b DMA (to
read the pixel value from H) and 5b AO (b subtractions
to check T ≤ Lm − H (i), b increments/decrements for
the loop index i and 3b to update variables Pm, Lm and
Gm). If the condition T ≤ Lm is instead false, a loop
of five instructions to obtain the median value [lines 16–
21 in A4(b)] is required; in this case, the same amount
of DMA and LC resources are required as before, but a
fewer AO. In summary, the worst case requires b DMA,
5b AO and 2b LC; for the average case b

2 DMA, 5b
2 AO

and b LC are used, while for the best case one DMA, five
AOand twoLCare needed. TheTEworst case for theBV-
based computation of the median is obtained as the rate

123



J Math Imaging Vis (2017) 58:130–146 139

of maximum effort transition between consecutive medi-
ans: this maximum effort is b, which takes place when
transitioning from a current median 0 to a new median
b or vice versa. Only two realizations of the worst-case
result in a TE rate that is therefore constant.

iii. Finally, one DMA is required to store the median result
[line 26 in A3(a)].

The amount of needed resources for both the standard and
the BV-based H_alg is shown in Table 1.

For each pixel, the P&H_alg requires [lines 10–15 in
A2(a)]:

i. Five instructions to update the column histograms h j

(1 ≤ j ≤ B) and the kernel histogram H. Removing
or adding a pixel value from h j [lines 10–11 or 12–13 in
A2(a), respectively] requires six DMA (to read the pixel
value from image X , to read the previous value from col-
umn histogram h j and to update the new value in h j )

and eleven AO (to compute indexes from locations at
image X and at column histograms h j , and also for the
substraction/addition operations).A loopof three instruc-
tions to update the kernel histogram H [lines 14.1–14.3
in A2(a)] requires 4b DMA (b+b = 2b readings used in
the addition/removal of values from h j , b readings of the
currentH values and b updates inH), 6b AO (to compute
indexes from column histograms h j and an extra addi-
tion/removal operation) and b LC (for the loop index i ,
where 0 ≤ i < b).

ii. The same function as in H_alg [A4(a)] to compute
the median value. The initialization of the threshold T
requires five AO [line 6 in A4(a)], and a loop of four
instructions [lines 7 to 10 in A4(a)] enables to compute
the median. Typically, the worst case needs 2b LC, b
DMA and 2b AO; the average case in turn needs b LC,
b
2 DMA and b AO, while the best case needs two LC,
one DMA and two AO. Finally, one DMA is required to
assign the median value in the output image Y [line 15
in A2(a)]. The TE worst case linearly depends on b, just
as in the standard H_alg.

The BV-based P&H_alg [A5(a)] requires the same amount
of DMA, but more AO and LC resources than the standard
P&H_alg [A2(a)]:

i. 2b LC and 2b AO are required to update variables Lm
and Gm [lines 18–27 in A5(a)].

ii. Using the BV, the median value is computed by using
the same function as in the standard P&H_alg [A4(b)].
Initializing the threshold T requires five AO [line 6 in
A4(b)]. In addition, one LC is needed to establish the
direction of search [line 7 in A4(b)] and a seven/six

instructions [lines 8–14 or lines 16–21 in A4(b)] are
needed to compute the median. In summary, the worst
case requires b DMA, 5b AO and 2b LC; for the average
case b

2 DMA, 5b
2 AO and b LC are used, while for the

best case one DMA, five AO and two LC are needed. The
TE worst case is constant, just as in the BV-based H_alg.

iii. Finally, one DMA is required to store the median result
[line 29 in A5(a)].

The amount of needed resources for both the standard and
the BV-based P&H_alg is shown in Table 1.

In summary, in terms of DMboth the standard and the BV-
based P&H_alg require more resources than their H_algm
analogues due to the use of column histograms h j (1 ≤ j ≤
B). On the other hand, both BV-basedMF algorithms require
more SM, more LC and more AO resources either in the
worst, the average and the best case. This fact is balanced by
the highest efficiency of the BV-based versions in terms of
the ad hoc time metric TE.

4.2 Experimental Results

To experimentally test the theoretical results, a comparison
based on common implementations for each of the four con-
sidered MF versions is required; a specific environment was
therefore defined to instantiate all of them. They were first
implemented in MATLAB� and afterward migrated to an
Integrated Development Environment (IDE) QtCreator from
Nokia for GNU/Linux in C++ code. Tests were performed
in an Intel� CoreTMi7-3630QM with 8-GB RAM 2.4GHz
CPU, and the chosen operating system was Ubuntu 14.04
LTS (32 bits). It should be apparent that alternative imple-
mentations in other programming languages and/or actual
machines are also possible; for some of these languages and
machines, specific optimization shortcuts can be found but
they highly depend on the implementation strategy (such as
SIMD instructions [21,27], cache friendliness [21], multi-
level histograms [28] and others).

Figure 2 exhibits the experimental results processing time
against radius size for the common implementation of the
four MF versions; only in this context the processing time
makes sense as a measure of experimental efficiency. These
four MF versions were tested on the classic side-scan sonar
image of a sunken boat from Lake Washington1 (Fig. 3, cen-
ter), whose size is 470 × 470 (Ax B) pixels from an 8 bit
(b = 256) grayscale. In Fig. 2, the vertical axis indicates
the processing time (in seconds) while the horizontal axis
indicates the MF window’s radius size.

As shown, the processing time varies linearly with the
radius size for the H_alg versions; conversely, the P&H_alg

1 Available: http://www.edgetech.com/.

123

http://www.edgetech.com/


140 J Math Imaging Vis (2017) 58:130–146

Fig. 2 Processing time versus radius size for the four MF versions

versions processing time does not depend on the radius size
(e.g., for a window’s radius of up to r = 20, consisting of
(2r + 1)2 = 1681 window pixel values, the H_alg is faster
than theP&H_alg in both versions). It is also shown that each
MF algorithm (H_alg andP&H_alg) exhibits approximately
the same trend for both versions, but lower processing times
are consumed by the BV-based ones. Worth noting that the
extra computational resources required by the corresponding
BV-based versions (e.g., in terms of SM, AO or LC) do not
result in additional processing time; this feature could not be
perceived if only theACmetricwere used for the comparison.

In Fig. 3, five different regions of interest (ROI) extracted
from the test image are shown; their sizes are 100x100 (Ax B)
pixels in every case, and the cartesian coordinates of the

Fig. 3 Test image: sunken boat
in Lake Washington (center).
Five ROI and the corresponding
MF outputs for radius sizes
r = 1, 3, 5

ROI-1 ROI-2

ROI-3

ROI-4ROI-5

2 

3 

4 

5 

1 

Test image 

123



J Math Imaging Vis (2017) 58:130–146 141

Fig. 4 Column-average bin-displacements versus column number for each ROI when MF radius sizes r = 1, 3, 5 are used

corresponding upper-left vertex used as reference are, respec-
tively: (i) (0, 0); (ii) (270, 0); (iii) (110, 270); (iv) (215, 340)
and (v) (320, 250). These five sampled regions were delib-
erately chosen to capture different features often found in
side-scan sonar image processing [10,29,30]: (1) seabed
reverberation; (2) seabed reverberation and little acoustic
shadow; (3) seabed reverberation and acoustic highlight plus
a significant shadow zone; (4) the highest acoustic highlight,

and (5) seabed reverberation and shadow zones plus strong
acoustic highlight.

Figure 3 exhibits the corresponding filtered images when
radius sizes r = 1 (9 processed pixels in every window),
r = 3 (49 processed pixels) and r = 5 (121 processed pixels)
are used. The smaller the radius size, the smaller number of
processed pixel values in each iteration of theMF; the output
image will include more geometrical details but also will be

123



142 J Math Imaging Vis (2017) 58:130–146

Table 2 Min–max column-average bin-displacements comparison by radius size

r = 1 r = 3 r = 5

BV Standard BV Standard BV Standard BV Standard BV Standard BV Standard

Min Max Min Max Min Max

ROI 1 4.41 55.83 9.60 69.78 1.21 55.90 3.48 65.56 0.41 56.67 2.58 64.60

ROI 2 3.15 51.75 8.87 68.07 1.26 52.12 3.76 66.03 0.62 53.70 2.70 64.10

ROI 3 1.08 12.87 17.69 78.01 0.20 13.23 7.64 73.64 0.13 13.95 6.19 72.58

ROI 4 6.91 56.14 31.79 201.39 2.31 56.54 20.17 200.45 1.41 56.74 17.54 199.04

ROI 5 0.84 15.24 27.21 128.84 0.45 15.55 18.41 127.82 0.30 15.92 14.63 125.15

potentially more affected by noise. Conversely, the greater
the radius size, the higher the noise reduction but the less the
geometrical details that are retained.

As the radius size increases, the greater the number of
incomplete windows that will be processed at specific image
locations; e.g., this is indeed the case whenever the MF
window approaches the image edges or corners, where the
number of window’s missing values is maximum. The equa-
tion 100(AB−2r(A+B−2r))

AB ≥ p gives an upper bound for the
percentage p of incomplete windows; this bound depends on
the image dimensions Ax B but also on the windows radius
r and can be used to reach a desired percentage of complete
windows. For example, if a filter of radius r = 5 is applied
to the whole test image in Fig. 3, a 95.78% of complete win-
dows are guaranteed; this percentage decreases to 83.70%
when r = 20 and to 61.97% when r = 50. In this way, not
only the radius size but a trade-off between the radius size, the
image size, the desired geometric details of the output image
and the aimed processing time must be taken into account
when the performance of a MF algorithm is evaluated.

Figure 4 exhibits the column-average bin-displacements
needed to update themedian (vertical axis) versus the column
number (horizontal axis) for eachROI. The formermetric can
be thought as an experimental realization of the TE ad hoc
theoretical metric, measuring the effort in transition between
consecutive medians as a column-average. Note that for a
fixed radius r the same performance in terms of this metric is
shared by any of the standard versions (H_alg and P&H_alg;
dotted line) and by any of the BV-based versions (BV-based
H_alg and BV-based P&H_alg; solid line).

Blue, green and red curves, respectively, describe the
effort when radius sizes r = 1, r = 3 and r = 5 are used.
Table 2, in turn, shows the minimum and maximum column-
average bin-displacements from Fig. 4. Several inferences
can be drawn:

• For each ROI, when the radius increases the curves corre-
sponding to the BV-based median computation stabilize
in comparison to their standard analogues. This is caused
by the greater number of processed values in theMFwin-

dow that allows the median’s optimal BV to come into
play; the median is thus quickly updated, and the effort
to achieve tends to be zero.

• The curves corresponding to the MF (by using both the
standard and the BV-based median computation) of ROI-
1 and ROI-2 in Fig. 4 exhibit a rather similar pattern.
This might be caused by the shared pattern of seabed
reverberation and high variability of pixel values.

• ROI-3 exhibits a higher proportion of acoustic shadow
(equivalently, most near zero pixel values): the curves
for the standard version indicate that whenever the MF
window processes the shadow zone, the column-average
effort to update the median decreases (Table 2 suggests
that at least 13 fewer displacements are used by the BV-
based version in this case, whatever the radius size).
Toward the end of the curve the average effort increases
again, because this region includes acoustic highlight. As
shown inTable 2, amaximumof about 200 displacements
are needed in any case. Finally, the average effort needed
by the BV-based version tends to stabilize around zero
as the radius size increases; this pattern is seen for every
ROI.

• ROI-4 includes a significant amount of acoustic high-
light, caused by the reflective object (with pixel values
near 255). The standard median computation curves in
Fig. 4 indicate a higher column-average effort at the
beginning of the region, reaching a local maximum of
approx. One hundred and seventy-eight displacements to
update themedian. Next, the curves drops as the presence
of seabed reverberation increases: a minimum of approx.
Fifty-six displacements is reached for every radius size.
Finally, the standard curves climb again until a maximum
of 200 displacements is reached whatever the size, which
seems to be caused by the increasing amount of acoustic
highlight. For the BV-based version, all curves remain
stable near zero but become more plain (or constant) as
the radius increases.

• When ROI-5 is analyzed, the standard version curves
indicate that a significant amount of acoustic shadow (or
zero pixel values) is found in this region: these curves

123



J Math Imaging Vis (2017) 58:130–146 143

(a1 a() 2 b() 1 b() 2) 

(c1) (c2) (d1 d() 2)

(e1) (e2) (f1 f() 2)

(g1) (g2) (h1 h() 2)

Image 1 

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 3 

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 4 

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 5 

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 6

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 7 

Column numberC
ol

um
n-

av
er

ag
e 

bi
n-

di
sp

la
ce

m
en

ts

Image 8

Column number

Image 2

Fig. 5 Column-average bin-displacements versus column number curves for different synthetic images when a MF of radius size r = 1 is used

drop to a minimum of 15 displacements for all three
radius sizes. Approaching the right border, the amount
of seabed reverberation increases and a small reflective
object appears: amaximumof 127 displacements approx.
is thus reached for all three radius sizes. The correspond-
ing curves for the BV-based version remain stable near
zero most of the time but as the variability of pixel values
increases on the right, a maximum of 27 displacements
are needed for the radius size r = 1; this is caused by a

high contrast between light gray levels and dark gry lev-
els (or vice versa), which makes the median to suddenly
change.

Figure 5 shows a set of synthetic images designed to illus-
trate the advantages of BV-based version. All images are of
size 100 × 100 and only the extreme levels of the grayscale
0 (black) and 255 (white) were used. Several inferences can
be drawn:

123



144 J Math Imaging Vis (2017) 58:130–146

Fig. 6 Column-average
bin-displacements versus
column number curves for the
RGB image when a MF with
radius size r = 5 is applied

Test image 

Filter Radius (r = 5)

C
ol
um

n-
av

er
ag

e 
bi

n-
di

sp
la

ce
m

en
ts

Red Color

C
ol
um

n-
av

er
ag

e 
bi

n-
di

sp
la

ce
m

en
ts

Green Color

Column number
C

ol
um

n-
av

er
ag

e 
bi

n-
di

sp
la

ce
m

en
ts

Blue Color

• Figure 5 (a1) shows a diagonal pattern of color change.
Assuming that MF is performed following a top-down
and left-right pattern as usual, the first column has all
white pixels (255 values). As the MF window shifts to
its right, the frequency of 255 pixel values decreases
while the frequency of 0 (black) values increases until
a last column full of black pixels is reached. This fea-
ture can be perceived in the curve of the standard median
computation (Fig. 5 (a2)), where the column-average bin-
displacements required to update the median starts at 255
and descends to 0. Because the search in kernel histogram
begins at the 0 level and upward, an average effort of 255
displacements is required to update the median at the
beginning; the last column only includes 0 values and
no bin-displacement is finally required in average. Alter-
natively, the curve of the displacement dynamics for the
BV-based version indicates that for every column only
one maximum change (when switching from 255 to 0) is
needed to update the median. Figure 5 (b1) and (b2), in
turn, exhibits the corresponding pattern for the symmetric
case.

• Figure 5 (c1) the pattern of gray-scale variation is now
vertical, considering the same two extreme levels: the
first 50 rows are completely white, and the remaining 50
rows are completely black. The dynamics of the standard
version described in Fig. 5 (c2) shows a column-average
effort of 127 bin-displacements to update the median.
On the other hand, the BV-based version keeps using
only one displacement by column. Figure 5 (d1) and (d2)
shows the symmetric case.

• Figure 5 (e1), in turn, shows a horizontal variation pat-
tern: the first 50 columns are completely white while the
last 50 columns are completely black. The dynamics of
the standard version described in Fig. 5 (e2) stabilize
around 255 bin-displacements by column to update the
median for the first 50 white columns. For the next 50
black columns, a constant average of zero effort is needed
to update the median. On the other hand, the BV-based
version reaches a peak of 255 average bin-displacements
only in column 50 because all windows centered there
include approximately the same number of black and
white pixels; the effort is due to the transition from 0 to
255 in the grayscale. For the remaining black columns,
no displacement in average is needed. Figure 5 (f1) and
(f2) exhibits the dynamic for the symmetric image.

• Figure 5 (g1) and (h1) exhibits a rather similar pattern of
variation as those of Fig. 5 (e1) and (f1), but with a higher
frequency of black and white columns interspersed. Fig-
ure 5 (g1) has a frequency of 5 consecutive columns of
the same color, while this frequency is 10 in Fig. 5 (h1).
Analyzing the dynamic curves (Fig. 5 (g2)), the standard
version keeps an average of 255 bin-displacements to
update the median for all white columns; for all the black
ones, no displacement in average is needed. Instead, the
BV-based version reaches peaks of 255 average displace-
ments every 5 columns. A similar pattern applies to Fig. 5
(g2) but every 10 columns in this case.

Finally, Fig. 6 shows an RGB image with three 8 bit-depth
channels (b = 256) and the result of MF with radius sizes

123



J Math Imaging Vis (2017) 58:130–146 145

1 (9 pixels per window), 3 (49 pixels) and 5 (121 pixels);
each channel was processed independently. The image size
is 189x267 pixels. The comparison between the standard and
the BV-based version is shown in Fig. 6 for each channel.
As in Fig. 4, a similar pattern of differences between both
versions can be perceived.

5 Final Comments

By assuming a clear distinction between the theoretical
analysis of efficiency and the comparison of experimental
implementations, this article intends to bring a new insight
into the MF capabilities. A detailed review of two of the
most popular MF algorithms (Huang et al. and Perreault and
Hébert) is offered first in order to understand their main
features and also to underline their differences. Updated
versions of them, based on the optimal BV of the median
are then presented and analyzed in detail. A comprehen-
sive framework to assess the efficiency of MF algorithms
in general is introduced in the process. Through six differ-
ent and objective-abstract metrics the theoretical efficiency
of the four MF algorithms under consideration is assessed in
detail; these metrics could also be used to approach the theo-
retical analysis of a wider class of algorithms. An additional
ad hocmetric, the transition effort rate, provides a rather intu-
itive explanation of the experimental results: the BV-based
versions clearly outperform their corresponding standardver-
sions, even the latter are equally or more expensive than the
former in terms of the remaining metrics.

The experimental results combined both real and syn-
thetic data including a RGB example and the experimental
computation of the transition effort rate. The differences
between the standard and BV-based versions of the analyzed
MF algorithms are thus highlighted and objectively quanti-
fied.Overall, theBV-based algorithmsnoticeably outperform
their corresponding standard versions either for a single chan-
nel or a multichannel image.

Lines of future work might include the use of BV-based
MF versions for edge detection in object segmentation, and
the analysis of MF algorithms under alternative theoretical
models of computation.

References

1. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction
to Algorithms. McGraw-Hill, New York (2001)

2. Skiena, S.S.: The Algorithm Design Manual. Springer, London
(2008)

3. Tukey, J.: ExploratoryDataAnalysis.Addison-Wesley,MenloPark
(1977)

4. Maragos, P., Schafer, R.: Morphological filters—part II: their rela-
tions to median, order-statistic, and stack filters. IEEE Trans.
Acoust. Speech Signal Process. 35, 1170–1184 (1987)

5. Pratt, W.K.: Digital Image Processing: PIKS Inside. Wiley, New
York (2001)

6. Eng, How-Lung, Ma, Kai-Kuang: Noise adaptive soft-switching
median filter. IEEE Trans. Image Process. 10, 242–251 (2001)

7. Nelson, T.R., Pretorius, D.H.: Three-dimensional ultrasound of
fetal surface features. Ultrasound Obstet. Gynecol. 2, 166–174
(1992)

8. Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitpretre, G.,
Canat,X., LeFur,G.,Casellas, P.: Involvement of peripheral benzo-
diazepine receptors in the protection of hematopoietic cells against
oxygen radical damage. Blood 87, 3170–3178 (1996)

9. LeBas, T.P., Mason, D.C., Millard, N.C.: TOBI image processing:
the state of the art. J. Ocean. Eng. 20, 85–93 (1995)

10. Villar, S.A., Torcida, S., Acosta, G.G.: Un Enfoque Novedoso del
Filtro deMediana para el Suavizado de Señales Acústicas de Sonar
deBarrido Lateral. Presented at theARGENCON2014, SanCarlos
de Bariloche-Neuquen-Argentina June 11 (2014)

11. Chen, Zhao-Yan,Wang, Tong, Ma, Nan: Accurate baseline estima-
tion for synthetic aperture radar-ground moving target indication
systems based on co-registration andmedian filtering. Radar Sonar
Navig. IET. 8, 607–615 (2014)

12. Juhola,M., Katajainen, J., aRaita, T.: Comparison of algorithms for
standardmedian filtering. IEEETrans. Signal Process. 39, 204–208
(1991)

13. Langsam, Y., Augenstein, J., Tenenbaum, A.: Data Structures
Using C and C++. Prentice Hall, Englewood Cliffs (1995)

14. Corwin, E., Logar, A.: Sorting in linear time-variations on the
bucket sort. J. Comput. Sci. Coll. 20, 197–202 (2004)

15. Thomas, C.H., Charles, L.E., Ronald, R.L., Clifford, S.: Intro-
duction to Algorithms. MIT Press and McGraw-Hill, Cambridge
(2001)

16. Tibshirani, R.J.: Fast Computation of the Median by Successive
Binning (2008). ArXiv Prepr. arXiv:0806.3301

17. Suomela, J.: Median Filtering is Equivalent to Sorting (2014).
ArXiv Prepr. arXiv:1406.1717

18. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median
filtering algorithm. IEEE Trans. Acoust. Speech Signal Process.
27, 13–18 (1979)

19. Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph.
25, 519–526 (2006)

20. Gil, J., Werman, M.: Computing 2-D min, median, and maxfilters.
IEEE Trans. Pattern Anal. Mach. Intell. 15, 504–507 (1993)

21. Perreault, S., Hebert, P.: Median filtering in constant time. IEEE
Trans. Image Process. 16, 2389–2394 (2007)

22. Urbach, E.R., Wilkinson, M.H.F.: Efficient 2-D grayscale mor-
phological transformations with arbitrary flat structuring elements.
IEEE Trans. Image Process. 17, 1–8 (2008)

23. Alekseychuk, A.: Hierarchical recursive running median. In: 19th
IEEE International Conference on Image Processing (ICIP 2012),
Lake Buena Vista, Orlando, FL, USA, September 30– October 3,
2012, pp. 109–112 (2012)

24. Huber, P.J.: Robust Statistics. Wiley, New York (1981)
25. Kluge, W.: Abstract Computing Machines: A Lambda Calculus

Perspective. Springer, Berlin (2005)
26. Diehl, S.,Hartel, P., Sestoft, P.:Abstractmachines for programming

language implementation. Future Gener. Comput. Syst. 16, 739–
751 (2000)

27. Jaime, F.J., Hormigo, J., Villalba, J., Zapata, E.L.: New SIMD
instructions set for image processing applications enhancement.
In: 15th IEEE International Conference on Image Processing, 2008
(ICIP 2008), pp. 1396–1399 (2008)

28. Alparone, L., Cappellini, V., Garzelli, A.: A coarse-to-fine algo-
rithm for fast median filtering of image data with a huge number
of levels. Signal Process. 39, 33–41 (1994)

123

http://arxiv.org/abs/0806.3301
http://arxiv.org/abs/1406.1717


146 J Math Imaging Vis (2017) 58:130–146

29. Acosta, G.G., Villar, S.A.: Accumulated CA-CFAR process in 2-
D for online object detection from sidescan sonar data. IEEE J.
Ocean. Eng. 40, 558–569 (2015)

30. Villar, S.A., Acosta, G.G., Sousa, A.L., Rozenfeld, A.: Evaluation
of an efficient approach for target tracking from acoustic imagery
for the perception system of an autonomous underwater vehicle. J.
Adv. Robot. Syst. InTech. 11, 1–13 (2014)

Sebastián A. Villar graduated as
Systems Engineer at the Facul-
tad de Ciencias Exactas from the
Universidad Nacional del Centro
de la Provincia de Buenos Aires
(UNCPBA), Argentina (2009),
and as Masters in Business
Administration (MBA) at the
Facultad de Ciencias Economi-
cas from UNCPBA (2011), and
as Ph.D. in Engineering, at Fac-
ultad de Ingeniería of UNCPBA
(2014). He is also a researcher
of the Argentinean National
Research Council (CONICET)

with a scholarship, working in Engineering Group INTELYMEC (Av.
del Valle 5737-B7400JWI Olavarría; Argentina), UNCPBA.

Sebastián Torcida graduated
as a bachelor in Mathemat-
ics (1995) and as a Masters
in Mathematics (2001), both
from the Mathematics Depart-
ment at the Facultad de Ciencias
Exactas from the Universidad
Nacional del Centro de la Provin-
cia de Buenos Aires (UNCPBA),
Argentina. He is a full time
researcher in applied mathemat-
ics and multivariate statistics,
collaborating with colleagues
from different disciplines.

Gerardo G. Acosta graduated
as Engineer in Electronics at
the Universidad Nacional de La
Plata, Argentina (1988), and as
Ph.D. in Computer Science, at
the Universidad de Valladolid,
Spain (1995). He is currently a
Full Professor in Control Sys-
tems (Electronic Area) at the
Facultad de Ingenieria from the
Universidad Nacional del Cen-
tro de la Provincia de Buenos
Aires (UNCPBA), Argentina. He
is a researcher of the Argen-
tinean National Research Coun-

cil (CONICET) since 1997, and the head of the research group
“INTELYMEC”,CIFICEN,CONICET-UNCPBA.He is aSeniorMem-
ber of the IEEE since 2001, Chairman of the Argentinean Chapter of the
IEEE Computational Intelligence Society (2007–2008), and received
the 2010 Outstanding Chapter Award from CIS. In addition, he is the
currentChairmanof theArgentineanChapter of the IEEEOceanicEngi-
neering Society being one of its funders. He has been the leader of more
than ten research projects funded by the argentinean government, the
spanish government and the european union. He has been invited as a
professor of Ph.D programs in Argentina and Spain, he is the current
Director of the PhD program at the Facultad de Ingeniería-UNCPBA,
and serves as a reviewer and a member of the scientific committee of
several national and international journals and conferences.

123


	Median Filtering: A New Insight
	Abstract
	1 Introduction
	2 The MF Algorithm
	2.1 Huang et al. Algorithm
	2.2 Perrault and Hebert's Algorithm

	3 A New Insight Into the MF Algorithm
	3.1 BV-Based Version of H_alg
	3.2 BV-Based Version of the P&H_alg

	4 A Theoretical Framework for MF Analysis and Comparison
	4.1 Theoretical Framework
	4.2 Experimental Results

	5 Final Comments
	References




