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Abstract This paper describes two sequential methods for
recovering the camera pose together with the 3D shape of
highly deformable surfaces from a monocular video. The
nonrigid 3D shape is modeled as a linear combination of
mode shapes with time-varying weights that define the shape
at each frame and are estimated on-the-fly. The low-rank
constraint is combined with standard smoothness priors to
optimize the model parameters over a sliding window of
image frames. We propose to obtain a physics-based shape
basis using the initial frames on the video to code the time-
varying shape along the sequence, reducing the problem from
trilinear to bilinear. To this end, the 3D shape is discretized
bymeans of a soup of elastic triangular finite elements where
we apply a force balance equation. This equation is solved
using modal analysis via a simple eigenvalue problem to
obtain a shape basis that encodes the modes of deformation.
Even though this strategy can be applied in a wide variety
of scenarios, when the observations are denser, the solution
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can become prohibitive in terms of computational load. We
avoid this limitation by proposing two efficient coarse-to-
fine approaches that allow us to easily deal with dense 3D
surfaces. This results in a scalable solution that estimates a
small number of parameters per frame and could potentially
run in real time. We show results on both synthetic and real
videoswith ground truth 3Ddata, while robustly dealingwith
artifacts such as noise and missing data.

Keywords Sequential nonrigid structure from motion ·
Dense reconstruction · Modal analysis · Finite elements

1 Introduction

The combined inference of 3D scene structure and camera
motion from monocular image sequences, or rigid Struc-
ture from Motion (sfm), is one of the most active areas of
research in computer vision. In the last decade, sfmmethods
have made significant progress in simultaneously retrieving
camera motion and 3D shape in real time for a sparse set
of salient points [16,27,34] and even per-pixel dense recon-
structions from video sequences acquired with a hand-held
camera [36,37] or with a micro aerial vehicle [62]. While
sfm is now considered to be a mature field, these methods
cannot be applied to structures undergoing nonrigid defor-
mations, where the problem remains a challenge. In these
cases, recovering the 3D structure of a deformable object
from a monocular image sequence is an ill-posed problem
since many different 3D shapes can have the same image
measurements, producing severe ambiguities.

Nonrigid structure from motion (nrsfm) addresses this
limitation and methods from this field are now capable
of estimating simultaneously accurate 3D reconstructions
of nonrigid objects and camera motion from monocular
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Fig. 1 On-line camera motion and nonrigid 3D shape frommonocular
image sequence. Our approaches consist of two stages: initialization
and on-line estimation. Left In stage one, we use a few initial frames to
estimate a shape at rest that we model by means of a soup of elastic tri-
angular finite elements and to estimate the stiffness and mass matrices.
Finally, we compute a shape basis by solving a simple eigenvalue prob-
lem using modal analysis. For dense cases, we present two strategies:

a frequency-based and a coarse-to-fine approach. Right In stage two,
we estimate camera motion and deformable 3D shape in a sequential
manner over a sliding temporal window of frames. When a new frame
f +1 is available, the temporal window shifts—bluewindow—and the
new frame is processed. For this stage, we propose two approaches: a
BA based using temporal smoothness priors and an EM-based using
spatial ones (Color figure online)

video. The underlying principle behind most approaches
is to model deformations using a low-rank shape basis [9,
12,15,21,39,40,57] or a trajectory basis [8,41]. However,
nrsfmmethods remain behind their rigid counterparts when
it comes to real-time performance. The main reason behind
this is that they are typically limited to batch operations
where all the frames in the sequence are processed at
once, after the whole acquisition, preventing them from on-
line and real-time performance applications. Only recently,
have nrsfm methods been extended to sequential process-
ing [3,40,51] using a small set of salient points. However,
they remain slow [40,51] or do not scale to the use of a large
number of points [3,40,51].

In this paper, we push monocular nrsfm forward toward
real-time operation by proposing two fast sequential algo-
rithms to simultaneously recover the nonrigid 3D shape and
camera pose of strongly deforming surfaces under realistic
real-world assumptions.Our approaches can dealwith signif-
icant occlusions; they are suitable formodeling awide variety
of deformations from inextensible to highly extensible with-
out the need for a pre-trained model, and they can be used to
handle both sparse and dense data. To this end, we employ a
linear combination ofmode shapes—computed using contin-
uum mechanics from a 3D rest shape estimation—to model
the nonrigid 3D shape. Our on-line approaches work in two
stages (see Fig. 1). In stage one, we estimate a shape at rest
from the first few frames by means of a rigid factorization
and then obtain a physics-based shape basis by solving a
simple eigenvalue problem. In stage two, equipped with this
low-rank shape constraint, the operation in a sequential man-
ner over a sliding temporal window of frames is possible. To
perform this stage, we propose two algorithms. The first is
based on bundle adjustment (BA) with temporal smoothness
priors, where the only parameters to estimate per-frame are
the camera pose and the basis coefficients. The second uses
a probabilistic model of the linear subspace with a Gaussian

prior on eachmode to encode the nonrigid 3D shape, i.e., spa-
tial smoothness priors are assumed. Since the basis weights
in the subspace are marginalized out, this method only opti-
mizes per every frame the camera pose and a measurement
noise byusing expectationmaximization (EM). In both cases,
the number of parameters to estimate per frame is small, and
our methods are fast and may potentially run in real time
at frame rate. Although our shape basis is computed con-
sidering only the rest shape, it has proven experimentally to
be able to code subsequent scene deformations without the
need for 3D pre-learned data. It is worth pointing out that
this shape basis is able to describe future deformations of
the shape at rest (see experimental section). So for the same
rest shape, our shape basis can code very different types of
deformations.

Regarding the computation of mode shapes, while our
methods can be directly applied from sparse to dense recon-
structions, solving the stage one for dense cases could
become prohibitive (see Fig. 1) in terms of computational
load. To efficiently encode the deformations in these cases,
we also propose two methods: (1) a frequency-based method
where the dense mode shapes are computed using an inter-
val of frequencies obtained in a low-resolution mesh, and
(2) a coarse-to-fine approach where the dense shape at rest
is down-sampled to a sparse mesh where modal analysis is
applied at a low computational cost. These sparse 3D shapes
are grown back to dense by exploiting the shape functions1

to encode the geometry into the finite elements.
This paper combines and extends two conference publica-

tions [4,5]. Here, we integrate these preliminary publications
into a comprehensive presentation of our sequential approach
to retrieve 3D nonrigid shapes together with camera motion
from monocular video. We also present a novel frequency-

1 In this work, we denote shape functions as the approximation func-
tions that interpolate the solution using the discrete values obtained at
the mesh nodes.
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based algorithm to compute stretching modes at low com-
putational cost. In addition, we conduct new experiments to
measure our algorithm’s resilience to corrupted observations
such as noise and missing data, and to compare the perfor-
mance of its different variants. We also show more extensive
comparisons of our results with othermethods reported in the
literature. The paper is organized as follows. In section two,
we discuss the related work and describe the contributions
of our work. Section three defines our novel physics-based
deformation model. In section four, we formulate the prob-
lem of on-line recovery of camera motion and time-varying
shape from a monocular sequence. This is followed in sec-
tion five by a description of our sequential algorithms used
to solve the previous problem using different priors. In sec-
tion six, we show our experimental results and present a
comparison with respect to state-of-the-art techniques. Our
conclusions are set out in section seven. Finally, to keep the
paper self-contained, we provide an appendix with mathe-
matical details.

2 Related Work

nrsfm is an inherently ill-posed problem unless additional
a priori knowledge of the shape and camera motion is con-
sidered. A seminal work by [12] proposed a low-rank shape
constraint as an extension of the [54] factorization algorithm
to the nonrigid case. Their key insight was to model time-
varying shape as a linear combination of an unknown shape
basis under orthography. Although this prior has proved to be
a powerful constraint, it is insufficient to solve the inherent
ambiguities in nrsfm. It was shown in [7] that the low-
rank shape prior in addition to orthonormality constraints
on camera motion are sufficient for noise-free observations.
Recently, [15] imposed the low-rank shape constraint directly
on the time-varying shape matrix via a trace normminimiza-
tion approach.

Most approaches have required the use of additional pri-
ors using different optimization schemes to include temporal
smoothness [3,9,17,57,61], smooth-time trajectories [8,25],
inextensibility constraints [61], rigid priors [6], and spatial
smoothness [21,57]. BA has become a popular optimiza-
tion tool for refining an initial rigid solution [54] optimizing
the pose, shape basis, and coefficients while incorporating
both motion and deformation priors [9,17]. A solution in
[39] recovers motion matrices that lie on the correct motion
manifold where the metric constraints are exactly satisfied.
More recently, [21] combined a low-rank shape and local
smoothness priors within a variational approach to produce
per-pixel dense vivid reconstructions. A dual formulation
using a trajectory basis was proposed in [8], where prede-
fined discrete cosine trajectory bases are used to express the
trajectory of each 3Dpoint, considering each point as an inde-

pendent object. Smoothness for the time-trajectory of each
single point was assumed in [25].

Piecewise models have been proposed to encode more
accurately strong local deformations. Piecewise planar [60],
locally rigid [13,52], or quadratic [20] approaches rely on
common features shared between patches to enforce global
consistency. [45] proposed a formulation to automate the best
division of the surface into local patches. Later, [3] proposed
a finite element method (FEM) formulation providing sup-
port for a piecewise approach where the local elements are
stretchable triangles. The FEMmodeling assures deformable
surface continuity without additional constraints.

The alternative strand of methods known as template
based [33,38,46,47] rely on correspondences between the
2D points in the current image and a reference 3D shape
which is assumed to be known in advance. In [33,47], the
unknown shape was encoded as a linear combination of
deformation modes learnt in advance from a relatively large
set of training data. [38] introduced the Laplacian formalism
in computer vision to regularize 3Dmesheswithout requiring
any training data. To avoid inherent ambiguities, additional
shape constraints are required such as inextensibility [33,38].
Recently, [61] showed the exclusive use of these constraints,
and it is sufficient to perform nonrigid reconstruction but
only for isometric deformations, limiting the applicability of
method.

On the other hand, spatial smoothness can be coded by
means of probabilistic priors, although they have not been
extensively used to recover nonrigid structure and camera
motion. These priors allow themarginalization of hidden data
that does not have to be explicitly computed, simplifying
the optimization problem and avoiding over-fitting. Proba-
bilistic Bayesian priors have been used in nrsfm to model
deformation weights in a low-dimensional subspace based
on principal component analysis (PCA) [56], the remaining
model parameters being estimated by EM. These priors have
also been used in template-based methods, where a Gaussian
process latent variable model was employed to learn a prior
over the deformations of local surface patches [47]. More
recently, [28] proposed a Procrustean normal distribution
to model shape deformation without additional constraints.
The unknown shape is encoded as a linear combination of
deformation modes learned on-the-fly for a relatively small
deformation [56], or in advance from a relatively large set of
training data [47]. However, the large deformations of real-
world shapes may need larger values of rank, and hence the
reconstruction becomes under-constrained for methods that
learn deformation modes on the fly [56]. This ambiguity can
be reduced using a predefined basis in terms of shape or tra-
jectory which acts as a representative basis while reducing
the number of parameters to be estimated. A shape basis
could be estimated with a learning step over nonrigid 3D
training data, but this information is not always available in
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advance in which case alternative methods to obtain a prede-
fined basis are necessary. Probabilistic priors have also been
used to model nodal forces in a physics-based deformation
model combining an extended kalman filter (EKF) with the
FEM to predict nonrigid displacements [2,3].

Mechanical priors have also been proposed to constrain
the deformations of nonrigid objects. Early approaches
used deformable superquadrics [32], balloons [14] or spring
meshes [26], although these approaches were only valid to
code relatively small deformations. The FEM was proposed
to accurately represent specificmaterials [59,65]with known
material properties. To tackle the high dimensionality of
these physics-based models, a low-rank representation was
proposed by applying modal analysis over a known struc-
ture discretized in 3D finite elements [35,42]. This method
was then applied to image segmentation [43], medical imag-
ing [35], and deformable 2D motion tracking [48,50]. [42]
integrated the incremental updates of the basis coefficients
over time using an EKF. This resulted in inevitable drift
that eventually destroyed the ability to accurately reconstruct
the nonrigid object. Recently, linear elasticity models have
been proposed in [3,30] to code the extensible deformation
of nonrigid objects, factorizing out the material properties
into a normalized forces vector [3] or optimizing a stretch-
ing energy with respect to these [30].

Despite these advances, previous approaches to
nrsfm typically remain batch and process all the frames
in the sequence at once, after video capture. While sequen-
tial real-time sfm [27,34,36] solutions exist for rigid scenes,
on-line estimation of nonrigid shape from a single camera
based only on themeasurements up to that moment remains a
challenging problem. Sequential formulations have emerged
only recently [3,40,51]. The first sequential nrsfm system
was proposed in [40], based on BA over a sliding window
with an implicit low-rank shape model. In [51], an incremen-
tal principal component analysis was proposed to model the
shape basis. However, these approaches did not achieve real-
time performance and were only demonstrated for a small
number of feature points and small deformations. The first
real-time on-line solution for nrsfm including feature track-
ing and outliers detection in a single process was proposed
in [2,3], combining an EKF with FEM to estimate a small
set of salient points which belong to a deformable object.

In this work, we present two sequential approaches over
a sliding window to solve the nrsfm problem as the data
arrive. In both cases, we use a predefined physics-based
model to define a number of meaningful deformation mode
shapes to obtain a low-rank shape model. To compute this
shape basis, we only need an estimation of the shape at rest
froma few initial frames of the image sequence.Wediscretize
the scene into elastic triangular finite elements to code the
behavior of the object with a thin-plate model and unknown
material properties (see Fig. 1).We then propose two sequen-

tial algorithms to solve for the parameters of the model.
The first combines the low-rank shape model with temporal
smoothness priors and uses BA to estimate the parameters.
The second combines the shape basis with probabilistic pri-
ors and solves the latent variable problem by EM. In both
cases, the number of parameters to be estimated is small,
resulting in a system with low computational cost that may
potentially run in real time. Similarly to [3], ourmethods also
use FEM to encode the nonrigid shape. However, while [3]
had to compute a stiffness matrix at every step, in contrast,
we here use FEM to solve a single modal analysis problem
which provides a shape basis able to encode scene deforma-
tions. Our methods are valid for large displacements caused
by strong deformations and can cope with both isometric and
elastic warps. Note that most deformations in nrsfm, such
as a smiling face or a waving flag, are produced with respect
to a mean shape, and hence our method can model this type
of deformations without updating the shape basis per frame.
Exploring this way forward will be part of our future work.

3 Continuum Mechanics Deformation Model

A common way to model nonrigid 3D shapes in computer
vision is to represent the 3D shape as a linear combination
of shape basis [9,12,15,21,39,40,47,55]. The complexity
of the problem can be reduced using dimensionality reduc-
tion techniques such as PCA [11,33] or modal analysis
[42,48,50]. In this work, we only need an estimation of
the shape at rest (from rigid structure-from-motion) to apply
modal analysis and compute a shape basis, instead of using
nonrigid 3D training data. We propose a method to compute
the shape basis from a continuum mechanics physics-based
model of the scene. Our approach is valid for both sparse
and dense data and for encoding both bending and stretching
deformations. We first review some dynamics concepts from
continuummechanics that will lead to our formulation of the
estimation of the deformable shape basis.

3.1 Dynamics Overview

The dynamic response of a nonrigid solid under external
actions has been widely studied in mechanical engineering
[10,66]. Numericalmethods aremandatory to approximately
solve the partial differential equations modeling this behav-
ior, with FEM being the most common approach.

A continuous object Ω can be discretized into a number
of finite elementsΩe (Fig. 2). Each element is defined by the
3D location of its nodes, s̄ j for a generic node j . Hence the
geometry of the undeformed solid is encoded as S̄ ∈ R

3×p

where the matrix columns are the 3D coordinates defining
the location of the p discretization nodal points:
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Fig. 2 Left Representation of some nonrigid mode shapes of a plate
surface discretized into triangular elements with #176 nodes. We show
the effect of adding the mode shape (colored mesh) to the shape at rest
(black mesh) using an arbitrary weight. Note that the effect of subtract-
ing can be obtained using the opposite weight. First and second column:

bendingmode shapes. Third and fourth column: stretchingmode shapes.
Right Eigen-frequencies ωk for the previous black mesh in logarithmic
scale. Rigid, bending, and stretchingmode shape intervals in green, blue
and red line, respectively. Best viewed in color (Color figure online)

S̄ = [
s̄1 . . . s̄ j . . . s̄p

] =
⎡

⎣
X1 . . . X j . . . X p

Y1 . . . Y j . . . Yp

Z1 . . . Z j . . . Z p

⎤

⎦ . (1)

Alternatively, for later computations, we also define the vec-
torized form of S̄ as S̄ ∈ R

3p×1.
The fundamental equations of discrete structural mechan-

ics are elaborate versions of Newtonian mechanics formu-
lated as force balance statements. The dynamic response of
the object Ω is governed by the laws of physics and can be
modeled using the general damped forced vibrations equa-
tion as

Mü(t) + Cu̇(t) + Ku(t) = r, (2)

where M, C, and K are the global mass, damping, and stiff-
ness 3p × 3p matrices, respectively. u and r are the 3p × 1
3D nodal displacement and external forces vectors, respec-
tively. The motion at each node j is specified by means
of u j = (

ΔX j ,ΔY j ,ΔZ j
)�. Derivatives with respect to

t are denoted by u̇(t) ≡ du(t)
dt and ü(t) ≡ d2u(t)

dt2
. In the

linear case, both matrices K and M are independent of u
and r since they are evaluated at the nondeformed state
u = 0.

However, the previous force balance can be replaced in
practice by an undamped free vibrations equation as

Mü(t) + Ku(t) = 0. (3)

In this case, in the absence of external loads r = 0, the
displacement can be determined from the initial conditions,
i.e., only knowing a shape at rest S̄. The internal elastic forces
Ku balance the negative of the inertial forces Mü which
can be interpreted as assigning a certain mass and a certain

stiffness between nodal points. This undamped model gives
conservative answers and is easier to handle numerically.
The equation is linear and homogeneous, and its solution
is a linear combination of exponentials modulated by the
mode shapes, i.e., of the form u = ψ sin (ωt) with ψ a 3p-
dimensional vector and ω a real scalar.

3.2 Proposed Model Matrices

This section is devoted to the computation of the matrices K
and M in Eq. (3). We discretize the surface of the observed
solid into m linear triangular elastic finite elements with E
connectivity. We compute the stiffness matrix K bymeans of
a model for thin-plate elements. The deformation is modeled
as a combination of plane-stress and Kirchhoff’s plate, using
the free-boundary conditions matrix for linear elastostatic
objects with isotropic and homogeneous material properties,
as proposed by [3]:

K =
m

A
e=1

∫

Ωe

T �B�
e D BeT dΩe, (4)

where Be is the strain-displacement matrix defined in terms
of the approximation function derivatives, i.e., this matrix
relates the strain and displacement fields. D is the constitu-
tivematrix dependingon the elastic properties of thematerial:
Young’s modulus E and Poisson’s ratio ν (for more details,
see [10]).We assume near incompressible materials ν ≈ 0.5,
valid for rubber, papers, and human tissue such as a face.
T is the local-to-global displacement transformation matrix.
Finally,A represents the assembly operator, i.e., the global
matrix is assembled from the piecewise contributions.

To model the mass matrix M, we assume a lumped mass
at the nodes, leading to the mass matrix being computed as
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M =
m

A
e=1

ρhAe

3
diag

([1 1 1 1 1 1 1 1 1]�), (5)

preserving the total element mass
∑

a M̃
e
aa = ∫

Ωe
ρ dΩe,

where M̃e
aa is the mass per component, and ρ is the material

density (mass-density). For simplicity, the surface thickness
h is the same for all elements. Ae represents the element area.
While a lumped mass provides less rigidity to the shape with
respect to a distributed mass (the physical configuration),
in our domain this difference is negligible and the accuracy
of both models is roughly the same. Since a lumped mass
provides a more efficient model, we always use this model.

3.3 Modal Analysis

According to structural engineering FEM analysis [10], the
deformed object at a given sample time can be approximated
as a linear combination of some mode shapes which can be
computed by solving a generalized eigenvalue problem from
the undamped free vibration dynamics (see Eq. (3)). Modal
analysis is standard in structural engineering and has also
been applied in computer vision to the spring mesh model
in medical imaging [43]. In [35,42], it was used for motion
analysis and to track and recover heart motion, and in [48,
50] for nonrigid 2D tracking. Modal analysis was used to
decouple the equilibrium equations by obtaining a closed-
form solution of Eq. (2).

In this work, we propose to apply modal analysis to a soup
of elastic triangles with unknown material properties (E, ρ).
Hence, the stiffness matrix K and mass matrix M are com-
puted per unit of E and ρ, respectively. This does not limit
the generality of our model. The only implication is that the
estimated displacement will be up to scale. Our algorithm
does not require boundary conditions, i.e., rigid points, but
we could exploit them if they were available by solving a
constrained eigenvalue problem with Dirichlet constraints to
fix the values of several points u j = 0. It is worth point-
ing that since our method employs a triangulated mesh of
2D finite elements, a subset of deformations like articulated
motion cannot be modeled. To solve this, we would have to
incorporate another type of finite elements, such as springs
or beams. In a similar way, to model balloon-like objects 3D
finite elements are required. Exploring this way is part of our
future work. Finally, we directly use the mode basis without
using the decoupled system in Eq. (2), avoiding having to
estimate the applied forces.

The undamped free vibration response of the 3D struc-
ture caused by a disturbance with respect to the shape at
rest—modeled by Eq. (3)—can be estimated by solving the
generalized eigenvalue problem in ω2:

Kψk = Mω2
kψk , (6)

where
{
ψk, ω

2
k

}
, k ∈ Nm are the mode shapes (eigenvec-

tors) and frequencies (eigenvalues), respectively. Nm :=
{1 . . . 3p} is the index set. Each eigenmodeψk is a 3p×1 vec-
tor and its components are the displacements for all p nodes
in the discretization. The modes are normalized to satisfy
the orthonormality conditionsψ�

k M−1Kψ l = ω2
kψ

�
k ψ l and

ψ�
k ψ l = δkl , where δkl is the Kronecker delta and l ∈ Nm ,

such that ‖ψk‖2 = 1.

3.4 Mode Shape Basis: Analysis and Selection

Modal analysis yields 3p orthonormal modes—provided K
and M are symmetric positive definite—[see some exam-
ples in Fig. 2(left)]. To analyze the mode shapes or vibration
modes, we sort them according to the energy they need to
be excited, using a frequency spectrum from lower to higher
frequencies (see Fig. 2(right)). In the case, where no bound-
ary conditions are imposed, we can approximately identify
three practical mode families, instead of the two proposed
in [48], separating the intermediate modes into bending and
stretching ones as follows:

– Rigid motion modes (R) Theoretically the first 6 frequen-
cies should be zero, because they correspond to 6 degree
of freedom rigid body motions. However, in practice, the
rank of stiffness matrix K is 4 instead of 6 due to the
thin-plate approximation [3]. Hence, the first 4 frequen-
cies are zero up to numerical error. This is consistent
with our model having 4 rigid modes instead of the nor-
mal 6 in a full 3D FEMmodel [42]. These 4 rigid motion
modes are excluded from the basis when coding nonrigid
deformations.

– Bending modes (B) Bending, out-of-plane deformations,
are mainly represented by the modes localized in the
interval [5, p + 4] (see Fig. 2). These modes can rep-
resent elastic bending deformations (with low stretching
in-plane). Moreover, selecting a few of the first bending
modes provides an accuratemode basis tomodel bending
deformations.

– Stretching modes (S) Stretching deformations can be
modeled as a linear combination of the modes in the
interval [p + 5, 2p]. Similarly, selecting only the first
stretching modes provides a basis to accurately represent
the stretching in-plane deformations.

The rest of the mode shapes [2p + 1, 3p]—the higher
frequencies—donot correspond to physical deformations but
to artifacts resulting from the discretization process. When
at least three noncollinear rigid points are considered, the
rigid motion of the modes does not appear in the frequency
spectrum. The first modes are similar to the linear, quadratic,
and twist modes in [20,45], but our shape basis is more gen-
eral including additional modes such as high order modes,
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not available in the quadratic model. The mode shapes cap-
ture decreasingly important details in the shape deformation,
following a coarse-to-fine approach. Hence, the lower fre-
quencies within each interval model the global deformations
and the higher frequencies the local details.

To sum up, any nonrigid 3D displacement u can be mod-
eled by a basis that contains only {k1, . . . , kr } , r << 3p
mode shapes. For notational simplicity, it is assumed that
the r selected modes are renumbered k = 1, . . . , r , so any
displacement field vector can be approximated by a linear
combination of the mode shapes expressed as

u ≈ Sγ = [
ψ1 . . . ψk . . . ψr

] [
γ1 . . . γk . . . γr

]�
, (7)

where the transformation matrix S ∈ R
3p×r concatenates r

mode shapes, and γ is a weight vector to obtain a low-rank
representation. It is worth pointing that the mode shapes ψk
do not depend on thematerial properties (E, ρ). For the same
shape at rest, the normalized modes are the same irrespective
of (E, ρ). Different (E, ρ) would produce the same defor-
mation but with a different amplitude, which can be absorbed
into the deformation weights γk .

3.5 Fitting Real Deformations

To empirically demonstrate the suitability of the mode shape
basis for coding real deformations, we propose to use our
basis to fit 3D deforming objects. To this end, we use two
datasets with 3D ground truth acquired from motion capture
systems. Particularly, we employ the serviette and carton
datasets2 that consist in 102 shapes with 63 nodal points
and in 53 shapes with 81 nodal points, respectively. Figure 3
show the effect on 3D errors of varying the rank of the sub-
space, observing a consistent reduction of the error as more
mode shapes r are considered (some examples are also shown
in figure). It is worth pointing that just a few mode shapes
reduce the error by half, observation that we exploit in this
paper by proposing a low-rank shape constraint. To make
a fair comparison, we also consider two configurations to
train a PCA-based approach. The PCA-1 in which the PCA
basis is trained with first 10 samples; the PCA-2 where all
data are used to train. Note that our approach consistently
outperforms PCA-1, without explicitly using 3D deformable
training data. Even though PCA-based methods can become
very accurate if appropriate learning data are available (such
as PCA-2), this method have used an accurate deformation
model learned from the ground truth of thewhole data, which
may be difficult to obtain in real applications such as medical

2 We use the motion capture data from: http://cvlab.epfl.ch/data/dsr.
These data were acquired with a Vicon motion capture system. It con-
tains one sequence of a deforming piece of cloth (serviette data) and
one sequence of a deforming piece of cardboard (carton data).

videos we process in experimental section. This limitation is
outperformed by our method, which in contrast just needs a
rest shape estimation.

3.6 Computational Cost

In this section, we analyze the computational complexity of
obtainingmode shapeswhen solving the eigenvalue problem.
To do this, we first compute M−1K to transform the gener-
alized eigenvalue problem into a standard one. In the case of
the lumped mass matrix—a diagonal matrix—in Eq. (5), the
inverse computation cost is negligible. The actual computa-
tion and assembly of both K and M has a O (p) complexity
that is only significant for dense maps, where the process
could easily be parallelized.

The second step is the computation of the mode shapes
as eigenvectors. For computational efficiency, we propose
to use orthogonal iteration with Rayleigh–Ritz accelera-
tion [18,24]. This returns the eigenvectors (mode shapes),
sequentially in ascending frequency order, hence the com-
plexity scales with the number of computed modes. If the
r mode shapes to be included in the basis correspond only
to low frequencies (bending modes), the computation is effi-
cient with a complexity scaling with 4 + r even for dense
meshes. However, if both bending and stretchingmodes have
to be computed, the complexity scales with 4+ r + p, which
may become prohibitive in both computation time and mem-
ory requirements, especially for dense meshes.

3.7 Computation of Mode Shapes for Dense Meshes

The mode shapes have been classified into two families:
bending and stretching modes. The first family of modes
is affordable to compute even in the dense case by solv-
ing Eq. (6), but it can only encode out-of-plane bending
deformations. In contrast, for scenes with stretching in-plane
deformations, a few stretching modes have to be included to
have a representative basis. Unfortunately, computing these
dense modes may become prohibitive in terms of computa-
tional and memory requirements. To solve this limitation, in
thiswork,wepropose two algorithms to computemode shape
at a lower cost. The first computes the eigenvalue problem
in a sparse mesh to obtain the frequencies of vibration and
then computes the stretching modes applying the frequency-
based mode shapes method to the dense mesh. The second
approach computes the eigenvalue problem in a sparse mesh
and, exploiting the approximation functions within finite ele-
ments, computes modes in the dense mesh applying a robust
coarse-to-fine approach. This enables dense problems to be
easily solved and drastically reduces the computational and
memory requirements to compute all frequencies in the spec-
trum.
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Fig. 3 Fitting real 3D models with the proposed mode shape basis as
a function of the number of mode shapes. Left We display a specific
shape for each dataset using different values of r = {10, 20, 40, 100}.

Reconstructed 3D shape and the corresponding 3D ground truth are
shown with red dots and black circles, respectively. Right Results for
serviette and carton datasets, respectively (Color figure online)

3.7.1 Frequency-based Dense Mode Shape Estimation

In this section, we present our frequency-based method to
compute dense stretchingmode shapes. Our approach begins
by solving the eigenvalue problem inEq. (6) for a sparsemesh
of q points where q << p, allowing us to easily obtain all the
frequencies in the spectrum. As we can locate the stretching
modes in the ordered frequency spectrum (see section 3.4),
we can obtain a finite interval of frequencies for these modes
situated between ωlow andωhigh . Next, we can formulate the
problem to estimate mode shapes over the dense mesh of p
points as

arg min
ψk

‖
(

M−1K − ω2
kI
)

ψk‖2

subject to ωlow ≤ ωk ≤ ωhigh, (8)

whereψk are themode shapeswith frequencies betweenωlow

and ωhigh . Although this approach is valid for both bend-
ing and stretching modes, our aim is to obtain the stretching
modeswhile avoiding having to compute the bendingmodes.
Figure 4 displays the frequency spectrum for three meshes
and some stretching modes applying this approach over the
dark cyan sparse mesh. It can be seen that the frequency
ωlow remains unchanged for all meshes. We can obtain this

frequency over a sparse mesh, and then solve Eq. (8) over
a dense mesh by linear least squares. The computed mode
shapes using this method are not an approximation and they
can code both low and high frequencies.

While this approach offers new theoretical insights, it is
very sensitive to changes in the rest shape. Due to this sensi-
tive, this approach is particularly relevant for regular meshes
(such as the used in registration) where the sub-sampling
process is trivial. For instance, it could easily be employed
in template-based methods [33,46,47] using multiple regu-
lar meshes and a template where the 3D shape is accurately
known.

3.7.2 Coarse-to-Fine Mode Shape Estimation

In this section, we propose our second efficient approach to
compute dense mode shapes. We exploit the approximation
functions used to define the displacement field within a finite
element [10]. Therefore, as in the previous method, we solve
the eigenvalue problem for q << p scene points obtaining
S∗ ∈ R

3q×r basis shapes and then compute S ∈ R
3p×r

for p points using the approximation functions. First, we
subsample the scene points to convert the p-dimensional
map—dense mesh—(see Fig. 5b) into a q-dimensional map-
–sparse mesh—(see Fig. 5c, d). Each point in the dense mesh
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ω
[r
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4

S

Fig. 4 Left Representation of some stretching mode shapes of a plate
surface discretized into triangular elements with threemeshes.First row
5× 10 mesh in dark cyan. Second row 10× 20 mesh in magenta. Third
row 15 × 30 in orange. The shape at rest is always displayed with a

black mesh. Right Eigen-frequencies ωk for the previous black multi-
ple meshes in logarithmic scale. We display the interval

[
ωlow, ωhigh

]

to find stretching mode shapes in green, being similar for all meshes.
Best viewed in color (Color figure online)
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Fig. 5 Coarse-to-fine approach to modal analysis. a Reference image
plane to compute optical flow. b Dense 2D tracking of p points. c
Subsample of dense shape into q points (green points). d Delaunay tri-

angulation for sparse mesh. e Active search to match every point in the
sparse mesh. Please zoom into the electronic images for a detailed view
(Color figure online)

must then bematchedwith an element of the sparsemesh (see
Fig. 5e). The q-dimensional map has to ensure a sparse mesh
where every p point can be matched. To find an element in
the sparse mesh 	 (s̄a s̄b s̄c) with nodal labels {a, b, c} per
point s̄ j , we suggest an active search by computing several
cross products over a two-dimensional space:

2∑

τ=0
τ+1∈mod(3)

⎛

⎝χι

(−−→
s̄τ s̄ j × −−−−→

s̄τ s̄τ+1

)
=
⎧
⎨

⎩

1 if
(−−→

s̄τ s̄ j × −−−−→
s̄τ s̄τ+1

)
∈ ι

0 if
(−−→

s̄τ s̄ j × −−−−→
s̄τ s̄τ+1

)
/∈ ι

⎞

⎠

=
{
3 if s̄ j ∈ 	 (s̄0 s̄1 s̄2)

≤ 2 if s̄ j /∈ 	 (s̄0 s̄1 s̄2)
(9)

where the labels {a, b, c} ≡ {0, 1, 2} are renumbered and χι

represents a step function with ι ≡ [0,∞). s̄ j is inside the
triangle element 	 (s̄a s̄b s̄c) when all the cross products are
nonnegative, three in our case.Note that this two-dimensional
space is a dimensional reduction of the shape at rest, and
hence it can be obtained either by projecting the shape at rest
onto the image plane or using the reference image plane (see
Figs. 5a, 6). When the active search is completed, we need to
compute its natural coordinates (ξ j , η j ) within the element
	 (s̄a s̄b s̄c). First, we transform from the global system to aL
local one 	 (

s̄La s̄Lb s̄Lc
)
defined on the plane of each triangle

element and then obtain the natural coordinates as

[
ξ j
η j

]
=
[[

s̄Lb s̄Lc
]

−
[
s̄La ⊗ 1�

2

]]−1[
s̄Lj − s̄La

]
, (10)

where 12 is a vector of ones and ⊗ indicates the Kronecker
product. The 3D displacement can be obtained using the lin-
ear approximation functions Nl(ξ j , η j ) ≡ [

Nl
1 N

l
2 N

l
3

]
[10]

within the element. The 3D displacement for every mode
shape can be computed as

S j =
[
Nl(ξ j , η j ) ⊗ I3

] [
S∗
a S∗

b S∗
c

]�
, (11)

Fig. 6 Left A dense shape of p nodes (red points) is reduced to q
nodes (green points) to solve the eigenvalue problem. In this case, the
2D space can be obtained by projecting the 3D shape at rest estimation.
Right Active search to match the p points with triangular elements of
the sparse mesh. Please zoom into the electronic images for a detailed
view (Color figure online)

where S∗
a , S∗

b , and S∗
c are 3 × r displacement vectors for

the mode shapes basis corresponding to the triangle element
{a, b, c} to which s̄ j belongs. Finally, S j is placed in rows
3 j−2 through 3 j in S. Note that for coding nonrigid shapes,
the high-frequency details are included in the shape at rest
with densemesh,while these have been lost in the shape basis
for the approximation of this method. However, our approx-
imation is accurate even using a sparse mesh with a 10 %
of points in the dense mesh, as we show in the experimental
section.

Regarding complexity, we drastically reduce the compu-
tational cost of computing dense mode shapes using this
approach. To compute and assemble both FEMmatrices, the
complexity is reduced from O (p) to O (q), with q being
the number of points in the sparse mesh, representing under
10 % of the points in the dense mesh. This allows us to easily
compute the full frequency spectrum—including stretching
shapes with high frequencies—solving a simple eigenvalue
problem of low dimension. It is worth to point that for
the frequency-based algorithm, the complexity to solve the
eigenvalue problem over a sparse mesh is similar, but later it
is necessary to compute a few mode shapes over the dense
mesh and the performance is reduced.

4 Problem Formulation

Let us consider a 3D structure S f of p points on an image
frame f . The orthographic projection W f is expressed as
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W f =
[
u f 1 . . . u f j . . . u f p

v f 1 . . . v f j . . . v f p

]
=ΠQ f S f + T f + N f , (12)

where Π is the 2 × 3 orthographic camera matrix, and Q f

is the 3 × 3 rotation matrix. Next, R f = ΠQ f are the first
two rows of a full rotation matrix (i.e., R f R�

f = I2). Due
to the orthographic projection, the depth coordinate of the
translation vector cannot be resolved. Considering this ambi-
guity, we model 2D translations t f defined as T f = 1�

p ⊗ t f
with 1p a vector of ones and t f = R f d f , where d f is a 3D-
translation vector. Finally, N f is a 2× p zero-mean Gaussian
noise process matrix for modeling the noise in image tracks.
The noise vector for a generic point j is n f j ∼ N

(
0; σ 2I

)

with variance of the measurements σ in each dimension.
Alternatively, the orthographic projection w f into vectors

can be expressed as

w f = [
u f 1 v f 1 . . . u f p v f p

]� = G f S f + t̄ f +n f , (13)

where G f = Ip ⊗R f with Ip a p× p identity matrix, and t̄ f
and n f are the vectorized form of T f and N f , respectively.

Our problem is to simultaneously estimate camera motion(
R f , t f

)
and the nonrigid 3D shape S f as the data arrive, in

every frame f from uncalibrated 2D point correspondences
in a monocular video W f . Note that our measurements can
have occlusions and lost tracks, and the measurement matrix
W f is not full. For these cases, only a set V of visible points
� is observed, but always all p scene points have to be recon-
structed.

4.1 Proposed Linear Subspace Deformation Model

We propose to model the nonrigid shape at each instant as
a linear combination of a mean shape and r deformation
mode shapes from modal analysis. Hence the estimation of
the 3D structure at each frame f comes down to estimat-
ing the corresponding weight vector γ f . It is also useful in
our formulation to represent S using a permutation operator
R(S) that rearranges the entries ofS into a 3r×pmatrix such
that the j-th column of R(S) contains all the displacement
ΔXr j ,ΔYr j , andΔZr j coordinates of the point j for all r
modes. Considering Eq. (7), the 3D displacement field into
matrices can be rewritten as U = (

I3 ⊗ γ �)R(S) where I3
is a 3 × 3 identity matrix. The deformed structure at frame
f can be written as

S f = S̄ + U f = S̄ +
(

I3 ⊗ γ �
f

)
R(S). (14)

Assuming noise-free observations, we can rewrite the
orthographic projection Eq. (12) as

W f = R f

(
S̄ +

(
I3 ⊗ γ �

f

)
R(S)

)
+ T f . (15)

In section 5.1, we propose an on-line BA-based algorithm to
solve this nonlinear problem as the data arrive.

4.2 Proposed Probabilistic Modal Analysis Model

We also propose to replace the linear subspace model
described above with a probabilistic model using a Gaussian
prior on each shape in the subspace, inspired by probabilis-
tic PCA [44,53,56]. The weight coefficients γ f are modeled
with a Gaussian prior distribution with zero-mean as

γ f ∼ N (0; Ir ) . (16)

These deformation weights γ f become latent variables that
can be marginalized out and are never explicitly computed.
Employing this Gaussian prior over γ f , the weights for each
shape are similar to eachother, the nonrigid shapedistribution
being s f ∼ N

(
s̄;SS�), producing smooth deformations

with respect to shape at rest. The r principal axes aremodeled
using an orthogonal fixed basis S. In this case, the nonrigid
structure at frame f , considering Eq. (7) can be written as

s f = s̄ + u f = s̄ + Sγ f = S̃γ̃ f , (17)

where S̃ = [s̄ S] is the concatenation matrix of the shape at

rest together with the mode shapes, and γ̃ f =
[
1 γ �

f

]�
.

By assuming Gaussian noise over the shape and the obser-
vations, considering Eq. (13) the distribution to be estimated
over the projected points w f is also Gaussian:

w f ∼ N
(

G f s̄ + t̄ f ; G f SS�G�
f + σ 2I

)
. (18)

This is equivalent to solving the nrsfm problem. In Sect. 5.2,
we propose an on-line EM-based algorithm to solve the max-
imum likelihood estimation as the data arrive in this latent
variable problem.

5 Sequential NRSfM

Our aim is to sequentially estimate camera motion and time-
varying 3D shape from 2D point tracks. This section is
devoted to describing the details of our sequential approaches
to nrsfm. Note that we just need to tune the number of mode
shapes r in the subspace. While most state-of-the-art tech-
niques are very sensitive to the choice of the specific rank,
our methods do not require fine tuning (see experimental
Sect. 6). Obtaining a sequential system in real time could
easily be fixed in terms of computational cost.
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5.1 On-line BA Algorithm

We use a sliding temporal window approach as proposed
in [40] to perform BA [58] on the last W frames. As the
deformation modes, S are computed in a previous step fol-
lowing the modal analysis described in Sect. 3, and only an
estimate of the shape at rest s̄ is required, the trilinear sequen-
tial nrsfm problem is reduced to the estimation of per-frame
camera motion (Ri , ti ) and deformation weights γ i , i.e., a
bilinear problem. This involves the estimation of a very small
number of parameters r to encode the shape at each frame,
which leads to a low computational cost system. The model
parameters are estimated on the fly by minimizing the image
re-projection error of all the observed points � over all frames
in the current temporal windowW bymeans of the following
cost function A

(
Ri , ti , γ i

)
:

arg min
Ri ,ti ,γ i

λγ

f∑

i= f −W+2

‖γ �
i − γ �

i−1‖2F

+ λt

f∑

i= f −W+2

‖ti − ti−1‖2F

+
f∑

i= f−W+1

∑

�∈V
‖Wi� − Ri

(
S̄� +

(
I3 ⊗ γ �

i

)
R(S�)

)

− Ti‖2F + λq

f∑

i= f−W+2

‖Ri (qi )−Ri−1(qi−1)‖2F , (19)

where ‖ · ‖F is the Frobenius norm. The rotation matri-
ces Ri (qi ) are parameterized using quaternions to guarantee
orthonormality RiR

�
i = I2. We add temporal smooth-

ness priors to penalize strong variations in the deformation
weights γ i , translations ti , and camera matrices Ri (qi ). The
positive regularization weights λγ , λt , and λq govern the
relative importance of the regularization terms, and they are
determined empirically. These coefficients are fixed in all the
experiments we describe in the experimental section. This
problem can be solved using a sparse Levenberg–Marquardt
nonlinear minimization algorithm.

To initialize the parameters for a new incoming frame,
we consider the smoothness priors for both camera motion
and nonrigid deformation, penalizing far solutions from the
previous frame. The mode shape weights γ i are initialized
assuming rigid motion γ i = γ i−1, and the camera pose is
initialized as Ri = Ri−1 and ti = ti−1.

5.2 On-line EM Algorithm

We propose an on-line version of the EM algorithm—similar
to EM for factor analysis [23]—over a sliding window on
the lastW frames, similar to the algorithm described above.

In this case, we denote the set of model parameters to be
estimated by � f ≡ {R f , t f , σ 2}, the hidden data by γ f ,
and the complete data as {w f , γ f }. Given the observable data
w f −W+1: f over the sliding temporal window of frames with
indexes f −W+1: f , we estimate the model parameters over all

the frames in the current window denoted as Ŵ . For dealing
with missing data, we consider all the observed points � ∈ V
over all the frames in the current window. Note that for full
measurements, the number of visible points � is equal to p.
The joint probability of w over a sliding window, assuming
that the samples are independent and identically distributed,
may be computed considering the Gaussian distribution per
frame, Eq. (18), as

p
(
wŴ |GŴ , t̄Ŵ , σ 2) =

f∏

i= f−W+1

p
(
wi�|Gi , t̄i , σ 2).

(20)

The EM algorithm estimates iteratively until conver-
gence the likelihood, alternating between two steps: the
E-step and M-step. In the E-step, the expectation of the
data likelihood with respect to the latent variable dis-
tribution is computed. For this, we compute the poste-
rior distribution over latent variables p

(
γ Ŵ |wŴ ,�Ŵ

) ∝
p
(
wŴ |γ Ŵ ,�Ŵ

)
p
(
γ Ŵ |�Ŵ

)
given the measurements

and the current parameter model on the sliding window as

p
(
γ Ŵ |wŴ ,�Ŵ

) ∼
f∏

i= f −W+1

N
(
μi ;Σ i

)
,

where μi = βi
(
wi − Gi s̄ − t̄i

)
and Σ i = Ir − βiGiS, with

βi = S�G�
i

(
σ 2I2p + G�

i S(GiS)�
)−1

that is efficiently
computed using the Woodbury matrix identity [63].

Note that for the missing data case, Gi = I� ⊗ Ri with
I� being a �-order identity matrix. S, s̄, and wi are only
evaluated for visible points.

In the M-step, the expected value of the log-likelihood
function is optimized by replacing the latent variables by
their expected values to update the model parameters. We
update motion variables maximizing the likelihood with
respect to parameters � holding hidden distribution fixed, or
equivalently minimizing its expected negative log-likelihood

function∇�t
i
B
(
�t−1

i

)
|
�t

i=�t−1
i

= 0, because the logarithm

is strictly monotonous:

B (�i ) = arg min
�i

E

⎡

⎣−
f∑

i= f−W+1

∑

�∈V
log p

(
wi�|�i

)
⎤

⎦

= arg min
Ri ,ti ,σ 2

1

2σ 2

f∑

i= f −W+1

∑

�∈V
E

[
‖wi�
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−Gi
(
s̄� + S�γ i

)− t̄i‖22
]

+�W log
(
2πσ 2

)
, (21)

where E[·] represents the expectation operator.
Note that using the Gaussian prior, we do not need to

add additional temporal smoothness priors to penalize strong
variations, avoiding tuning regularization weights [21,40,
45]. This function cannot be optimized in closed form to
compute a global optimum, and partial M-steps are nec-
essary. The model parameters are individually updated in
closed form, except for camera rotation (see Appendix for
update rules).

In order to initialize the model parameters for a new
incoming frame, the camera pose is initialized as Ri = Ri−1

and ti = ti−1, while the latent variables are initialized assum-
ing a rigid motion as E

[
γ i

] = E
[
γ i−1

]
.

5.3 Missing Data on BA-FEM and EM-FEM Algorithms

Unlike other methods [8,12,15], our formulations can cope
with incomplete image tracks resulting from occlusions or
tracking outliers, always reconstructing all the scene points.
Both algorithms have the capability of dealing with missing
data since the cost function is only evaluated on the set of
visible points V . After that, we exploit our global model to
estimate the 2D location Ŵ f j of the missing data entries in
the observation matrix:

Ŵ f j = R f

(
S̄ j +

(
I3 ⊗ γ �

f

)
R(S j )

)
+ t f . (22)

5.4 Shape at Rest Estimation

Our sequential approaches assume that the shape at rest can
be estimated similarly to batch [20,45] and sequential [1,
40] approaches, using a rigid factorization algorithm [31]
on a few initial frames. To this end, we consider that the
observed sequence contains some nr initial frames where
the object is mostly rigid and does not deform substantially.
Our method does not require the surfaces to be planar or
developable, and modal analysis can be applied on general
nonplanar rest shapes. Note that using rigid sfm to initialize
is standard practice in the nrsfm community and, moreover,
initialization is one of the challenges in sequential methods,
including the rigid case [27].

The rest shape is a tuple (P, E) where P = (n1, . . . , n p)

is a finite set of p nodes and E = (e1, . . . , em) is a finite set
of m triangular elements—over q points for dense cases—
obtained by means of a Delaunay triangulation [10] on the
image plane or on the reference image for dense cases [21,
22]. For simplicity, we have used the Delaunay triangulation,
although we could take advantage of having an estimation of

the 3D shape at rest and easily use alternative connectivity
algorithms.

5.5 On-line Complexities

In this section, we show both the complexity of the mem-
ory and the computational complexity of our sequential
approaches. Our nrsfm methods ensure that the comput-
ation time per image is bounded and does not grow with
the number of frames, as occurs with batch approaches
[20,21,39,52]. We show how our methods could potentially
achieve real-time performance at frame rate and,more impor-
tantly, how both methods process the video sequence as the
data arrive, frame by frame.

First, we analyze the memory complexity. Our on-line
algorithms store only the latest W frames with complex-
ity O (W), unlike batch algorithms where all the frames are
stored with complexity O ( f ). This is an important feature
for real applications where the computational resources are
often much lower than in a desktop setting [62]. Next, we
analyze the computational complexity for the BA-FEM and
EM-FEM algorithms.

5.5.1 BA-FEM Algorithm

An efficient BA implementation consists of three principal
parts: the computation of the residuals and sparse Jacobians
used for theLevenberg–Marquardt algorithmwithO (pWr),
building the linear systemwithO

(
pW2r2

)
and, finally, solv-

ing the linear system with O
(
W3r3

)
. Since in our domain

the number of frames on the sliding windowW is relatively
small, and the number ofmodes r is significantly smaller than
the number of points in the structure shape p, and the cubic
term of solving the linear system is negligible. Thus, the
complexity of sequential-mode BA over a sliding window
is dominated by building the linear system and computing
residuals and Jacobians, dominated by O

(
pW2r2

)
.

5.5.2 EM-FEM Algorithm

The complexity of sequential-mode EMover the slidingwin-
dow is dominated by the E-step and can be approximated
on the order of O

(
tW pr2

)
as a function of the number of

iterations t per frame until convergence to the desired pre-
cision. The likelihood function is increased at each iteration
until convergence, i.e., B

(
�t+1

i

)
− B

(
�t

i

)
< ε, where the

superscript t represents the EM iteration. In practice, only a
few iterations are necessary to achieve convergence. More-
over, in our on-line EM-FEM algorithm, we use a temporal
smoothness bymeans of the slidingwindow that is initialized
as the last frame, but we do not implicitly use regulariza-
tionswithin the slidingwindow as in ourBA-FEMalgorithm,
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reducing the complexity order fromW2 toW . The total com-
plexity becomes O

(
pr2

)
considering W to be negligible,

5 in our experiments. Furthermore, this complexity over r
can be reduced when sparsity is exploited. Our sliding win-
dowapproachmaypotentially achieve real-timeperformance
since it could easily be parallelized for the i.i.d. assumption.

6 Experimental Results

In this section, we show the experimental results for both
synthetic and real sequences, providing comparisons with
respect to state-of-the-art methods. We present results from
sparse to dense shapes, for isometric and elastic deforma-
tions, and finally we show our performance against corrupted
observations, such as noise or missing data. In all the experi-

ments, we report the error e3D = 1
f

∑ f
i=1

‖Si−SGT
i ‖F

‖SGT
i ‖F

where

Si is the 3D reconstruction and SGT
i is the ground truth.

Before computing this 3D error, the 3D reconstruction is
alignedwith the corresponding ground truth using Procrustes
analysis over all the frames.

6.1 Synthetic Data

In this section, we compare our sequential methods BA-FEM
and EM-FEM to state-of-the-art techniques, for both sparse
and dense observations. In addition, we also analyze the two
proposed strategies to compute stretchingmodes. In all cases,
the synthetic deformation is observed by an orthographic
camera.

6.1.1 Elastic Sequences

First, we propose two synthetic sequences of a deforming
elastic plate with irregular (Syn. 1) and regular (Syn. 2) dis-
cretization, respectively. In both cases, we have considered
a nonlinear hyperelastic Yeoh material [64] to model large
deformations, but just consider a different discretization. The
Yeoh model for incompressible materials is a function only
of the first strain invariant I1, and its deformation energy is
defined asW = C10(I1 − 3)+C20(I1 − 3)2 +C30(I1 − 3)3,
where the parameters {C10,C20,C30} define the material
properties. Particularly, we set C10 = 10MPa, C20 =
−0.01MPa and C30 = 10MPa for these experiments. We
refer the reader to previous paper for further details. Both
sequences were generated using Abaqus for which the mate-
rial properties, boundary conditions and nodal forces are
required a priori to compute the deformation. In contrast,
our methods based on linear elasticity do not require any
prior knowledge to constrain the deformation.

We use our BA-FEM and EM-FEM algorithms for
this test and present a comparison against state-of-the-art

nrsfm methods, both batch and sequential algorithms. For
batchmethods,we considerEM-LDS [57],MP [39], PTA [8],
KSTA [25], the block matrix approach SPM [15], and EM-
PND [28]. We also compare with the sequential BA based on
implicit models SBA [40]. The parameters of these methods
were set in accordance with their original papers. Table 1
summarizes the comparison of the results for each method,
while the 3D reconstruction of a typical frame for somemeth-
ods are displayed in Fig. 7. Figure 8 displays the effect on
3D errors of varying the rank of the subspace, showing the
consistent reduction of the error as more modes r are con-
sidered. We do not address the selection of r in this paper,
since our results suggest that the proposed methods are not
extremely sensitive to this choice.

We also evaluate the sensibility of including nonrigid
motion in the initial frames that affects to the initialization
and hence to the shape basis computation. To this end, we
quantify this nonrigid motion by the metric ‖Unonrigid‖F ,
where Unonrigid represents the nonrigid 3D displacement of
the shape in these frames. Even though in both experiments,
the deformation is not produced concerning a mean shape,
causing rest shapes more inaccurate, our methods produce
accurate results and even outperform the rest of techniques
evaluated. Figure 9 shows this effect on 3D errors varying the
level of deformation in the initial frames. We can conclude
that our methods outperform the state-of-the-art methods in
terms of accuracy, with the additional advantage of being
sequential, allowing us process frames in an on-line fashion.
In addition, we achieve with an unoptimized Matlab code a
frame rate of about 3 fps when dealing with a model of 81
points using 10 modes, and hence these results could still
be significantly speeded up. We consider our method may
potentially achieve real-time performance at frame rate with
an efficient implementation.
Parameter selection The contribution of each smoothness
term in the cost function of Eq. (19) can be controlled by
means of the weights λγ = 0.15, λt = 0.03, and λq = 0.03.
We have tuned these parameters on these sequences, and used
the same values for the rest of experiments. Yet, these para-
meters do not need to be carefully tuned. For instance, we test
the 3D reconstruction error over the two elastic sequences
after changing these weights by a ÷/×10 their original
value. We obtain an error of 3.90(10)–4.01(10) for Syn.1 and
3.06(10)–3.17(10) for Syn.2. Observe that the reconstruction
results barely change.

6.1.2 Dense Face Sequences

We now present results applying boundary conditions, i.e.,
rigid points, to show how our model can easily incorporate
these constraints if they are available. We use only these pri-
ors to obtain the shape basis,managing both kinds of points—
rigid and nonrigid points—in a single framework, unlike [17,
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Table 1 Quantitative comparison for synthetic sequences

Data Batch Methods Sequential Methods
Met.

EM-LDS PTA MP KSTA SPM EM-PND SBA BA-FEM EM-FEM

Syn. 1 11.12(2) 9.25(2) 12.42(2) 5.56(2) – – 14.03(16) 3.89(10) 3.98(10)

Syn. 2 10.92(2) 11.81(5) 18.84(2) – – 7.60 20.90(8) 3.04(10) 3.01(10)

We show e3D[%] for EM-LDS [57], PTA [8], MP [39], KSTA [25], SPM [15], EM-PND [28] and SBA [40]; and for our methods BA-FEM and
EM-FEM. For state-of-the-art methods, we have selected the rank of the subspace in the basis (in brackets) that gave the lowest e3D error. For our
methods, we provide results with 10 mode shapes. When an algorithm does not converge, its result is denoted as “–”

Frame 200 EM-LDS DCT MP SBA BA-FEM EM-FEM

Sy
n.

1
Sy

n.
2

Fig. 7 Synthetic sequences. Comparing results of our BA-FEM and
EM-FEM algorithms with respect to EM-LDS [57], PTA [8], MP [39]
and SBA [40] for frame #200. Reconstructed 3D shape and the 3D

ground truth are shown with red dots and black circles, respectively.
Top Results for Syn. 1 sequence. Bottom Results for Syn. 2 sequence
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Fig. 8 Mean normalized error e3D with varying number of mode
shapes for synthetic sequences. Left Results for Syn. 1 sequence. Right
Results for Syn. 2 sequence (Color figure online)

30] where both kinds of points are independently considered.
Note that these constraints do not fix the absolute location
of these points in the space, but produce sensitive changes
in the mode shape basis. We only use these priors in these
sequences to show the qualities of our shape basis estimation.

We use both 3 and 4 synthetic dense face sequences with
p = 28,887 points as proposed in [21] that we denomi-
nate Dense Face 1 and Dense Face 2, respectively. Both
sequences are challengingowing to the density of the data and
the strong deformations that combine bending and stretch-
ing, and they are similar with the exception of the camera
motion. Thanks to the ability of our method to handle bound-
ary point priors, we can compute just the first r = 4 modes
that combine both stretching and bending deformations, and
experimentally show that they are sufficient to encode the
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Fig. 9 Mean normalized error e3D with varying level of deforma-
tion in initial frames for synthetic sequences. Left Results for Syn. 1
sequence. Right Results for Syn. 2 sequence (Color figure online)

face deformations. In this case, boundary conditions cor-
respond to face points that have a null displacement with
respect to the shape at rest. They are selected by means
of a connectivity analysis. We show the error e3D and a
quantitative comparison with respect to batch and sequential
state-of-the-art methods in Table 2, applying our algorithms.
It is worth pointing out that we are not able to provide
results for KSTA [25], SPM [15], and EM-PND [28], as
they could not handle the large dimensionality of the prob-
lem. Our sequential approaches outperform in average the
batch PTA [8] and MP [39] approaches, and the sequential
approach SBA [40], but they provide an error higher than that
of the variational batch method VNR [21], where all frames
need to be available in advance. We show our 3D reconstruc-
tion for few frames in Fig. 10, using the BA-FEM algorithm.
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Table 2 Quantitative comparison for dense face sequences

Data Batch Methods Sequential Methods
Met.

PTA MP KSTA SPM EM-PND VNR SBA BA-FEM EM-FEM

Dense Face 1 4.50(4) 5.13(6) – – – 2.60(9) 4.35(4) 4.65(4) 4.53(4)

Dense Face 2 6.61(4) 5.81(6) – – – 2.81(9) 7.03(4) 4.92(4) 4.86(4)

We show e3D[%] for batch methods PTA [8], MP [39], KSTA [25], SPM [15], EM-PND [28] and VNR [21]; for the sequential method SBA [40];
and for our sequential methods BA-FEM and EM-FEM. In all cases, we have selected the number of shapes in the basis (in brackets) that gave the
lowest e3D error. When an algorithm does not handle this experiment, its result is denoted as “–”

Fig. 10 Dense Face 1 sequence. Reconstruction of the dense face for
selected frames: #30, #40, #79, and #95. Top Ground truth 3D shapes.
Bottom Our dense 3D reconstruction (Color figure online)

6.1.3 Efficient Dense Mode Shape Computation

Finally,wepropose a synthetic sequence of 109 frameswhere
we simulate an elastic ribbon deformation of p = 275 points
with a nonlinear Yeoh hyperelastic material [64]. A dense
shape basis is computed applying both the frequency-based

and the coarse-to-fine approaches. In both cases, we use a
low-dimensional mesh of q = 78 points and then obtain a
mesh of p = 275 points. In order to estimate the nonrigid
shape for this challenging 43 % stretching deformation, we
use our EM-FEM algorithm—similar results are obtained
by BA-FEM—and achieve the following performance e3D:
(i) for the frequency-based method, we obtain 3.15 % for 5
modes, 1.08 % for 20 modes, and 0.86 % for 40 modes; (ii)
for the coarse-to-fine approach, we obtain 3.11 %, 1.57 %
and 0.84 % for 5, 20, and 40 stretching modes, respectively.
Figure 11 shows our 3D reconstructions with r = 40 for a
few selected frames including where the stretching is max-
imum, as well as a qualitative comparison with respect to
ground truth. We conclude both methods provide similar 3D
reconstructions, but note that the frequency-based method is
more sensitive—due to the rigid factorization—and slightly
more expensive. For this reason, we propose always to use
the coarse- to-fine approach.

6.2 Motion Capture Data

In this section, we quantitatively evaluate our approaches
using several existing datasets of motion capture (MoCap) to
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Fig. 11 Stretching ribbon sequence. 3D reconstruction of the 275
point ribbon at frames #20, #60, and maximum deformation at #109.
Shape at rest is displayed behind with a black mesh. Top Ground truth
deformation with a magenta mesh.Middle 3D reconstruction using the

frequency-based method. Bottom 3D reconstruction using the coarse-
to-fine approach. In both cases, the sparse mesh is shown in thick lines.
Best viewed in color (Color figure online)

123



90 J Math Imaging Vis (2017) 57:75–98

B
A

-F
E

M
(5

5)
E

M
-F
E

M
(5

5)

Fig. 12 Facial MoCap sequence. Original viewpoint and side views for selected frames #71, #188, #252, and #288 with ground truth (black mesh)
and 3D reconstruction (red mesh) using r=55. Top BA-FEM algorithm. Bottom EM-FEM algorithm. Best viewed in color (Color figure online)

Table 3 Quantitative comparison for MoCap sequences using sequential methods

Data Face Sparse Flag Dense Flag
Met.
40 points 594 points 9,622 points

ε e3D[%] in/op (sec) ε e3D[%] in/op (sec) ε e3D[%] CtF in/op (sec) CtF

SBA 0 2.90(48∗)† 0.15/1.00† 0 7.10(114∗) 0.58/82.32 0 13.48(114∗) – 25.67/895 -

1 6.38(114*) 0.15/16.98 1 7.48(360*) 0.58/870 1 – – – –

BA-FEM 0 3.43(15) 0.29/0.38 0 3.72(10) 19.50/1.96 0 3.50(10) 3.67(10) 300/75 44.62/73

0 3.92(55) 0.29/1.28 0 3.49(40) 19.50/24.83 0 3.29(25) 3.96(25) 300/186 44.62/182

1 3.84(15) 0.29/0.42 1 3.73(10) 19.50/1.97 1 3.50(10) 3.68(10) 300/72 44.62/77

1 4.30(55) 0.29/1.52 1 3.56(40) 19.50/25.39 1 3.25(25) 3.96(25) 300/187 44.62/188

EM-FEM 0 3.36(15) 0.29/0.10 0 3.28(10) 19.50/1.53 0 2.94(10) 3.41(10) 300/75 44.62/62

0 3.05(55) 0.29/0.19 0 2.81(40) 19.50/2.28 0 2.50(25) 3.08(25) 300/69 44.62/68

1 3.39(15) 0.29/0.10 1 3.32(10) 19.50/1.53 1 2.96(10) 3.51(10) 300/75 44.62/62

1 3.49(55) 0.29/0.20 1 2.92(40) 19.50/2.30 1 2.52(25) 3.30(25) 300/70 44.62/69

We show error e3D[%] for SBA [40], and for both BA-FEM and EM-FEM methods. In all cases, we show in brackets the number of shapes in
the basis. We show computation time for initialization in and optimization process per frame op. We also show the results for the noise-free case
ε = 0 and for the noise case ε = 1. Finally, we show the results applying our coarse-to fine-approach (CtF) for dense cases. †: value reproduced
from [40]. ∗: SBA reports the rank r , we detail 3r in brackets because it is equivalent to the number of weights in both BA-FEM and EM-FEM
algorithms. In all cases, W = 5

present an analysis of scalability with respect to sequential
state-of-the-art nrsfm. We consider our approaches BA-
FEM and EM-FEM, and the sequential method SBA [40].
Moreover, the performance of our methods is also ana-
lyzed when adding noise. We report results when zero-mean
Gaussian noise with standard deviation σ = ε

100κ is added
to every point in the mesh following [39], where ε is the
noise percentage, and κ is themaximum distance of an image
point to the centroid of all the points. For each method, we
use exactly the same W1:nr to compute the shape at rest, i.e.,

the same initialization. Finally, we also report a comparison
w.r.t. batch baselines.

6.2.1 Facial MoCap Sequence

First, we use 316 frames from the facial MoCap sequence
[57] with ground truth, where a subject is talking and mov-
ing his head while wearing 40 markers. With this sequence,
we show the performance of our mesh-based approach using
a reduced set of points. We show quantitative results for this
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Fig. 13 Flag MoCap sequence. 3D Reconstruction for a few frames
with red dots. We display a few examples in Table 3 using the EM-FEM
algorithm. We also show the corresponding 3D reconstruction error
e3D[%]. First row Selected frames #10, #20, #32, and #45. Second row
Sparse 594 points flag. Ground truth is overlaid with a black mesh and

black circles. Third row Dense 9,622 points flag using the coarse-to-
fine approach (CtF). Fourth row Dense 9,622 points flag without CtF.
Please zoom in to the electronic images for a detailed view (Color figure
online)

sequence in Table 3 and qualitative results for both BA-FEM
and EM-FEM in Fig. 12. We can achieve similar accuracy at
a lower computational cost with respect to SBA [40]. How-
ever, when the measurements are noisy, the performance of
SBA is worse since the shape basis is estimated on-the-fly
while our algorithms provide a similar solution with respect
to the noise-free case. It is worth noting that with the same
basis, our EM-FEM algorithm is faster and more accurate
compared to the BA-FEM algorithm, since this deformation
is well modeled by Gaussian priors. However, our methods
obtain less performance than batch methods in terms of error
e3D[%]. Their results are 2.74(5), 2.69(3), 2.12(4), 1.82(7),
and 1.40 for the methods MP [39], PTA [8], KSTA [25],
SPM [15], and EM-PND [28], respectively. This is due to
the low resolution of the object, which is insufficient to
establish the FEM constraints. Despite this, our methods
can obtain a competitive solution for this sequence w.r.t.

batch ones, without requiring all frames to be available in
advance.

6.2.2 Flag MoCap Sequence

We now evaluate our approaches using a challenging dense
sequence [22]with p =9,622, corresponding to a fabricwav-
ing in the wind. To validate the scalability of our method, we
also propose a p = 594 sparse sequence version of the dense
flag sequence, a result of the subsample process used to apply
the coarse- to-fine approach (see Fig. 6). We have included
a few initial frames corresponding to the camera observing
the rigid shape. As the deformation contains little stretch-
ing, the first bending mode shapes can accurately encode the
deforming scene.

We show quantitative 3D reconstructions for both sparse
and dense flag sequences in Table 3 and qualitative results in
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Fig. 14 Actress sequence. Selected frames #31, #48, #84 and #102.
First row Image frame sequence with 3D reprojected mesh. Second and
third rows Original viewpoint and side views of the 3D reconstruction
in the cases of full data and 40 % missing data, respectively, using

the BA-FEM algorithm. Fourth and fifth row The same views apply-
ing the EM-FEM algorithm in the cases of full data and 40 % missing
data, respectively. Visible points are displayed in red dots, and occluded
points in blue circles (Colorfigure online)

Fig. 13. Both the BA-FEM and EM-FEM algorithms consis-
tently outperform the SBA [40] method in terms of accuracy
and efficiency from sparse to dense case and when applying
noise. Although SBA [40] estimates the mode shapes on-
the-fly—with shorter initialization computation time only for
shape at rest—it is not able to overcome the mode shapes for
this sequence. Note that the three methods use exactly the
same initialization, although both BA-FEM and EM-FEM
exploit the shape at rest to compute a mode shape basis. Our
sequential methods are also more accurate than the batch
methods MP [39], PTA [8], EM-PND [28], and KSTA [25]
which for the sparse case obtain an error e3D[%] of 16.02(2),
14.11(2), 8.65(2), and8.61, respectively.Regarding the dense
case, we obtain an error e3D[%] of 21.94(2), 14.83(2), and
9.64(4) for the methods MP [39], PTA [8], and KSTA [25],
respectively. SPM [15] and EM-PND [28] did not manage to
process this sequence due to their nonscalable nature.

In both cases, the error e3D when applying EM-FEM
is smaller than that of the BA-FEM algorithm. For this
sequence, the Gaussian prior is more accurate and produces
better solutions. Note that the initialization computation time

Fig. 15 Missing data pattern. Patterns used in the actress and paper
bending sequences, respectively. Each row is a nonrigid frame and each
column is a point track. Points in black and inwhite aremarked as visible
and occluded, respectively. Left 40 % randommissing data. Right 22 %
structured missing data

for the sparse case is the same using both approaches since
we do not use the coarse-to-fine approach. When we apply
this algorithm for the dense case, the increase in the compu-
tation time is negligible—0.03 sec—compared to the sparse
case, and it is dominated by the rigid factorization step with
25.67sec, similar to SBA [40]. However, the computation
basis for the dense case without applying the coarse-to-
fine approach is more expensive. It is worth noting that
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Fig. 16 Paper Bending Sequence. We show the 3D reconstruction of
a deformed scene for a few selected frames: #25, #50, #60, #75, and
#100. Up to 22 % structured occlusion is introduced (blue points) to

show the robustness with respect to self-occlusion. Top Frames with
2D tracks.Middle General view using BA-FEM. Bottom General view
using EM-FEM. (Color figure online)

the reconstructions applying the coarse-to-fine approxima-
tion are less accurate than the standard method without
significantly degrading the estimation, and the shape basis
computation is much more efficient. For the sequential esti-
mation,we obtainmore efficient results usingEM-FEM,with
a better scalability in the number of modes. Concerning the
sensitivewhen the rank is selected,we also observe a stability
in our estimates with respect to this parameter, by obtaining
more accurate solutions but at higher computational cost. Our
conclusions can be extended to the noise case, showing the
robustness of our methods.

We can conclude that ourmethods outperform the sequen-
tial state-of-the-art methods in terms of accuracy and effi-
ciency. Although our method is implemented in unoptimized
Matlab code without parallelization over a commodity com-
puter Intel core i7@2.67 GHz, the results show a low
computational cost per frame and the results can still be sig-
nificantly speeded up.

6.3 Real Images

In this section, we evaluate our methods qualitatively using
several existing datasets.We show the scalability of ourmeth-
ods for sparse to dense sequences of real images. Moreover,
we show the robustness of our methods in the cases of struc-
tured and random missing data.

6.3.1 Actress Sequence

First, we use the sequence and tracks provided by [9] to report
qualitative results for the actress sequence, which consists
of 102 frames where an actress is talking and moving her
head. We use a rigid model for the first 30 frames to compute
the shape at rest for both approaches, similarly to [40]. In
Fig. 14, we show our estimated 3D reconstruction applying
both BA-FEM and EM-FEM algorithms with r = 10 stretch-
ing mode shapes. Our results are comparatively similar to
those reported by [40]. Moreover, we provide results in the
case of corrupted observations. Themissing data were gener-
ated by randomly deleting entries in the 2D input tracks. We
report comparatively similar results to those of the full data
case applying 40%ofmissing data for both the BA-FEMand
EM-FEM algorithms, showing their robustness to artifacts.
We show the 40 % missing data mask in Fig. 15(left).

6.3.2 Paper Bending Sequence

In this case, we use the first 100 frames of a paper bending
sequence proposed in [9] to provide a qualitative evaluation
of our methods with respect to a structured missing data pat-
tern. We use the sparse tracking of 828 points obtained by
dense tracking data reported in [22].We process the sequence
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Fig. 17 Niko’s sequence: dense 3D point cloud estimation. Top Selected frames #17, #43, #55, #75, #100, and #121 with 3D reprojected mesh.
We display the mesh we use to obtain the mode shape basis.Middle Textured original viewpoint. Bottom Textured general view

Fig. 18 Heart sequence. 3D reconstruction of a beating heart during bypass surgery. Top Selected frames #9, #24, #32, #58, and #74 with 3D
reprojected mesh.Middle Textured general view subtracting the rigid motion for our BA-FEM method. Bottom Same views using KSTA [25]

using r= 10 bending mode shapes and 5 frames to com-
pute the shape at rest. Between frames #48 and #76, a 22 %
band of missing data is introduced simulating strong self-
occlusion. Our performance is close to the full data case for

bothBA-FEMandEM-FEM, and our 3D reconstruction does
not degrade significantly. We show both 3D reconstructions
with missing data for this sequence in Fig. 16, the 22 %
structured missing data mask in Fig. 15(right).
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6.3.3 Niko’s Sequence

We now evaluate our approach using dense 28,332 tracks
provided by [22] to show a qualitative evaluation for the face
sequence compared to [21],whereNiko is performing natural
expressions and moving his head. Since we obtain similar
resultswith both algorithms, in Fig. 17,we showa few frames
with our 3D reconstruction using our EM-FEM algorithm
with r = 30 stretching mode shapes. We compute mode
shapes with q = 1,442 points and applying a coarse-to-fine
approach to p = 28,332 points (see Fig. 5).

6.3.4 Heart Sequence

Finally, we process a challenging Heart sequence of a beat-
ing heart captured during bypass surgery.3 This shows the
generality of our approach to retrieve the 3D reconstruction
of extensible objects. In this case, we track 3,024 points com-
puted by [22] without any sub-sampling technique. Figure 18
shows some images and our 3D reconstruction using our BA-
FEM algorithm with r = 30 stretching mode shapes (similar
results are provided by EM-FEM). Since 3D ground truth is
not available for this experiment, we provide a qualitative
comparison with respect to KSTA [25] using a rank in the
basis of 5, which obtained one of better performance in quan-
titative experiments of the previous subsection. Even though
this method is known to be very accurate, the estimated 3D
shapes do not seem very realistically plausible being almost
planar for some frames.

7 Conclusion

Wehaveproposed two sequential algorithms to estimate cam-
eramotion and nonrigid 3D shape frommonocular sequences
in close to real-timeoperation.Our systemsworkwith signifi-
cantmissing data, with both elastic or isometric deformations
and, crucially, without a training step. Our methods can be
used to model either sparse or dense data and are robust
to noisy measurements. We use a thin-plate model with
unknown material properties to code the behavior of a non-
rigid 3D object by applying a force balance equation. This
equation is directly solved by FEMmodal analysis for sparse
meshes, and we also propose two efficient methods to solve
the equation for dense meshes. The resulting physics-based
shape basis is combined with temporal and spatial smooth-
ness constraints without using restrictive additional distance
constraints such as inextensibility, allowing us to model elas-
tic deformations. Both approaches provide a competitive
solution in terms of accuracy versus per-frame computation
time. Our claims have been experimentally validated for both

3 Video available from: http://hamlyn.doc.ic.ac.uk/vision.

synthetic and real sequences showing a performance better
than or comparable to state-of-the-artmethods,with the addi-
tional advantage that our methods are sequential, accurate,
and scalable.

Our future work is to pursue the goal of merging feature
tracking and outliers detection to provide a unified frame-
work. Additionally, we plan to apply our methods to the
problemof 3D reconstruction fromendoscopic videos,where
accurate FEM biomechanical models for internal organ tis-
sues are available. We expect that our method will be able
to exploit the rich priors available and provide new avenues
of research for the challenging use of nrsfm in minimally
invasive surgery.
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8 Rotation Update on the Stiefel Manifold

The camera rotation Qt
i is subject to orthonormality con-

straints, and a closed-form update is not possible. The
rotationmatrix lies exactly on a smoothmanifold basedon the
orthogonal group SO(3), where it is possible to generalize a
Riemannian-Newton algorithm [19,49]. We define the prob-
lem as that of minimizing the function B

(
Qt

i

)
, where Qt

i is

constrained to the set of matrices such that Qt
i
�Qt

i = I, i.e., a
Stiefel matrix. In this work, we use the Riemannian manifold
optimization to update the rotationmatrices. First, we rewrite
the expected negative log-likelihood function Eq. (21) drop-
ping the dependence on σ 2 and B

(
Qt

i

)
can be expressed as:

arg min
Qt
i∈SO(3)

f∑

i= f−W+1

∑

�∈V
E

[
‖wi� − ΠQt

i S̃�γ̃ i − ti‖2F
]

(23)

where Qt
i ∈ SO(3) and its tangent ΔQt

i
∈ TQt (SO(3))

can be expressed as ΔQt
i

= Qt
i [δ]× with [δ]× being the

skew-symmetric matrix. On SO(3), the geodesic at Qt
i in

the tangent direction can be expressed by means of the
Rodrigues’ rotation formula:

Qt+1(δ̂, α
) = Qt

(
I3 +

[
δ̂
]

× sin(α) +
[
δ̂
]2

× (1 − cos(α))

)

(24)
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where [δ]× ∈ so(3) is the Lie algebra of SO(3) the group and

[δ]× = α
[
δ̂
]

×. This explicit formula for geodesics is nec-

essary for computing the gradient dB(ΔQt
i
) and the Hessian

Hess B(ΔQt
i
,ΔQt

i
) of the cost function Eq. (23) along the

geodesics on the manifold. Given the previous definition, we
can obtain both the gradient and Hessian in a tangent direc-
tion ΔQt

i
as:

d B(ΔQt
i
) ≡ d B (Qt

i (α)
)

dα

∣
∣∣
∣∣
α=0

=
⎛

⎝Rt
i

∑

�∈V

(
S̃�φ̃i S̃�

�

)
−
∑

�∈V

((
wi� − ti

)
μ̃�
i S̃�

�

)
⎞

⎠Δ�
Rt
i

(25)

Hess B(ΔQt
i
,ΔQt

i
) ≡ d2 B (Qt

i (α)
)

dα2

∣∣
∣∣
∣
α=0

=
⎛

⎝Rt
i

∑

�∈V

(
S̃�φ̃i S̃�

�

)
−
∑

�∈M

((
wi� − ti

)
μ̃�
i S̃�

�

)
⎞

⎠Δ�
Qt
i
Qt

iΔ
�
Rt
i

+ΔRt
i

∑

�∈V

(
S̃�φ̃i S̃�

�

)
Δ�

Rt
i

(26)

where ΔRt
i

= ΠΔQt
i
are the first two rows of a full

tangent vector. The expectations are μ̃i = E
[
γ̃ i

]
and

φ̃i = E

[
γ̃ i γ̃

�
i

]
. The Hessian can be obtained by polariz-

ing Hess B(ΔQt
i
,ΔQt

i
) [29,49]. Assuming that the Hessian

is nondegenerate, we compute the optimal updating vector
for a generalized Newton method as ΔQt

i
= −Hess−1G,

where G is the gradient on the manifold. To compute the
Hessian, we use an orthonormal basisEb of the tangent space
on SO(3). For simplicity, we can choose the standard basis
eb for R3. The Hessian matrix H and gradient vector g can
be obtained as:

gb = d B(Eb), (27)

Hbc = Hess B(Eb, Ec). (28)

Finally, the optimal updating vector can be computed as
ΔQt

i
= −Hess−1G = Qt

i [δ]× and to move it in the tangent
direction along the geodesic on SO(3). The outline of the
algorithm is shown in Algorithm 1.

Next, the noise variance and the translation vector can be
updated in an on-line manner as:

σ 2 = 1

2�W

f∑

i= f−W+1

∑

�∈V

(
− 2

(
wi� − t̄i

)� Gi S̃�μ̃i

+‖wi� − t̄i‖2 + tr
(
S̃�

� G�
i Gi S̃�φ̃i

) )
,

ti = 1

�

∑

�∈V

(
wi� − Ri S̃�μ̃i

)
.

Algorithm 1: Minimizing B
(
Qt

i

)
Eq. (23)

Output: Optimal updated rotation matrix Qt+1
i

1: i = f − W + 1
2: while Qt

i ≤ Qt
f do

3: I. Compute Optimal Updating Vector ΔQt
i

4: Eb = Qt
i [eb]× 1 ≤ b, c ≤ 3

5: gb = d B(Eb) (Eq. (25))
6: Hbc = Hess B(Eb, Ec) (Eq. (26))
7: δ = −H−1g
8: ΔQt

i
= Qt

i [δ]×
9: II. Update the Rotation Matrix Qt+1

i

10: Qt+1
i = Qt

i exp

(
α
[
δ̂
]

×

)
(Eq. (24))

11: with α =
√

1
2 tr
(
Δ�

Qt
i
ΔQt

i

)

12: i ←− i + 1

13: end while
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