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Abstract A number of methods, both algebraic and itera-
tive, have been developed recently for the fitting of concentric
circles. Previous studies focus on first-order analysis for per-
formance evaluation, which is appropriate only when the
observation noise is small so that the bias is insignificant
compared to variance. Further studies indicate that the first-
order analysis does not appear sufficient in explaining and
predicting the performance of an estimator for the fitting
problem, especially when the noise level becomes signifi-
cant. This paper extends the previous study to perform the
second-order analysis and evaluate the estimation bias of sev-
eral concentric circle estimators. The second-order analysis
exposes important characteristics of the estimators that can-
not be seen from the first-order studies. The insights gained
in the theoretical study have led to the development of a new
estimator that is unbiased and performs best among the alge-
braic solutions. An adjusted maximum likelihood estimator
is also proposed that can yield an unbiased estimate while
maintaining the KCR bound performance.
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1 Introduction

Various objects appear concentric in images. Examples
include a compact disk, an iris and the cross section of a
transmission pipe. Perhaps, the simplest concentric pattern
is formed by circles that have a common center. A set of con-
centric circles are characterized by the center and the radii.
The estimation of the concentric circle parameters is a chal-
lenging problem due to the nonlinear relationship between
the observed data points and the unknown parameters. It has
been an active research and has applications in biometrics
such as iris recognition [26], commercial electronics such
as camera calibration [15], and industry, such as, steel coils
quality control.

Many concentric circle estimators have been devel-
oped over the years, including the preliminary solution by
Dampegama [10], the suboptimum method by Benko et al.
[4], the conic fitting solution by O’Leary et al. [19] and
the algebraic solution by Ma and Ho [17]. Recently, Al-
Sharadqah and Ho [3] have revisited previously proposed
methods and developed new ones for the problem of fitting
concentric circles. Both algebraic and iterativemethods were
investigated, and the first-order analysis was performed. The
analytical results indicate that the algebraic solutions are easy
to apply, but the performance is suboptimum. The iterative
solutions, namely themaximum likelihood estimator (MLE),
the gradient weighted algebraic fit (GRAF) and the Renor-
malizationmethod (RM), can yield theKCRbound [7,14,20]
performance. Furthermore, the MLE, using the Levenberg–
Marquardt implementation, is much more computationally
efficient than the GRAF and the RM. Under the first-order
analysis, these estimators all have zero bias [3].

The first-order analysis is appropriate when the signal-to-
noise ratio (SNR) of the measurements is high, so that the
bias is negligible compared to variance. It is not uncommon
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in many practical scenarios where the SNR is not sufficient.
In such cases, the first-order analysis will not be a reasonable
indication in predicting the performance of an estimator. The
first-order analysis also is not adequate to explain the behav-
iors of different estimators.

This paper continues the previous study [3] to analyze
in the second-order performance of various algebraic and
iterative concentric circle fitting methods. The second-order
analysis is quite challenging and more involved than the first
order. Nevertheless, it reveals very interesting results among
different estimators. In particular, the concentric circle center
estimate has zero essential bias for both the algebraic (except
the simple fit method) and iterative solutions. Regarding the
radii, the algebraic solutions have essential bias four times
higher than that of the MLE and the GRAF and RM two
times.

The insights gained from the second-order analysis have
led us to develop a hyper-accurate estimator that is among
most accurate for an algebraic solution while having zero
essential bias up to second order. It is computationally effi-
cient. Although its performance is unable to achieve theKCR
bound, it can serve as a promising initial guess for the iter-
ative methods. We also propose the adjusted MLE that has
zero bias up to second order and maintains the KCR bound
performance.

We shall process a realistic data set to support the analysis
and the performance of the proposed algorithms. The data
are obtained from an image of a CD/DVD, where the Canny
edge detectionmethod [5] is applied to obtain the data sample
points for the fitting of two concentric circles. The results
verify very well the theoretical studies.

For ease of illustration, as shown in Fig. 1, we shall con-
sider two concentric circles. It is straightforward to extend
the study to more than two concentric circles. Let us denote
ni to be the number of data points on the i th component of
the concentric circles, where i = 1, 2. The data from the
concentric circles are modeled as

si j = s̃i j + ni j , j = 1, 2, . . . , ni , i = 1, 2, (1)

where si j = (xi j , yi j )T represents the 2×1 vector containing
the Cartesian coordinates of the j th point observed around
the i th circle. Also, s̃i j = (x̃i j , ỹi j )T is the true value, and
ni j = (δi j , εi j )

T is the observation noise of si j . In this paper,
we use the common notations that bold capital letters denote
matrices and bold lower case letters represent vectors. 1m
and 0m are length m vectors of ones and zeros. Also, the
symbol tilde represents the true value, and •− is the Moore–
Penrose pseudoinverse of •. For an unknown parameter • to
be estimated, •̂ is an estimate of it while • itself is viewed as
a variable for optimization.

Concentric circles fitting problem lies under the umbrella
of Errors-in-Variables (EIV) model. Here, we shall adopt the
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Fig. 1 CD/DVD image taken by a digital camera and the extracted
noisy data points (shown as cross symbols)

functional model in which the true points s̃i j ’s are fixed, but
they are unknown and satisfy the following relation

Pi (θ̃ , s̃i j ) := ‖s̃i j − c̃‖2 − R̃2
i = 0, (2)

for each i = 1, 2, and j = 1, . . . , ni . Here, the four-
dimensional vector θ̃ is the unknown θ̃ = (c̃T, R̃1, R̃2)

T to
be estimated, and c̃ = (ã, b̃)T is the center of the common
concentric circles. R̃1 and R̃2, with R̃1 < R̃2, are the two
circle radii, and ‖ · ‖ is the Euclidean norm.

Expanding the square in Eq. (2) and denoting ‖s̃i j‖2 as
z̃i j , Eq. (2) can be expressed as

Pi
(
φ̃, s̃i j

)
= Ãz̃i j + B̃ x̃i j + C̃ ỹi j + D̃i = 0, (3)

where φ̃ = ( Ã, B̃, C̃, D̃1, D̃2)
T is the algebraic parameter

vector. Thus, one might alternatively estimate the algebraic
parameter vector and then recover the natural parameters
through the relationships between the two parametric spaces
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a = −B

2A
, b = −C

2A
, R2

i = ζi

4A2 , (4)

where

ζi = B2 + C2 − 4ADi , i = 1, 2. (5)

Note here that Eq. (3) can be expressed in a compact form as

Pi = φ̃
T
z̃i j , where

z̃1 j = (z̃1 j , x̃1 j , ỹ1 j , 1, 0)
T and

z̃2 j = (z̃2 j , x̃2 j , ỹ2 j , 0, 1)
T. (6)

For notation simplicity, we shall collect all n = n1 + n2
measurement data points together as s = s̃ + n with s =
(sT1 , sT2 )T, s̃ = (s̃T1 , s̃T2 )T, and n = (nT1 ,nT2 )T, where si =
(sTi1, . . . , s

T
ini

)T, ni = (nTi1, . . . ,n
T
ini

)T. Here, s and n are
2n × 1 vectors of the observed points and the noise vectors,
respectively, while s̃ is the true value of s.

The noise vector n is modeled as a Gaussian random vec-
tor with mean zero and covariance matrix Q. It is often
reasonable to assume nik and n jl , for k �= l or i �= j ,
are independent so that Q is a diagonal matrix. Here, we
look at the specific case that cov(ni j ,nil) = σ 2δ̂ jl for all
l, j = 1, . . . , ni and i = 1, 2, where δ̂ jl represents the Kro-
necker delta function. Finally, it isworthmentioning here that
in all numerical experiments we have conducted, the condi-
tion ζi > 0, for each i , has fulfilled. In our experiments, we
were carefully monitoring this condition. If a single case did
appear, then its estimation would not be considered in our
calculations.

The paper is organized as follows. Section 2 reviews the
existing methods that will be analyzed. Section 3 briefly
summarizes the first-order analysis results for completeness.
Section 4 focuses on the second-order analysis of the MLE
and introduces the adjustedMLE that has zero essential bias.
Section 5 is dedicated to the second-order analysis of the
algebraic fits. It also develops the new Hyper-accurate fit-
ting method that works best among other algebraic solutions.
Section 6 performs the second-order analysis for the itera-
tive methods. The studies in Sects. 4–6 are supported with
numerical examples.

Section 7 gives three comprehensive numerical simula-
tions and a practical experimental study with realistic and
Sect. 7 summarizes our conclusion. The technical details of
this paper are included in “Appendix.”

2 Background

In this section, we briefly introduce the methods discussed in
this paper. A full description of these methods can be found
in Al-Sharadqah and Ho [3].

2.1 The MLE

Based on our statistical assumptions, the MLE, θ̂m, turns out
to be the minimizer of F1(θ) = ∑2

i=1
∑ni

j=1 ‖si j − s̃i j‖2,
subject to a system of equations given in Eq. (2). Al-
Sharadqah and Ho [3] proved that, under the isotropic and
homogeneity of the noisy errors that are also adopted in this
paper, the MLE is equivalent to orthogonal distance regres-
sion (ODR), or the so-called the geometric fit. The geometric
fit minimizes the sum of the squares of the orthogonal dis-
tances of the observed points si j to the fitted circles indexed
by (a, b, R1) and (a, b, R2); i.e.,

F (θ) =
2∑

i=1

ni∑
j=1

(‖ri j‖ − Ri )
2 =

2∑
i=1

ni∑
j=1

d2i j , (7)

where ri j = si j − c. The signed distance di j stands for the
distance from si j to the circle Pi . i.e., for each i = 1, 2, and
j = 1,. . . , ni ,

di j = ri j − Ri , ri j = ‖ri j‖ =
√

(xi j − a)2 + (yi j − b)2.

(8)

This is a nonlinear least squares problem, and it needs
an iterative procedure to obtain its solution θ̂m. In [3],
twoLevenberg–Marquardt (LM)-based algorithmswere pro-
posed to compute its solution.

2.2 Gradient Weighted Algebraic Fit

Al-Sharadqah and Ho [3] implemented the so-called gradi-
ent weighted algebraic fit (GRAF), a well-known method in
estimating the parameters for many subjects, to concentric
circles fitting [8,16,22]. The GRAF φ̂g is the estimator that
minimizes the objective function

G (φ) =
2∑

i=1

ni∑
j=1

∥∥∥zTi jφ
∥∥∥
2

φT
(
∇si j zi jcov(ni j )∇si j z

T
i j

)
φ

, (9)

where

∇si j z
T
1 j =

[
2xi j 1 0 0 0
2yi j 0 1 0 0

]
. (10)

As an immediate consequence of our statistical assumption
cov(ni j ) = σ 2I2, the objective function G in Eq. (9) has the
formal expression

G (φ) =
2∑

i=1

ni∑
j=1

φTMi jφ

φTVi jφ
, (11)
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where

M1 j =

⎡
⎢⎢⎢⎢⎢⎣

z21 j z1 j x1 j z1 j y1 j z1 j 0
x1 j z1 j x21 j x1 j y1 j x1 j 0
y1 j z1 j x1 j y1 j y21 j y1 j 0
z1 j x1 j y1 j 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

M2 j =

⎡
⎢⎢⎢⎢⎢⎣

z22 j z2 j x2 j z2 j y2 j 0 z2 j
x2 j z2 j x22 j x2 j y2 j 0 x2 j
y2 j z2 j x2 j y2 j y22 j 0 y2 j

0 0 0 0 0
z2 j x2 j y2 j 0 1

⎤
⎥⎥⎥⎥⎥⎦

, (12)

and

Vi j = ∇si j Pi j∇si j P
T
i j =

[
V(∗)
i j 03×2

02×3 02×2

]
, (13)

where

V(∗)
i j =

⎡
⎣
4zi j 2xi j 2yi j
2xi j 1 0
2yi j 0 1

⎤
⎦ . (14)

Note that in Eq. (11) the objective function G represents the
sum of the ratios of two homogeneous quadratic polynomials
of degree 2; hence, if φ̂g is the solution of Eq. (11), then cφ̂g is
also another solution for any nonzero constant c. To remove
the indeterminacy, we restrict the domain of the solution φ̂g

on the unit ball; i.e., ‖φ̂g‖ = 1. Moreover, the solution is
invariant under translation, rotation, and scaling.

Differentiating G in Eq. (11) with respect to φ, we obtain
the so-called variational equation; i.e.,

M φ̂g = L φ̂g, (15)

where,

M =
2∑

i=1

ni∑
j=1

γ −1
i j Mi j ,

L =
2∑

i=1

ni∑
j=1

γ −2
i j (φ̂

T
gMi j φ̂g)Vi j , (16)

and γi j = φ̂
T
gVi j φ̂g. Its solution φ̂g is the generalized eigen-

vector of thematrix pencil (M ,L ) associated with the unity
eigenvalue. Since both M and L depend on φ, Eq. (15)
can only be solved by iterative procedures. Two numeri-
cal schemes that appear in many computer vision literature
were used to solve Eq. (15). Chojnacki et al. [8] proposed
the Fundamental Numerical Scheme (FNS), while Leedan

and others [16,18] proposed the Heteroscedastic-Error-In-
Variables Scheme (HEIV).

2.3 Renormalization and Generalized GRAF

Kanatani developed the Renormalization method [12,13],
which took a prominent position in solving many practical
problems in geometric fitting and computer vision before
GRAF was developed. Al-Sharadqah and Ho extended the
Renormalizationmethod to the concentric circles. In our con-
text, the Renormalization fit φ̂R solves

Mφ = λN φ, (17)

where N = ∑2
i=1
∑ni

j=1 γ −1
i j Vi j . Then, one finds φ as a

generalized eigenvector for the matrix pencil (M ,N ). That
is, we solve the generalized eigenvalue problem and choose
the generalized eigenvector associated with the smallest pos-
itive eigenvalue λ. However, both of the matricesM andN
depend on φ; thus, Kanatani proposed an iterative algorithm
to find the solution. More details about all these numerical
schemes can be found in the surveys [6,9]. Since the Renor-
malization method can be considered as an approximation
for GRAF and it is a special case of Eq. (17), we will call
the solution of the general equation (17) by the generalized
GRAF.

2.4 Algebraic Fits

Here, we discuss the all non-iterative algebraic methods that
will be analyzed in this paper. They are called algebraic,
because they minimize the sum of the squares of the alge-
braic distances

∑2
i=1
∑ni

j=1 ‖Pi (θ, si j )‖2. Alternatively, the
problem can be rewritten in terms of the algebraic parameter
φ by expressing Pi (φ, si j ) as φTzi j . SinceMi j = zi jzTi j and

the matrix of the momentsM =∑2
i=1
∑ni

j=1Mi j , the objec-

tive function we are seeking to minimize is φTMφ. To avoid
the trivial solution, we restrict our domain to ‖φ‖ = 1, but
this does not remove the indeterminacy entirely. To address
this issue, a quadratic constraint in the parametric subspace
ofR5 must be imposed. That is, we generally use φTNφ = c,
for some constant c. This converts our problem to the mini-
mization problem

FN(φ) = φTMφ

φTNφ
. (18)

This objective function depends on the constraint matrix N,
and as such its minimizer’s behavior depends upon N. Dif-
ferent choices of N lead to new estimators. For instance,
NK = e′

1e
′T
1 with e′

1 = (1, 0, 0, 0, 0)T is the constraintmatrix
of the simple fit, the Taubin method has the constraint matrix
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NT = V, while the constraint matricesNA = A andNB = B
for Type-A and Type-B direct methods, respectively, are pre-
sented shortly. In this paper, we will investigate these four
choices ofN. A brief description of each method is presented
shortly, while details about these methods together with their
properties and implementations have been thoroughly dis-
cussed in [3].

All algebraic fits share a common aspect. They minimize
(18), and as such, one finds the solution by differentiating
the objective function (18) with respect to φ and equating its
derivatives with zero. Therefore, the minimization problem
reduces to solving the generalized eigenvalue problem

Mφ = λNφ (19)

The matrix of the momentsM is positive definite in general.
The only exceptional case that M becomes singular when
all the points for fitting lie exactly on the concentric cir-
cles, but the chance of having this situation is near zero.
λ is the generalized eigenvalue for the pencil of matrices
(M,N), and φ is the corresponding generalized eigenvector.
Because ‖φ‖ = 1, we pick the solution as the unit general-
ized eigenvector associatedwith the eigenvalueλ. The choice
of λ depends on the structure of the constraint matrix N.

2.4.1 Simple Algebraic Fit

Perhaps, the simplest approach is to minimize the sum of the
squares of the algebraic errors. That is,

FK(θ) =
2∑

i=1

ni∑
j=1

‖Pi (θ, si j )‖2 =
2∑

i=1

ni∑
j=1

(
‖ri j‖2 − R2

i

)2
.

Equivalently, oneminimizes (18) subject to A = 1. This con-
straint can be written as φTNKφ = 1, where NK = e′

1e
′T
1 .

This method is called the simple fit (SF) and it is the fastest
method. Moreover, it works well if data are distributed along
long concentric circular arcs. However, this feature attribute
disappears when data are sampled along short concentric cir-
cular arcs. In this paper, we will investigate this issue, and
we will explain its behavior analytically.

2.4.2 The Taubin Method

The Taubin method is one of the most accurate algebraic
method [3]. Its solution φ̂T minimizes the objective function

FT(φ) =
∑2

i=1
∑ni

j=1 φTMi jφ∑2
i=1
∑ni

j=1 φTVi jφ
= φTMφ

φTVφ
, (20)

with

NT = V =
2∑

i=1

ni∑
j=1

Vi j . (21)

The matrix Vi j is defined in Eq. (13). Since NT is positive
semidefinite, φ̂T = argmin‖φ‖=1FT(φ) is the generalized
eigenvector of the matrix pencil (M,V) corresponding to
the smallest positive eigenvalue λ. This solution is an
approximation of the GRAF when the double summation
is distributed over both of the numerator and the denomina-
tor of G [cf. Eq. (11)]. Furthermore, regardless of its losses
for the optimality criterion, the Taubin fit behaves—in some
prospect—like the GRAF. This observation will be investi-
gated analytically in our second-order error analysis.

2.4.3 Type-A Direct Method

Another algebraic method that was also proposed as an
approximation of GRAF is the Type-A direct fit [3]. It results
by presumably assuming that the observed points are close
enough to the true curves. Then, φTzi j ≈ 0. Therefore,
φTVφ = n1ζ1 + n2ζ2, where ζi is defined in Eq. (5). Thus,
Eq. (11) can be approximated by

FA(φ) = φTMφ

φTNAφ
(22)

with

NA := A =

⎡
⎢⎢⎢⎢⎣

0 0 0 −2n1 −2n2
0 n 0 0 0
0 0 n 0 0

−2n1 0 0 0 0
−2n2 0 0 0 0

⎤
⎥⎥⎥⎥⎦

. (23)

For this method, φ̂A = argmin‖φ‖=1FA(φ) is the general-
ized eigenvector that corresponds to the smallest nonnegative
generalized eigenvalue λ.

2.4.4 Type-B Direct Method

This method is stemmed from the two geometric constraints
of concentric circles. That is, φ must satisfy ζi > 0 for each
i = 1, 2. If these two constraints are combined together, we
have the constraint ζ1 + ζ2 > 0. Note that this is a single
homogeneous constraint of degree 2. Therefore, we can set
2B2 + 2C2 − 4A(D1 + D2) = 1; i.e., φTNBφ = 1, where
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NB = B =

⎡
⎢⎢⎢⎢⎣

0 0 0 −2 −2
0 2 0 0 0
0 0 2 0 0

−2 0 0 0 0
−2 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, (24)

and then we minimize

FB(φ) = φTMφ

φTNBφ
. (25)

With a very similar analysis to the Type-A direct fit, one
can show that the new estimator φ̂B = argmin‖φ‖=1FB(φ)

is the unit generalized eigenvector of the smallest positive
eigenvalue of (M,B). The matrixB does not depend on n1 or
n2, and it coincides with the Type-A direct fit only whenever
n1 = n2. Because of this similarity in its structure to the
Type-A direct fit, this method is called the Type-B direct
method (or Type-B for short).

3 Results of First-Order Error Analysis

To demonstrate the performance of the methods mentioned
above, we turn our attention to the statistical error analysis.
In general, the accuracy of an estimator Θ̂ of the parameter
vector Θ is measured by its mean squared error.

MSE(Θ̂) = E

[
�Θ̂�Θ̂

T] = cov(Θ̂) + bias(Θ̂)bias(Θ̂)T,

where �Θ̂ = Θ̂ − Θ̃ . Evaluating the MSE, however, is not
possible to our problem. However, if the noise level σ is not
significant—as a realistic assumption in many research sub-
jects in signal and image processing—then we can ignore the
higher-order noise terms and approximate the mean squared
error by

MSE(Θ̂) = σ 2Ξ1 + O(σ 4), (26)

where σ 2Ξ1 is the first leading term of the covariance matrix
of Θ̂ and it is the only term of order σ 2. In [3], the statistical
analysis was restricted to the first leading term of the MSE,
which is also the main term of the covariance matrix.

This leading term has a natural lower bound known by
the Kanatani–Cramér–Rao (KCR) lower bound [7]. If the
leading term of an estimator achieves this bound, then the
estimator is optimal. The optimality issue was one of the
main goals of [3]. Al-Sharadqah and Ho evaluated the lead-
ing term for each of the methods: the MLE, the GRAF, the
Renormalization, and the algebraic fits and they showed that
all the iterative methods are optimal in this sense. Indeed, for
the MLE, it was shown in [3] that its linear approximation
is θ̃ + �1θ̂m, where the first-order error term �1θ̂m = K̃f1

and f1 presented in Eq. (34) and K̃ = R̃W̃T. Here, R̃ =
(W̃TW̃)−1 with W̃T = [W̃T

1 W̃T
2 ] and

W̃1 =
⎡
⎢⎣

ũ11 ṽ11 1 0
...

...
...

...

ũ1n1 ṽ1n1 1 0

⎤
⎥⎦ ,

W̃2 =
⎡
⎢⎣

ũ21 ṽ21 0 1
...

...
...

...

ũ2n2 ṽ2n2 0 1

⎤
⎥⎦ , (27)

and

ũi j = x̃i j − ã

R̃i
, ṽi j = ỹi j − b̃

R̃i
, i = 1, 2, j = 1, . . . , ni .

(28)

Moreover, the linear approximation of the MLE is normally
distributed with mean θ̃ and covariance matrix σ 2R̃. This
first leading term of the covariance of the MLE is expressed
in terms of the natural parameters θ = (a, b, R1, R2) and it
coincides with the KCR of Θ = θ , which was derived by
Ma and Ho [17]; i.e., KCR(θ̂) = σ 2R̃. This shows why the
MLE is optimal.

Al-Sharadqah and Ho [3] also applied the perturbation
theory to the two other iterative methods and showed that the
leading terms of their covariances are identical and equal to

cov
(
�1φ̂
)

= σ 2M̃− + O(σ 4). (29)

where M̃ = ∑2
i=1
∑ni

j=1 ζ̃−1
i z̃i j z̃Ti j and ζ̃i is the true value

of ζi [cf. Eq. (5)].
This leading term of the covariances for the GRAF and

the generalized GRAF is expressed in terms of the algebraic
parameters Θ = φ and it coincides with the KCR lower
bound [7]. That is, the KCR of φ̂ is KCR(φ̂) = σ 2M̃−.

It is worth mentioning here that the relationship between
the lower bounds in the two parametric spaces is KCR(θ̂) =
ẼKCR(φ̂) ẼT where E is a 4 × 5 “Jacobian” matrix that
comes from taking partial derivatives in Eq. (4), see [3] for
more details. This shows that the leading term of the covari-
ance matrices for both the Renormalization and GRAF equal
to the KCR lower bound, and hence, we conclude that they
are statistically optimal.

Finally, it was shown in [3] that the leading terms of the
covarainces of all algebraic fits are the same and equal to

cov
(
φ̂Alg

)
= σ 2M̃−

⎡
⎣

2∑
i=1

ni∑
j=1

ζ̃iM̃i j

⎤
⎦ M̃− + O(σ 4), (30)
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where M̃ = ∑2
i=1
∑ni

j=1 z̃i j z̃
T
i j . Moreover, this covariance

matrix does not achieve the KCR lower bound, and this
proves that the algebraic methods are suboptimal.

4 Second-Order Analysis of MLE

The leading term of the covariance matrix of any algebraic
fit does not depend on the constraint matrix N. Therefore,
all algebraic concentric circle fits have the same covari-
ance matrix (to the leading order). This is because their
linear approximations, say Θ̂L = Θ̃ + �1Θ̂ , are equal.
Moreover, the leading term of the covariance matrices of
algebraic fits do not achieve the KCR lower bound; i.e., they
are not statistically optimal. However, the algebraic meth-
ods behave differently in practice. For instance, the Taubin
method always outperforms the Type-A direct fit. The same
observation appears among the iterative (optimal) methods.
Some fits always perform better than others, even though
they belong to the same class.

To shedmore light about their behaviors, we shall trace the
second most important terms in their MSEs that come from
the bias. That is, we shall expand our analysis by including
the second-order error term �2Θ̂ and study the quadratic
approximations of Θ̂

Θ̂Q = Θ̃ + �1Θ̂ + �2Θ̂ .

We only need to evaluate �2Θ̂ , which is a quadratic form of
the noisy error vector n. This refines Eq. (26) to

MSE(Θ̂Q) = cov(�1Θ̂) + MSE(�2Θ̂)

= σ 2Ξ1 + σ 4b̃b̃T + σ 4Ξ2 + O(σ 6). (31)

here, σ 2Ξ1 and σ 4Ξ2 are the first and the second leading
terms of the covariance matrix of Θ̂ and their orders of mag-
nitudes are σ 2/n and σ 4/n, respectively. The term σ 4b̃b̃T

comes as the outer product of the second-order error bias
E(�2Θ̂) = σ 2b̃ with itself. We shall show later that O(σ 2)

-bias, σ 2b̃, can be decomposed into b̃ = b̃1 + b̃2. The most
important part, σ 2b̃1 ∼ σ 2, is referred as the essential bias
and the least important part, σ 2b̃2 ∼ σ 2/n, is called the
nonessential bias.

It is worth mentioning that we are studying here the
quadratic approximation of Θ̂ and its MSE, which coincides
with the MSE of Θ̂ up to order of magnitude σ 4/n. That is,
there are other O(σ 4/n)—terms in the full MSE expression
that were not included. Those terms are the expected value
of the outer product of first- and the third-order errors terms,
which are discarded in our analysis.However, ifni ’s are fairly
large, say 20–100, then those ignored terms together with the
less important part in σ 4(b̃2b̃T + b̃b̃T2 ) become negligible.

Accordingly, the only terms are persisted in orders of mag-
nitudes σ 4. They are free of n and they come only from the
essential bias.

TheMLE is often considered as one of the best estimators
available. We shall begin with the second-order analysis of
the MLE.

4.1 Second-Order Bias of MLE

If we restrict the error analysis to the first leading term, then
the MLE will be an unbiased and efficient estimator of θ̂m.
Higher-order analysis reveals the bias of the MLE persists
even for very large sample size. Therefore, we address here
the bias of the MLE θ̂m, and find the MSE of its quadratic
approximation. This can be accomplished by computing its
second-order error term, �2θ̂m, and evaluating its expecta-
tion. Including all terms of order OP(σ

2) of di j shows that,
for each i = 1, 2 and j = 1, . . . , ni ,

di j = qi j − ũi j�2â − ṽi j�2b̂ − �2 R̂i + OP(σ
3), (32)

where

qi j = li j + f2i j1 , (33)

and

li j = f1i j − (ũi j�1â + ṽi j�1b̂ + �1Ri ), (34)

where f1i j = ũi jδi j + ṽi jεi j and

f2i j = 1
2R̃i

(ρi j − τi j )
2. (35)

We also have defined

ρi j = t̃Ti j ňi j , τi j = t̃Ti j�1θ̂m, t̃i j = (−ṽi j , ũi j , 0, 0)
T,

and ňi j = (δi j , εi j , 0, 0)T. The derivations of Eqs. (32)–(35)
are long and their details can be found in “Appendix.”

The quantity qi j includes all terms up to orderOP(σ
2) and

it can be expressed in the vector notations as qi = li + f2i ,
where the vector f2i = ( f2i1, . . . , f2ini )

T. Next, minimizing
F (θ) to the second-order term is equivalent to minimizing

F (�2θ̂m) = ‖W̃1�2θ̂m − l1 − f21‖2
+‖W̃2�2θ̂m − l2 − f22‖2. (36)

This least squares problem turns into W̃�2θ̂m = l+f2,where
concatenated vectors are l = (lT1 , lT2 )T and f2 = (fT21, f

T
22)

T.

Thus, �2θ̂m = K̃l + K̃f2 = K̃f2, and the quadratic approx-
imation of θ̂m becomes θ̂Q = θ̃ + K̃(f1 + f2), where
f1 = (fT11, f

T
12)

T.
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Fig. 2 Kernel density functions of R̂1 for the MLE (solid curve) and
its linear approximation (dashed curve) and its quadratic approximation
(dotted curve)

As a simple numerical experiment to validate the linear
and the quadratic approximations, we positioned n1 = 10
and n2 = 20 equidistant points on the concentric circular
arcs with center (0, 0) and radii R̃1=1 and R̃2 = 2. Both
arcs have the same initial angle 0. The terminal angle for
the smaller circle is ω1 = 90◦ and for the larger circle is
ω2 = 120◦. The true points were contaminated by white
Gaussian noise with standard deviation 0.2. N = 105 ensem-
ble runswere performed and for each run the estimate of R̂1 is
recorded. The linear and the quadratics approximations of R̂1

are computed using θ̂L and θ̂Q, while the MLE is computed
by the LM algorithm. The kernel densities of these estimates
are shown in Fig. 2. As Fig. 2 shows, the kernel density of
the linear approximation (dashed curve) significantly differs
from the identical kernel densities of the MLE (solid curve)
and its quadratic approximation (dotted curve). This example
also demonstrates the importance of the second-order error
analysis discussed in this paper.

Evaluating the expressions of the bias and the MSE of
�2θ̂Q involves lengthy calculations. To simplify our calcu-
lations, let us denote the ni -dimensional vectors whose j th

entities are

ai j = ρ2
i j , bi j = −2τi jρi j , ci j = τ 2i j ,

h̃i j = t̃Ti j R̃t̃i j , j = 1, . . . , ni

by ai , bi , ci , and h̃i , respectively. These vectors play a key
role later, so some of their relevant identities are presented in
the following lemma. The proof is deferred to “Appendix.”

Lemma 1 For each i, k = 1, 2, and j = 1, . . . , ni , let H̃ik

be a ni × nk matrix with jl th entities h̃i jkl = t̃Ti j R̃t̃kl and

D̃h̃i
= diag

(
h̃i
)
. Then,

E(ai ) = σ 21ni , E(bi ) = 0ni , E(ci ) = σ 2h̃i .

Moreover, for each i , k = 1, 2, one has

E

(
aiaTk
)

= σ 4
(
1ni 1

T
nk + 2δ̂ik Ini

)
,

E

(
bibTk
)

= 4δ̂ikσ
4D̃h̃i

,

while E(aibTk ) = E(bicTk ) = 0ni×nk and

E(cicTk ) = σ 4
(
h̃i h̃Tk + 2H̃ik

)
,

E(aicTk ) = σ 4h̃i · 1Tnk . (37)

The first advantage of these identities appears in the eval-
uation the bias of θ̂Q. Since E(�1θ̂m) = 0 we only need
E(�2θ̂m) = K̃E(f2), where f2i = 1

2R̃i
(ai + bi + ci ), it is

sufficient to find E(ai ), E(bi ), and E(ci ). From now on, the
appearance of the notation (ˇ) over a vector means that the

vector is divided by 1
2R̃i

. For instance, ǎi and
ˇ̃hi are equal

to 1
2R̃i

ai and 1
2R̃i

h̃i , respectively; but in the case of matrices,

we define the matrices ˇ̃Dh̃i
= 1

4R̃2
i
D̃h̃i

and ˇ̃Hik = 1
4R̃i R̃k

H̃ik .

With these notations,wedecompose f2i into f2i = ǎi+b̌i+či ,
for each i = 1, 2. Based on Lemma 1,

E(f2) = σ 2
[
1̌Tn1 1̌Tn2

]T + σ 2 ˇ̃h, where ˇ̃h = (
ˇ̃hT1 ,

ˇ̃hT2 )T.

(38)

Premultiplying E(f2) by K̃ gives

E(�2θ̂) = σ 2R̃
(
w̃1 + w̃2 + W̃Tȟ

)
, (39)

where

w̃1 =
(
ũT1 1̌n1 , ṽ

T
1 1̌n1 , ň1, 0

)T
,

w̃2 =
(
ũT2 1̌n2 , ṽ

T
2 1̌m2 , 0, ň2

)T
,

and ňi = ni
2R̃i

. Since 2R̃i w̃i is the (2+ i)th column of W̃TW̃,

then

2R̃1(W̃TW̃)−1w̃1 = (0, 0, 1, 0)T = e3
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and

2R̃2(W̃TW̃)−1w̃2 = (0, 0, 0, 1)T = e4.

Accordingly,

E(�2θ̂m) = σ 2 (ě3 + ě4
)+ σ 2K̃ ˇ̃h := σ 2b̃m, (40)

where ě3 = 1
2R̃1

e3 and ě4 = 1
2R̃2

e4. The essential bias of

the MLE, σ 2(ě3 + ě4), depends upon R̃1 and R̃2 only and it
does not rely on the actual data. The second part is of order
σ 2/ni ’s, and it represents the nonessential bias. It is worth
mentioning here that the MLE of the center does not have
essential bias while amounts of the essential bias of R̂i ’s are
σ 2

2R̃i
.

Finally, our thorough analysis shows that the MSE of θ̂Q
is

MSE(θ̂Q) = MSE(�1θ̂m) + MSE(�2θ̂m), (41)

where

MSE(�2θ̂m) = σ 4b̃mb̃Tm + σ 4Ξ2, (42)

and

Ξ2 = 2K̃
(
In + ˇ̃H + 2 ˇ̃Dh̃1,h̃2

)
K̃T. (43)

The complete derivations of Eqs. (41)–(43) are in “Appen-
dix.”

4.2 Adjusted MLE

The MLE has second-order bias, which can be adjusted to
improve the MLE [cf. Eq. (40)]. Then one can remove the
bias to improve estimating the parameters by computing the
θ̂m = (â, b̂, R̂1, R̂2) first and then removing the realization
of its bias through

θ̂adj = θ̂m − σ̂ 2
(
0, 0,

1

2R̂1
,

1

2R̂2

)
− σ̂ 2K̂ ˆ̌h, (44)

where K̂, ˆ̌h, and σ̂ 2 = F (θ̂m)/(n − 4) are the estimating

version of K̃, ˇ̃h, and σ 2, respectively. One can show that
these statistics are unbiased estimators for their true versions
up to the first leading term. Accordingly, the verification that
θ̂adj is unbiased estimator of θ̃ (up to order σ 4) becomes
straightforward.

5 Second-Order Analysis of Algebraic Fits

The performance of all algebraic fits in the MSE sense
depends on their variances and their biases. It is remark-
able to note that the leading term of the covariance matrix of
any algebraic fit does not depend on the constraint matrix N.
This observation implies that all algebraic circle fits have the
same variance (to the leading order). However, this leading
term does not attain the KCR lower bound. Consequently, all
algebraic fits are suboptimal. This fact reveals a big departure
from the analysis of the single circle fitting by Al-Sharadqah
and Chernov [1,2].

Evaluating the bias is an essential step in parametric esti-
mation in order to obtain a good estimator, especially that
the iterative methods, such as the MLE, need a good initial
guess in order to guarantee their convergence. Besides, in
the cases where the noise level is large, all iterative methods,
including the MLE, diverge. This makes algebraic fits the
only plausible solutions at our hand. Therefore, this section
is devoted to analyze the bias of the algebraic fits, such as the
simple fit, the Type-A fit, the Type-B fit, and the Taubin fit.
The algebraic method proposed in [19] will not be included
there. Indeed, its mechanism is not only unclear, but also the
quality of its performance is insufficient as demonstrated in
[3].

The zi j is a quadratic form of the random vector si j =
(xi j , yi j )T, which can be written as

zi j = z̃i j + �1zi j + �2zi j . (45)

The first-order error �1zi j is a linear combination of
(δi j , εi j ). That is,

�1zi j = ∇zi j (δi j , εi j )T = ãi jδi j + b̃i jεi j ,

where ãi j = (2x̃i j , 1, 0, 0, 0)T and b̃i j = (2 ỹi j , 0, 1, 0, 0)T.
Accordingly, for each j = 1, . . . , ni ,

cov(�1zi j ,�1zkl) = σ 2δ̂ik δ̂ jlṼi j ,

where Ṽi j = ãi j ãTi j + b̃i j b̃Ti j . Moreover, the second-order

error term is �2zi j = (δ2i j + ε2i j )e
′
1 and E(�2zi j ) = 2e′

1,

where e′
1 = (1, 0, 0, 0, 0)T.

Now, using Taylor series expansion, we can decompose
�φ̂ = φ̂ − φ̃ as

�φ̂ = �1φ̂ + �2φ̂ + OP(σ
3),

where �1φ̂ is a linear form of δi j ’s and εi j ’s and �2φ̂ is a
quadratic form of δi j ’s and εi j ’s, and all other higher-order
terms are represented byOP (σ 3). To assess the bias, we need
to evaluateE(�2φ̂) becauseE(�1φ̂) = 0. Since all algebraic
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fits solve the equation Mφ = λNφ, then if we apply matrix
perturbation to λ, φ̂, M and N, then Mφ̂ = λNφ̂ becomes

(M̃ + �1M + · · · )(φ̃ + �1φ̂ + · · · ) = (λ̃ + �1λ + · · · )
(Ñ + �1N + · · · )(φ̃ + �1φ̂ + · · · ). (46)

From the first-order analysis [3], it was shown that λ̃ =
�1λ = 0, and

�1φ̂ = −M̃−�1Mφ̃, where �1M =
2∑

i=1

ni∑
j=1

�1Mi j . (47)

and

�1Mi j = z̃i j �1zTi j + �1zi j z̃Ti j .

Hence, equating all OP (σ 2)-terms in Eq. (46) yields

M̃�2φ̂ = −
(
�1M�1φ̂ + �2Mφ̃

)
+ �2λÑφ̃, (48)

where

�2M =
2∑

i=1

ni∑
j

�2Mi j , �2Mi j

= �1zi j�1zTi j + 2S
[
�2zi j z̃Ti j

]
,

and S is the symmetrization operator; i.e., S (•) = (• +
•T)/2. Next, we find�2λ. Premultiplying Eq. (48) and using
Eq. (47) lead to

�2λ = φ̃
T
Rφ̃

φ̃
T
Ñφ̃

where R = �2M − �1MM̃−�1M. (49)

Since �2φ̂ is not orthogonal to φ̃, we decompose �2φ̂ =
�

‖
2φ̂+�⊥

2 φ̂ into the components that are parallel and orthog-

onal to φ̃. Then, �
‖
2φ̂ = − 1

2 ‖�1φ̂‖2φ̃ and E(�
‖
2φ̂) =

− 1
2 σ 2(tr M̃−)φ̃, which really accounts for the curvature of

the unit sphere ‖φ̂‖ = 1 rather than represents the bias of φ̂.
Our goal is to evaluate E(�⊥

2 φ̂), and we will suppress the ⊥
sign for brevity. Therefore, Eqs. (48)–(49) lead to

�2φ = M̃−
(

φ̃
T
Rφ̃

φ̃
T
Ñφ̃

Ñφ̃ − Rφ̃

)
= M̃−SÑ Rφ̃ (50)

with

SÑ = Ñφ̃φ̃
T

φ̃
T
Ñφ̃

− I5. (51)

If R is decomposed into R1 − R2 with R1 = �2M and
R2 = �1MM̃−�1M, then

E(R1) = σ 2
2∑

i=1

ni∑
j=1

Ṽi j + 4S
[
e′
1z̃

T
i j

]
. (52)

Moreover, analogous to [2,21], a thorough analysis here
shows that

E(R2) = σ 2
2∑

i=1

ni∑
j=1

2S [Ṽi jM̃−M̃i j ] + ψ̃
(a)
i j Ṽi j

+ tr(M̃−Ṽi j )M̃i j , (53)

where ψ̃
(a)
i j = z̃Ti jM̃

−z̃i j .
It is worth mentioning here that E(R1) ∼ nσ 2 and

E(R2) ∼ σ 2. Since M̃− ∼ O(n−1), then the contributions of
E(R1) and E(R2) to their biases are of orders of magnitudes
σ 2 and σ 2/n, respectively. Therefore, the most important
term of R is R1, which has a key role in our analysis, while
R2 has a less significant contribution to theMSE. Now, com-
bining Eqs. (52) and (53) with Eq. (49) forms

E(R) = σ 2
2∑

i=1

ni∑
j=1

[(
1 − ψ̃

(a)
i j

)
Ṽi j + 2S

[
2e′

1z̃
T
i j

]

−2S
[
Ṽi jM̃−M̃i j

]
− tr
(
M̃−Ṽi j

)
M̃i j

]
. (54)

Furthermore, since z̃Ti j φ̃ = 0 and φ̃
T
e′
1 = Ã, we obtain

2 ÃM̃−SÑ
2∑

i=1

ni∑
j=1

z̃i j = −2 ÃM̃−
2∑

i=1

ni∑
j=1

z̃i j := I
φ̃
.

This simplifies the general form of the algebraic fits to

E(�2φ̂) = σ 2M̃−SÑ
2∑

i=1

ni∑
j=1

2 Ãz̃i j

+
((

1 − ψ̃
(a)
i j

)
I5 − M̃i jM̃−) Ṽi j φ̃

= σ 2 I
φ̃

+ σ 2M̃−SÑ
2∑

i=1

ni∑
j=1

[(
1 − ψ̃

(a)
i j

)
I5

−M̃i jM̃−] Ṽi j φ̃. (55)

Equation (55) provides the general expression of the bias for
any algebraic fit. Each algebraic fit has its specific matrix N,
and as such, each method has its own bias.

Bias of the Taubin fit In this case, recall that Ñ = Ṽ =∑2
i
∑ni

j Ṽi j [cf. Eq. (13)] and γ̃i j = φ̃
T
Ṽi j φ̃ = ζ̃i . Thus, a

thorough analysis shows that
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E(�2φ̂T) = σ 2 I
φ̃

+ σ 2M̃−
2∑

i=1

ni∑
j=1

[
ψ̃

(a)
i j

(
1 − ζ̃i

ζ̃

)
I5

+ M̃i jM̃−] Ṽi j φ̃, (56)

where

ζ̃ = φ̃
T
Ṽφ̃ = n1ζ̃1 + n2ζ̃2.

Bias of Type-A direct fit φ̂A The matrix N = A is free of
data. Thus, Ñ = A and

E

(
�2φ̂A

)
= σ 2 I

φ̃
− σ 2M̃−

2∑
i=1

ni∑
j=1

((
1 − ψ̃

(a)
i j

)
I5

−M̃i jM̃−) Ṽi j φ̃ + σ 2M̃−

2∑
i=1

n∑
j=1

ζ̃−1ζ̃i

(
1 − ψ̃

(a)
i j

)
Aφ̃. (57)

Now, the very helpful relation

Aφ̃ = Ṽφ̃ − 2 Ã
2∑

i=1

ni∑
j=1

z̃i j (58)

reduces the expression of E(�2φ̂A) to

E

(
�2φ̂A

)
= 2σ 2 I

φ̃
− ασ 2M̃−Aφ̃ + σ 2M̃−

2∑
i=1

ni∑
j=1

(
M̃i jM̃− + ψ̃

(a)
i j I5
)
Ṽi j φ̃, (59)

where α = ∑2
i=1
∑ni

j=1 ζ̃−1ζ̃i ψ̃
(a)
i j . The only terms in Eqs.

(56) and (59) with order of magnitude σ 2 are σ 2 I
φ̃
and

2σ 2 I
φ̃
.

Bias of Type-B direct fit φ̂B The matrix N = B is free of
data. In this case, Ñ = B and

E(�2φ̂B) = 2σ 2 I
φ̃

+ σ 2M̃−
⎛
⎝n1ζ̃1

(
1 − ¯̃

ψ1

)
+ n2ζ̃2

(
1 − ¯̃

ψ2

)

ζ̃1 + ζ̃2
B − A

⎞
⎠ φ̃

+ σ 2M̃−
2∑

i=1

ni∑
j=1

(
M̃i jM̃− + ψ̃

(a)
i j I5
)
Ṽi j φ̃,

where ¯̃
ψi = 1

ni

∑ni
j=1 ψ̃

(a)
i j .

Bias of simple algebraic fit The same approach applies here
to derive the bias the simple fit, in which its constraint matrix

N = e′
1e

′T
1 . Then, after direct algebraic manipulations, we

obtain

E(�2φK) = 2σ 2 I
φ̃

+ σ 2M̃− ( Ã−2ζ̃e′
1e

′T
1 − Ã

)
φ̃

+ σ 2M̃−
2∑

i=1

ni∑
j=1

[
− Ã−1ψ̃

(a)
i j ζ̃ie′

1

+
(
M̃i jM̃− + ψ̃

(a)
i j I5
)
Ṽi j φ̃

]
.

5.1 Comparisons Between Algebraic Fits

From the error analysis, the second-order biases of theTaubin
fit, the Type-A direct fit, the Type-B direct fit, and the sim-
ple algebraic fit have been derived. For comparison purpose,
it is more appropriate to convert their bias expressions to
the natural geometric parameters θ . They are related by
E(�2θ̂) = ẼE(�2φ̂) + O(σ 3), where Ẽ is the Jacobian
matrix. To simplify the comparisons, we shall decide that the
smaller the essential bias, the better the estimator. For fairly
large n, only the essential bias in each of Eqs. (56) and (59)
persist.

The essential bias of the Taubin fit in term of its natural
geometric parameter θ is

σ 2Ẽ I
φ̃

= σ 2
(
0, 0, R̃−1

1 , R̃−1
2

)T = σ 2 I
θ̃
,

implying its center has a zero essential bias while the radii
have data-free essential biases. Consequently, we can see
now that the Type-A fit has essential bias twice as much as
the bias of the Taubin fit. This answers why and by howmuch
the Taubin fit outperforms the Type-A direct fit. The essential
bias for the two other fits is listed in Table 1, and they depend
on the true values of the parameters and the observations.

To analytically investigate their performances, we plotted
both parts of the normalized bias (NB) of R̂1; i.e., NB(R̂1) =
E(R̂1)

σ 2 and the normalized bias of θ̂ ; i.e., NB(θ̂) = ‖E(�2 θ̂)‖
σ 2 .

Firstly, we positioned n1 = 50 and n2 = 100 equidistant
points on concentric circular arcswith central angles initiated
at 0◦ and terminated at ω◦ (i.e., π

180◦ ω◦ radiant). The center

Table 1 Essential biases of the algebraic fits in terms the geometric
parameter vector θ

Essential bias of θ̂

Taubin fit σ 2 I
θ̃

Type-A 2σ 2 I
θ̃

Type-B 2σ 2 I
θ̃

+ σ 2ẼM̃−
(
n1 ζ̃1+n2 ζ̃2

ζ̃1+ζ̃2
B − Ã

)
φ̃

Simple fit 2σ 2 I
θ̃

+ σ 2ẼM̃−( Ã−2ζ̃e′
1e

′T
1 − Ã)φ̃
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Fig. 3 Normalized bias of the radius R̂1, i.e., NB(R̂1) = σ−2
E(R̂1),

and the normalized bias of θ̂ , i.e., NB(θ̂) = σ−2‖E(�2θ̂)‖, for the four
algebraic fits whenever n1 = 50 and n2 = 100. The tested methods
are the Type-A direct fit (blue), the Type-B direct fit (gold), the simple
fit (green), and the Taubin fit (red). a Normalized bias of R̂1, NB(R̂1),
whenever n1 = 50 and n2 = 100. b Normalized bias of θ̂ , NB(θ̂),
whenever n1 = 50 and n2 = 100 (Color figure online)

of the concentric circles is (0, 0), and the radii are R̃1 = 1
and R̃2 = 2, see Fig. 3. Then, we repeated the process with
n1 = 100 and n2 = 50 and the results are shown in Fig. 4.
The x−axis represents the length of the arcs ω, which varies
from π/2 to 2π .

Figures 3 and 4 reveal the behaviors of the normalized
essential biases (represented by the solid lines) and the nor-
malized nonessential biases (represented by the dotted lines).
The first subfigure in each figure represents the normalized
bias of R̂1, NB(R̂1), and the second subfigure represents the
total normalized bias of θ̂ , NB(θ̂). Our pack includes the
Type-A direct fit (blue), the Type-B direct fit (gold), the sim-
ple fit (green), and the Taubin fit (red). The figures show how
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Fig. 4 Normalized bias of the radius R̂1, i.e., NB(R̂1) = σ−2
E(R̂1),

and the normalized bias of θ̂ , i.e., NB(θ̂) = σ−2‖E(�2θ̂)‖, for the four
algebraic fits whenever n1 = 100 and n2 = 50. The tested methods
are the Type-A direct fit (blue), the Type-B direct fit (gold), the simple
fit (green), and the Taubin fit (red). a Normalized bias of R̂1, NB(R̂1),
whenever n1 = 100 and n2 = 50. b Normalized bias of θ̂ , NB(θ̂),
whenever n1 = 100 and n2 = 50. (Color figure online)

the essential biases dominate the nonessential biases that are
quite close to zero. This observation remains valid, even if
ni ’s were chosenmuch smaller than our choice, provided that
ω is relatively large, say ω = π .

As Figs. 3 and 4 show, the normalized essential biases
of R̂1 and θ̂ for each of the Type-A fit and the Taubin fit are
always 2 and 1, respectively. On the other hand, the two other
fits have much more involved situations.

The simple fit has the same essential bias as the Taubin
fit for ω ≥ 4.5 radiant, but its tendency of giving smaller
radii appears for short circular arcs when ω ≤ 3.5 radiant.
The bias in radius estimate becomes the smallest among all
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other methods whenever ω ∈ (3.5, 4.5), but this does not
mean that the simple fit returns the best estimator over this
zone. The reason behind this is that the bias of center esti-
mate becomes very large. One can verify this phenomenon
by plotting the analytic expression of the magnitude of the
normalized bias of the center or by investigating the behav-
ior of the normalized bias of θ̂ as shown in Figs. 3b and
4b. Accordingly, we conclude that the simple fit coincides
with the Taubin fit whenever observations are sampled along
large concentric circular arcs. This resemblance behavior dis-
appears whenever ω becomes smaller and satisfies ω < 4.5.
Meanwhile, the simple fit continues to behave better than the
Type-A direct fit over the zone ω ∈ (3.5, 4.5). As ω reduces,
the simple fit increases the bias considerably and its perfor-
mance becomes the worst.

On the other hand, the Type-B direct fit has three scenarios
depending on the difference n1 − n2.

1. The simplest case appears whenever n1 = n2. In this
case, the two direct fits coincide.

2. The most practical scenario that Fig. 3 shows the case of
n1 � n2. The normalized essential biases of R̂1 and θ̂

obtained by the Type-B direct fit reach their horizontal
asymptotes that equal 2.8 wheneverω ≥ 3, but they blow
out as ω becomes smaller. This makes the Type-B fit the
second worst fit, after the simple fit, for short arc and the
worst fit in case of long circular arcs.

3. Figure 4 demonstrates the third scenario that appears
whenever n1 � n2. In this case, the horizontal asymp-
totes of the normalized essential bias of R̂1 and θ̂ for the
Type-B direct fit equal to 1.8. Moreover, on the zone
ω ∈ (2, 2.6) the normalized bias of R̂1 becomes the
smallest among all other fits but the magnitude of the
normalized bias of the center increases, which makes the
normalized total bias of θ̂ larger as shown in Fig. 4b.
Lastly, for ω ∈ (0, 2), both of the center and the bias
have heavy biases.

5.2 Hyper-Accurate Fit

A pertinent approach to the analysis of Al-Sharadqah and
Chernov, this rigorous analysis allows us to propose a new
algebraic method that its estimator has zero essential bias
and it possesses translation and rotation invariance proper-
ties. Since the essential bias of the Type-A direct fit is two
times the essential bias of the Taubin fit, one can design a
new constraint matrix H such that its noiseless version is
H̃ = 2Ṽ − Ã. That is, if H̃ is substituted in the general for-
mula of the bias in Eq. (55), then the new estimator, say φ̂H
will have zero essential bias. The constraint matrixH can be
defined as

H = 2V − A =
2∑

i=1

ni∑
j=1

⎡
⎢⎢⎢⎢⎣

8zi j 4xi j 4yi j 2δ̂1i 2δ̂2i
4xi j 1 0 0 0
4yi j 0 1 0 0
2δ̂1i 0 0 0 0
2δ̂2i 0 0 0 0

⎤
⎥⎥⎥⎥⎦

.

The generalized eigenvalue problemMφ = λHφ has 5 pairs
of solutions (λ, φ̂) that also give zero essential biases, but
the solution must also minimize the sum of the squares
of the algebraic distances φTMφ, subject to a quadratic
constraint in φ. Since Aφ̃ = Ṽφ̃ − 2 Ã

∑2
i=1
∑ni

j=1 z̃i j ,
then

φ̃
T
Ṽφ̃ = φ̃

T
Ãφ̃ = ζ̃

and φ̃
T
H̃φ̃ = ζ̃ . The quantity ζ̃ = n1ζ̃1 + n2ζ̃2 is positive

because ζ̃i = B̃2 + C̃2 − 4 ÃD̃i > 0 for each i . This means
that the new estimator

φ̂H = argminφ �=0φ
TMφ = argmin‖φ‖=1φ

TMφ (60)

must possess the property φTHφ > 0. Therefore, one can
set the constraint φTHφ = 1.

The constraint matrix H is a symmetric but not a positive
definite. It has one zero eigenvalue, three positive eigenval-
ues, and one negative eigenvalue. Therefore, its solution is
the unit generalized eigenvector of the pencil (M,H) that
associates with the smallest positive eigenvalue λ. However,
the matrixH is singular; thus, it is a numerically stable strat-
egy to alternatively solve the problem by choosing the unit
generalized eigenvector of the pencil (H,M) that associates
with the largest positive eigenvalue.

The solution of this problem can be found by some
built-in functions in many software packages, such as MAT-
LAB. Alternatively one can use the following trick. Since
the matrix of the moments M can be written in terms
of the so-called design matrix Z, i.e., M = ZTZ, then
we can compute the “economic size” SVD of Z by Z =
U0D0VT

0 . Now we define φ′ = VT
0φ and choose the eigen-

vector φ̂
′
of the largest positive eigenvalue η that solves

(D−2
0 VT

0 HV0)φ̂
′
H = ηφ̂

′
H, and finally replicate the solution

back to φ̂H = V0φ̂
′
H.

We note that the new estimator is invariant under trans-
lations and rotations because the constraint matrix H is a
linear combination of two others, V and A, that satisfy
the invariance requirements. Finally, we call this method
hyper-accurate algebraic method (or Hyper method for
short).

Remark 1 In the case that the observation belongs to the
more general Gaussian assumptions, such as cov(ni j ,nkl) =
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Table 2 Normalized bias (NB) of the elements of θ̂ and its normalized
MSE (NMSE), n1 = 50 and n2 = 100 and ω = 240◦

ω = 240◦ S B A Taub MLE Hyp

NB(â) −0.47 0.03 −0.01 −0.01 −0.00 −0.01

NB(b̂) 0.82 −0.04 0.02 −0.02 0.01 0.02

NB(R̂1) 0.64 2.75 1.97 1.01 0.52 0.04

NB(R̂2) 0.12 0.95 0.97 0.50 0.25 0.01

NB(θ̂) 1.15 2.92 2.19 1.12 0.58 0.04

NMSE(θ̂) 0.10 0.14 0.12 0.10 0.08 0.09

Table 3 Normalized bias (NB) of the elements of θ̂ and its normalized
MSE (NMSE), n1 = 50 and n2 = 100 and ω = 120◦

ω = 120◦ S B A Tau MLE Hyp

NB(â) 8.67 −0.73 0.00 −0.02 −0.01 0.00

NB(b̂) 15.01 −1.26 0.01 −0.03 0.09 0.01

NB(R̂1) 12.78 3.94 2.02 1.08 0.65 0.06

NB(R̂2) −13.60 2.15 1.00 0.54 0.36 0.03

NB(θ̂) 25.47 4.72 2.25 1.21 0.75 0.07

NMSE(θ̂) 4.35 1.04 0.94 0.90 0.74 0.88

σ 2δ̂ik δ̂ jlQi j , then the Hyper method still has the constraint
matrix H = 2V − A, where V = ∑2

i=1
∑ni

j=1Vi j and Vi j

in Eq. (13) will be replaced by

Vi j = ∇si j Picov(ni j ,ni j )∇si j Pi .

5.3 Numerical Experiments

Next we turn our attention to run some numerical experi-
ments and validate our second-order biases. We shall adopt
the samemodels discussed in Sect. 5.1, and we shall examine
the performances of each of theMLE and the algebraicmeth-
ods. We examine firstly long concentric arcs with ω = 240◦
whenever n1 = 50 and n2 = 100 (Table 2) and n1 = 100
and n2 = 50 (Table 4). Then, we repeat this process again
for short circular arcs with ω = 120◦ as listed in Tables 3
and 5.

The true points were contaminated by zero-mean white
Gaussian noise with standard deviation σ = .05. A total of
N = 105 ensemble trials were performed. Tables 2, 3 and
5 summarize the normalized values of the biases of each
component of θ̂ = (â, b̂, R̂1, R̂2)

T. It also exhibits the nor-
malized total bias of θ̂ , i.e., NB(θ̂), as well as the normalized
mean squared error (NMSE) of θ̂ , which were estimated
by

Table 4 Normalized bias (NB) of the elements of θ̂ and its normalized
MSE (NMSE), n1 = 100 and n2 = 50 and ω = 240◦

ω = 240◦ S B A Tau MLE Hyp

NB(â) −0.54 −0.07 −0.01 −0.01 0.00 −0.01

NB(b̂) 0.94 0.12 0.03 0.02 −0.01 0.03

NB(R̂1) 0.58 1.72 1.93 0.99 0.52 0.04

NB(R̂2) 0.06 0.91 0.95 0.48 0.26 0.00

NB(θ̂) 1.23 1.95 2.15 1.11 0.58 0.051

NMSE(θ̂) 0.12 0.14 0.15 0.12 0.08 0.11

Table 5 Normalized bias (NB) of the elements of θ̂ and its normalized
MSE (NMSE), n1 = 100 and n2 = 50 and ω = 120◦

ω = 120◦ S B A Tau MLE Hyp

NB(â) 9.80 1.62 0.07 0.04 −0.04 0.07

NB(b̂) 16.99 1.96 0.14 0.09 −0.07 0.14

NB(R̂1) −14.61 −0.20 1.90 1.00 0.62 −0.01

NB(R̂2) −15.36 −0.74 0.88 0.45 0.35 −0.07

NB(θ̂) 28.89 2.66 2.10 1.10 0.72 0.17

NMSE(θ̂) 5.48 1.10 1.06 1.09 0.75 1.08

NMSE(θ̂) =

√√√√√ N∑
k=1

∥∥∥θ̂ (k) − θ̃

∥∥∥
2

Nσ 2

NB(θ̂) =
∥∥∥∥∥

1

σ 2N

N∑
k=1

(
θ̂

(k) − θ̃
)∥∥∥∥∥ , (61)

where θ̂
(k)

is the estimate of θ in the kth trial. The tables
include all of the four algebraic fits and the MLE. Note
that the latter is the only method that its first-order variance
achieves the KCR lower bound.

First, we observe that the normalized bias of radius esti-
mates (R̂1, R̂2) for the MLE is close to the theoretical
normalized essential biases ( 1

2R̃1
, 1
2R̃2

) = (0.5, 0.25) as

listed in Tables 2 and 4. The tables also show that this bias is
half of the bias of the Taubinmethod, which is half of the bias
from the Type-A fit. Since these algebraic methods have the
same first-order covariance matrix, the MSE of the Taubin fit
is smaller than the Type-A method. On the other hand, it is
clear that the Hyper fit has the smallest bias among all exper-
imented fits and its NMSE is smaller than all other algebraic
fits. Note that for short-arc cases these conclusions remain
valid even though their results are slightly different. These
differences comes from the contributions of the nonessential
biases (≈10–15% of the essential biases).

Second, the following observations regarding the simple
fit validate our theoretical analysis. Tables 2 and 4 show how
well behaved the simple fit is for long circular arcs. Its biases
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for R̂1 and R̂2 are the smallest compared with other estima-
tors (MLE, Type-A, Type-B, Taubin). However, its center
estimate in this case is the worst, and as such, this makes the
simple fit have similar performance as the Taubin fit. On the
other hand, if the observations are clustered along short cir-
cular arcs, then the simple method will return a much smaller
concentric circles. This attenuation behavior for the radii is
clearly listed in Tables 3 and 5.

Third, in the regard of the behavior of the normalized bias
ofType-Bfit,Tables 2, 3, 4 and5 showanexcellent agreement
with our conclusions presented in Sect. 5.1. Tables 2 and
4 show that the normalized bias of R̂1 for the Type-B fit
approaches its theoretical limit 2.8 and 1.8 (respectively) ω

becomes large. Whenever n2 = 100 and n1 = 50, Table 4
shows that the total normalized bias of Type-B method is
smaller than the Type-A method, and as such, the NMSE of
θ̂B is smaller than the NMSE of θ̂A. Note that this situation
is reversed whenever n1 = 50 and n2 = 100 as listed in
Table 2. In the latter case, NB(R̂1) for the Type-B method
approaches its theoretical limit 2.8 as ω increases, and its
NB(θ̂B) becomes larger than all other algebraic methods.
Consequently, it becomes the worst in this case (recall that
the simple fit behaves like the Taubin fit for large concentric
circular arcs).

Another excellent agreement between the numerical
experiments and the theoretical results occurs again in our
last observation regarding the behavior of the Type-B fit in
case of short concentric circular arcs (Tables 3 and 5). Here,
the bias of the center estimate is relatively large for the Type-
B if compared with the other methods (excluding the simple
fit) but its radius depends on the difference n1 − n2. For
n1 = 50 and n2 = 100, its NB(R̂i ) is also much larger than
the others, and as a result, its has the highest bias among
other fits (except the simple fit). This demonstrates why it
falls behind the Type-A fit but it is still better than the simple
fit in the MSE sense. Finally, for n1 = 100 and n2 = 50,
NB(R̂i )’s are negative, but with small magnitudes if com-
paredwith the other fits (excluding the simple fit). Thismakes
the Type-B method the second worst method after the simple
method, when data are sampled along short circular arcs with
n1 � n2.

6 Second-Order Analysis of Iterative Methods

In this section, we will evaluate the bias of the GRAF and
the generalized GRAF. We will show why the GRAF has a
smaller bias than the Renormalization method. We first start
with the GRAF. To apply the perturbation analysis to GRAF
φ̂g , we express φ̂g − φ̃ = �1φ̂g + �2φ̂g + OP(σ

3), where

�2φ̂g is a quadratic form of δi j ’s and εi j ’s and all other

higher-order terms are represented by OP (σ 3). Here �1φ̂g

and �2φ̂g can be obtained by applying the Taylor expansion

of γ −1
i j = (φ̂

T
gVi j φ̂g)

−1 around its true value γ̃ −1
i j , where

γ̃i j = φ̃
T
Ṽi j φ̃ can be simplified further—after some straight-

forward algebraic manipulations—to

γ̃i j = 4 Ã
(
Ãz̃i j + B̃ x̃i j + C̃ ỹi j

)
+ B̃2 + C̃2 = ζ̃i , (62)

where ζ̃i is the true value of ζi [cf. Eq. (5)]. Therefore, if

we use the Taylor series expansion of γ −1
i j = (φ̂

T
gVi j φ̂g)

−1

around γ̃ −1
i j , then we obtain

γ −1
i j = ζ̃−1

i

(
1 − ζ̃−1

i (�1γi j + �2γi j ) + ζ̃−2
i (�1γi j )

2
)

+OP (σ 3).

Accordingly,

M = M̃ + �1
1M + �2

1M + �1
2M + �2

2M

+�3
2M + OP(σ

3),

where �
j
1M and �k

2M , for j = 1, 2 and k = 1, 2, 3 denote
the various “parts” of �1M and �2M , respectively. Their
formal definitions are listed below.

�1
1M =

2∑
i=1

ni∑
j=1

1

ζ̃i
�1Mi j ,

�2
1M = −

2∑
i=1

ni∑
j=1

�1γi j

ζ̃ 2
i

M̃i j ,

�1
2M =

2∑
i=1

ni∑
j=1

1

ζ̃i
�2Mi j ,

�2
2M = −

2∑
i=1

ni∑
j=1

�1γi j

ζ̃ 2
i

�1Mi j ,

�3
2M =

n∑
i=1

−�2γi j + ζ̃−1
i (�1γi j )

2

ζ̃ 2
i

M̃i j .

here,�2γi j is irrelevant because�3
2M φ̃ = 0 and its expres-

sion is omitted, while

�1γi j = 2
(
�1φ̂

T
g Ṽi j φ̃

)
+ φ̃

T
�1Vi j φ̃, (63)

where �1Vi j = T̃i jδi j + S̃i jεi j , with
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T̃i j =

⎡
⎢⎢⎢⎢⎣

8x̃i j 2 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

S̃i j =

⎡
⎢⎢⎢⎢⎣

8ỹi j 0 2 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

. (64)

Now, perturbating Eq. (15) leads to

(
M̃ + �1M + · · ·

) (
φ̃ + �1φ̂g + · · ·

)
= · · ·

(
L̃ + �1L + · · ·

) (
φ̃ + �1φ̂g + · · ·

)
. (65)

Since φ̂
T
gMi j φ̂g = (zTi j φ̂g)

2 and z̃Ti j φ̃ = 0, we have

φ̂
T
gMi j φ̂g ∼ OP (σ 2), and hence L̃ = �1L = 0, thus

L = �2L + OP(σ
3), where

�2L =
2∑

i=1

n j∑
j=1

ζ̃−2
i

[(
�1zTi j φ̃

)2 +
(
z̃Ti j�1φ̂g

)2

+ 2
(
z̃Ti j�1φ̂g

) (
�1zTi j φ̃

)]
Ṽi j . (66)

Thus, equating all O(σ )-terms in Eq. (65) yields �1φ̂g =
−M̃−�1

1M φ̃, and further,

�1φ̂g = −M̃−
2∑

i=1

ni∑
i=1

ζ̃−1
i

(
φ̃
T
�1zi j

)
z̃i j . (67)

Note here that ‖φ̂g‖ = ‖φ̃‖ = 1 implies �1φ̂g is orthogonal

to φ̃. Also, it is worth mentioning here that φ̃ is in the null
space of �2

1M .
To find the second-order error bias, we first equating all

O(σ 2)− terms and obtain

M̃�2φ̂g + �1M�1φ̂g + �2M φ̃ = �2L φ̃.

Since �2
1M φ̃ = �3

2M φ̃ = 0, we have

�2φ̂g = M̃− (�2L φ̃ − �1M�1φ̂g − �2M φ̃g

)

= M̃− (�2L − R∗) φ̃, (68)

where we denote for brevity

R∗ = R∗
1 − R∗

2 − R∗
3, (69)

and

R∗
1 = �1

2M + �2
2M , R∗

2 = (�1
1M + �2

1M
)
M̃−�1

1M ,

andR∗
3 = (�1

1M +�2
1M
)
M̃−�2

1M . Note that E(R∗
3)φ̃ =

0, so it be will discarded in our analysis. Accordingly, we
present the following identities and we moved its derivation
to “Appendix”; i.e.,

E(R∗)φ̃ = σ 2(G̃1 + G̃2)φ̃ = σ 2
(
G̃1 + G̃2 + G̃T

2

)
φ̃,

(70)

where

G̃1 =
2∑

i=1

ni∑
j=1

(
1

ζ̃i
− ψ̃i j

ζ̃ 2
i

)
Ṽi j , (71)

and ψ̃i = z̃Ti jM̃
−z̃i j . Also,

G̃2 =
2∑

i=1

ni∑
j=1

[
2

ζ̃i
z̃i je′T

1 − 1

ζ̃ 2
i

M̃i jM̃
−Ṽi j

+ 1

ζ̃ 3
i

M̃i jM̃
−Γ̃ i j − 1

ζ̃ 2
i

Γ̃ i j

]
. (72)

Here we have defined

Γ̃ i j =
(
φ̃
T
T̃i j φ̃
)
z̃i j ãTi j +

(
φ̃
T
S̃i j φ̃
)
z̃i j b̃Ti j , (73)

where ãi j and b̃i j are the first and the second columns of
∇zi j .

Furthermore, the interesting identity Γ̃ i j φ̃ = 4 Ãζ̃i z̃i j sim-
plifies G̃2φ̃; i.e.,

G̃2φ̃ =
2∑

i=1

ni∑
j=1

[
−2 Ã

ζ̃i
z̃i j − 1

ζ̃ 2
i

M̃i jM̃
−Ṽi j φ̃ + 4 Ã

ζ̃ 2
i

M̃i jM̃
−z̃i j

]

=
2∑

i=1

ni∑
j=1

[
2 Ã

ζ̃i

(
−1 + 2ψ̃i j

ζ̃i

)
z̃i j − 1

ζ̃ 2
i

M̃i jM̃
−Ṽi j φ̃

]
.(74)

To find the bias of the GRAF, then we need to compute
E(�2L ), which was already computed by Kanatani [20,
pp. 181–182] and Al-Sharadqah and Chernov[2] for conic
fitting; thus, after simple algebraic manipulations, we obtain

E(�2L )φ̃ = σ 2
2∑

i=1

ni∑
j=1

(
1

ζ̃i
− ψ̃i j

ζ̃ 2
i

)
Ṽi j φ̃ = σ 2G̃1φ̃.
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Hence, E(�2φ̂g) = −σ 2M̃−G̃2φ̃. Thus

E(�2φ̂g) = σ 2M̃−
2∑

i=1

ni∑
j=1

2 Ã

ζ̃i

(
1 − 2ψ̃i j

ζ̃i

)
z̃i j

+ 1

ζ̃ 2
i

M̃i jM̃
−Ṽi j φ̃. (75)

Since
∑ni

j=1 ζ̃−1
i z̃i j is the (3+ i)th column of M̃ for each

i = 1, 2, then the bias of GRAF is reduced to

E(�2φ̂g) = −σ 2 I
φ̃

+ σ 2M̃−
2∑

i=1

ni∑
j=1

−4 Ãψ̃i j

ζ̃ 2
i

z̃i j

+ 1

ζ̃ 2
i

M̃i jM̃
−Ṽi j φ̃. (76)

For large n = n1 + n2, we have M̃ = O(n); hence both
of M̃− and ψ̃i j are of order of magnitude O(1/n). There-
fore, the essential bias of the GRAF is −σ 2 I

φ̃
, which is the

negative of the essential bias of the Taubin fit as revealed by
Table 1.Now, premultiplyingEq. (76) by Ẽ expresses the bias
of the GRAF in terms of its geometric parameters θ . Most
importantly, we notice that the center has only nonessential
bias while its radii have both parts, from which the essential
part is σ 2(−1

R̃1
, −1
R̃1

). This essential bias is the negative of the

essential bias of the Taubin fit. Hence, the GRAF and the
Taubin fit—in absolute value—have essential biases for the
two radii twice as much as theMLE have. In other words, the
GRAF tends to return concentric circles with smaller radii,
while the MLE and the Taubin method have the opposite
tendency.

6.1 Analysis of Generalized GRAF

Here, we analyze the bias of the generalized GRAF that
solves the generalized eigenvalue problem in Eq. (17). This
can be done by applying matrix perturbation to M , N , φ̂,
and λ in Eq. (17) and using the same approach implemented
in the second-order analysis of the algebraic fits. That is,
perturbating

(M̃ + �1M + �2M + · · · )(φ̃ + �1φ̂ + �2φ̂ + · · · )
= (λ̃ + �1λ + �2λ + · · · )( ˜N + �1N + · · · )

(φ̃ + �1φ̂ + · · · ). (77)

Then, one can show that λ̃ = �1λ = 0. Therefore, �1φ̂ is
the same as Eq. (67) and its covariance also equals to σ 2M̃−
[cf. Eq. (29)].

To evaluate the bias, we first equate allOP(σ
2) in Eq. (46)

and obtain

M̃�2φ̂ = −
(
�2M φ̃ + �1M�1φ̂

)
+ �2λ ˜N φ̃. (78)

From Eq. (67), we conclude �2M φ̃ + �1M�1φ̂

=
(
�1

2M + �2
2M
)

φ̃ −
(
�1

1M + �2
1M
)
M̃−�1

1M φ̃

= R∗
1 φ̃ − R∗

2 φ̃ = R∗φ̃.

To find �2λ, we premultiply Eq. (78) with φ̃
T
and obtain

φ̃
T
M̃ = 0T. Hence, �2λ = φ̃

T
R∗φ̃

φ̃
T ˜N φ̃

, and �2φ̂ can be written

as

�2φ̂ = −M̃−R∗φ̃ + M̃− ˜N φ̃ÃT

φ̃
T ˜N Ã

R∗φ̃

= M̃−S ˜N E(R∗)φ̃, (79)

where the symmetrization operator S• is defined in Eq. (51).
Now, premultiplying Eq. (70) by φ̃

T
and recalling that ζ̃i =

φ̃
T
Ṽi j φ̃ yield φ̃

T
E(R∗)φ̃ = σ 2∑2

i
∑ni

j (1− ζ̃−1
i ψ̃i j ). Also,

since kernel(M̃ ) = span(Ã), which is a one-dimensional
subspace of R5, we have the identity

2∑
i=1

ni∑
j=1

ζ̃−1
i ψ̃i j =

2∑
i=1

ni∑
j=1

ζ̃−1
i tr(M̃−M̃i j )

= tr(M̃−M̃ ) = 4.

Thus,

E(�2φ̂) = −σ 2M̃−(G̃1 + G̃2)φ̃ + σ 2M̃− n − 4

φ̃
T ˜N φ̃

˜N φ̃.

The Renormalization scheme [13,14] is a special case of the
generalized GRAF N =∑2

i=1
∑ni

j=1 γ −1
i j Vi j . In this case,

φ̃
T ˜N φ̃ = n, hence

E

(
�2φ̂R

)
= −σ 2M̃− (G̃∗

1 + G̃2

)
φ̃, (80)

where

G̃∗
1 =

2∑
i=1

ni∑
j=1

(
4

nζ̃i
− ψ̃i j

ζ̃ 2
i

)
Ṽi j . (81)

Note here that M̃−G̃∗
1 = O(1/n) and M̃−G̃1 = O(1).

Thus, the Renormalization scheme suppresses G̃1 to amatrix
of a smaller order, while GRAF eliminates it completely.
Finally, combining Eqs. (74) and (76) with (80) and (81)
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Table 6 Normalized bias (NB) of the elements of θ̂ and its normalized
MSE (NMSE), n1 = 50 and n2 = 100 and ω = 180◦

ω = 180◦ θ̂adj θ̂m GRAF RM Taubin

NB(â) −0.001 −0.001 −0.001 −0.001 −0.002

NB(b̂) −0.018 −0.018 −0.052 −0.030 0.007

NB(R̂1) 0.030 0.530 −0.903 −0.918 1.011

NB(R̂2) 0.021 0.278 −0.434 −0.448 0.506

NB(θ̂) 0.041 0.598 1.01 1.022 1.131

NMSE(θ̂) 0.162 0.165 0.168 0.168 0.197

gives the final expression of the second-order bias of the
Renormalization method.

To demonstrate our results on these two iterative meth-
ods and their connection with the MLE and the Taubin
method, we experimented the same settings as before that
θ̃ = (0, 0, 1, 2) with n1 = 50, n2 = 100, and ω = 180◦.
Table 6 shows the NMSE and the normalized bias (NB) of
105 estimates of θ̂ computed based on Eq. (61).

As listed in Table 6, NB(â) and NB(b̂) are negligible.
Also, for each i = 1, 2, we clearly see that NB(R̂i ) is close
to R̃−1

i for the Taubin fit and it is near −R̃−1
i for each of the

GRAF and the Renormalization methods. It is about (2R̃i )
−1

for the MLE. In total, we notice that the normalized biases of
θ̂ for theGRAF, theRenormalization fit, and theTaubin fit are
equal,while the normalizedbias of θ̂m is approximately equal
to 1√

2
of the normalized biased of the GRAF and the others.

Moreover, the adjusted MLE has the smallest normalized
MSE, as being a refinement for theMLE,whose performance
is superior to all other methods.

7 Numerical Experiments

We shall examine our theoretical results through some
numerical experiments using synthetic data and real image
data.

7.1 Experiments on Synthetic Data

In this section, we present results of experiments obtained
from synthetic data. We considered the estimators obtained
from the five algebraic fits: The simple fit (S), Taubin fit (T),
Type-A direct fit (A), Type-B direct fit (B), and Hyper fit
(H). Also, we included the iterative methods: GRAF based
on the FNS scheme (F), the Renormalization (R) method,
the MLE (M), and its refinement (AM), after supplying them
with the solution of the Hyper fit as the initial guess. We
define n1 = 50 and n2 = 100 equidistant points on the
concentric circular arcs with center (0, 0) and radii R̃1=1 and
R̃2 = 2. Both arcs have the same initial angle 0 and terminal

angle ω. Three cases were considered here with ω = 240◦,
ω = 120◦, and ω = 60◦. The true points were contaminated
by zero-mean white Gaussian noise with standard deviation
σ . For each σ , N = 104 ensemble trials were performed
and for each trial the estimates are computed. We plotted (a)
the NMSE of θ̂ and (b) the NB of θ̂ , as the noise level σ

increases from 0. In Figs. 5, 6 and 7a, the horizontal dashed
line represents the normalized KCR, which is computed by
taking the sum of the diagonal elements of R̃ = (W̃TW̃)−1.

Figures 5, 6 and 7 exhibit the NMSE and the normalized
bias NB for each of the fitting methods in the three cases.
As a general observation, whenever σ is approaching 0, the
NMSE of all iterative methods approach the σ−2KCR lower
bound while all non-iterative methods do not. This observa-
tion validates the theoretical results in [3]. Figures 5, 6 and
7 also reveal why the problem of fitting concentric circles
differs from the single circle fitting where algebraic fits and
the MLE are optimal in the sense of reaching the KCR lower
bound. The Hyper method and the Adjusted MLE, followed
by the MLE, have the smallest biases among other method.
This supports, based on theMSE criterion, why theMLE and
the adjustedMLE are the best estimators among all other fits,
and why Hyper fit outperforms all algebraic methods.

The behavior of the simple fit depends heavily on the
length of the circular arcs. Its bias and MSE are close to
the bias and the MSE of the Taubin method in the case of
long circular arcs, but its bias blows out, and as such, its
MSE does whenever the arc lengths reduce. For the ω = 60◦
case, its NB is even close to 500, while the second largest
bias does not exceed 53. Therefore, we omitted its bias curve
from the figure.

The significance of the essential bias can be clearly seen
in the case of long circular arcs, in which the following rela-
tions NB(θ̂A) > NB(θ̂T) > NB(θ̂H) hold, and as such, these
relations also hold for their NMSEs. However, this signifi-
cant difference between the Type-A and the Taubin method
decreases wheneverω is small. In Fig. 7b, the contribution of
the nonessential biases becomes large, by which the Type-A
and Taubin methods have nearly identical performance, but
they still fall behind the Hyper method.

Finally, the numerical experiments show how the Renor-
malization method slightly outperforms the GRAF for long
concentric arcs but it becomes unstable in the case of very
short arcs (see Fig. 7a). In addition, its bias is the largest
among the other fits (A, T, F, M, AM, H).

7.2 Experiments on Real Data

We now turn our attention by corroborating our analyti-
cal studies and findings with a set of practical data points
obtained from an image of a CD/DVD. The image in binary
form is shown in Fig. 1, whereCannys edge detectionmethod
[5] is applied to extract the data points in the inner and outer
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Fig. 5 NMSE(θ̂) in (a) and the NB(θ̂) in (b) of the parameters of
the fitted concentric circles at additive observation noise with standard
deviation σ . The settings are θ̃ = (0, 0, 1, 2)T, n1 = 50, n2 = 100,
ω = 240◦, and N = 104 independent trials. The tested fits are: the
simple fit (S), the Taubin fit (T), the Type-A direct fit (A), the Type-
B direct fit (B), the Hyper fit (H), the GRAF (F), the Renormalization
(R) method, theMLE (M), and the adjustedMLE (AM). The horizontal
dashed line represents the normalized KCR lower bound. aNormalized
NMSE of θ̂ , NMSE(θ̂), in the case ω = 240◦. b Normalized bias of θ̂ ,
NB(θ̂), in the case ω = 240◦

circles.We have a total of n1 = 50 and n2 = 100 points from
them respectively.

In the experiment, we directly apply various algorithms
to the data, where we added uncorrelated Gaussian noise of
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Fig. 6 The NMSE(θ̂) in (a) and the NB(θ̂) in (b) of the parameters of
the fitted concentric circles at additive observation noise with standard
deviation σ . The settings are θ̃ = (0, 0, 1, 2)T, n1 = 50, n2 = 100,
ω = 120◦ and N = 104 independent trials. The testedfits are: the simple
fit (S), the Taubin fit (T), the Type-A direct fit (A), the Type-B direct fit
(B), the Hyper fit (H), the GRAF (F), the Renormalization (R) method,
the MLE (M), and the adjusted MLE (AM). The horizontal dashed line
represents the normalized KCR lower bound. a The normalized NMSE
of θ̂ , NMSE(θ̂), in the case ω = 120◦. b The normalized bias of θ̂ ,
NB(θ̂), in the case ω = 120◦

standard deviation σ = 0.05 to the data points of the inner
and outer circles. Only a segment of the data from 0 to 120
degrees is used, giving n1 = 50 and n2 = 100 points from
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Fig. 7 The NMSE(θ̂) in (a) and the NB(θ̂) in (b) of the parameters of
the fitted concentric circles at additive observation noise with standard
deviation σ . The settings are θ̃ = (0, 0, 1, 2)T, n1 = 50, n2 = 100,
ω = 60◦ and N = 104 independent trials. The tested fits are: the simple
fit (S), the Taubin fit (T), the Type-A direct fit (A), the Type-B direct fit
(B), the Hyper fit (H), the GRAF (F), the Renormalization (R) method,
the MLE (M), and the adjusted MLE (AM). The horizontal dashed line
represents the normalized KCR lower bound. The curves for the simple
fit (S) were removed in this experiment. a The normalized NMSE of θ̂ ,
NMSE(θ̂), in the case ω = 60◦. b The normalized bias of θ̂ , NB(θ̂), in
the case ω = 60◦

the two concentric circles for estimation. We took a total of
100,000 ensemble runs. The averages of the estimation para-
meters are obtained for various fitting methods to examine
the estimation bias, and they are listed in Table 7.

Table 7 The averages of the estimation parameters that are obtained
from various fitting methods

¯̂a ¯̂b ¯̂R1
¯̂R2

S 35.64 −218.33 41.45 121.14

B 326.17 −257.40 74.24 153.74

A 327.24 −252.7 68.65 149.80

T 327.13 −253.16 66.98 149.27

H 327.23 −252.70 64.46 147.95

M 327.21 −252.92 65.70 148.58

AM 327.15 −252.78 64.66 148.05

R 327.48 −251.48 61.38 146.20

F 327.61 −251.26 68.69 150.95

The corresponding fitted circles are shown in Fig. 8, where
we have zoomed in to better observe the fitting performance.
Both the Hyperfit (H) and the Adjusted MLE (AM) yield
the best results as anticipated. Next best result is from the
MLE (M),which tends to overestimate a little the parameters.
The Renormalization method (R) under estimates the radii as
indicated by our theoretical study. Furthermore, the Taubin
(T) and Type-A (A), Type-B (B) fits overestimate the radii
as the analytical investigation tells.

The experimental results from the real data confirm very
well the theoretical studies and the improvements from the
proposed H and AM methods. However, instead of underes-
timating the radii as the analytic results show, the GRAF (F),
overestimates the radii. This problem might be more related
to numerical issues and it requires further investigations.

8 Conclusions

In this paper, we applied the second-order error analysis to
the problem of fitting concentric circles to a number of coor-
dinate points.Wederived the biases of theMLE, the algebraic
fits, the GRAF, and the Renormalizationmethod.We showed
that the bias determines the performance of each method in
its category (non-iterative and iterative). The smaller the bias,
the smaller the MSE, and as such, the better the performance
among each group. The most important part of the bias is the
essential bias, and its order of magnitude σ 4 dominates the
value of the second-order bias as long as the arcs are not too
short, such as ω < 90◦.

Accordingly, we rigorously showed that the essential bias
of the center estimate is zero for each of theMLE, the GRAF,
the Renormalization, the Taubin, and the Type-A direct fit.
However, their essential biases for the radii persist and they,
after normalized by the noise power, depend only on the
values of R̃1 and R̃2. Indeed, we showed that the ratio of the
essential biases of R̂i obtained from the MLE to the Taubin
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Fig. 8 The averages of estimators for N = 105 independent trials that
were generated after adding σ = .05 to the real data. The settings are
n1 = 50 and n2 = 100 around a short concentric arcs with ω ≈ 120◦.
The tested fits are: the simple fit (S), the Taubin fit (T), the Type-A
direct fit (A), the Type-B direct fit (B), the Hyper fit (H), the GRAF (F),
the Renormalization (R) method, the MLE (M), and the adjusted MLE
(AM)

fit and to the Type-A fit is 1:2:4. Also, the essential biases for
the radii from the GRAF and the Renormalization method
are equal, and they are identical to the negatives of those of
the Taubin fit.

We also illustrated why the simple fit works well as the
Taubin method in the case of long circular arcs but this excel-

lent performance diminishes as the length of arcs becomes
smaller. Furthermore, we gained understanding of how the
performance of the two types of direct fits were related to
each other, and how the relationship of their performance
depends on the sign and the magnitude of n1 − n2.

Additionally, our analysis allowed us to develop a new
non-iterative algebraic fit, called the Hyper-accurate method
that has zero essential bias. We addressed its implemen-
tation and demonstrated its superiority over all existing
algebraic fits. TheHyper-accuratemethodwas themost accu-
rate algebraic fit among those we examined, and hence, it is
considered as the best initial guess to feed the LM-based
MLE and the other iterative methods. Finally, we modified
theMLE to reduce its bias. Thismodified version of theMLE,
called the Adjusted MLE, showed significant improvement
over the MLE in our numerical experiments.

We validated our theoretical results with a series of
numerical experiments using synthetic data. The agreement
between them was excellent. We also applied the methods
to a practical data set taken from an image of a CD/DVD.
The results show an excellent match of the analytic results in
practical applications.

The investigation of various methods discussed in this
paper is based on the mean squared error of the geomet-
ric parameters (a, b, R1, R2) and their statistical proper-
ties. Accordingly, the numerical experiments are designed
to maintain the consistency of the study. To have a full
understanding of these methods, further work needs to be
conducted using the geometric error [23–25] and confirm
if the new estimators are indeed as good as they appear to
be. The use of this measure is outside what we would like
to cover in the current investigation. Depending on applica-
tions, the geometric distance measure could provide another
dimension for evaluating algorithms.We plan to examine the
performance of different algorithms in terms of the geometric
distance measure and will report the results elsewhere when
the study is complete.

Acknowledgements The authorswould like to thank the reviewers and
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Appendix

Derivation of Eq. (32) First, we define

αi j = δi j − �1â − �2â, βi j = εi j − �1b̂ − �2b̂,

and

ζi j = 2

R̃i
ũi jαi j + 2

R̃i
ṽi jβi j + α2

i j

R̃2
i

+ β2
i j

R̃2
i

.
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Now, for each i = 1, 2 and j = 1, . . . , ni , expanding the
distance di j to the second-order terms gives

di j = R̃i
√
1 + ζi j − R̃i − �1 R̂i − �2 R̂i .

This expression can be simplified further using the approxi-
mation

√
1 + ζi j ≈ 1 + 1

2
ζi j − 1

8
ζ 2
i j

≈ 1 + 2

2R̃i
ũi jαi j + 2

2R̃i
ṽi jβi j + α2

i j

2R̃2
i

+ β2
i j

2R̃2
i

− 1

8

(
2

R̃i
ũi jαi j + 2

R̃i
ṽi jβi j

)2
.

Keeping all terms of order OP(σ
2) and discarding the less

significant terms in
√
1 + ζi j , the above expression becomes

≈ 1 + 2

2R̃i
ũi jαi j + 2

2R̃i
ṽi jβi j + (δi j − �1â)2

2R̃2
i

+ (εi j − �1b̂)2

2R̃2
i

− 1

2R̃2
i

(
ũi j (δi j − �1â) + ṽi j (εi j − �1b̂)

)2

≈ 1 + 1

R̃i
ũi jαi j + 1

R̃i
ṽi jβi j +

(
1 − ũ2i j

)
(δi j − �1â)2

2R̃2
i

+
(
1 − ṽ2i j

)
(εi j − �1b̂)2

2R̃2
i

− 2

2R̃2
i

ũi j ṽi j (δi j − �1â)(εi j − �1b̂).

Since 1 − ũ2i j = ṽ2i j , we conclude

di j = R̃i
√
1 + ζi j − R̂i

≈ ũi jαi j + ṽi jβi j + ṽ2i j (δi j − �1â)2

2R̃i

+ ũ2i j (εi j − �1b̂)2

2R̃i

− 2

2R̃i
ũi j ṽi j (δi j − �1â)(εi j − �1b̂)

≈ qi j − ũi j�2â − ṽi j�2b̂ − �2 R̂i .

Proof of Lemma 1 The first three assertions will be proven
if we show

E

(
ρ2
i j

)
= σ 2, E

(
τ 2i j

)
= σ 2h̃i j , E(τi jρi j ) = 0.

Firstly, observe that for any j = 1, . . . , ni

E

(
ρ2
i j

)
= t̃Ti jE

(
ňi j ňTi j

)
t̃i j = δ̂i jσ

2 t̃Ti j t̃i j = σ 2,

which comes from the identity ‖t̃i j‖22 = ũ2i j + ṽ2i j = 1. Next,

we compute E(τ 2i j ). Since cov(�1θ̂m) = σ 2R̃, then, for any
j = 1, . . . , ni , one has

E(τ 2i j ) = t̃Ti jE
(
�1θ̂m�1θ̂

T
m

)
t̃i j = σ 2h̃i j .

Finally, we compute E(τi jρi j ). Recall the definition of
�1θ̂m = K̃f1 = R̃W̃Tf1, which can be rewritten as R̃g
with

g =
[

2∑
i=1

ni∑
t=1

ũi t f1i t ,
2∑

i=1

ni∑
t=1

ṽi t f1i t ,
n1∑
n=1

f11t ,
n2∑
t=1

f12t

]T
,

then for each t = 1, . . . , ni , E( f1i tρi j ) = E( f1i t (ňTi j t̃i j )) =
0 for all j = 1, · · · , ni . Thus, E(τi jρi j ) = 0.

Next, we compute the expectations of the outer products
of ai , bi , and ci starting with E(aiaTk ). Since

E(ai j akl) = E(ρ2
i jρ

2
kl) = E

((
t̃Ti j ňi j

)2 (
ňTkl t̃kl

)2)
.

Using the Isserlis’ Theorem [11] gives

E(ai j akl) = E

([
t̃Ti j ňi j

]2)
E

([
ňTkl t̃kl

]2)

+ 2E
((

t̃Ti j ňi j
) (

ňTkl t̃kl
))

.

But it is easy to show that E((t̃Ti j ňi j )
2) = σ 2 and

E

((
t̃Ti j ňi j

) (
ňTkl t̃kl

))
= δ̂ik δ̂ jlσ

2.

Therefore,

E(ai j akl) = σ 4 + 2δ̂ik δ̂ jlσ
4.

Next, we compute E(bi j bkl) = 4E
(
τi jρi jτklρkl

)
. The pair

(τi j , ρkl) are uncorrelated for any choice of i and k. Besides,

E(ρi jρkl) = δ̂ik δ̂ jlσ
2, and E(τi jτkl) = σ 2 t̃Ti j R̃t̃kl = σ 2h̃i jkl .

Therefore,

E(bi j bkl) = 4E
(
τi jτkl

)
E
(
ρi jρkl

) = 4σ 4h̃i jkl δ̂ik δ̂ jl .

Next we evaluate E(ci j ckl) = E(τ 2i jτ
2
kl). If h̃i j i j is expressed

by h̃i j , then using the general formulas of the expected value
of the product of two quadratic forms of random variables
[11], we obtain
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E(ci j ckl) = E

(
τ 2i j

)
E

(
τ 2kl

)
+ 2[E(τi jτkl)]2

= σ 4
(
h̃i j h̃kl + 2h̃i jkl

)
.

In the same analog, we find

E(ai j ckl) = E

(
τ 2i jρ

2
kl

)
= E

(
τ 2i j

)
E

(
ρ2
kl

)
= σ 4h̃i j ,

because τi j and ρkl) are independent random variables.
Finally, following the same reason, we observe that
E(ai j bkl) = −2E(ρ2

i jτklρkl) = 0 and also E(bi j ckl) = 0.
From these results, we find the desired identities. This com-
pletes the proof of the lemma. ��
Derivation of Eqs. (41)–(43) The MSE of �1θ̂m is equal
to σ 2R̃. We shall next evaluate MSE(�2θ̂m). Let us define
ǎ = (ǎT1 , ǎT2 )T and other variables in the samemanner. Then

E(ǎǎT) =
[
E
(
ǎ1ǎT1
)

E
(
ǎ1ǎT2
)

E
(
ǎ2ǎT1
)

E
(
ǎ2ǎT2
)
]

= σ 4

[
1̌n1 1̌

T
n1 1̌n1 1̌

T
n2

1̌n2 1̌
T
n1 1̌n2 1̌

T
n2

]
+ 2σ 4Ǐn,

where

Ǐn =
⎡
⎣

1
4R̃2

1
In1 0n1×n2

0n2×n1
1

4R̃2
2
In2

⎤
⎦ =

[
Ǐn1 0n1×n2

0n2×n1 Ǐn2

]
.

Premultiplying and then postmultiplying E(ǎǎT) by K̃ and
K̃T, respectively, lead to

K̃E

(
ǎǎT
)
K̃T = σ 4b̃1b̃T1 + 2σ 4K̃ǏnK̃T. (82)

Now we compute E
(
ǎčT
)
. It is easy to show that

E

(
ǎčT
)
=
[
E
(
ǎ1čT1
)

E
(
ǎ1čT2
)

E
(
ǎ2čT1
)

E
(
ǎ2čT2
)
]
=σ 4

[ ˇ̃h11̌Tn1 ˇ̃h11̌Tn2ˇ̃h21̌Tn1 ˇ̃h21̌Tn2

]
,

and as such, if it is premultiplied and then postmultiplied by
K̃ and K̃T, respectively, we obtain

2S
[
K̃E

(
ǎčT
)
K̃T
]

= 2S

[
σ 4K̃h̃

(ˇ̂e3 + ˇ̂e4
)T]

= 2σ 4S
[
b̃2b̃T1

]
.

Finally, the less important but the most complicated expres-
sions in the MSE of �2θ̂m come from E(b̌b̌T) and E(ččT).
After lengthy but direct calculations, we have

E

[(
(b̌ + č)(b̌ + č)

)T] = σ 4
( ˇ̃h ˇ̃hT + 2 ˇ̃H + 4 ˇ̃Dh̃1,h̃2

)
,

where

ˇ̃H =
[ ˇ̃H11

ˇ̃H12
ˇ̃H21

ˇ̃H22

]
,

and ˇ̃Dh̃1,h̃2
= diag( ˇ̃h1, ˇ̃h2). Premultiplying and postmulti-

plying this expression by K̃ and K̃T give

K̃E

[(
(b̌ + č)(b̌ + č)

)T]
K̃T

= σ 4b̃2b̃T2 + 2σ 4K̃
( ˇ̃H + 2 ˇ̃Dh̃1,h̃2

)
K̃T.

Finally, combining all expressions together gives us theMSE
of �2θ̂m.

Proof of Eq. (70) Let Λi j = (φ̃
T
Ṽi jM̃−�1

1M φ̃)�1
1M .

Then

E
(
Λi j
) =

2∑
k=1

nk∑
l=1

2

ζ̃ 2
k

E

[(
φ̃
T
Ṽi jM̃

− (�1zTkl φ̃
)
z̃kl
)
S
[
�1zkl z̃Tkl

]]

= 2σ 2
2∑

k=1

nk∑
l=1

1

ζ̃ 2
k

(
φ̃
T
Ṽi jM̃

−z̃kl
)
S
[
Ṽkl φ̃z̃Tkl

]
.

(83)

Here againS (•) = (•+•T)/2 is the symmetrization opera-

tor. Recall that γi j = φ̂
T
Vi j φ̂ and �1γi j is given in Eq. (63).

We shall evaluate Eq. (69) term by term. First, consider

I1 := E

(
�1

1MM̃−�1
1M
)

= 4
2∑

i,k=1

ni∑
j=1

nk∑
l=1

ζ̃−1
i ζ̃−1

k E

(
S
[
z̃i j�1zTi j

])
M̃−

S
[
�1 zkl z̃Tkl ]

)

= 4
2∑

i=1

ni∑
j=1

ζ̃−2
i × E

(
S
[
z̃i j�1zTi j

])
M̃−

(
S
[
z̃i j�1zTi j

])
.

Bydirect inspection,E
(
�1 zTi jM̃

−�1 zi j
) = σ 2tr(M̃−Ṽi j ),

hence if we using the definition of ψ̃i j = z̃Ti jM̃
−z̃i j , then

I1 = σ 2
2∑

i=1

ni∑
j=1

ζ̃−2
i

[
2S
[
Ṽi jM̃

−M̃i j

]

+ tr
(
M̃−Ṽi j

)
M̃i j + ψ̃i j Ṽi j

]
. (84)
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We shall make use of an auxiliary formula below that follows
from Eq. (67):

E

(
�1A�1zTi j

)
= −σ 2ζ̃−1

i M̃−z̃i j φ̃
T
Ṽi j (85)

and hence E(�1zi j�1φ̂
T
) = −σ 2ζ̃−1

i Ṽi j φ̃z̃Ti M̃
−. Next we

compute

I2 : = E

(
�2

1MM̃−�1
1M
)

= −
2∑

i=1

ni∑
j=1

ζ̃−2
i E

(
�1γi jM̃i jM̃

−�1
1M
)

. (86)

Using �1
1M =∑2

i=1
∑ni

j=1 ζ̃−1
i �1Mi j , and then Eqs. (63)

and (85) give

I2 = −
2∑

i=1

ni∑
j=1

ζ̃−2
i E

[(
2
(
�1φ̂

T
Ṽi j φ̃

)

+ φ̃
T
�1Vi j φ̃

)
M̃i jM̃

−�1
1M
]

= −
2∑

i=1

ni∑
j=1

ζ̃−2
i E

(
2
(
�1φ̂

T
Ṽi j φ̃

)
M̃i jM̃

−�1
1M
)

−
2∑

i=1

ni∑
j=1

ζ̃−2
i E

((
φ̃
T
�1Vi j φ̃

)
M̃i jM̃

−�1
1M
)

= −2
2∑

i,k=1

ni∑
j=1

nk∑
l=1

ζ̃−2
i ζ̃−1

k M̃i jM
−
E

(
�1Mkl�1φ̂

T
Ṽi j φ̃

)

−
2∑

i=1

ni∑
j=1

ζ̃−2
i E

((
φ̃
T
�1Vi j φ̃

)
M̃i jM̃

−�1
1M
)

= 4σ 2
2∑

i,k=1

ni∑
j=1

nk∑
l=1

ζ̃−2
i ζ̃−2

k

(
φ̃
T
Ṽi jM̃

−z̃kl
)
M̃i jM̃

−

S
[
Ṽkl φ̃z̃Tkl

]
−

2∑
i=1

ni∑
j=1

ζ̃−3
i M̃i jM̃

−
E

((
φ̃
T
�1Vi j φ̃

)
�1Mi j

)
.

Now recall that Ṽi j = ãi j ãTi j + b̃i j b̃Ti j ; thus, the noisy version

of Ṽi j has the first-order error term expressed as

�1Vi j = 2S
[
ãi j�1aTi j + b̃i j�1bTi j

]
.

Thus, φ̃
T
�1Vi j φ̃ = (φ̃

T
T̃i j φ̃)δi j + (φ̃

T
S̃i j φ̃)εi j . Also

E(δi j�1Mi j ) = 2σ 2S [ãi j z̃Ti j ] and E(εi j�1Mi j ) = 2σ 2

S [b̃i j z̃Ti j ], where ãi j and b̃i j denote the first and second

columns of ∇zi j . Therefore, E[(φ̃T
�1Vi j φ̃)�1Mi j ]

= 2σ 2
(
φ̃
T
T̃i j φ̃
)
S
[
ãi j z̃Ti j

]
+ 2σ 2

(
φ̃
T
S̃i j φ̃
)
S
[
b̃i j z̃Ti j

]

= 2σ 2S [Γ̃ i j ], (87)

where Γ̃ i j is defined in Eq. (73). They imply that

I2 = 4σ 2
2∑

i,k=1

ni∑
j=1

nk∑
l=1

1

ζ̃ 2
i ζ̃ 2

k

(
φ̃
T
Ṽi jM̃

−z̃kl
)
M̃i jM̃

−

S
[
Ṽkl φ̃z̃Tkl

]

−2σ 2
2∑

i=1

ni∑
j=1

1

ζ̃ 3
i

M̃i jM̃
−S [Γ̃ i j ]. (88)

Next, using �2Mi j = 2S [�2zi j z̃Ti j ] + �1zi j�1zTi j and

�2zi j = (δ2i j + ε2i j )e
′
1 give

E(�1
2M ) =

2∑
i=1

ni∑
i=1

ζ̃−1
i E(�2Mi j )

=
2∑

i=1

ni∑
i=1

ζ̃−1
i E

(
�1zi j�1zTi j + 2S

[
z̃i j�2zTi j

])
,

(89)

which simply becomes

E

(
�1

2M
)

= σ 2
2∑

i=1

ni∑
j=1

1

ζ̃i

(
Ṽi j + 4S

[
e′
1z̃

T
i j

])
. (90)

Lastly, we evaluate

E

(
�2

2M
)

= −
2∑

i=1

ni∑
j=1

ζ̃−2
i E(�1γi j�1Mi j )

= −
2∑

i=1

ni∑
j=1

1

ζ̃ 2
i

E

((
2
(
φ̃
T
Ṽi j�1φ̂

)

+ φ̃
T
�1Vi j φ̃

)
�1Mi j

)
.

The first term comes from Eq. (85), and the second comes
from Eq. (87). Thus,

E

(
�2

2M
)

= 2σ 2
2∑

i=1

ni∑
j=1

(
2

ζ̃ 3
i

(
φ̃
T
Ṽi jM̃

−z̃i j
)

S
[
Ṽi j φ̃z̃Ti j

]
− 1

ζ̃ 2
i

S [Γ̃ i j ]
)

(91)

This completes the integration of Eq. (69).
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To prove Eq. (70), we multiply the identities in Eqs. (84),
(88), (90), and (91) by φ̃. First,

I1φ̃ = σ 2
2∑

i=1

ni∑
j=1

ζ̃−2
i

(
M̃i jM̃

− + ψ̃i j I5
)
Ṽi j φ̃. (92)

Using the following useful identities

2S
[
Ṽi j φ̃z̃Ti j

]
φ̃ = z̃i j

(
φ̃
T
Ṽi j φ̃

)
= ζi z̃i j , and Γ̃

T
i φ̃ = 0.

We have I2φ̃

I2φ̃ =2σ 2
2∑

i,k=1

ni∑
j=1

nk∑
l=1

ζ̃−2
i ζ̃−1

k

(
φ̃
T
Ṽi jM̃

−z̃kl
)
M̃i jM̃

−z̃kl

− σ 2
2∑

i=1

ni∑
j=1

ζ̃−3
i M̃i jM̃

−Γ̃ i j φ̃,

and further,

I2φ̃ =2σ 2
2∑

i=1

ni∑
j=1

ζ̃−2
i M̃i jM̃

−
[

2∑
k=1

nk∑
l=1

ζ̃−1
k M̃kl

]
M̃−Ṽi j φ̃

− σ 2
2∑

i=1

ni∑
j=1

ζ̃−3
i M̃i jM̃

−Γ̃ i j φ̃.

Applying the definition ofM̃ and the identityM̃−M̃M̃− =
M̃− yields

I2φ̃ = 2σ 2
2∑

i=1

ni∑
j=1

ζ̃−2
i M̃i jM̃

−Ṽi j φ̃

−σ 2
2∑

i=1

ni∑
j=1

ζ̃−3
i M̃i jM̃

−Γ̃ i j φ̃. (93)

Next

E

(
�1

2M
)

φ̃ = σ 2
2∑

i=1

ni∑
j=1

ζ̃−1
i

(
Ṽi j + 2z̃i je′

1
T
)

φ̃. (94)

Lastly, we apply the above identities again to evaluate

E

(
�2

2M
)

φ̃ = σ 2
2∑

i=1

ni∑
j=1(

2ζ̃−2
i M̃i jM̃

−Ṽi j φ̃ − ζ̃−2
i Γ̃ i j Ã

)
. (95)

Now, observing that G̃T
2 φ̃ = 0 and combiningEqs. (92), (93),

and (94), (95) complete the derivation of Eq. (70). Note that
some terms in Eq. (93) and Eq. (95) cancel each other. ��
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