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Abstract We consider the problem of scale detection in
images where a region of interest is present together with a
measurement tool (e.g. aruler). For the segmentation part, we
focus on the graph-based method presented in Bertozzi and
Flenner (Multiscale Model Simul 10(3):1090-1118, 2012)
which reinterprets classical continuous Ginzburg—Landau
minimisation models in a totally discrete framework. To over-
come the numerical difficulties due to the large size of the
images considered, we use matrix completion and splitting
techniques. The scale on the measurement tool is detected
via a Hough transform-based algorithm. The method is then
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applied to some measurement tasks arising in real-world
applications such as zoology, medicine and archaeology.
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1 Introduction

Image segmentation denotes the task of partitioning an image
in its constituent parts. Feature-based segmentation looks
at distinctive characteristics (features) in the image, group-
ing similar pixels into clusters which are meaningful for the
application at hand. Typical examples of features are based
on greyscale/RGB intensity and texture. Mathematical meth-
ods for image segmentation are mainly formalised in terms
of variational problems in which the segmented image is
a minimiser of an energy. The most common image fea-
ture encoded in such energies is the magnitude of the image
gradient, detecting regions (or contours) where sharp vari-
ations of the intensity values occur. Examples include the
Mumford—Shah segmentation approach [51], the snakes and
geodesic active contour models [16,38]. Moreover, in [18],
Chan and Vese proposed an instance of the Mumford—Shah
model for piecewise constant images whose energy is based
on the mean greyvalues of the image inside and outside of the
segmented region rather than the image gradient and hence
does not require strong edges for segmentation. The Chan—
Vese model has been extended for vector-valued images such
as RGB images in [19]. Other image segmentation methods
have been considered in [26,39]. They rely on the use of the
total variation (TV) semi-norm [5], which is commonly used
for image processing tasks due to its properties of simulta-
neous edge preservation and smoothing (see [55]).
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The non-smoothness of most of the segmentation energies
renders their numerical minimisation usually difficult. In the
case of the Mumford—Shah segmentation model, the numeri-
cal realisation is additionally complicated by its dependency
on the image function as well as the object contour. To over-
come this, several regularisation methods and approxima-
tions have been proposed in the literature, e.g. [4,10,11,66]
for Mumford—Shah segmentation. In the context of TV-based
segmentation models, the Ginzburg—Landau functional has
an important role. Originally considered for the modelling
of physical phenomena such as phase transition and phase
separation (cf. [12] for a survey on the topics), it is used in
imaging for approximating the TV energy. Some examples of
the use of this functional in the context of image processing
are [24-26], which relate to previous works by Ambrosio and
Tortorelli [4,5] on diffuse interface approximation models.

Such variational methods for image segmentation have
been extensively studied from an analytical point of view, and
the segmentation is usually robust and computationally effi-
cient. However, variational image segmentation as described
above still faces many problems in the presence of low con-
trast and the absence of clear boundaries separating regions.
Their main drawback is that they are limited to image features
which can be mathematically formalised (e.g. in terms of an
image gradient) and encoded within a segmentation energy.
In recent years, dictionary-based methods have become more
and more popular in the image processing community, com-
plementing more classical variational segmentation methods.
By learning the distinctive features of the region to be seg-
mented from examples provided by the user, these methods
are able to segment the desired regions in the image correctly.

In this work, we consider the method proposed in
[9,28,42,43] for image segmentation and labelling. This
approach goes beyond the standard variational approach in
two respects. Firstly, the model is set up in the purely discrete
framework of graphs. This is rather unusual for variational
models where one normally considers functionals and func-
tion spaces defined on subdomains of R? in order to exploit
properties and tools from convex and functional analysis
and calculus of variations. Secondly, the new framework
allows for more flexibility in terms of the features consid-
ered. Additional features such as texture, light intensity can
be considered as well without encoding them in the function
space or the regularity of the functions. Due to the possi-
bly very large size of the image (nowadays of the order of
megapixel for professional cameras) and the large number
of features considered, the construction of the problem may
be computationally expensive and often requires reduction
techniques [27,52,53]. In several papers (see, for exam-
ple, [33,59,61]), the segmentation problem was rephrased
in the graph framework by means of the graph cut objec-
tive function. Follow-up works on the use of graph-based
approaches are, for instance, [44,45] where an iterative appli-

@ Springer

cation of heat diffusion and thresholding, also known as the
Merriman—Bence—Osher (MBO) method [46], is discussed
for binary image labelling, and [36] where the Mumford—
Shah model is reinterpreted in a graph setting.

In this paper, we also address the problem of detection of
objects with geometrical properties that are a priori known.
Anexample is the detection of lines and circles. These objects
can be identified by mapping them onto an auxiliary space
where relevant geometrical properties (such as linear align-
ment and roundness) are represented as peaks of specific
auxiliary functions. In this work, we use the Hough transform
[35] to detect measurement tools (rulers, concentric circles
of fixed radii) with the intent of providing quantitative, scale-
independent measurements of the region segmented by one
of the techniques described above. In this way, an absolute
measurement of the region of interest in the image is possible,
independent of the scale of the image, which could depend,
for instance, on the distance of the objective to the camera.

We demonstrate the use of our method in the context of
real-world applications in which segmentation and subse-
quent object measurement are crucial. Our main application
is the measurement of the white forehead patch (blaze) of
male pied flycatchers, which has been studied with regard
to sexual selection in [58], see Fig. 1. The forehead patch is
known to vary between individuals [40] and can be subject
to both intra- [37] and intersexual [54] selection with pied
flycatchers from Spain preferring males with large patches.
Forehead patch size has been shown to signal male pheno-
typic quality through plasma oxidative stress and antioxidant
capacity [50]. However, in all studies to date the mea-
surements of patches have been inconsistent and generally
inaccurate. For example, some studies have simply measured
patch height [22], whereas Potti and Montalvo [54] assumed
the shape to be a trapezium with areaequal to 0.5(B+b)H, B
being the white patch width, b the bill width and H the height

Fig. 1 Blaze segmentation and measurement problem: pictures are
taken at different distances, thus requiring a measurement tool



J Math Imaging Vis (2017) 57:269-291

b

Fig. 2 Flycatcher blaze segmentation of Fig. 1b, ¢ obtained either
by using the ‘magic-wand’ tool of the ImagelJ software, similarly as
described by Moreno [50], or by trapezium fitting as suggested by Potti
and Montalvo [54]. In the first case, the result is strongly user depen-
dent; in the second one, the blaze area is overestimated. a Magic wand.
b Trapezium fitting

of the white patch. Morales et al. [49] measured the length
and breadth of the forehead patch with callipers to the near-
est 0.01 mm, and its size (mm?) was calculated as the area of
a rectangle. Other studies have measured the patches from
photographs, e.g. Jarvisto et al. [37] Ruuskanen et al. [57]
and Sirkid et al. [60] who photographed the forehead with a
scale bar included in each picture, and measured the patch as
the white area in mm? using ImageJ software [2]. But none of
these three papers provide methods of how the measurement
was actually achieved, e.g. whether patches were delineated
or roughly estimated with a simple shape. Most recently,
Moreno et al. [50] analysed digital photographs of forehead
patches with Adobe PhotoShop CS version 11.0. relating the
distance of 1 mm on the ruler to number of pixels and used
this to estimate length. Zooming to 400 % and using the paint-
brush tool with 100 % hardness and 25 % spacing, the authors
delineate the patch and measure the area of the white areas on
forehead. While this is the best measurement method to date,
it still is subject to human measurement error and subjective
assessment of patch boundaries. We report some segmenta-
tion results obtained by manual selection and polygon fitting
in Fig. 2. In this manuscript, we use a mathematically robust
approach to segment the blaze independently to provide an
accurate measurement of forehead patch area.

A similar challenge can be encountered in medical appli-
cations monitoring and quantifying the evolution of skin
moles for early diagnosis of melanoma (skin cancer). A nor-
mally user-dependent measurement of the mole is performed
using a ruler located next to it. A picture is then taken and
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Fig. 3 The monitoring and measuring of moles is essential for the early
diagnosis of melanoma. Normally, due to their small size, they can be
measured by juxtaposing a small ruler with them

used for future comparisons and follow-up; see Fig. 3 and
compare [1,17] for previous attempts of automatic detection
of melanomas. For such an application, a systematic quanti-
tative analysis is also required.'

In several other applications, the task of measuring objects
directly from the image is encountered. These include zoo-
logical and behavioural studies arising in the animal world
where detecting size, shape and possible symmetries of spe-
cific distinctive animal features can be useful, as well as, for
instance, in archaeological digs where the measurement of
finds is important for comparisons and classification [34].

Outline of the method We consider the image as a graph
whose vertices are the image pixels. Similarity between pix-
els in terms of colour or texture features is modelled by a
weight function defined on the set of vertices. Our method
runs as follows. Firstly, using examples provided by the user
(dictionaries) as well as matrix completion and operator split-
ting techniques, the segmentation of the region of interest is
performed. In the graph framework, this corresponds to clus-
tering together pixels having similar features. This is obtained
by minimising on the graph the Ginzburg—Landau functional
typically used in the continuum setting to describe diffuse
interface problems. In order to provide quantitative measure-
ments of the segmented region, a second detection step is then
performed. The detection here aims to identify the distinctive
geometrical features of the measurement tool (such as line

! Mole images from http://www.medicalprotection.org/uk/practice-
matters-issue-3/skin-lesion-photography, (©Chassenet/Science Photo
Library, http://en.wikipedia.org/wiki/Melanoma (public domain),
http://www.diomedia.com/stock-photo-close-up-of-a-papillomatous-
dermal-nevus-mole-a-raised-pigmented-skin-lesion-that-results-from-
a-proliferation-of-benign-melanocytes-c-cid-image14515019.html,
(©Phototake RM/ ISM.
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alignment for rulers or circularity for circles) to get the scale
on the measurement tool considered. The segmented region
of interest can now be measured by simple comparisons, and
quantitative measurements such as perimeter and area can be
provided.

Contribution 'We propose a self-contained programme com-
bining automated detection and subsequent size measure-
ment of objects in images where a measurement tool is
present. Our approach is based on two powerful image
analysis techniques in the literature: a graph segmentation
approach which uses a discretised Ginzburg—Landau energy
[9] for the detection of the object of interest and the Hough
transform [35] for detecting the scale of the measurement
tool. While these methods are state of the art, their com-
bination for measuring object size in images proposed in
this paper is new. Moreover, to our knowledge there is only
little contribution in the literature that broach the issue of
how the graph segmentation approach and the Hough trans-
form are applied to specific problems [28,32,43]. Indeed,
here we present these methodologies in detail, especially dis-
cussing important aspects in their practical implementation,
and demonstrate the robust applicability of our programme
for measuring the size of objects, showcasing its perfor-
mance on several examples arising in zoology, medicine and
archaeology. Namely, we first apply our combined model for
the measurement of the blaze on the forehead of male pied
flycatchers, for which we run a statistical analysis on the
accuracy and predicted error in the measurement on a data-
base of thirty images. State-of-the-art methods for such a task
typically require the user to fit polygons inside or outside the
blaze [54] or to segment the blaze by hand [50]. Similarly,
the scale on the measurement tool is typically read from the
image by manually measuring it on the ruler. With respect
to medical applications, we apply our combined method for
the segmentation and measurement of melanomas. Although
efficient segmentation methods for automatised melanoma
detection already exist in the literature (see, for example,
[1,17]), to the knowledge of the authors, no previous meth-
ods providing their measurement by detecting the scale on
the ruler placed next to them (see Fig. 3) exist. Conversely, in
the case of archaeological applications, some models for the
automatic detection of the measurement tool in the image
exist [34], but no automatic methods are proposed for the
segmentation of the region of interests. A free release of
the MATLAB code used to compute the results will be made
available after the zoological analysis of the pied flycatcher’s
data based on our segmentation, and measurement has been
completed [14].

Organisation of the paper In Sect. 2, we present the mathe-

matical ingredients used for the design of the graph-based
segmentation technique used in [9,28,42,43]. They come
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from two different worlds: the framework of diffusion PDEs
used for modelling phase transition/separation problems (see
Sect. 2.1) and graph theory and clustering, see Sect. 2.2. In
view of a detailed numerical explanation, we also recall a
splitting technique and a popular matrix completion tech-
nique used in our problem to overcome the computational
costs. In Sect. 3, we explain how the geometrical Hough
transform is used to detect the scale in an image. Finally,
Sect. 4 contains the numerical results obtained with our
combined method applied to the problems described above.
For completeness, we give some details on the Nystrom
matrix completion technique in ‘Appendix 1’ and a review
of the Hough transform for line and circle detection in
‘Appendix 1°.

2 Image Segmentation as Graph Clustering

We present in this section the mathematical background for
the design of the Ginzburg—Landau (GL) graph segmentation
algorithm introduced in [9]. There, the image segmentation
problem is rephrased as a minimisation problem on a graph
defined by features computed from the image. Compared to
the methods above, the graph framework allows for more
freedom in terms of the possible features used to describe
the image, such as texture.

2.1 The Ginzburg-Landau Functional as
Approximation of TV

In the following, we recall the main properties of the orig-
inal continuum version of the GL functional explaining its
importance in the context of image segmentation problems
as well as the main concepts of graph theory which will be
used for the segmentation modelling.

Several physical problems modelling phase transition and
phase separation phenomena are built around the well-known
GL functional:

GL(u) :=§/Q|W(x)|2 dx+é/9 Wux)de. (2.1)

The functional above is defined in the continuous setting.
Here, 2 represents a open subset of R, d = 2,3, u : 2 —
R is the density of a two-phase material, and W(u) is a
double-well potential, e.g. W(u) = ‘]—‘(u2 — 1)2. The two
wells £1 of W correspond to the two phases of the mate-
rial. The parameter ¢ > 0 is the spatial scale. Variational
models built around this functional are also referred to as
diffuse interface models because of the interface appearing
between the two regions containing the phases (i.e. the two
wells of W) due to the competition between the two terms of
the functional (2.1). Nonetheless, some smoothness prevent-
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ing u from having jumps between the two regions is ensured
by the first regularisation term.

The use of the GL functional has become very pop-
ular in image processing due to its connections with the
total variation (TV) semi-norm. In [47,48], for instance, I"-
convergence properties of (2.1) to the TV functional are
shown. Thus, the GL functional is very often used as a
quadratic approximation of total variation. Fast numerical
schemes relying on these connections have been designed for
many imaging problems, thus overcoming the issues related
tonon-smooth TV minimisation [5, 18,26]. Inimage process-
ing, the functional considered often is of the form
E(u) := GL(u) 4+ X ¢ (u, uo), (2.2)
where ¢ (u, ug) is a fidelity term measuring the distance of the
reconstructed image u to the given image ug. Depending on
the application, different data fidelities are employed. Typi-
cally, they are related to statistical and physical assumptions
of the model considered. Standard examples of fidelity terms
are ¢ (u, ug) = |lu — uoll‘zd(m , d = 1,2. The parameter
A > 0 determines the influence of the data fit compared to
the regularisation. Taking the L? gradient descent of (2.2),
we get the following evolutionary PDE, known in the lit-
erature as the Allen—Cahn equation [3] with an additional
forcing term due to the fidelity ¢:

S§GL 8¢ 1, 3¢
Uy =————-A—=¢eAu—-W'u) —r—.
Su Su £ Su

(2.3)
Steady states of Eq. (2.3) are the stationary points of the
energy E in (2.2). Note that E is not convex so uniqueness
is not guaranteed and, consequently, the long time behaviour
for solutions of (2.3) will depend on the initial condition.
The linear diffusion term weighted by ¢ appearing in (2.3)
allows for fast solvers using, for instance, the fast Fourier
transform (FFT) which translates the Laplace operator into
a multiplication operator on the Fourier modes.

2.2 Towards the Modelling: The Graph Framework

In the following, we rely on the method presented in [9,42]
for high-dimensional data classification on graphs, which has
been applied to several imaging problems [28,43], showing
good performance and robustness. We consider the problem
of binary image segmentation where we want to partition a
given image into two components where each component is
a set of pixels (also called a cluster, or a class) and represents
a certain object or group of objects. Typically, some a pri-
ori information describing the object(s) we want to extract is
given and serves as initial input for the segmentation algo-
rithm. For image labelling, in [9] two images are taken as
input: the first one has been manually segmented in two

classes and the objective is to automatically segment the
second image using the information provided by the seg-
mentation of the first one.

We revise in the following the main ingredients of the
model considered and start from a quick review of concepts
in graph theory. We represent a rectangular image with S :=
N x M pixelsby theset I := {x = (x1,x2) € 7%:0< x; <
N —1and0 < x; < M — 1}. For each x € I, we define the
image neighbourhood of x as the set

N@):={yel:|lxi—yl<tand|x, — y| <1},

with T € N fixed, i.e. N(x) contains the pixels in a
2t + 1) x (2t 4+ 1) sized square centred at x. For some
appropriate K € N, we associate with every pixel x € [
a vector z € RX encoding selected characteristics of the
neighbourhood N (x). These characteristics are related to
the grey or RGB (red, green, blue) intensity values as well
as the texture features of the neighbourhood. In Sect. 2.5,
we will explain in more detail our feature vector construc-
tion. The map ¢ : I — RX, x > zis called the feature
function. For constructing the feature vectors in Sect. 2.5, it
will be useful to associate a neighbourhood vector v(x) :=
(X)) jeN () € 1@TTD*CTHD with each neighbourhood, such
that the ordering of the x; in v(x) is consistent between pix-
els x, e.g. order the pixels from each square A/ (x) from left
to right and top to bottom. The specific choice of ordering
is not important, as long as it is consistent for each pixel
neighbourhood.

Next we construct a simple weighted undirected graph
G = (V, E, w) whose vertices correspond to the pixels in /
and with edges whose weights depend on the feature function
Y. Let V be a vertex set of cardinality S. To emphasise that
each vertex in V corresponds to exactly one pixel in /, we
will label the vertex corresponding to x € / by x as well. Let
w :V x V — R be a symmetric and non-negative function,
ie. foreachx;,x; € V
w(xi, Xj) = w(xj, x;), w(x;, xj) > 0. 2.4
We define the edge set E as the collection of all undirected
edges connecting nodes x; and x; for which w(x;, w;) > 0
[20]. The function w restricted to E C V x V is then a
positive edge weight function.

In our applications, we define w as

w(x;, xj) = W (x), ¥(x;) = Wz, z;),

where w : RE x R — R is a given function and 1 is the
feature function.

In operator form, the weight matrix W € RS*S is the
non-negative symmetric matrix whose elements are w; ; =
w(x;, x;). In the following, we will not distinguish between
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the two functions w and w and, with a little abuse of notation,
we will write w(z;, z;) for w(z;, z;).

Remark 1 Weight functions express the similarities between
vertices and will be used in the following to partition V
into clusters such that the sum of the edge weights between
the clusters is small. There are many different mathematical
approaches to attempt this partitioning. When formulated as
a balanced cut minimisation, the problem is NP-complete
[67], which inspired relaxations which are more amenable to
computational approaches, many of which are closely related
to spectral graph theory [59]. We refer the reader to [20] for a
monograph on the topic. The method we use in this paper can
be understood (at least in spirit, if not technically, [63,64])
as a nonlinear extension of the linear relaxed problems.

To solve the segmentation problem, we minimise a dis-
crete GL functional (which is formulated in the graph setting,
instead of the continuum setting), via a gradient descent
method similar to the one described in Sect. 2.1. In particu-
lar, in this setting the Laplacian in (2.3) will be a (negative)
normalised graph Laplacian. We will use the spectral decom-
position of u with respect to the eigenfunctions of this
Laplacian. In Sect. 2.4, we discuss the Nystréom method,
which allows us to quickly compute this decomposition, but
first we introduce the graph Laplacian and graph GL func-
tional.

The discrete operators We start from the definition of the
differential operators in the graph framework.
For each vertex x € V, we define the degree of x,

d:V >R, dx):= > wy).
yeV

In operator form, the diagonal degree matrix D € RS> is
defined to have diagonal elements d; ; = d(x;).

A subset A of the vertex set V is connected if any two
vertices in A can be connected by a path (i.e. a sequence of
vertices such that subsequent vertices are connected by an
edge in E) such that all the vertices of the path are in A. A
finite family of sets Ay, ..., A; is called a partition of the
graphif A; N A; =@ fori # jand |J; A; = V.

We now have all the ingredients to define the graph Lapla-
cian. Denoting by V the space of all the functions V — R,
the graph Laplacian is the operator L : V — V such that:

Lu(x) = > w(x, y)x) —u(y), xeV.

yev

(2.5)

We are considering a finite graph of size S, so real-valued
functions can be identified as vectors in RS. We can then
write the graph Laplacian in matrix formas L = D — W or
elementwise as:
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d(x),
_w(x’ y)’

if x =y,

L = .
*x, ) otherwise.

(2.6)

It is worth mentioning (see Remark 2 below) that this graph
Laplacian is a positive semi-definite operator. Note that by
convention the sign of the discrete Laplacian is opposite to
that of the (negative semi-definite) continuum Laplacian. The
associated quadratic form of L is

1
Q. Lu) := 5 37 wlx, y) (w(x) —u()*.

x,yeV

2.7)

The quadratic form Q can be interpreted as the energy whose
optimality condition corresponds to the vanishing of the
graph Laplacian in (2.6).

Remark 2 The operator L has S non-negative real-valued
eigenvalues {Ai}iszl which satisfy: 0 = A1 < Ay < -+ <
As. The eigenvector corresponding to Aj is the constant S-
dimensional vector 1g, see [67].

The operator in (2.5)—(2.6) is not the only graph Laplacian
appearing in the literature. To set it apart from others, itis also
referred to as the unnormalised or combinatorial graph Lapla-
cian. Such operator can be related to the standard continuous
differential one through non-local calculus [30]. More pre-
cisely, the eigenvectors of L converge to the eigenvectors of
the standard Laplacian, but in the large sample size limit, a
proper scaling of L is needed in order to guarantee stability
of convergence to the continuum operator [9,43]. Hence, we
consider in the following the normalisation of L given by the
symmetric graph Laplacian
Ly:=D 2D V> =1 - D 12wp~ 12, (2.8)
Clearly, the matrix L is symmetric. Other normalisations of
L are possible, such as the random walk graph Laplacian (see
[20,64,67]).

In [59, Section 5], a quick review on the connections
between the use of the symmetric graph Laplacian (2.8) and
spectral graph theory is given. Computing the eigenvalues
of the normalised symmetric Laplacian corresponds to the
computation of the generalised eigenvalues used to com-
pute normalised graph cuts in a way that the standard graph
Laplacian may fail to do, compare [20]. Typically, spectral
clustering algorithms for binary segmentation base the parti-
tion of a connected graph on the eigenvector corresponding
to the second eigenvalue of the normalised Laplacian, using,
for example, k-means. For further details and a comparison
with other methods, we refer the reader to [59] and to [9,
Section 2.3] where a detailed explanation on the importance
of the normalisation of the Laplacian is given.
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The discrete GL functional Recalling (2.1)—(2.2) and (2.7),
we define the discrete GL functional? as

1
GLa(w) : = 5 Q. Lyw) + = > W)

xeV

+3 2 ww) — wol?

xeV

2.9)

Here u( represents the known training data provided by the
user. As before, W (u(x)) = %(uz(x) —1)2 is the double-well
potential. The function y : V — {0, 1} is the characteristic
function of the subset of labelled vertices Vi, C V, ie.
x = 1lon Vg and x = 0 on Vyuap := V. Hence, the
corresponding fidelity term enforces the fitting between u
and ug in correspondence to the known labels on the set
Viab, while the labelling for the pixels in V,,;;4p is driven by
the first two regularising terms in (2.9).
The corresponding £ gradient flow for (2.9) reads

U =—¢ Lyu — é Z‘:/(MS()C) —u(x))

= > X)) — uo(x)).

xeV

The idea is to design a semi-supervised learning (SSL)
approach where a priori information for the set Vi, (i.e.
cluster labels) is used to label the points in the set V4.
The comparison uses the weight function defined in (2.4)
to build the graph by comparing the feature vectors at each
point.

Remark 3 (The weight function) As pointed out in [9, Sec-
tion 2.5], the main criteria driving the choice of the weight
function are the desired outcome and the computational
efforts required to diagonalise the corresponding matrix W.
A common weight function is the Gaussian function, which,
for x, y € V, reads

w(x,y) =exp(— ¥ (x) —yMI*/c?), o>0. (2.10)

Note that this function is symmetric: w(x, y) = w(y, x).

Several approaches to SSL using graph theory have been
considered in the literature, compare [21,30]. The approach
presented here adapts fast algorithms available for the effi-
cient minimisation of the continuous GL functional to the
minimisation of the discrete one in (2.9). In particular, to
overcome the high computational costs, we present in the
following an operator splitting scheme and a matrix comple-
tion technique applied to our problem.

2 ‘Discrete GL functional with a data fidelity term’ would be a more
accurate name, but we opt for brevity here.

2.3 Convex Splitting

Splitting methods are used in the study of PDEs. Here, we
focus on convex splitting, which is used to numerically solve
problems with a general gradient flow structure. Decompos-
ing GL; as

GL; =GL; 4 —GLy 4

where both GL; 4 and GL; 4 are convex and denoting by
U, the spatial discretisation of u(-, nAt), At > 0,n > 0, a
semi-implicit discretisation for the steepest descent of GLy
reads

Ups1 — Uy = —At(VyGLy, 1 (Ung1) — Vv GLy 2(Uy)),
2.11)

where Vy indicates formally the Fréchet derivative with
respect to the metric in a Banach space V. The advantage
of the convex splitting consists in treating the convex part
implicitly in time and the concave part explicitly. Typically,
nonlinearities are considered in the explicit part of the split-
ting and their instability is balanced by the effect of the
implicit terms.

The terms GL4, 1 and GL4 2 in (2.11) read in our case (cf.
[9, Section 3.1])

GLui@) = 5 0, L + 5 3 (0, (2.120)
xeV
1 C
GLy (1) := T Z(uz(x) — 1%+ 3 Z u*(x)
€ xeV xeV
-2 X(zx)(um — (), (2.12b)

xeV

where the constant C > 0 has to be chosen large enough such
that GL4 > is convex for u around the wells of W. The dif-
ferential operator contained in the implicit component of the
splitting, GL, 1, is the symmetric graph Laplacian, which can
be diagonalised quickly and inverted using Fourier transform
methods. In [9, Section 3.1], more details of the splitting are
presented. Writing out in detail the time-discretised scheme
(2.11), we get, forevery n > 1

Un+1(x) —U,(x) = —At (¢ Ls(Un-H(x)) + CUp41(x))
— A (—1 (U,f(x) - Un(x)) +CU,x)
&
— x(x) (Uy(x) — Up)),

xeV. (2.13)

Here, Uy denotes the training data, i.e. the known labels —1
and 1 assigned by the user to nodes in the subset Vj,, C V.In
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our numerical experiments, we initialised the time-stepping
(2.13) by taking

Uo(x),

. c
0, ifx eV,.

lf-x € ‘/lllbs

Uy(x) = [ (2.14)

Towards the numerical realisation The numerical strategy
we intend to use is based on the following steps (see Sect.
2.5 for more details):

— Ateach time step nAt, n > 1, consider at every point the
spectral decomposition of U,, with respect to the eigen-
vectors vy of the operator Ly as

Uy(x) = Za,’i(x)vk(x), xevV (2.15)
k

with coefficients «,. Similarly, use spectral decomposi-
tion in the {vg} basis for the other nonlinear quantities
appearing in (2.13).

— Having fixed the basis of eigenfunctions, the numerical
approximation in the next time step U, 41 is computed by
determining the new coefficients aﬁ 41 in(2.15) for every
k through convex splitting (2.13).

The only possible bottleneck of this strategy is the com-
putation of the eigenvectors vy of the operator Lg, which, in
practice, can be computationally costly for large and non-
sparse matrices W. To mitigate this potential problem, we
use the Nystrom extension (Sect. 2.4).

2.4 Matrix Completion via Nystrom Extension

Following the detailed discussion in [9, Section 3.2], we
present here the Nystrom technique for matrix completion
[53] used in previous works by the graph theory commu-
nity [7,27] and applied later to several imaging problems
[44,45,52]. In our problem, the Nystrom extension is used
to find an approximation of the eigenvectors vy of the oper-
ator L;. We will freely switch between the representation of
eigenvectors (or eigenfunctions) as a real-valued functions
on the vertex set V and as a vectors in RS,

Consider a fully connected graph with vertices V and the
set of corresponding feature vectors ¥ (V) = {z,-}l.szl. A
vector v is an eigenvector of the operator L; in (2.8) with
eigenvalue A if and only if v is an eigenvector of the operator
D~ 2w D=1/ with eigenvalue 1 — A, since

Liv=v— D '"2WD 12y = v
D™'2wD12y = (1 — .

—
(2.16)

Thus, finding the spectral decomposition of L boils down to
diagonalising the operator D~'/2W D~1/2_ This is not obvi-
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ously easier, as the matrix W, despite being non-negative and
symmetric, may be large and non-sparse, so the computation
of its spectrum may be computationally hard. Here, how-
ever, we take advantage of the Nystrom extension. Given the
eigenvalue problem

findf e Randv:V - R,v#0 s.t
D wix,y) v(x) = 6v(y),

xeV

(2.17)

for every point y € V, we approximate the sum on the
left-hand side using a standard quadrature rule where the
interpolation points are chosen by randomly selecting a
subset of L points from the set V and the interpolation
weights are chosen correspondingly. The Nystrom extension
for (2.17) then approximates (2.17) by

L
D wly, xv) & D w(y, v(x) = 6u(y),

i=1 xeV

(2.18)

where X = {x,‘}l-L:1 C V is a set of randomly chosen
vertices. The set X defines a partition of V into X and
Y := X°. In (2.18), we approximate the value v(y), for an
eigenvector v of W and y € Y, only knowing the values
v(x;), i =1,..., L, by solving the linear problem

L
D w(y ) = 0v().

i=1

(2.19)

With this method, we can approximate the values of an eigen-
vector v of W, corresponding to the eigenvalue 6, in the whole
set of points V using its values in the subset X and solv-
ing the interpolated eigenvalue equation above. Generally,
this is not as immediate as it sounds since the eigenvec-
tors of W are not known in advance; however, by choosing
y=xj,j=1,...,L,in(2.19), we find an eigenvalue prob-
lem for the known matrix with entries w(x;, x;), which is a
much smaller matrix than the full matrix W:

L
> wixj, x)v(x) = 0v(x)). (2.20)

i=1

If L is small enough such that this eigenvalue problem can
be solved, then 6 and v(x;),i = 1,..., L, can be com-
puted, which in turn can be substituted back into (2.19) to
find an approximation to v(y), for any y € V. In short, we
approximate the eigenvectors in (2.17) by extensions of the
eigenvectors in (2.20), using the extension equation (2.19),
and we approximate the eigenvalues in (2.17) by the eigenval-
ues from (2.20). The main Nystrom assumption is that these
approximated eigenvectors and eigenvalues approximately
diagonalise W. For further details on the Nystrom method,
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we refer the reader to ‘Appendix 1’ where a description of
the method is given in matrix notation.

2.5 Pseudocode

We present here the pseudocode combining all the different
steps described above for the realisation of the GL minimi-
sation. We recall that ¢ is the scale parameter of the GL
functional (2.9), o is the variance used in the Gaussian sim-
ilarity function (2.10), C is the convex splitting parameter
in (2.12a)—(2.12b), and L is the number of sample points in
(2.18).

Algorithm 1 GL-minimisation with Nystrom extension for
image segmentation

I: PARAMETERS: L K S,0,¢,C.

2: select L random points and build the set X C V

3: getapartition V=XUY, YV := X

4: determine features and edge weights of X and Y using (2.10) and
build WXX and WXY

5: Nystrom extension to compute normalised matrix of eigenvectors
of W and get eigenvalues-eigenvectors of W (i, vi)

6: output < eigenvalues-eigenvectors (1 — )A\,-, v;) of Ly used as GL
minimisation input

7: convex splitting for GL minimisation through Fourier transform
methods, as described in Sect. 2.3

8: output < the binary segmentation.

We will now give further details. First, we randomly select
L pixels from 1. As described in Sect. 2.2, we now create a
vertex set V = [, which we partition into a set X, consist-
ing of the vertices corresponding to the L randomly chosen
pixels, and a set Y := V\X. We now compute the feature
vectors of each vertex in V. If I is a greyscale image, we
can represent features by an intensity map f : V — R.
If I is an RGB colour image instead, we use a vector-
valued (red, green, and blue) intensity map f : V — R3
of the form f(x) = (fr(x), fo(x), fp(x)). We mirror
the boundary to define neighbourhoods also on the image
edges. The feature function ¥ : V — RX concatenates
the intensity values in the neighbourhood v(x) of a pixel
into a vector: ¥ (x) := (f(v1(x)),..., f(wz(x))T, where
v(x) = (1 (x), ..., v:(x)) € R is the neighbourhood vec-
tor of x € V defined in Sect. 2.2 and 7 = (2t + 1)2, the
size of the neighbourhood of x. Note that K = 7 if I isa
greyscale image and K = 37 if / is an RGB colour image.

Additional features can be considered, such as texture,
for instance. For instance, we consider the eight MR8
filter responses [65] as texture features on a greyscale
image and choose the function ¢ : V — RS as t(x) =
(MR8 (x), ..., MR8g(x)). Hence, the feature function v is
now defined as ¥ (x) = (t(vi(x)), ..., 1(v;(x)))T, where
v(x) and 7T are defined as above. Here, K = 87. Of
course, a combination of colour and texture features can be

considered as well by considering ¥ defined as ¥ (x) :=
(f 1), t(1(x)), ..., f(vz(x)), 1(vz(x))) for every x in
V. In this case, when dealing with RGB colour images, the
dimension of the feature vector is therefore K = 117.

Using (2.10), the Nystrém extension can be performed
for approximating the eigenvectors and eigenvalues of W as
described in Sect. 2.4 and in ‘Appendix 1°, which are then
used to compute the eigenvectors {vg} of Ly and correspond-
ing eigenvalues {A}, compare (2.16). Recalling (2.15), those
eigenvectors are used as basis functions for U,,, the numerical
approximation of u in the nth iteration of the GL minimisa-
tion. Considering (2.13) and writing the nonlinear quantities
appearing in terms of {v} similarly as in (2.15), we have for
xeV

U (0))* =D Br(x)
k

(), X0 (U"@) —uo@) = Dy @) ve@).
k

The computation of U in the next iteration reduces to finding

the coefficients ozfl 1 in the expression

Unp1(x) = D ap  ()ue(x), x €V,
k

in terms of ¥, y* and the other parameters involved, that is

the scale parameter ¢ in (2.9), the parameter C > 0 appearing
in the splitting (2.12) and the time step A¢. Using (2.13), we
compute aﬁ 41 simply as

_ At At
ok =D ((1 +7+Cm)a’,§—?ﬁ’;—m y,f),

where Dy is defined as Dy := 1 + At(ery + C).

3 Hough Transform for Scale Detection

In order to detect objects in an image with specific, a priori
specified shapes, in the following we will make use of the
Hough transform. For our purposes, we will focus in particu-
lar on straight lines detection (for which the Hough transform
was originally introduced and considered [35]) and circles
[23]. Other applications of this transformation for more gen-
eral curves exist as well. In [8,41], the Hough transform
is used in the context of astronomical and medical images
for a specific class of curves (Lamet and Watt curves). In
[32], applications to cellular mitosis are presented. There, the
Hough transform recognises the cells (as circular/elliptical
objects) and tracks them in the process of cellular division.
For more details on the use of the Hough transform for line
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and circle detection, we refer the interested reader to ‘Appen-
dix 3°.

Numerical strategy Hough transform methods for edge
detection are usually applied to binary images. Therefore, we
start by using the classical Canny method for edge detection
[15] in which we replace the original preliminary Gaussian
filtering by an edge-preserving total variation smoothing [55]
which has the advantage of removing noise while preserv-
ing edges. This step will result in a binary image for the
most prominent edges in the image. Having decided which
geometrical shape we are interested in (and, as such, its gen-
eral parametric representation), the corresponding parameter
space is subdivided into accumulator arrays (cells) whose
dimension depends on the dimension of the parameter space
itself (2D in the case of straight lines, 3D in the case of cir-
cles). Each accumulator array groups a range of parameter
values. The accumulator array is initialised to 0 and incre-
mented every time an object in the parameter space passes
through the cell. In this way, one looks for the peaks over
the set of accumulator arrays as they indicate a high value of
intersecting objects for a specific cell. In other words, they
are indicators of potential objects having the specific geo-
metrical shape we are interested in.

3.1 Pseudocode

Numerically, dealing with the Hough transform consists of
looking for peaks of the accumulator arrays in the para-
meter space onto which the original image is mapped.
We use the MATLAB routines hough, houghpeaks
and houghlines for straight lines detection and
imfindcircles for circle detection. The accuracy and
the number of detections for such routines can be tuned by
some parameters, such as, for instance, the maximum num-
ber of peaks one wants to consider, 0bjyqyx, Or the array
peak threshold, thresh, i.e. the minimum number of ele-
ments for an accumulator array to be considered a peak.
The user also has to specify an initial range of pixel values
[Smin> Smax] as a very rough approximation of the mea-
surement scale. Namely, in the case of line detection this
determines a minimum/maximum spacing between lines,
whereas for circle detection this serves as a rough approx-
imation of the range of values for the circles’ radii. This
rough approximation may be given, for example, from aver-
age data which the user knows a priori. We explain this
with some examples in Sect. 4. Accuracy of the detection
algorithm is tuned by a parameter acc. In case of linear
objects, this corresponds to choosing the maximum num-
ber of pixels between two line segments to consider them
as one single line, whereas for circle detection this corre-
sponds to the circularity of an object to be considered a
circle.
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Algorithm 2 Hough transform for lines and circles detection

1: PARAMETERS: [Siins Smax]> 0bjmax, acc, thresh

2: preprocessing: TV-Canny edge detection

3: compute the Hough transform of the edge image

4: set up detection accuracy, depending on acc, and use [Spin, Smax]
as rough initial guess

5: determine at most 0bj,4, peaks in the parameter space, thresholding
using thresh

6: output < peaks in the parameter space, corresponding to objects
of interest in the original image

4 Method, Numerical Results and Applications

We report in this section the numerical results obtained by
the combination of the methods presented for the detection
and quantitative measurement of objects in an image.

To avoid confusion, we will distinguish in the follow-
ing between two different meanings of scale. Namely, by
image scale we denote the proportion between the real
dimensions (length, width) of objects in the image and their
corresponding dimensions quantified in pixel count. Dealing
with measurement tools, we talk about measurement scale to
intend the ratio between a fixed unit of measure (mm or cm)
marked the measurement tool considered and the correspon-
dent number of pixels on the image.

4.1 Male Pied Flycatcher’S Blaze Segmentation

Here we present the numerical results obtained by apply-
ing Algorithms 1 and 2 to the male pied flycatcher blaze
segmentation and measurement problem described in the
introduction. Our image database consists of 32 images
of individuals from a particular population of flycatchers.
Images are 3648 x 2736 pixels and have been taken by a
Canon 350D camera with Canon zoom lens EFD 18-55 mm,
see Fig. 1. In each image, one of two types of measurement
tool is present: a standard ruler or a surface on which two
concentric circles of fixed diameter (1 cm the inner one, 3cm
the outer one) are drawn. In the following, we will refer to
these tools as linear and circular ruler, respectively. Here,
the measurement scale corresponds to the distance between
ruler marks for linear rulers and to the radius of the inner
circles for circular rulers.

Figure 1 shows clearly that the scale of the images in
the database may vary significantly because of the differ-
ent positioning of the camera in front of the flycatcher. In
order to study possible correlations between the dimensions
(i.e. perimeter, area) of the blaze and significant behavioural
factors, the task then is to segment the blaze and detect
automatically the scale of the image considered to provide
scale-independent measurements.
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Parameter choice for Algorithm 1 The GL segmentation
method exploits similarities and differences between pix-
els in terms of RGB intensities and texture within their
neighbourhood. In our image database, these similarities and
differences are very distinctive and will guide the segmenta-
tion step. Recalling Sect. 2.5, we note that some parameters
need to be tuned for the graph GL minimisation. Those are
the number L of Nystrom points, the variance o of the sim-
ilarity function (2.8), the GL parameter ¢ and the parameter
C for the convex splitting (2.12). However, in our numeri-
cal experiments we had to tune these parameters only once.
Namely, regarding the choice of L for both the head and
blaze segmentation, we used values not bigger than 5 % of
the total size of the image considered. The variance appear-
ing in the similarity function (2.10) was set to o> = 20, and
the weighting parameter ¢ was chosen as ¢ = 0.01 (a smaller
choice would create numerical instabilities), and we set the
convexity parameter C = 25 or larger in order to guarantee
the convexity of the functional appearing in (2.12b).

Parameter choice for Algorithm 2 We briefly comment also
on the choice of the parameters for the Hough transform,
that is Algorithm 2. Depending on the type of measurement
tool considered (linear or circular ruler), different parameter
selection methods are considered. In the case of linear rulers:
for the longest line detection (i.e. ruler edge identification) the
parameters obj, . and thresh were setto 1 and to 85 % of the
maximum value of the Hough transform matrix, respectively;
for the detection of the ruler notches, the same parameters
were chosen as 0bj,q = 500 and thresh = 20 % of the
maximum value of the Hough transform matrix were used.
As discussed in 3.1, the range [s,in, Smax] Was chosen based
on previously collected average data on the head diameter. In
particular, after the head detection step, the number of pixels
corresponding to the diameter of the head was automatically
computed by means of the option EquivDiam of the MAT-
LAB routine regionprops and compared with the average
measurement of 1.51 cm provided by available databases on
pied flycatcher. In this way, an initial, rough estimate of the
ruler scale is found and used to determine a spacing para-
meter s and the interval [$,in, Smax] by setting s,,i, = s/2
and s,4y = 2s. This range serves as a suppression neigh-
bourhood: once a peak in the Hough transform matrix (i.e. a
line or a circle) is identified, starting from it the successive
peaks found outside this range are set to 0 (i.e. possible lines
or circles within this interval are discarded), while only the
ones inside the range (typically, the following line/circle we
want to detect) are kept. For our problem, this corresponds
to identifying as candidates for ruler notches only the lines
away from each other at least s,,;, and at most s,,,, from
the peak which has been previously identified. Analogously,
the same can be done with circular rulers, where we recall
the inner/outer radii are 1 and 3 cm, respectively. In this case,

Fig. 4 Blaze segmentation results computed by using Chan—Vese
model [18] and GL minimisation (Algorithm 1). The dependence of
the Chan—Vese model on the initial condition and its sensitivity to the
model parameters may result in inaccurate detections, while the GL
approach provides more reliable segmentation results. a Chan—Vese
segmentation. b GL segmentation

0bjmax = 2 since the circular ruler is made of only two
concentric circles.

Comparison with Chan—Vese model Due to the very irregu-
lar contours and the fine texture on the flycatcher’s forehead,
standard variational segmentation methods such as Canny
edge detection or Mumford—Shah models [4,10,11,51] are
not suitable for our task, as preliminary tests showed. Chan—
Vese [18] is not suitable either, mainly because of the small
scale detection limits, the dependence on the initial con-
dition and the parameter sensitivity which may prevent us
from an automatic and accurate segmentation of the tiny,
yet characteristic feathers composing the blaze. In particular,
the optimal parameters p and v appearing in the Chan—Vese
functional and a sufficiently accurate initial condition need
to be chosen typically by trial and error for every image at
hand.

For comparison, we report in Fig. 4 the blaze segmentation
results obtained by using Chan—Vese model (see [18, 19]) and
our graph-based method which will be described in more
detail in the following.

4.1.1 Detailed Description of the Method

We divide our task into different steps:

1. For a given unsegmented image, we detect the head of
the pied flycatcher through a comparison with a user-
prepared dictionary (see Fig. 6) using GL segmentation
Algorithm 1. Further computations are restricted to the
head only.

2. Starting from the reduced image, a second step similar
to Step 1 is now performed for the segmentation of the
blaze, using again Algorithm 1. A dictionary of blazes is
used an extended set of features is considered.

3. A refinement step is now performed in order to reduce
the outliers detected in the process of segmentation.
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Fig. 5 The diagram describes
the different steps of the
segmentation/measurement
procedure. Boxes requiring the
user input are coloured orange,
while the ones where the
automatic
segmentation/measurement
steps are performed are coloured
blue. The final objective is
coloured green (Color figure
online)

Photographs of birds
with rulers

Manually labeled

dictionary of bird

Graph-based
segmentation of bird
heads with manually

labeled dictionary

Photographs of
segmented bird
heads

4. We use the Hough transform-based Algorithm 2 to detect
in the image objects with a priori known geometrical
shape (lines for linear rulers, circles for circular rulers)
for the computation of the measurement scale.

5. The final step is the measurement of the values we are
interested in (i.e. the perimeter of the blaze, its area and
the width and height of the different blaze components).
In the case of linear rulers, our results are given up to
some error (due to the uncertainty in the detection of the
measurement scale computed as average between ruler
marks distances).

Figure 5 shows a diagram which outlines the workflow of
our method. In order to establish relations with behavioural
and biological data confirming or contradicting the initial
assumption of correlation between blaze size and higher
attractiveness presented in the introduction [54], we have
implemented a user ready programme for the quantitative
analysis and measurements of the size of the bird blazes
which is currently used by the Department of Zoology of
the University of Cambridge. The results of this study will
be the topic of a forthcoming paper [14].

In the following, we give more details about each step.

Step 1: Head detection We consider unlabelled images in
the database and compare each of them with a dictionary of
previously labelled images, see Fig. 6. The training regions
(i.e. the heads) are labelled with a value 1, the background
with value —1. Unlabelled regions are initialised with value
0.

The main computational difficulties in this step are due
to size of the images considered. This may affect the perfor-
mance of the algorithm as in order to apply the Nystrom
completion technique described in Sect. 2.4 one has to
choose an adequate number of points whose features will

@ Springer

Hough transf. for
detecting
orientation of the
ruler

Scale detection with
Hough transf.
perpendicular to

Measurement of
bird blazes

Manually labeled
dictionary of bird
blazes

Nr of pixels

Graph-based
segmentation of bird
blazes with manually

labeled dictionary

Photographs of
segmented bird
blazes

Refinement step
Possible user input

Fig. 6 Training dictionary for head detection: the heads are manually
selected by the user and separated from the background. Then, the cor-
responding regions are labelled with 1, while the background is labelled
by —1

approximate well the whole matrix. The larger and the more
heterogeneous the image is, the larger will be the number
of points needed to produce a sensible approximation. We
circumvent this issue noticing that at this stage of the algo-
rithm, we only need a rough detection of the head which
will be used in the following for the accurate segmentation
step. Thus, downscaling the image to a lower resolution (in
our practice, reducing the resolution by ten times the origi-
nal one) allows us to use a small number of Nystrom sample
points (typically 150-200) to produce an accurate result.

For this first step, we use as features simply the RGB
intensities and proceed as described in Sect. 2.5. Once the
head is detected, the resulting image is upscaled again to its
original resolution. The solutions computed for the images
in Fig. 1 are presented in Fig. 7.

Step 2: Blaze segmentation We consider now the reduced
image from which we want to extract the flycatcher’s blaze.
Again, a dictionary of different blazes is manually created by
the user (see Fig. 8). Again, training regions (the blazes) are
labelled with value 1 and the black feathers in the background
with value —1. As before, unlabelled regions are initialised
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Fig. 8 Training dictionary for blaze segmentation. As in Fig. 7, blazes
are manually selected by the user and labelled with 1, while black feath-
ers on the background are labelled with —1

Fig. 9 Blaze segmentation

with value 0. At this stage, RGB intensities alone are not
enough to differentiate the blazes from the background con-
sistently in a large number of bird images, due to the colour
difference between different blazes. For this step, an addi-
tional feature to be considered is the fexture of the blaze. For
this purpose, we use the MR8 texture features presented in
[65] and proceed as detailed in Sect. 2.5. For 3 x 3 neighbour-
hoods, the feature vector for each pixel will be an element
in R, see Sect. 2.5. The Ginzburg-Landau minimisation
provides the segmentation results shown in Fig. 9.

Step 3: Segmentation refinement This step uses very simple
morphological operations in order to remove false detections
obtained after Step 2. These can occur due to the choice of
colour—texture-based features used to compute the feature
vectors in Step 2. For instance, when looking at Fig. 9 (right)
we observe that some bits on the left pied flycatcher’s cheek
have been detected as they exhibit similar texture properties
as the ones on the blaze. In order to prevent this, our software
asks the user to confirm whether the segmentation result pro-
vided is the expected one or if there are additional unwanted

Fig. 10 Example of segmentation refinement. a Before refinement. b
After refinement

regions detected. If that is the case, using the MATLAB rou-
tine bwconncomp we label all the connected components
segmented in the previous step, discarding among them all
the ones whose area is smaller than a fixed percentage (we
use 10 %) of the largest detected component (presumably, the
blaze). This works well in practice, see Fig. 10. If the user is
not satisfied, he or she can remove manually the unwanted
regions. Figure 11 shows some blaze segmentation results
after the refinement step.

Remark 4 (Robustness to noise) In order to reproduce the
more realistic situation of images suffering from noise, we
artificially added Gaussian noise with zero mean and dif-
ferent variances to some of the images in our database and
performed the three analysis steps of our method. We report
in Fig. 12, the results corresponding to two noise variances
(012 = 0.02, 022 = 0.05). The presence of noise influ-
ences both the head and blaze segmentation only slightly;
the combination of RGB and texture features extracted in the
neighbourhood of each point combined with the comparison
to the dictionary makes the algorithm robust to noise and
allows for an accurate blaze segmentation even in the noisy
case.

Remark 5 (Comparison with MBO segmentation) We com-
pare the blaze segmentation results obtained by minimising
the discrete GL functional with the ones obtained using the
segmentation algorithm considered in [44] as a variant of
the classical Merriman—Bence—Osher (MBO) scheme [46].
More details on the connections between this approach and
the GL minimisation as well as some insights into its numeri-
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Fig. 11 Segmentation results after refinement step

Fig. 12 Robustness to noise oscillations of GL minimisation for binary
segmentation. Images have been artificially corrupted with Gaussian
noise with zero mean and different variances. a 012 =0.02.b 012 =0.05

cal realisation are given in ‘Appendix 2’. Following faithfully
what is described in Sects. 2.2 and 2.4 for the graph and the
operator construction step, respectively, we implemented the
MBO segmentation algorithm following [44, Section 2]. We
remark that the MBO method has the advantage of elimi-
nating the dependence on the interface parameter ¢ of the
GL functional by means of a combination of heat diffusion
and a thresholding step. Instead of ¢, the heat diffusion time
T needs to be chosen. In our numerical implementation, we
used T = 0.005. Since no convex splitting strategies are
required in this case, due to the absence of the non-convex
double-well term, standard Fourier transform methods are
used to solve the resulting time-stepping scheme. In Fig. 13,
we report the blaze segmentation results obtained after apply-
ing a refinement step similar to the one described above:
we note that a segmentation result comparable to the ones
shown in Fig. 11 is obtained. Moreover, robustness to noise
is observed also in this case. In terms of computational times,
we observed that the replacement of the GL minimisation

@ Springer

Fig. 13 Blaze segmentation results obtained by the MBO segmenta-
tion algorithm described in [44], after refinement step. Robustness to
noise is observed in this case as well. In both numerical tests, the dif-
fusion time is chosen as 7 = 0.005. a MBO result. b MBO result,
02 =0.05

step with the MBO one did not affect significantly the speed
of the segmentation algorithm.

Step 4: Measurement scale detection The images in our
database are divided into two groups: the first is charac-
terised by the presence of linear rulers, whereas the second
contains circular rulers (Fig. 1). We thus need to use the
Hough transform-based Algorithm 2 to detect lines or circles,
respectively. The user is then required to tell the software
which objects he or she wants to detect. In both cases, in
order to avoid false detections (such as ‘aligned’ objects
erroneously detected as lines, or circle-like objects wrongly
considered as circles, see Fig. 14), a good candidate for a
rough, sensible approximation of the measurement scale is
needed as described in Sect. 3.1. In order to get this, we
proceed as follows: after detecting the head as in Step 1,
we use the option EquivDiam of the MATLAB routine
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Fig. 14 Shadows, blur, noise or other objects in the image may disturb
the detection

Fig. 15 Hough transform used for detecting geometrical objects.
Left lines detection using MATLAB routines houghlines,
houghpeaks. Right circle detection using MATLAB routine
imfindcircles

regionprops to detect the diameter of the head region
(in pixels). We then compare such measurement with pre-
collected average measurements of head diameters of male
pied flycatchers of a similar population (in c¢m), thus obtain-
ing an initial approximation of the measurement scale. In
the case of images containing linear rulers, this will serve
as a spacing parameter s for the algorithm. In other words,
only lines distant at least s pixels from each other will be
considered. In the case of circular rulers, the same rough
approximation will serve similarly as an indication of the
range of values in which the Hough transform-based MAT-
LAB function imfindcircles willlook for circles’ radii.
For linear ruler images, the algorithm will look only for par-
allel lines aligned with a prescribed direction. We set this
direction as the one perpendicular to the longest line in the
image (since the expectation is that this longest line is the
edge of the ruler). Results of this step are shown in Fig. 15.

Outliers removal for linear rulers The scale detection step
described above may miss some lines on the ruler. This can
be due to an oversmoothing in the denoising step, to high
threshold values for edge detection or also to the choice of a
large spacing parameter. Furthermore, as we can see from
Figs. 1 and 15, we can reasonably assume that the ruler
lies on a plane, but its bending can distort some distances
between lines. Moreover, few other false line detections can
occur (like the number 11 marked on the ruler main body in
Fig. 15). To exclude these cases, we compute the distance
(in pixels) between all the consecutive lines detected and
eliminate possible outliers using the standard interquartile
range (IQR) formula [62] for outliers’ removal. Indicating

by Q1 and Q3 the lower quartile and the third quartile,
an outlier is every element not contained in the interval
[Q1 — 1.5%(Q3 — Q1), @3+ 1.5% (@3 — Q1)]. Finally,
we compute the empirical mean, variance and standard devi-
ation (SD) of the values within this range, thus getting a final
indication of the scale of the ruler together with an indicator
of the precision of the method.

Step 5: Measurement Once the measurement scale has been
detected, it is easy to get all the required measurements. We
are interested in the perimeter, the area of the blaze and also
the height and width of the whole blaze component. For linear
rulers, due to the error committed in the scale detection step,
these values present some uncertainty and variability (see
above). In Table 1, we show the results of numerical tests on
a sample of 30 images with linear rulers. For every image
in the sample, we compute the standard deviation (SD) error
and report in the table the minimum, maximum and average
SD error over the single ones compute, together with the
relative standard deviation (RSD) which gives a percentage
indication of the error committed.

RSD := < . 100,
X

where o is the sample SD and X is the sample mean of mea-
surements. We observe a minimum and maximum SD of 4.00
and 10.67 pixels, respectively, which compared to the dimen-
sion of the original image (3648 x 2736 pixels) suggests a
reasonable precision. This is confirmed by the average SD
value over the sample which is found to be 6.81 pixels. In
percentage, the average error over the sample is 11.99 %.
For circular rulers, we observed in all our experiments that
an initial approximation of the range of values for the circle
radius (see Step 4 above) results in a robust and typically
outlier-free detection of the circular ruler and consequently
in an accurate measurement of its radius; the only possible
cause of variability and error is its bending.

Uncertainty in the measurements of lengths and areas is
calculated with standard formulas in propagation of errors.

Despite these variabilities, our method is a flexible and
semi-supervised approach for this type of problem. Further
tests on the whole set of images and improvements on its
accuracy are a matter of future research. The analysis of the
resulting data measurements for the particular problem of
flycatchers’ blaze segmentation will be the topic of the forth-
coming paper [14].

We compare in Table 2 the use of our combined approach
and the use of the manual line tool of the ImagelJ software for
the measurement of the blaze area. Namely, we measured in
Fig. 1b and in Fig. lc the ruler scale by means of the ImageJ
line tool by considering, for each image, two different 3-cm
sections of the ruler; we then measured manually the number
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Table 1 Precision of the

. SD min
measurement scale detection for

SD max

Mean SD RSD min RSD max Mean RSD

linear rulers on a sample of 30

. 4.01 pixels
images

10.67 pixels

6.81 pixels 6.59 % 17.36 % 11.99 %

The minimum, maximum and average standard deviation (SD) error together with the corresponding
relative standard deviation (RSD) errors are reported

Table 2 Comparison between ruler scale detection by using manual
IMAGE] line tool and our Hough Transform (HT) method with corre-
sponding measurements of the segmented blaze area obtained by using

ImageJ ‘magic-wand” (MW) tool [50], trapezium fitting (Trap.) [54]
(see also Fig. 2) and the graph Ginzburg—Landau (GL) minimisation

Scale (#pixels = 1 mm)

Blaze area (pixel count)

Blaze area (mmz)

Manual HT (Ours) MW Trap. GL (Ours) MW Trap. GL (Ours)
Fig. 1b 70.2504 72.551 85,026 117,415 84,831 17.2288 23.7917 16.1164
Fig. 1c 71.863 71.8367 101,730 146,751 121,360 19.6980 28.4165 23.517

i'ii'lmnmmnuun||n
()

Fig. 16 Moles’ detection using GL Algorithm 1 (a), the Chan—Vese model [18] (b, ¢), and measurement scale detection by Hough transform

(Algorithm 2)

of pixels contained in each, divided each measurement by 30
and averaged the two results to obtain an estimate of the ruler
scale (i.e. the number of pixels crossed by a 1-mm horizon-
tal or vertical line segment). We then measured the area of
the blaze after segmenting it by means of the ‘magic-wand’
[50] Image] tool and trapezium fitting [54] (see Fig. 2). The
results are reported in Table 2 both as number of image pix-
els inside the blaze and in mm?, where this second value
has been calculated using the measurement scale detected
as described above. We then repeated such measurements
using our fully automated Hough transform method for ruler
scale detection, reporting as above the measurements of the
blaze area computed both as number of image pixels and in
mm?. We observe a good level of accuracy of our combined
method (see also Table 1) with respect to the ‘magic-wand’
manual approach of Moreno [50], while, unsurprisingly, the
blaze measurements obtained by pure trapezium fitting as
proposed by Potti and Montalvo in [54] tend to overestimate
the area of the blaze.

4.2 Moles Monitoring for Melanoma Diagnosis and
Staging

In this section, we focus on another application of the scale
detection Algorithm 2 in the context of melanoma (skin
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cancer) monitoring, see Fig. 3. Early signs of melanoma
are sudden changes in existing moles and are encoded in
the mnemonic ABCD rule. They are Asymmetry, irregular
Borders, variegated Colour and Diameter.> In the following,
we focus on the D sign.

Due to their dimensions and their irregular shapes, moles
are often very hard to measure. Typically, a common derma-
tological practice consists in positioning a ruler under the
mole and then taking a picture with a professional cam-
era. Sudden changes in the evolution of the mole are then
observed by comparison between different pictures taken
over time. Hence, their quantitative measurement may be
an indication of a malignant evolution

In the following examples reported in Fig. 16, we use the
graph segmentation approach described in algorithm 1 where
texture characteristic regions are present (see Fig. 16a) and
the Chan—Vese model [ 18] for images characterised by homo-
geneity of the mole and skin regions and the regularity of
mole boundaries (Fig. 16b, c¢). For the numerical implemen-
tation, we use the freely available online IPOL Chan—Vese
segmentation code [29]. Let us point out here that previous
works using variational models for accurate melanoma seg-

3 Prevention: ABCD’s of Melanoma American Melanoma Foundation,
http://www.melanomafoundation.org/prevention/abcd.htm.
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Fig. 17 The measurement scale
has been detected only in a
portion of the figure for the sake
of reading clarity. a White-tailed
deer tracks measurement. b
Coin measurement, image taken
from [34]

mentation already exist in the literature, see [1,17], but in
those no measurement technique is considered.

4.3 Other Applications: Animal Tracks and
Archaeological Finds’ Measurement

We conclude this section presenting some other applications
for the combined segmentation and scale detection models
presented above.

The first application is the identification and classification
of animals living in a given area through their soil, snow and
mud footprints. Their quantitative measurement is also inter-
esting in the study of the age and size a of a particular animal
species. As in the problems above, such measurement very
often reduces to a very inaccurate measurement performed
with a ruler placed next to the footprint image. In Fig. 17a,*
our combined method is applied for the measurement of a
white-tailed deer footprint.

As a final application, we focus on archaeology. In many
archaeological finds, objects need to be measured for com-
parisons and historical studies [34]. Figure 17b shows the
application of our method to coin measurements. Due to
its circular shape, for this image a combined Hough trans-
form method for circle and line detection has been used.
The example image is taken from [34] where the authors
propose a gradient threshold-based method combined with a
Fourier transform approach. Despite being quite efficient for
the particular applications considered, such approach relies
in practice on the good experimental setting in which the
image is taken: almost noise-free images and very regular
objects with sharp boundaries (mainly coins) and homoge-
neous backgrounds are considered. Furthermore, results are
reported only for rulers with vertical orientation and no bend-
ing.

5 Conclusions
In this paper, we consider image segmentation applications

involving measurement of a region’s size, which has appli-
cations in several disciplines. For example, zoologists may

4 Image from http://mamajoules.blogspot.co.uk/2015/01/a-naturalists-
thoughts-on-animal-tracks.html.

be interested in quantitative measurements of some parts of
the body of an animal, such as distinctive regions charac-
terised by specific colours and texture, or in animal tracks to
differentiate between individuals in the species. In medical
applications, quantifying an evolving, possibly malignant
mass (for instance, skin melanoma) is crucial for an early
diagnosis and treatment. In archaeology, finds need to be
measured and classified. In all these applications, often a
common measurement tool is juxtaposed to the region of
interest and its measurement is simply read directly from the
image. This practice is typically inaccurate and imprecise,
due to the conditions in which pictures are taken. There may
be noise corrupting the image, the object to be measured
may be hard to distinguish, and the measurement tool can
be misplaced and far from the object to measure. Moreover,
the scale of the image depends on the image itself due to the
varying distance from the camera of the ruler and objects to
measure.

The method presented (based on [9]) consists of a semi-
supervised approach which, by training the algorithm with
some examples provided by the user, extracts relevant fea-
tures from the training image (such as RGB intensities,
texture) and uses them to detect similar regions in the
unknown image. Mathematically, this translates into the
minimisation of the discrete Ginzburg—Landau functional
defined on graphs. To overcome the computational issues
due to the size of the data, Nystrom matrix completion tech-
niques are used and for the design of an efficient numerical
scheme, convex splitting is applied. The measurement scale
detection task is performed by using the Hough transform,
a geometrical transformation which is capable of detecting
objects with a priori known geometrical shapes (like lines on
aruler or circles with fixed diameter). Once the measurement
scale is detected, all the measurements are converted into a
unit of measure which is not image dependent.

Our method represents a systematic and reliable combina-
tion of segmentation approaches applied to several real-world
image quantification tasks. The use of dictionaries, moreover,
allows for flexibility as, whenever needed, the training data-
base can be updated. With respect to recent developments
[68] in the fields of data mining for the analysis of big data,
where predictions are often performed using training sets and
clustering, our approach represents an interesting alternative
to standard machine learning (such as k-means) algorithms.
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6 Appendix 1: The Nystrom Extension

With respect to the eigenvalue problem formulation (2.19)
and (2.20), we revise in this section the Nystrom extension
[53] in a matrix form.

Let us define first the submatrices Wyx € RE x RL and
Wxy € RE x RS—L as

w(xg, xp) -+ wxy, xr)
Wxx = : : ,
w(xg, x1) -+ wlxrp, xL)
w(xi, y1) - wx, ys—r)
Wxy = : ) : (6.1
w(xp, y1) -+ wxg, ys—r)

Analogous definitions hold for Wyy and Wy x. Each of these
matrices represents the submatrix having as elements the
weights between the points in X, Y or between the two sets.
With this notation, the whole matrix W € RS x RS can be
written in block form as

Wxx Wxy T

W= (Wyx Wyy) , Wyx = Wyy.

Similarly, vectors v € RS canbe writtenas v = (v)T( vg)T. We
focus on the spectral decomposition of the first block of W,
that is Wy x. Since this matrix is symmetric, calling @x the
matrix @y = diag(6y, ..., 0) containing the eigenvalues
of Wxx, then by the spectral theorem Wxyx = VxOyx V;
(compare with (2.20)), with Vx being the orthogonal matrix
having as columns the eigenvectors of Wy x. Writing (2.19)
for y € Y, in operator form, we obtain Vy as

Vy = WyxVxO5'.

The approximated eigenvectors of W can then be written in
matrix form as

Y (o)
WYva@)?l.
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(6.2)

Let us observe that

Vx
Wyx Vx Oy

B (VX@X vy
Wyx

voyvT = ( )@X [v; (WYXVX(H);I)T]

Wxy )
Wyx W;}( Wxy
Wxy

Wxx )
= ~ ~W. 6.3
(WYX Wyx WX)I( Wxy ©3)

Therefore, Nystrom extension can be interpreted as the
approximation W ~ V@yx VT, under the approximation of
Wyy given by Wyy ~ WyxWy )l( Wyxy. The quality of the
approximation of the full W is quantified by the norm of the
Schur complement |Wyy — Wyx Wy }1( Wxy|l, see [27]

Recalling the definition of the symmetric graph Lapla-
cian L given by (2.8) and the relation between the spectral
decomposition of W and the one of W in (2.16), we observe
that a normalisation step now needs to be computed for
obtaining the spectral decomposition of L. Defining 1 as
the L-dimensional vector consisting of ones and 15_; anal-
ogously, we use (6.3) and start computing the non-negative
vector d = (dyd])T by

(dx) _ (WXX Wxy ) ( 1, )
dy Wyx WyxWyxWxy) \1s—
_ ( Wxx1p + Wxyls_p )

- 6.4
Wyx1p + Wyx Wiy Wxyls_1 ©4

Therefore, the matrices Wyx and Wxy can be normalised
simply by considering:

Wxx = WXX~/ (/E@\/&T) ,
Wyy = WXY-/ (\/E(X) \/ET) )

(6.5)

where the division is intended elementwise and ® is the stan-
dard vector tensor product.

A further step of normalisation is now needed since the
approximated eigenvectors of W, i.e. the columns of the
matrix V in (6.2), may not be orthogonal. Such normali-
sation may be obtained by using auxiliary unitary matrices.
We refer the reader to [9, Section 3.2] for more details on
this.

Once these additional normalisation steps are completed,
we then get a spectral decomposition of W in terms of its
eigenvalues i and the corresponding normalised eigenvec-
torsv;, i =1, ..., S.Therefore, recalling (2.16), the spectral
decomposition of Ly is given in terms of the eigenvalue 1 — Xi
and eigenvectors v;.
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7 Appendix 2: The MBO Scheme for Image
Segmentation

As previously commented in Sect. 2.1, by taking the L? gra-
dient descent of the Ginzburg-Landau functional defined in
(2.1), one gets the well-known Allen—Cahn equation [3]:

u; = eAu — éW’(u), (7.1)
which has often been studied for the modelling of several
phase transition and separation problems and for the study
of mean curvature flow (see, for example, [12]). In the limit
€ — 0, solutions consist of two phases corresponding to the
wells of W. In [56], it is shown that for rescaled solutions of
Eq. (7.1), the interface between these phases evolves accord-
ing to mean curvature flow. In [46], Merriman, Bence and
Osher propose an alternative approach (later named MBO
scheme) which, by using threshold dynamics, approximates
the mean curvature flow of the interface at discrete times.
As proved rigorously in [6], for small values of the interface
parameter €, the MBO scheme can then be used to solve Eq.
(7.1) numerically.

In [44], the authors propose a variant of the MBO scheme
as an alternative way to (approximately) minimise the graph
GL functional with fidelity term, (2.9). Recalling the graph
framework introduced in Sect. 2.2, the MBO segmentation
starts from an initialisation U; given by (2.14) and computes
for every n > 1 the new iterate U, from U, by applying
sequentially the two following steps:

— Step I (diffusion with forcing term): Starting from Un1 =
U,, solve for every 1 < k < K the discretised heat
diffusion equation with fidelity term

Uk-‘rl _ Uk
T — L UM — ) U —Up), (7.2)
T

where T = % is the heat diffusion time and K is the
number of diffusion steps. Practically, T has to be cho-
sen small enough to approximate the motion by mean
curvature and large enough to avoid freezing or pinning,
which occurs when the diffusion time is so short that
not enough mass diffuses along the edges of the network
and the thresholding operation described in the following
Step 2 leaves U,, unchanged.
— Step 2 (thresholding): For every point x, set U, as:

1, if UKx) >0,

U =
w1 0) [—1, it UK(x) <0.

Numerically, (7.2) is solved at each diffusion time step
kt, k > 1 by considering the spectral decomposition of U,’;

with respect to the eigenvectors of the operator Ly, similarly
as in (2.15), and using classical Fourier transform methods
to compute the new iterate U,’f‘”.

8 Appendix 3: The Hough Transform

The general idea behind the use of the Hough transform
[23,35] is to map the ambient space to an auxiliary space,
called the parameter space (as it is related to the parametric
representation of the geometrical objects we are interested
in). There, objects with specified shapes are easily recog-
nisable as peaks of specific functions. Let us clarify these
concepts with two examples.

Detecting line segments We start from the typical slope-
intercept form of a line:
y=mx—+b, m,b,x,yeR. (8.1)
Traditionally, the equation above is considered as a function
of points with coordinates (x, y) satisfying equation (8.1)
for fixed values of m and b. In other words, these values
identify a specific straight line in the x — y plane, cf. Fig.
18a. Rewriting (8.1) as b = y — mx and keeping fixed the
coordinates (x, y), we obtain a new equation of a straight line
inthe m —b plane, cf. Fig. 18b, depicting the parameter space.
If lines in the m — b parameter space intersect, their sign-
changed slopes (given by their x values) and m-intercepts
(their y values) correspond to points lying on the same line
in the x — y plane. The (m, b) coordinates of the intersection
point in parameter space specify the slope and x-intercept,
respectively, of that line in the x — y plane.

Hence, if we are given a black and white image inthe x —y
plane, and for all coordinates (x, y) of black locations in the
image, we draw the corresponding lines in the m — b plane,
intersection points of those lines will tell us which (x, y)
locations in the image lie on the same line. Of course, any

b’ b
} y t b
i ‘b=-mx+y,
Y \ : /
1 m7;
m’ .(xi,yi) \
b=-mx+y,
X m
(@) (b)

Fig. 18 Slope-intercept form, (8.1). Images edited from [31].ax — y
plane. b m — b plane
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\x

(a)

(b)

Fig. 19 Normal form: image and parameter spaces. a Normal parametrisation (8.2). b Binary image with two lines. ¢ Parameter space

Fig. 20 Circular Hough
transform. Images edited from

[13]. a Cones in 3D parameter 100 -
space. b Slice of 3D parameter
space 80

|
60

two points lie on a line; thus, we are specifically interested in
intersection points in the m — b plane in which many different
lines intersect, indicating the presence of an actual black line
segment in the original image.

Drawbacks of this parametrisation are the need for an
unbounded parameter space to describe near-vertical lines
and the impossibility to describe a vertical line. One alter-
native is the normal parametrisation which views a straight
line in x — y space as the tangent line to a circle with radius
p, touching the circle at angular coordinate 6, as illustrated
in Fig. 19a, [23]. In p — 6 parameter space, this leads to

p=xcosf +ysinf, 6 €l0,x]. (8.2)

The objects in the parameter space are now sinusoidal
curves, but again intersection points identify parameters for
the points lying on the same straight line in the x — y plane.
Figure 19b, c shows a binary image with two black straight
lines and the corresponding parameter space. The bright spots
in the parameter space indicate a large number of intersec-
tions, thus identifying the two lines in the original image.

Detecting circles Analogously to what we did above, when
looking for circular structures in a given image, we consider
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for (x,y) € R? the parametric representation of a circle,

=@ —c)?+(—c) (8.3)

where r > 0 is the radius of the circle and (1, ¢2) € R? are
the coordinates of its centre. Every point (x, y) lying on the
circle satisfies Eq. (8.3) for fixed r, c; and c>. As before, we
now consider Eq. (8.3) in the three-dimensional parameter
space c¢; — ¢ — r for fixed x and y. Here, the objects of
interest are cone-shaped surfaces, as shown in Fig. 20a. Their
intersection identifies the desired values of r, ¢; and ¢, in Eq.
(8.3), see Fig. 20b.
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