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Abstract In this paper, we propose a supervised object
recognition method using new global features and inspired
by the model of the human primary visual cortex V1 as the
semidiscrete roto-translation group SE(2, N ) = ZN � R

2.
The proposed technique is based on generalized Fourier
descriptors on the latter group, which are invariant to natural
geometric transformations (rotations, translations). These
descriptors are then used to feed an SVM classifier. We
have tested our method against the COIL-100 image data-
base and the ORL face database, and compared it with other
techniques based on traditional descriptors, global and local.
The obtained results have shown that our approach looks
extremely efficient and stable to noise, in presence of which
it outperforms the other techniques analyzed in the paper.
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1 Introduction

Object recognition is a fundamental problem in computer
vision and keeps attracting more and more attention nowa-
days. Its concepts havebeen applied inmultiple fields, such as
manufacturing, surveillance system, optical character recog-
nition, face recognition, etc.

Almost every object recognition algorithm proposed in
the literature is based on the computation of certain features
of the image, which allow to characterize the object depicted
and to discriminate it from others. In particular, since objects
can appear at different locations and with different sizes, it
is desirable for such features to be invariant by translation,
rotation and scale. These invariant features can be global, i.e.,
computed taking into account the whole image, or local, i.e.,
computed considering only neighborhoods of key-points in
the image.

In this paperwe focus onFourier descriptors, an important
class of global invariant features used since the seventies [19,
40] based on algebraic properties of the Fourier transform. In
particular, inspired by some neurophysiological facts on the
structure of the human primary visual cortex, we extend this
theory to define features invariant to translation and rotation
and we apply them for invariant object recognition in SVM
context. These results are then compared with those obtained
with another important class of global invariant features, the
moment invariants (seeAppendix 1), used e.g., in [10,34,35],
and with two different local invariants. For more information
on object recognition via local features we refer to [2,12,25,
27,28,30].

Our choice of a global approach is motivated by the better
results obtained by these methods in presence of noise, lumi-
nance changes and other different alterations, with respect
to algorithms based on local invariant features [7]. Indeed,
under these conditions, key-points detectors used in the local
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approach produce key-points that are not relevant for the
object recognition.

In the following, we briefly introduce the theory of Fourier
descriptors, before discussing the framework used in this
paper and our contributions.

1.1 Fourier Descriptors

The basic idea behind Fourier descriptors is that the action of
an abelian locally compact group G on functions in L2(G) is
much easier to treat at the level of their Fourier transforms. In
the specific case of images, f, g ∈ L2(R2), this is expressed
by the well-known equivalence for the translation of a ∈ R

2:

f (x) = g(x − a) ∀x ∈ R
2

⇐⇒ f̂ (λ) = ei〈a,λ〉ĝ(λ) ∀λ ∈ R
2, (1)

where the Fourier transform is defined1 by

f̂ (λ) =
∫
R2

f (x) e−i〈λ,x〉 dx, ∀λ ∈ R
2.

In this setting, Fourier descriptors are quantities associated
with functions of L2(R2) that can be easily computed starting
from their Fourier representation and that are invariant under
the action of translations. Ideally, a Fourier descriptor should
be complete, meaning that for any couple of images f, g ∈
L2(R2) the equality of the Fourier descriptor is equivalent
to the equality of f and g up to translations. Indeed, the
lack of completeness could yield to problems in applications,
notably to false positives in the classification.

However, a result as strong as completeness is usually out
of reach and unnecessary for practical applications. In this
case, one looks for Fourier descriptors that are at least weakly
complete, meaning that they are complete on a sufficiently
big subset of L2(R2), usually either open and dense or at
least residual, i.e., the intersection of countably many open
and dense sets. This guarantees that the Fourier descriptor
will correctly classify a sufficiently large class of images.

Various Fourier descriptors have been defined in the litera-
ture [19,24,26,38,40]. In this work we are mainly interested
in the following two, whose invariance w.r.t. translations can
be checked via (1).

– Power-spectrum: the quantity PS f (λ) := | f̂ (λ)|2 for
λ ∈ R

2, which is the Fourier transform of the auto-
correlation function

a f (x) :=
∫
R2

f (y) f (y + x) dy.

1 Here we use a non-unitary definition of the Fourier transform for
future convenience in computations.

It is easy to show that the power-spectrum is not weakly
complete, and indeed it is used in texture synthesis to
identify the translation invariant Gaussian distribution of
textures [18].

– Bispectrum: an extension of the power-spectrum, it is

the quantity BS f (λ1, λ2) := f̂ (λ1) f̂ (λ2) f̂ (λ1 + λ2),
or equivalently the Fourier transform of the triple corre-
lation, defined as

a3, f (x1, x2) :=
∫
R2

f (y) f (y + x1) f (y + x2) dy.

These descriptors are complete on compactly supported
functions of L2(R2) and are well established in statistical
signal processing. See e.g., [14], where they are applied
to sound texture recognition.

These two Fourier descriptors can be easily generalized to
functions on L2(G) of a locally compact abelian group G to
obtain invariants under the action of G. This can be applied,
for example, to 2D shape recognition. However, when work-
ing with images, these descriptors are unsatisfying. Indeed,
they are invariant only under translations, and so cannot be
used to classify images under the action of rotations.

1.2 Framework of the Paper

In this paper, following a line of research started in [38],
we present a theoretical framework that allows us to build
generalized Fourier descriptors which are invariant w.r.t.
(semidiscrete) roto-translations of images. We exploit the
following two facts:

– It is possible to define a natural generalization of the
power-spectrum and the bispectrumon non-commutative
groups, as it has been done in [24,38].

– Contributions of some of the authors to a fairly recent
model of the human primary visual cortex V1 [4,5] have
shown that the latter can be modeled as the semidiscrete
group of roto-translations SE(2, N ) = ZN � R

2. In this
model, cortical stimuli are functions in L2(SE(2, N )),
w.r.t. the Haar measure of SE(2, N ), and images from
the visual plane are lifted to cortical stimuli via a natural
injective and left-invariant lift operation L : L2(R2) →
L2(SE(2, N )). Such lift is defined as the wavelet trans-
form w.r.t. a mother wavelet Ψ , see Sect. 2.

From these facts, a natural pipeline for invariant object
recognition is the following:

1. Given an image f ∈ L2(R2) lift it to a cortical stimulus
L f ∈ L2(SE(2, N )).
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2. Compute the generalized Fourier descriptors of L f on
the non-commutative group SE(2, N ).

3. If the lift of another image g ∈ L2(R2) has the same
Fourier descriptors as L f , deduce that L f ≈ Lg up to
the action of SE(2, N ).

4. Thanks to the left-invariance and injectivity of the lift L,
obtain that also f ≈ g up to the action of SE(2, N ).

This pipeline was already investigated in [38], where the
authors considered a non-left-invariant lift, the cyclic lift. For
this lift they then proved a weak completeness result of the
generalized bispectrum for images, represented as L2(R2)

functions with support inside a fixed compact set.
In this paper, we consider the same question for left-

invariant lifts, where the situation turns out to be more
complicated. In particular, as explained in the following sec-
tion, to ensure the weak completeness we are led to consider
“stronger” invariants than the generalized bispectrum. How-
ever, as observed in Remark 4, the actual computation of
these stronger invariants on lifted images requires N times
less computational time and space w.r.t. the computation of
the generalized bispectrum of cyclically lifted images.

1.3 Contributions of the Paper

Let K ⊂ R
2 be any compact set, representing the size of

the images under consideration. According to the pipeline
for object recognition introduced above, the weak complete-
ness of the generalized Fourier descriptors on images can be
proved in two steps:

1. Prove the completeness of thegeneralizedFourier descrip-
tors on some residual set G ⊂ L2(ZN × K ) of cortical
stimuli;

2. Prove that for some residual set R ⊂ L2(R2) of images
with support in K we have L(R) ⊂ G.

The first point is addressed in Theorem 1, where is iden-
tified an open and dense set G ⊂ L2(ZN × K ) on which
the combination of the generalized power-spectrum and bis-
pectrum holds. This generalizes the result in [38], where the
same result was proved for a residual subset of the range of
the cyclic lift.

Unfortunately, it turns out that for this set G and a left-
invariant lift L there is no hope of finding a set R ⊂
L2(R2) satisfying the second point above. We are then led to
introduce stronger Fourier descriptors, the rotational power-
spectrum and bispectrum, which are invariant only w.r.t.
rotations. To solve this problem we preprocess images by
centering them at their barycenter, a procedure that is essen-
tial also in [38]. Theorem 2 then shows that the resulting
invariants are complete for an open and dense set of functions
in L2(K ), for any compact K ⊂ R

2. The proof of this com-

pleteness requires fine technical tools fromharmonic analysis
and the theory of circulant operators, and for this reason we
only present a sketch of it, evidencing the technical difficul-
ties. A complete proof will be presented in a forthcoming
paper by the second and last authors.

Finally, in Theorem 3 we show that, under mild assump-
tions on the mother wavelet Ψ , to check the equality of all
these Fourier descriptors it is sufficient to compute simple
quantities computed from the 2D Fourier transform of the
image. This allows for an efficient implementation on regu-
lar hexagonal grids. After using these descriptors to feed an
SVM-based classifier, we compare their performances with
those of Hu and Zernike moments, the Fourier–Mellin trans-
formand somewell-known local descriptors. To this purpose,
we test them on two large databases: the COIL-1002 object
recognition database, composed of 7200 objects presenting
rotation and scale changes [31], and the ORL3 face database,
on which different human faces are subject to several kinds
of variations.

1.4 Structure of the Paper

The remainder of the paper is organized as follows. In Sect. 2,
we present the features of a mathematical model of the pri-
mary visual cortex V 1 that are essential to our approach. In
Sect. 3, we introduce some generalities on the Fourier Trans-
form on the semidiscrete group of roto-translation SE(2, N ).
In Sect. 4, we describe the natural generalization of the
power-spectrum and the bispectrum on R

2 to SE(2, N ).
We then prove the weak completeness result (Theorem 1)
and show that under the chosen lift operator this does not
imply weak completeness for images. Finally, we introduce
the rotational power-spectrum and bispectrum and sketch the
proof of the corresponding weak completeness result (Theo-
rem 2) for images. We end this section with some results on
the practical computation of these descriptors. In Sect. 5, we
illustrate some numerical results where these descriptors are
compared with those obtained via global descriptors such as
Zernike moments, Hu moments, Fourier–Mellin transform,
and local ones like the SIFT and HoG descriptors. Finally,
we conclude with some practical suggestions in Sect. 6.

2 A Mathematical Model of the Primary Visual
Cortex V1

As mentioned in the introduction, the main novelty of our
approach is its connection with a fairly recent model of the
human primary visual cortex V1 due to Petitot and Citti-Sarti
[11,32] and our recent contributions [3–5,33]. The theory

2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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of orientation scores introduced in [15,16] is also strongly
connected with this work, in particular for its exploitation
of left-invariant lift operators. We also mention [37], where
image invariants based on the structure of the roto-translation
group SE(2) are introduced for textures. In this section, we
present the features of this model that are essential to our
approach.

Since it iswell-known [23] that neurons inV1 are sensitive
not only to positions in the visual field, but also to local orien-
tations and that it is reasonable to assume these orientations
to be finite, in [4] V1 has been modeled as the semidiscrete
group of roto-translations SE(2, N ) = ZN � R

2 for some
even N ∈ N. Letting Rk be the rotation of 2π/k, the (non-
commutative) group operation of SE(2, N ) is

(x, k)(y, r) = (x + Rk y, k + r).

Here, we are implicitly identifying k +r with k +r mod N .
Visual stimuli f ∈ L2(R2) are assumed to be lifted

to activation patterns in L2(SE(2, N )) by a lift operator
L : L2(R2) → L2(SE(2, N )). Motivated by neurophysi-
ological evidence, we then assume that

(H) The lift operator L is linear and is defined as

L f (x, k) :=
∫
R2

f (y)Ψ̄ (R−k(y − x)) dy, (2)

for a given mother wavelet Ψ ∈ L2(R2) such that L is
injective and bounded.

Remark 1 This assumptionmeans that the lift operator under
consideration is thewavelet transformw.r.t.Ψ (see e.g., [17]).
The fact that L be injective and bounded is then equivalent
to the fact that the mother wavelet Ψ is weakly admissible,
i.e., is such that the map

λ ∈ R
2 �→

∑
k∈ZN

|Ψ̂ (R−kλ)|2

is strictly positive and essentially bounded.

As a consequence of the above assumption, the lift oper-
ation L is left-invariant w.r.t. to the action of SE(2, N ).
Namely,

Λ(x, k) ◦ L = L ◦ π(x, k). (3)

Here Λ and π are the actions of SE(2, N ) on L2(SE(2, N ))

and L2(R2), respectively. That is,

[Λ(x, k)ϕ](y, r) = ϕ
(
(x, k)−1(y, r)

)

= ϕ(R−k(y − x), r − k),

[π(x, k) f ](y) = f
(
(x, k)−1y

)
= f (R−k(y − x)).

Formula (3) can be seen as a semidiscrete version of the
shift-twist symmetry [6].

The main observation for our purposes is that (3) means
that two images f and g ∈ L2(R2) can be deduced via roto-
translation (i.e., f = π(x, k)g for some (x, k) ∈ SE(2, N ))
if and only if their lifts can be deduced via Λ(x, k).

3 Preliminaries on Non-commutative Harmonic
Analysis

In this section we introduce some generalities on the (non-
commutative) Fourier transform on SE(2, N ), an essential
tool to define and compute the Fourier descriptors we are
interested in. We refer to [1,20] for a general introduction to
the topic.

Since SE(2, N ) is a non-commutative unimodular group,
the Fourier transform of ϕ ∈ L2(SE(2, N )) is an operator
associating to each (continuous) irreducible unitary repre-
sentations T λ of SE(2, N ) some Hilbert–Schmidt operator
on the Hilbert space where T λ acts. Here, λ is an index taking
values in the dual object of SE(2, N ), which is denoted by

̂SE(2, N ) and is the set of equivalence classes of irreducible
unitary representations.

The set of irreducible representations of a semi-direct
product group can be obtained via Mackey’s machinery
(see e.g., [1, Ch. 17.1, Theorems 4 and 5]). Accordingly,

̂SE(2, N ) is parametrized by the orbits of the (contragredi-
ent) action of rotations {Rk}k∈ZN on R

2, i.e., by the slice
S ⊂ R

2 which in polar coordinates is (0,+∞)×[0, 2π/N ).
Additionally, corresponding to the origin, there are the char-
acters of ZN . Namely, to each λ ∈ S corresponds the
representation T λ acting on C

N via

T λ(x, k)v = diagh(ei〈λ,Rh x〉) ◦ Skv

=
(

ei〈λ,Rh x〉vh+k

)N−1

h=0
, (4)

where we denoted by diagh vh the diagonal matrix of diago-
nal v ∈ C

N and by S the shift operator (Sv) j = v j+1, so that
(Skv) j = v j+k . On the other hand, to each k ∈ ZN corre-

sponds the representation on C given by z �→ ei 2πk
N z. Since

it is possible to show that to invert the Fourier transform it is
enough to consider only the representations parametrized by
S, we will henceforth ignore the ZN part of the dual.

Finally, thematrix-valued Fourier coefficient of a function
ϕ ∈ L2(SE(2, N )) ∩ L1(SE(2, N )) for λ ∈ ̂SE(2, N ) is
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ϕ̂(T λ) =
∫

SE(2,N )

ϕ(a) T λ(a−1) da, (5)

where da is the Haar measure4 of SE(2, N ). This is essen-
tially the same formula for the Fourier transform on R

2,
which is a scalar and is obtained using the representations
λ(x) = ei〈x,λ〉 acting on C.

Straightforward computations yield

ϕ̂(T λ)i, j = F(ϕ(·, i − j))(R− jλ), (6)

where we let F denote the Fourier transform on R
2.

As usual, the definition of the Fourier transform can
be extended to the whole L2(SE(2, N )) by density argu-
ments. Then, there exists a unique measure on ̂SE(2, N ), the
Plancherel measure, supported on S where it coincides with
the restriction of the Lebesgue measure of R

2, such that the
Fourier transform is an isometry between L2(SE(2, N )) and
L2( ̂SE(2, N )). In particular, the following inversion formula
holds

ϕ(x, k) =
∫
S
Tr

(
ϕ̂(T λ) ◦ T λ(x, k)

)
dλ.

The fundamental property of thenon-commutativeFourier
transform, generalizing (1), is that for all ϕ, η ∈ L2(SE(2,
N )) and a ∈ SE(2, N ) it holds

ϕ(x, k) = [Λ(a)η](x, k) ∀(x, k) ∈ SE(2, N ) ⇐⇒
ϕ̂(T ) = η̂(T ) ◦ T −1(a) ∀T ∈ ̂SE(2, N ). (7)

Namely, ϕ, η can be deduced via the action of SE(2, N ) if
and only if their Fourier transforms at a representation T can
be deduced via multiplication by T (a).

Remark 2 The fact that the Fourier transform in (5) be
matrix-valued is a direct consequence of SE(2, N ) being a
Moore group, that is, that all the T λ act on finite-dimensional
spaces. This is not true for the roto-translation group SE(2).
As a consequence, the Fourier transform on SE(2), takes
values not in the finite dimensional space of complex N × N
matrices, but in the infinite dimensional space of operators
over L2(S1). This is indeed the main theoretical advantage
of considering SE(2, N ).

3.1 Decomposition of Tensor Product Representations

Proofs of Sect. 4,will use awell-known fact on tensor product
representations: the Induction–Reduction Theorem (see [1]).
This theorem allows to decompose the tensor products of

4 That is, up to a multiplicative constant, the only left and right invari-
ant measure on SE(2, N ). One can check that

∫
SE(2,N )

ϕ(a) da =∑N−1
k=0

∫
R2 ϕ(x, k) dx .

representations T λ1 ⊗ T λ2 , acting on C
N ⊗ C

N ∼= C
N×N ,

to an equivalent representation acting on
⊕

k∈ZN
C

N , which
is a block-diagonal operator whose block elements are of the
form T λ1+Rkλ2 .Moreover, the linear transformation realizing
the equivalence is explicit.

To avoid confusion, we will henceforth denote compo-
nents of vectors v ∈ C

N as v(0), . . . , v(N − 1), elements
of

⊕
k∈ZN

C
N as (wk)k∈ZN where wk ∈ C

N , and the com-
ponents of vectors v ∈ C

N ⊗ C
N as v(k, h) for k, h =

0, . . . , N − 1. We also remark that linear operators B on⊕
k∈ZN

C
N can be decomposed asB = (Bk,h)k,h∈ZN , where

each Bk,h is an N × N complex matrix. Namely, we have

B(wk)k∈ZN =
(

N−1∑
h=0

Bk,hwh

)

k∈ZN

. (8)

Then, exploiting the commutation of the Fourier trans-
form with equivalences of representation, the Induction–
ReductionTheorem implies that for everyϕ ∈ L2(SE(2, N ))

and any λ1, λ2 ∈ S it holds

A ◦ ϕ̂(T λ1 ⊗ T λ2) ◦ A−1 =
⊕

k∈ZN

ϕ̂(T λ1+Rkλ2). (9)

Here, A : C
N ⊗ C

N → ⊕
k∈ZN

C
N is given by

(Av)k(h) = (Akv)(h) = v(h, h−k), ∀v ∈ C
N ⊗C

N . (10)

4 Fourier Descriptors on SE(2, N)

In the following sections, we introduce and study the Fourier
descriptors on the group SE(2, N ). As already mentioned,
proving a general completeness result is essentially hopeless,
and we will content ourselves to prove the weak complete-
ness.

Let K ⊂ R
2 be a compact set. In the following, we will

be mainly concerned with functions that are compactly sup-
ported either in K or in K × ZN ⊂ SE(2, N ).

4.1 Generalized Fourier Descriptors

Following [38], the power-spectrum and the bispectrum on
R
2 can be generalized to SE(2, N ) as follows.

Definition 1 The generalized power-spectrum and bispec-
trum of ϕ ∈ L2(SE(2, N )) are the collections of matrices
for any λ, λ1, λ2 ∈ S,

PSϕ(λ) := ϕ̂(T λ) ◦ ϕ̂(T λ)∗

BSϕ(λ1, λ2) := ϕ̂(T λ1) ⊗ ϕ̂(T λ2) ◦ ϕ̂(T λ1 ⊗ T λ2)∗.
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The next result generalizes, with a simplified proof, the
result presented in [38]. Let us mention that this result is
indeed true in a more general setting, as it will be shown in
a forthcoming paper by Prandi and Gauthier.

Theorem 1 Let K ⊂ R
2 be a compact. The generalized

power-spectrum and bispectrum are weakly complete on
L2(ZN × K ). In particular, they discriminate on the open
and dense set G ⊂ L2(ZN × K ) of functions ϕ supported
in ZN × K and whose Fourier transform ϕ̂(T λ) is invert-
ible for an open and dense set of λs. That is, ϕ1, ϕ2 ∈ G
are such that PSϕ1 = PSϕ2 and BSϕ1 = BSϕ2 if and only if
ϕ1 = Λ(x, k)ϕ2 for some (x, k) ∈ SE(2, N ).

Proof The fact thatG is open and dense is proved inLemma1
in Appendix 2. Let ϕ, η ∈ G be such that P Sϕ1 = P Sϕ2 and
BSϕ = BSη. The equality of the generalized bispectrum
implies that the set of λs where ϕ̂(T λ) and η̂(T λ) fail to be
invertible is the same. We will denote it by I and let

U (T λ) := ϕ̂(T λ)−1η̂(T λ) ∀λ ∈ I.

In order to complete the proof of the statement, we will prove
that U (T λ) can be defined for all λs in R

2 and, moreover,
that U (T λ) = T λ(a) for some a ∈ SE(2, N ). Indeed, by (7)
this will readily imply that ϕ = Λ(a)η as announced.

We claim that U (T λ) is unitary for all λ ∈ I . Indeed, by
the equality of the generalized power-spectrum we have

U (T λ)∗U (T λ) = η(T λ)∗ PSϕ(λ)η(T λ) = I.

Observe that the equality of the generalized bispectrum
and the definition of U , imply that for all λ1, λ2 ∈ I it holds

BSϕ(λ1, λ2) = ϕ̂(T λ1) ⊗ ϕ̂(T λ2) ◦ U (T λ1)

⊗U (T λ2) ◦ η̂(T λ1 ⊗ T λ2)∗.

By the invertibility of ϕ̂(T λ1) ⊗ ϕ̂(T λ2) and the unitarity of
U , this yields

ϕ̂(T λ1 ⊗ T λ2) ◦ U (T λ1) ⊗ U (T λ2) = η̂(T λ1 ⊗ T λ2). (11)

The announced result is then a consequence of the follow-
ing three facts, which are proved in Appendix 2.

1. Lemma 2: The function λ �→ U (T λ) is continuous on I .
2. Lemma 3: The function λ �→ U (T λ) can be extended to

a continuous function on R
2 for which (11) is still true.

3. Lemma4: There exists a ∈ SE(2, N ) such thatU (T λ) =
T λ(a). ��

An immediate corollary is the following.

Corollary 1 Let L̃ : L2(R2) → L2(SE(2, N )) be an injec-
tive lift operator (not necessarily satisfying (2)). Assume that
there exists a residual set R ⊂ L2(R2) such that L̃(R) ∩ G
is residual. Then, the generalized power-spectrum and bis-
pectrum are weakly complete on L2(R2). Namely, for any
f, g ∈ R it holds that BSL̃ f = BSL̃g if and only if
f = π(x, k)g for some (x, k) ∈ SE(2, N ).

Remark 3 In [38], the authors applied their version of Theo-
rem 1 to a non-left-invariant lift L̃, called cyclic lift. Indeed,
for this cyclic lift, when N is odd, it is possible to prove
that, for any compact K ⊂ R

2, there exists a residual set
R ⊂ L2(K ) satisfying the assumptions of Corollary 1.

Unfortunately, Corollary 1 can never be applied to lifts
of the form (2). In fact, as proved in Appendix 3, letting
ω f (λ) := ( f̂ (R−kλ))N−1

k=0 ∈ C
N , we have that

L̂ f (T λ) = ωΨ (λ)∗ ⊗ ω f (λ)∗, (12)

where for v,w ∈ C
N , we let v∗ = (vk)k and (v ⊗ w)k,h =

vk wh , so that (v ⊗ w)u = 〈w, u〉 v for all u ∈ C
N . This

immediately implies that rank L̂ f (T λ) ≤ 1 and hence that
range L ∩ G = ∅ whenever N > 1.

4.2 Rotational Fourier Descriptors

To bypass the difficulty posed by the non-invertibility of the
Fourier transform for lifted functions, we are led to consider
the following stronger descriptors.

Definition 2 The rotational power-spectrum and bispec-
trum of ϕ ∈ L2(SE(2, N )) are the collections of matrices,
for any λ, λ1, λ2 ∈ S and h ∈ ZN ,

RPSϕ(λ, h) := ϕ̂(T Rhλ) ◦ ϕ̂(T λ)∗

RBSϕ(λ1, λ2, h) := ϕ̂(T Rhλ1) ⊗ ϕ̂(T λ2) ◦ ϕ̂(T λ1 ⊗ T λ2)∗.

As already mentioned in the introduction, the rotational
descriptors are invariant only under the action of ZN ⊂
SE(2, N ) but not under translations. To avoid this problem,
let us fix a compact K ⊂ R

2 and consider the setA ⊂ L2(R2)

of functions compactly supported in K , with non-zero aver-
age5. Observe that this is an open and dense subset of L2(K ).
We can then define the barycenter c f ∈ R

2 of f ∈ A as

c f = 1

avg f

(∫
R2

x1 f (x) dx,

∫
R2

x2 f (x) dx

)
,

and the centering operator Φ : A → A as

Φ f (x) := f (x − c f ). (13)

5 Recall that the average of f : R2 → R is avg f = ∫
R2 f (x) dx ,which

is always well-defined for L2(R2) functions with compact support.
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Then, considering the centered lift Lc = L◦Φ, we have that
Lc f = Lcg if and only if g is a translate of f . In particular,

Lc f = Λ(0, k)Lcg

⇐⇒ f = π(x, k)g for some x ∈ R
2.

Let us consider the following set of functions.

Definition 3 LetR ⊂ L2(R2) be the set of real-valued func-
tions f supported in K , such that f̂ (λ) �= 0 for a.e. λ ∈ R

2

and the family Ω f = {Skω f (λ)}N−1
k=0 is a basis for C

N , if N
is odd, or, if N is even, for

X = {v ∈ C
N | v(h) = v(h + N/2) ∀h ∈ ZN }.

The dependence of this definition on the parity of N comes

from the well-known fact that f̂ (λ) = f̂ (−λ). Indeed, for
N even, this implies that Skω f (λ) ∈ X for any k ∈ ZN .
As such, there is no hope for the family Ω f to generate the
whole C

N .
Finally, we have the following theorem.

Theorem 2 For any compact K ⊂ R
2, if the mother wavelet

Ψ ∈ R, the rotational power-spectrum and bispectrum are
weakly complete on L2(K ) ∩ A. Namely, the set R is open
and dense in L2(K ) and for any f, g ∈ R ∩ A it holds that
RPSLc f = RPSLcg and RBSLc f = RBSLcg if and only if
f = π(x, k)g for some (x, k) ∈ SE(2, N ).

Here, we content ourselves to present only a sketch of
the proof of this result for the case N odd. The parity of N
does not introduce essential problems, up to exploit the fact
that range L̂ f (T λ) ⊂ X for all f ∈ R and λ ∈ S and that
the equivalence A of the Induction–Reduction Theorem quo-
tients nicely to an equivalence betweenX×X and

⊕
k∈ZN

X .
However, in order to prove the key technical point (14) we
need a much finer study of the properties of circulant opera-
tors, which is outside the scope of this work and we defer to
a forthcoming paper by Prandi and Gauthier.

Proof (Sketch in the case N odd) The fact that R is open
and dense in L2(K ) follows from the same arguments in
Lemma 1.

Let Circ v be the circulant matrix associated with v, that
is, Circ v = [v, Sv, . . . , SN−1v]. Then the condition on Ω f

for f ∈ R is equivalent to the invertibility of Circω f (λ) for
an open and dense set of λs. By the properties of the Fourier
transform on R

2 w.r.t. translations it follows that

ωΦ f (λ) = diagk

(
e−i〈λ,Rk c f 〉

)
ω f (λ).

This entails that Circω f (λ) is invertible if and only if
CircωΦ f (λ) is. Hence, the statement is equivalent to the fact

that for any couple f, g ∈ R we have RBSL f = RBSLg if
and only if f = Rk g for some k ∈ ZN .

The proof is similar to the one of Theorem1, butwith addi-
tional technical difficulties. Let I be the set where Circω f (λ)

and Circωg(λ) are invertible. By assumption I is open and
dense. To overcome the non-invertibility of L̂ f in the defin-
ition the candidate intertwining representation U , we exploit
the invertibility of the circulant matrices Circω f (λ) and
Circωg(λ) on an open and dense set. Namely, for any λ ∈ I
we let

U (T λ)∗ := Circωg(λ)
(
Circω f (λ)

)−1
.

By definition, U (T λ) is circulant and U (T λ)∗Skω f (λ) =
Skωg(λ) for any k ∈ ZN .Moreover, by (12), this is equivalent
to

L̂ f (T Rkλ) U (T λ) = L̂g(T Rkλ), ∀k ∈ ZN .

In particular, λ �→ U (T λ) is constant on orbits {Rkλ}k∈ZN .
Finally, U (T λ) is unitary as a consequence, e.g., of Theo-
rem 3.

Themain difficulty in the proof is now to derive the equiv-
alent of identity (11), that is, that for an open and dense set
of couples (λ1, λ2) we have

L̂ f (T Rkλ1 ⊗ T Rkλ2) U (T λ1) ⊗ U (T λ2)

= L̂g(T Rkλ1 ⊗ T Rkλ2), ∀k ∈ ZN . (14)

As already mentioned, the proof of this identity requires a
deep use of properties of circulant operators, which is outside
the scope of this paper. We thus defer it to a forthcoming
paper.

Once (14) is known, the statement follows applying the
same arguments as those in Theorem 1. Namely,

1. The function λ �→ U (T λ) is continuous on I . This can
be done via the same arguments as in Lemma 2.

2. The function λ �→ U (T λ) can be extended to a continu-
ous function on S still satisfying (14). This can be done
exactly as in Lemma 3.

3. There exists k ∈ ZN such that U (T λ) = T λ(0, k). This
is proved following Lemma 4. Indeed, the fact that now
λ �→ U (T λ) is constant on the orbits {Rkλ}k∈ZN

implies
that the ϕks obtained there have to be independent of k.
Since ϕk(λ) = ei〈Rk x0,λ〉 for some x0 ∈ R

2, this implies
that x0 = 0 and hence ϕk ≡ 0. Obviously, this proves
that U (T λ) = Sk = T λ(0, k), for some k ∈ ZN . ��

4.3 Practical Computation of the Fourier Descriptors

Here, we present some explicit formulae for the computation
of the Fourier descriptors presented in this section.
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In the following, we show that, under some assumptions
on the mother wavelet Ψ , the concrete computation of the
generalized power-spectrum and bispectrum and of their
rotational counterparts, depend only on the 2D Fourier trans-
form of f .

Theorem 3 Assume that the mother wavelet Ψ ∈ R. Then:

– For any f ∈ R, the generalized power-spectrum and
bispectrum of L f are, respectively, determined by the
quantities, for a.e. λ, λ1, λ2 ∈ S,

I λ
1 ( f ) = ‖ω f (λ)‖2 =

N−1∑
k=0

| f̂ (R−kλ)|2

I λ1,λ2
1 ( f ) = 〈ω f (λ1) � ω f (λ2), ω f (λ1 + λ2)〉

=
N−1∑
k=0

f̂ (R−kλ1) f̂ (R−kλ2) f̂ (R−k(λ1 + λ2)).

– For any f ∈ A ∩ R, the rotational power-spectrum and
bispectrum of Lc f are, respectively, determined by the
quantities, for a.e. λ, λ1, λ2 ∈ S and h ∈ ZN ,

I λ,h
2 ( f ) = 〈ω� f (Rhλ), ω� f (λ)〉

=
N−1∑
k=0

f̂ (R−k+hλ) f̂ (R−kλ),

I λ1,λ2,h
2 ( f ) = 〈ω� f (Rhλ1) � ω� f (λ2), ω� f (λ1 + λ2)〉

=
N−1∑
k=0

f̂ (R−k+hλ1) f̂ (R−kλ2) f̂ (R−k(λ1 + λ2)).

Here, Φ : A → A is the centering operator defined in
(13).

Remark 4 Theorem 3 shows in particular that the result of
Theorem 2 is indeed stronger than the completeness result
for the generalized bispectrum of the cyclic lift obtained in
[38]. Indeed, in that work is proved that the latter (for odd N )
is determined exactly by the quantities, for a.e. λ1, λ2 ∈ S
and h, k ∈ ZN ,

Ĩ λ1,λ2,k,h
2 = 〈ωφ f (Rhλ1) � ωφ f (Rkλ2),

ωφ f (λ1 + Rh+kλ2)〉.

In particular, for each λ1, λ2 ∈ S one has to compute N times
more quantities than those for the rotational bispectrum.

As a corollary of Theorem 3 we show that, in order to
compare the power-spectra and bispectra, it is usually enough
to compare only the latter.

Corollary 2 Let Ψ ∈ R and f, g ∈ R∩A. Then, if L f and
Lg have the same generalized (resp. rotational) bispectrum,
they have also the same generalized (resp. rotational) power-
spectrum.

Proof We only prove the result for the rotational descriptors.
In order to prove the one for the generalized descriptors, it
will be enough to fix h = 0 in the following. By Theorem 3
it is enough to show that whenever I λ1,λ2,h

2 ( f ) = I λ1,λ2,h
h (g)

for a.e. λ1, λ2 ∈ S and any h ∈ ZN , then I λ,h
2 ( f ) = I λ,h

1 (g)

for a.e. λ ∈ S and any h ∈ ZN . We start by observing that by
the Paley–Wiener Theorem all these quantities are analytic,
since f and g are compactly supported. Moreover,

lim
λ1,λ2↓0

I λ1,λ2,h
2 ( f ) = N f̂ (0)| f̂ (0)|2 = N avg( f )3,

and the same is true for g. Thus, avg( f ) = avg(g). Finally,
the result follows observing that

lim
λ2↓0

I λ1,λ2,h
2 ( f ) = avg( f ) I λ1,h

2 ( f ).

��

5 Experimental Results

The goal of this section is to evaluate the performance of the
invariant Fourier descriptors defined in the previous section
on a large image database for object recognition. In addi-
tion to the generalized power-spectrum (PS) and bispectrum
(BS) and the rotational power-spectrum (RPS) and bispec-
trum (RBS), we also consider the combination of the RPS
and BS descriptors. Indeed, combining these two descrip-
tors seems to be a good compromise between the theoretical
result of completeness given by Theorem 2, which only holds
for the RBS, and computational demands, as the results on
the COIL-100 database will show.

After showing how to efficiently compute these descrip-
tors and presenting the image data-set, we analyze some
experimental results. In order to estimate the features capa-
bilities, we use a support vector machine (SVM) [39] as
supervised classification method. The recognition perfor-
mances of the different descriptors regarding invariance to
rotation, discrimination capability and robustness against
noise are compared.

5.1 Implementation

As proved in Theorem 3, the equality of the Fourier descrip-
tors we introduced does not depend on the choice of the
mother wavelet Ψ . Accordingly, in our implementation we
only computed the quantities introduced in Theorem 3,
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Fig. 1 Steps of computing the invariant descriptors. (S1) computation
of the shifted F FT of the image f , (S2) generation of the hexagonal
grid, (S3) extraction of different hexagons, (S4) evaluation of the F FT

of f on each extracted hexagon, (S5) generation of the vector ω f (λ)

and (S6) computation of the four invariants

whose complexity is reduced to the efficient computation
of the vector ω f (λ), for a given λ ∈ S. We recall that this
vector is obtained by evaluating the Fourier transform of f
on the orbit of λ under the action of discrete rotations R−k

for k ∈ ZN .
Let us remark that, although in our implementation we

chose this approach, in principle fixing a specific mother
wavelet could be useful to appropriately weight descriptors
depending on the associated frequencies. Indeed, prelimi-
nary tests with a Gabor mother wavelet (which can be easily
shown to be in R) showed slightly better results at a bigger
computational cost.

For the implementation we chose to consider N = 6 and
to work with images composed of hexagonal pixels. There
are two reasons for this choice:

– It is well-known that retinal cells are distributed in a
hexagonal grid, and thus it is reasonable to assume that
cortical activations reflect this fact.

– Hexagonal grids are invariant under the action of Z6 and
discretized translations, which is the most we can get in
the line of the invariance w.r.t. SE(2, 6). Indeed, apart
from the hexagonal lattice, the only other lattices on R

2

which are invariant by some ZN and appropriate discrete
translations are obtained with N = 2, 3, 4.

The different steps of computation of the descriptors6 are
described in Fig. 1 and given as follows:

6 MATLAB sample code for the implementation of the rota-
tional bispectral invariants can be found at https://nbviewer.
jupyter.org/github/dprn/bispectral-invariant-svm/blob/master/
Invariant_computation_matlab.ipynb

Table 1 Dimension of the
feature vectors for the Fourier
descriptors under consideration

Descr. Dim.

PS 136

BS 717

RPS 816

RBS 4417

RPS + BS 1533

1. The input image is converted to grayscale mode, the
Fourier transform is computed via FFT, and the zero-
frequency component is shifted to the center of the
spectrum (Fig. 1, S1).

2. For cost computational reasons and since we are dealing
with natural images, for which the relevant frequencies
are the low ones, we extract a grid of 16 × 16 pixels
around the origin (Fig. 1, S2).

3. The invariants of Theorem 3 are computed from the
shifted Fourier transform values, on all frequencies in
an hexagonal grid inside this 16 × 16 pixels square. A
bilinear interpolation is applied to obtain the correct val-
ues ofω f (λ) (Fig. 1, S3, S4, S5, S6). The final dimension
of the feature vector is given in Table 1.

5.2 Test Protocol

We use the Fourier descriptors to feed an SVM classifier,
via the MATLAB Statistics and Machine Learning Toolbox,
applying it on a database of 7200 objects extracted from the
Columbia Object Image Library (COIL-100) and a database
of 400 faces extracted from ORL face database. Finally, we
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compare the results obtained with those obtained using tra-
ditional descriptors.

The result of the training step consists of the set of support
vectors determined by the SVM-based method. During the
decision step, the classifier computes the Fourier descriptors
and the model determined during the training step is used to
perform the SVM decision. The output is the image class.

ForCOIL-100database, twocases are studied: a casewith-
out noise and another with noise. In the first one, tests have
been performed using 75%of the COIL-100 database images
for training and 25% for testing.In the second one, we have
used a learning data-set composed of all the 7200 images
(100 objects with 72 views) without noise and a testing data-
set composed of 15 randomly selected views per object to
which an additive Gaussian noise with Sd of 5, 10 and 20
was added (see Fig. 4).

We evaluate separately the recognition rate obtained using
the four previous invariant descriptors and the combination of
the RPS&BS invariants to test their complementarity. Then,
we compare their performancewith theHu’smoments (HM),
the Zernike’s moments (ZM), the Fourier–Mellin transform
(FM), described in Appendix 1, and the local SIFT and HOG
descriptors [12] whose performance under the same condi-
tions has been tested in [7],

Since we use the RBF kernel in the SVM classification
process, this depends on the kernel size σ . The results pre-
sented here are obtained by choosing empirically the value
σopt that provided maximum recognition rate.

5.3 Experiments

The performances of the different invariant descriptors are
analyzed with respect to the recognition rate given a learning
set. Hence, for a given ratio, the learning and testing sets
have been built by splitting randomly all examples. Then,
due to randomness of this procedure,multiple trials have been
performed with different random draws of the learning and
testing set. In the case of an added noise, since as mentioned
before the learning set comprised all images, this procedure
is applied only to the testing set.

The parameters of our experiments are the following:

1. The learning set ci corresponding to the values of an
invariant descriptor computed on an image from the data-
base;

2. The classes ĉi ∈ {1, 100} corresponding to the object
class.

3. Algorithm performance: the efficiency is given through
a percentage of the well recognized objects composing
the testing set.

4. Number of random trials: fixed to 5.

Fig. 2 Sample objects of COIL-100 database

5. Kernel K: a Gaussian kernel of bandwidth σ is chosen

K (x, y) = e
−‖x−y‖2

2σ2

x and y correspond to the descriptors vectors of objects.

For solving a multi-class problem, the two most popular
approaches are the one-against-all (OAA) method and the
one-against-one (OAO) method [29]. For our purpose, we
chose an OAO SVM, because it is substantially faster to train
and seems preferable for problems with a very large number
of classes.

5.3.1 COIL-100 Databases

The Columbia Object Image Library (COIL-100, Fig. 2) is a
database of color images of 100 different objects, where 72
images of each object were taken at pose intervals of 5◦.

5.3.2 Classification Performance

Table 2 presents results obtained testing our object recogni-
tion method with the COIL-100 database. The best results
were achieved using the local SIFT descriptor. The RBS
comes in the second place and the local HOG features come
third. Indeed it has been demonstrated in the literature, these
local methods currently give the best results. However, if
noise is added on the image, the use of global approach is
better than the use of local ones. The main reason is that
the key-points detector used in the local method produce in
these cases many key-points that are nor relevant for object
recognition. This will be shown in the next subsection.

In Fig. 3 we present the recognition rate as a function of
the size of the training set. As expected, this is an increasing
function and we remark that the RBS and the combination of
the RPS and the BS give better results than the other global
invariant descriptors.
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Table 2 Recognition rate for each descriptor using the COIL-100 data-
base. The test results for ZM, HM, FM, and SIFT are taken from [7]

Descriptors Recognition rates (%)

RBS 95.5

BS 88

PS 84.3

RPS 89.8

RPS+BS 92.8

ZM 91.9

HM 80.2

FM 89.6

HOG 95.3

SIFT 100

The best results for each trial are given in bold

5.3.3 Robustness Against Noise

Also in this case, test results for ZM, HM, FM, and SIFT are
taken from [7].

Results presented in Table 3 show that noise has little
influence on classification performancewhenwe use a global
descriptor such as RBS, BS, the combination of BS & RPS,

ZM,HMandFM. It has however a sensible effect on the SIFT
local descriptor, and a big one on the HOG local descriptor.

5.3.4 The ORL Database

The Cambridge University ORL face database (Fig. 5) is
composed of 400 gray level images of ten different patterns
for each of 40 persons. The variations of the images are across
time, size, pose and facial expression (open/closed eyes, smil-
ing/not smiling), and facial details (glasses/no glasses).

In the literature, the protocol used for training and testing is
different from one paper to another. In [36], a hiddenMarkov
model (HMM) based approach is used, and the best model
resulted in recognition rate of 95%, with high computational
cost. In [21], Hjelmas reached a 85% recognition rate using
the ORL database and feature vector consisting of Gabor
coefficients.

We perform experiments on the ORL database using the
RBS, BS, PS, RPS, ZM, HU, FM, and the combination of
the RPS & BS descriptors. Since the local descriptors SIFT
and HOG obtained, predictably, almost perfect scores, we do
not present them. The results are shown in Table 4, where we
clearly see that the RBS invariant descriptor gives the best
recognition rate c = 89.8%, faring far better than before
w.r.t. the combination of RPS and BS descriptors.

Fig. 3 Classification rate for
different size of the training
database. The test results for
ZM, HM, FM, and SIFT are
taken from [7]

Table 3 Classification rate on COIL-100 noisy database. The test results for ZM, HM, FM, and SIFT are taken from [7]

Sd RBS (%) BS (%) PS (%) RPS (%) RPS+BS (%) ZM (%) HM (%) FM (%) SIFT (%) HOG (%)

5 100 100 71.5 99.8 100 100 95.2 98.6 89.27 4

10 100 100 71.2 99.8 100 100 95.2 95.2 88.89 1.2

20 100 100 67.8 99.8 100 100 91.4 90.2 85.46 1

The best results for each trial are given in bold
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Fig. 4 Sample of COIL-100 noisy object

Fig. 5 Face samples from the ORL database

Table 4 Recognition rate for each descriptor using the ORL database

Descriptors Recognition rates (%)

RBS 89.8

BS 67.9

PS 49.2

RPS 76.9

RPS+BS 79.8

ZM 75

HM 43.5

FM 47.6

The best result for each trial is given in bold

6 Conclusion and Perspectives

In this paper, we presented four Fourier descriptors over
the semidiscrete roto-translation group SE(2, N ). Then, we
proved that the generalized power-spectrum (PS) and bispec-
trum (BS)—and thus the rotational power-spectrum (RPS)
and bispectrum (RBS)—are weakly complete, in the sense
that they allow to distinguish over an open and dense set of
compactly supported functions ϕ ∈ L2(SE(2, N )) up to the
SE(2, N ) action. This generalizes a result of [38]. We then
considered a framework for the application of these Fourier
descriptors to roto-translation invariant object recognition,
inspired by some neurophysiological facts on the human
primary visual cortex. In this framework, we showed that
the rotational bispectrum is indeed a weakly complete roto-
translation invariant for planar images. Moreover, although
the proposed Fourier descriptors are given in terms of com-

plex mathematical objects, we showed that they can be
implemented in a straightforwardway as linear combinations
of the values of the 2D Fourier transform of the image.

In the second part of the paper, we proposed an eval-
uation of the performances of these Fourier descriptors in
object recognition and we presented the results obtained on
different databases: the COIL-100 database, composed of
several objects undergoing 3D rotation and scales changes,
and the ORL-database, on which different human faces are
subject to several kinds of variations. For both these data-
bases, the global Fourier descriptors introduced in this paper
are themost efficient global descriptors tested, equalled only,
for noisy images, by the Zernike Moments. Although for
unperturbed images the local SIFT descriptor gives better
recognition rate, the addition of noise leads to the global
descriptors outperforming the local ones. These results thus
show the rotational bispectrum (RBS) to be a very good
Fourier descriptor for object recognition, consistently with
the theoretical weak completeness result. When the dimen-
sion of the feature vector is an issue, the RBS can be replaced
by a combination of the generalized bispectrum (BS) and
the rotational power-spectrum (RPS), which yields slightly
worse results with a feature vector of length almost one-third.

An extension of the object recognition method presented
in this paper to an AdaBoost framework for the problem of
object detection is currently ongoing.
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Appendix 1: Moment Invariants and
Fourier–Mellin Transform

In this section, following [7], we review the two most used
classes of moment invariants, Hu and Zernike, and Fourier–
Mellin descriptors, that we use as a comparison for our
generalized Fourier descriptors.

Moment invariants were first introduced to the pattern
recognition and image processing community in 1962 by Hu
[22], with the introduction of the seven Hu moments which
are invariants under translation, rotation and scaling. These
are derived from a scaling and translation invariant modifi-
cation of the standard moments of an image I : R

2 → R.
Namely,

vp,q = u p,q

u
(1+ p+q

2 )

0,0

,

where

u p,q =
∫

R2

(x − x0)
p(y − y0)

q I (x, y)dxdy,
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and x0 = m1,0
m0,0

and y0 = m0,1
m0,0

are the coordinates of
the barycenter computed via the standard (p + q)th order
moments of I :

m p,q =
∫
R2

x p yq I (x, y)dxdy.

Another important class of moments are the Zernike ones,
introduced in [9] and computed via orthogonal Zernike poly-
nomials. The Zernike moment of order (m, n) is:

Zmn = m + 1

n

∑
x

∑
y

I (x, y) [Vmn(x, y)],

where x2 + y2 < 1 and Vmn(x, y) are the Zernike polynomi-
als defined in polar coordinates as Vmn(r, θ) = Rmn(r)e jnθ ,
where

Rmn(r) =
m−|n|

2∑
s=0

(−1)s(m − s)!rm−2s

s!
(

m+|n|
2 − s

)
!
(

m−|n|
2 − s

)
!

These moments present several advantages. Indeed, beside
a rotation and translation invariance they have nice orthog-
onality properties and are considered to be robust against
image noise. In particular, the orthogonality property helps
in achieving a near zero value of redundancy measure in a
set of moments functions [8].

Finally, strictly related to Fourier descriptors are the
descriptors obtained via Fourier–Mellin transform (FMT),
presented in [13]. The FMT of an image I , that we assume
to be given in polar coordinates, is defined as:

MI (u, v) = 1

2π

∫ 2π

0

∫ ∞

0
I (r, θ)r−ive−iuθ dr

r
dθ.

Following [13], we will indeed compute the analytical
Fourier–Mellin transform (AFMT). That is, we replace I in
the above definition with its regularized version Iσ (r, θ) =
rσ I (r, θ), where σ > 0. Finally, each feature MIσ (u, v) is
modified in order to compensate for the rotation, translation
and size changes of the object.

Appendix 2: Auxiliary Lemmata for the Proof of
Theorem 1

Lemma 1 The set G introduced in Theorem 1 is open and
dense in L2(K × ZN ).

Proof Westart by showing thatG �= ∅. To this aim, it suffices
to consider ϕ such that ϕ(·, k) ≡ 0 for all k ∈ ZN \ {0} and
ϕ(·, 0) �= 0 such that suppF(ϕ(·, 0)) = R

2. By (6), we then
have ϕ ∈ G, since

det ϕ̂(T λ) =
∏

k∈ZN

F(ϕ(·, 0))(R−kλ) �= 0 ∀λ ∈ S.

For any ϕ ∈ G and k ∈ ZN , the Paley–Wiener Theorem
implies thatF(ϕ(·, k)) is analytic. In particular, by (6), λ �→
det ϕ̂(T λ) is analytic. Thus, ϕ ∈ G if and only if ϕ(T λ0) is
invertible for some λ0 ∈ S.

We claim that the set G is dense. Indeed, let ϕ /∈ G and
fix some η ∈ G and λ0 ∈ S such that η̂(T λ0) is invertible.
By analyticity of ε �→ det(ϕ̂(T λ0) + εη̂(T λ0)) follows that
ϕ + εη ∈ G for sufficiently small ε > 0, which entails that
ϕ ∈ Ḡ, proving the claim.

Let us prove that G is open in L2(K ×ZN ). To this aim, fix
ϕ ∈ G andϕn → ϕ in L2(K ×ZN ). This implies that ϕ̂n → ϕ̂

in L2( ̂SE(2, N )), and in particular that ϕ̂n → ϕ̂ in measure.
By definition of convergence in measure, this implies that
for sufficiently big n it has to hold det ϕ̂n(T λ0) �= 0. Hence
ϕn ∈ G for n sufficiently big and G is open. ��

Before diving into the proofs of the other auxiliary lem-
mata, we make the following observation. Let λ1, λ2 ∈ I
be such that λ1 + Rkλ2 ∈ I for all k ∈ ZN . Applying the
Induction–Reduction theorem (9) to (11) yields

A ◦ U (T λ1) ⊗ U (T λ2) ◦ A−1

=
⊕

k∈ZN

ϕ(T λ1+Rkλ2)−1η(T λ1+Rkλ2)

=
⊕

k∈ZN

U (T λ1+Rkλ2). (15)

Lemma 2 The function λ �→ U (T λ) is continuous on I .

Proof Fix λ0 ∈ I and an open set V ⊂ R
2 such that

∫
V

U (T λ2)∗i, j dλ2 > 0 ∀i, j ∈ ZN .

This is possible sinceU �≡ 0. Since the set I is open dense, up
to reducing V we can assume that there exists a neighborhood
W of λ0 such that V + λ ⊂ I for any λ ∈ W . Then, (15)
holds for λ1 ∈ W and λ2 ∈ V . Explicitly computing the 0, 0
block of (15), we have

U (T λ1)i, jU (T λ2)∗i, j = U (T λ1+λ2)i, j ∀i, j ∈ ZN .

Then, integrating it over V w.r.t. λ2 yields

U (T λ1)i, j =
∫

V +λ
U (T λ2)i, j dλ2∫

V U (T λ2)∗i, j dλ2
∀λ1 ∈ W,∀i, j ∈ ZN

Since the function on the r.h.s. is clearly continuous on W
this proves the continuity at λ0 of λ �→ U (T λ), completing
the proof. ��
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Lemma 3 The function λ �→ U (T λ) can be extended to a
continuous function on R

2 for which (11) is still true.

Proof Let λ0 /∈ I . Since I is an open and dense set, this
implies that λ0 is in its closure and that we can choose
λ1, λ2 ∈ I such that λ0 = λ1 + Rk0λ2 for some k0 ∈ ZN and
λ1 + Rkλ2 ∈ I for any k �= k0. We then let

U (T λ0) := (
A ◦ U (T λ1) ⊗ U (T λ2) ◦ A∗)k0,k0

. (16)

We now prove that the above definition does not depend
on the choice of λ1, λ2 and k0. By openness of I , there exists
a neighborhood V of λ2 entirely contained in I . Then, up to
taking a smaller V , it holds that λ1 + Rk0λ

′
2 ∈ I for any λ′

2 ∈
V \ {λ2}. By (15), this implies that for any μ1 + R�μ2 = λ0
it holds

(A ◦ U (T λ1) ⊗ U (T λ′
2) ◦ A∗)k0,k0 =

(A ◦ U (T μ1) ⊗ U (T μ′
2) ◦ A∗)�,�.

for λ′
2 and μ′

2 sufficiently near, but different, to λ2 and μ2,
respectively. By the continuity ofU on I , proved inLemma2,
this implies that this equation has to hold also for λ′

2 = λ2
and μ′

2 = μ2. Hence, (16) does not depend on the choice of
λ1, λ2 and k0.

Finally, the fact that f̂ (T λ1 ⊗ T λ2)◦U (T λ1)⊗U (T λ2) =
ĝ(T λ1 ⊗ T λ2) for any λ1, λ2 follows from (16) and (15). ��
Lemma 4 There exists a ∈ SE(2, N ) such that U (T λ) =
T λ(a).

Proof By definition of U it holds that

⊕
k∈ZN

U (T λ1+Rkλ2) ◦ A = A ◦ U (T λ1) ⊗ U (T λ2) ∀λ1, λ2 �= 0.

Then, for any i, j, �, k,

U (T λ1)�,iU (T λ2)�−k, j=
{

U (T λ1+Rkλ2)�,i if j = i − k,

0 otherwise.

(17)

By invertibility of U (T λ1), there exists i0 ∈ ZN such that
U (T λ1)0,i0 �= 0. Using (17) this implies that U (T λ2)−k, j =
0 for any j �= i0−k. Namely, we have proved that there exists
a family of functions ϕ−k : S → C such that U (T λ1)−k,· =
ϕ−k(λ1) δi0−k or, equivalently, that

U (T λ) = diagkϕk(λ) Si0 .

By the explicit expression (4) of T λ, in order to complete the
proof it suffices to prove that ϕk(λ) = ei〈x0,R−kλ〉 for some
x0 ∈ R

2.

By continuity and unitarity of U , the ϕks are continuous
and satisfy |ϕh(λ)| = 1. Using again (17) with j = i0 − k,
we obtain

ϕ�(λ1 + Rkλ2) = ϕ�(λ1)ϕ�−k(λ2), (18)

for any λ1, λ2 �= 0 and �, k ∈ ZN .
We claim that the ϕ�‘s are characters of R

2. Indeed, let us
fix k = 0 in (18):

ϕ�(λ1 + λ2) = ϕ�(λ1)ϕ�(λ2). (19)

Choosing λ2 = −λ1 in the above shows that ϕ� can be
extended at 0. Moreover, letting λ1 = 0 and taking the limit
λ2 → 0 shows that this extension is continuous. Since char-
acters of R

2 are exactly the continuous functions satisfying
(19), the claim is proved.

By Pontryiagin duality, there exists x� ∈ R
2 such that

ϕ�(λ) = ei〈λ,x�〉. Finally, by (18) with k ∈ ZN one obtains
that R−k x� = x�−k , which proves that there exists x0 ∈ R

2

such that ϕ�(λ) = ei〈x0,R−kλ〉. This completes the proof of
the statement. ��

Appendix 3: Proofs

Proof (Formula (12)) Let λ ∈ S and consider v ∈ C
N .

Observe that (x, k)−1 = (−R−k x,−k). Then, by (5), (2),
and (4), for any h ∈ ZN we have

(L̂(T λ).v)h =
N−1∑
k=0

∫
R2

L(x, k)e−i〈λ,Rh−k x〉vh−k dx

=
N−1∑
k=0

vh−k

∫
R2

∫
R2

f (y)Ψ̄ (R−k(y − x))e−i〈λ,Rh−k x〉 dy dx

=
N−1∑
k=0

vh−k

∫
R2

∫
R2

Ψ̄ (z) f (y)e−i〈Rk−hλ,y−z〉 dy dz

= ¯̂
Ψ (Rhλ)

N−1∑
k=0

vh−k f̂ (Rk−hλ)

= ωΨ (λ)h〈ω f (λ), v〉.

By definition of ωΨ (λ)∗ ⊗ω f (λ)∗; this completes the proof.
��

In order to prove Theorem 3, we need the following
explicit description of the equivalence in the Induction–
Reduction theorem of Sect. 3.1.

Lemma 5 For any M, N ∈ C
N×N we have

(
A ◦ (M ⊗ N ) ◦ A−1

)k,h = (Mi, j Ni−k, j−h)i, j∈ZN .

Proof Observe that for any v ∈ C
N ⊗ C

N it holds (M ⊗
N ).v = M ◦ v ◦ N T . Thus,
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[A ◦ (M ⊗ N ).v]k(i) =
N−1∑
j,�=0

Mi, j Ni−k,� v( j, �).

Since is straightforward to check that A−1 : ⊕
k∈ZN

C
N →

C
N×N is given by [A−1(w�)�∈ZN ](k, h) = wk−h(k), we then

have

[A ◦ (M ⊗ N ) ◦ A−1.(wh)h∈ZN ]k(i)

=
N−1∑
j,�=0

Mi, j Ni−k,� w j−�( j)

=
N−1∑
j,h=0

Mi, j Ni−k, j−h wh( j).

By (8), the proof is completed. ��
Proof (Proof of Theorem 3) Without loss of generality we
can restrict ourselves to consider functions such that φ f =
f and Lc f = L f . We start by the trivial remark that the
result on the rotational descriptors contains the one on the
generalized ones.

Let us consider

I λ,h
2 ( f ) := 〈ω f (Rhλ), ω f (λ)〉,

I λ1,λ2,h
2 ( f ) := 〈ω f (Rhλ1) � ω f (λ2), ω f (λ1 + λ2)〉.

Since f is assumed to be compactly supported, its Fourier
transform is analytic, and so are the functions λ �→ I λ,h

2 ( f )

and (λ1, λ2) �→ I λ1,λ2,h
2 ( f ) for any h ∈ ZN . Thus, the

statement of the proposition reduces to show that RPSL f =
RPSLg (resp. RBL f = RBLg) if and only if I λ,h

2 ( f ) =
I λ,h
2 (g) (resp. I λ1,λ2,h

2 ( f ) = I λ1,λ2,h
2 (g)) for a.e. λ, λ1, λ2 ∈

S and all h ∈ ZN

Let us recall the following properties of the tensor product,
valid for all v, v1, v2, w,w1, w2 ∈ C

N :

1. (v ⊗ w)∗ = v ⊗ w,
2. (v1 ⊗ w1) ◦ (v2 ⊗ w2) = 〈w1, v2〉 v1 ⊗ w2,

By these and (12), we immediately have

RPSLc f (λ, h) = 〈ωφ f (Rhλ)∗, ωφ f (λ)∗〉 ωΨ (Rhλ)∗ ⊗ ωΨ (λ)∗

= I λ,h
2 ( f ) ωΨ (Rhλ)∗ ⊗ ωΨ (λ)∗.

Hence,wheneverωΨ (Rhλ)∗⊗ωΨ (λ)∗ �= 0,RPSLc f (λ, h) =
RPSLcg(λ, h) if and only if I λ,h

2 ( f ) = I λ,h
2 (g). Since

ωΨ (Rhλ)∗ ⊗ ωΨ (λ)∗ �= 0 if and only if ωΨ (λ) �= 0, by
the fact that Ψ ∈ R this is true for a.e. λ ∈ S. This com-
pletes the proof of the part of the statement regarding the
rotational power-spectrum.

To prove the statement regarding the rotational bispec-
trum, let B f = A ◦ RBSL f (λ1, λ2, h) ◦ A−1, where A
is the equivalence given by the Induction–Reduction The-
orem and defined in (10). Since A is invertible, determining
RBSL f (λ1, λ2, h) is equivalent to determining B f . Exploit-
ing the fact that the r.h.s. of (9) is a diagonal matrix, we
have

Bk,�
f =

(
A ◦ L̂ f (T Rhλ1) ⊗ L̂ f (T λ1) ◦ A−1

)k,�

◦L̂ f (T λ1+R�λ2)∗.

By Lemma 5, formula (12), and explicit computations, we
then get

Bk,�
f = 〈

ω f (Rhλ1) � ω f (R�λ2), ω f (λ1 + R�λ2)
〉

× (
ωΨ (Rhλ1)

∗ � ωΨ (Rh+kλ2)
∗) ⊗ ωΨ (λ1 + R�λ2).

Similarly to before, (ωΨ (Rhλ1)
∗ � ωΨ (Rh+kλ2)

∗)⊗ωΨ (λ1
+ R�λ2) �= 0 for a.e. λ1, λ2 ∈ S since Ψ ∈ R. For these
couples, B f = Bg if and only if

〈
ω f (Rhλ1) � ω f (R�λ2), ω f (λ1 + R�λ2)

〉
= 〈

ωg(Rhλ1) � ωg(R�λ2), ωg(λ1 + R�λ2)
〉
.

Finally, making the change of variables R�λ2 �→ λ2 com-
pletes the proof of the theorem. ��
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