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Abstract In this paper, a new variational image denoising
model is proposed. The newmodel could be seen to be a two-
step method. In the first step, structure tensor analysis is used
to infer something about the local geometry. The eigenvec-
tors and the eigenvalues of the structure tensor are used in the
construction of the denoising energy. In the second step, the
actual variational denoising takes place. The steps are cou-
pled in the sense that the energy expression is built using the
underlying image, not the data. Two variable exponents are
incorporated into the regularizer in order to reduce the stair-
casing effect, which is often present in the methods based
on the first-order partial derivatives, and to increase smooth-
ing along the image boundaries. In addition, two pointwise
weight functions try to help to preserve small-scale details.
In the theoretical part, the existence of a minimizer of a weak
form of the original energy is considered. In the numer-
ical part, an algorithm based on iterative minimization is
presented and the numerical experiments demonstrate the
possible advantages of the new model over some existing
variational and partial differential equations methods.
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1 Introduction

Variational image denoising methods have attracted much
attention since the model based on the minimization of the
total variation was proposed by Rudin, Osher and Fatemi
(ROF) [27]. Despite its success, some drawbacks of the
ROF method are its tendency to produce piecewise constant
images and loss of contrast. Since the introduction of the
model, several modifications have been proposed.

In this paper, it is assumed that the noise is additive and
white. Mathematically,

f = f0 + n

where f0 : Ω → R is the original noise-free image, n :
Ω → R is the white noise and f : Ω → R is the noisy
image or the measurement which is available. Variational
models to find approximation of f0 are formulated as energy
minimization problems.

Methods, which are based on some kind of orientation
matching, could be seen to form one group which tries to
improve the ROFmethod. In thesemethods, some smoothing
process is applied on∇ f/|∇ f | in order to get an approxima-
tion v of ∇ f0/|∇ f0|. In the second step, this vector field v

is used to guide the variational denoising in such a way that
the energy minimization favours images u such that ∇u is
approximately pointwise parallel to v. For methods belong-
ing to this group, see e.g. the Lysaker–Osher–Tai model [25],
the TV-Stokes model [26] and the model proposed in [18].

One group of denoising methods which avoids the stair-
casing effect is based on the use of the higher-order partial
derivatives. For instance in [5], the concept of total gen-
eralized variation was introduced where the regularizer
automatically balances between the first- and higher-order
derivatives. In [23], an adaptive, directionally dependent
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regularizer based on the first- and second-order derivatives
was proposed. Article [11] presents a general framework for
higher integer-order variational methods and non-linear dif-
fusion filtering for image denoising. Higher-order methods
are not limited to integer-order differentiability, e.g. in [10]
fractional-order derivatives appear in the proposed regular-
izer to handle one-dimensional signals. Earlier, the use of
fractional derivatives had appeared in differential equations
form, see e.g. [12]. The work [19] on higher degree total
variation contains also an interesting discussion regarding
the separability of the total variation which is relevant also
for our work in this paper.

The methods based on the use of variable exponents are
also intended to reduce the staircasing. Edge-preserving reg-
ularization is used in the areas where the gradient of the
noise-free image is probably large and in the areas where the
gradient is probably small, isotropic smoothing is used. The
first method on this area was [2] where the variable exponent
in the regularizer was based on the underlying image. Due
to the non-convexity of the method, in [8] a convex variant
of [2] was proposed where the exponent is based solely on
the noisy image. See also the subsequent papers [3,16,24] on
denoising which are based on the use of variable exponents
and first-order partial derivatives.

Studying image structures can be challenging due to noise.
It could be preferable to use operations which are based on
local neighbourhoods, since they could be more robust to
noise than operations which are just pointwise based. For
instance, structure tensor (see e.g. [14] for a pioneering work
on the concept) provides a way to study the dominant ori-
entation of the gradient in a neighbourhood. In the partial
differential equations and calculus of variations approaches
to image processing, the early works which utilize the struc-
ture tensor, are formulated in the partial differential equations
framework, see Weickert [32] and Tschumperlé [30]. Cur-
rently, there are also variational methods which utilize the
structure tensor.

In [15], Grasmair and Lenzen considered an anisotropic
total variationmodel based on theminimization of the energy

|| f − u||2L2(Ω)
+ λ

∫
Ω

(
∇uTA(u)∇u

) 1
2
dx (1)

where the pointwise anisotropy matrix A(u) is constructed
from the linear structure tensor of u. In this model, the
approximation of the unit vector field parallel to ∇u and the
actual denoising step are coupled in the sense that the unit
vector field is estimated from the underlying image u, not
from the data.

In [28], a two-stepmethodwas proposed for image denois-
ing. In the first step, the orientations of the image structures
are estimated from the data. In the second step, this direc-
tional information is used to build an energy functional to

be minimized. One of the regularizers in that paper has the
form

∫
Ω

|r1 · ∇u| + |r2 · ∇u| dx (2)

in the continuous domain where r1 and r2 are the pointwise
directions derived in the step 1.

In [13], an iterative two-stepmethod is proposed for image
reconstruction where in the first step the structure tensor
of the original image is estimated. In the second step, this
information is used to construct an energy expression whose
minimization favours solutions respecting the local geom-
etry obtained by the structure tensor analysis. In [21], the
so-called structure tensor total variation is proposed to solve
inverse problems in imaging. The regularizer is based on
penalizing the eigenvalues of the structure tensor. The work
[20] extends [21] in the sense that in [20] the regularizer is
based on the eigenvalues of a non-local version of the struc-
ture tensor. In [22], solution adaptive variants of the total
variation were considered where the adaptivity is modelled
as a fixed point problem. In [36], a gradient energy total vari-
ation is proposed using the gradient energy tensor.

The linear structure tensor Kρ ∗ (∇uσ ∇uTσ ), where ρ > 0
and σ > 0 are fixed and K is the Gaussian kernel, can also
be obtained by applying the linear isotropic heat equation
to the elements of the matrix ∇uσ ∇uTσ where the stopping
time depends on ρ. There are also non-linear methods to
smooth the tensor field ∇uσ ∇uTσ which aim at better edge
preservation, see e.g. Brox et al. [6] and Hahn and Lee [17].

Regarding the works which have some resemblance to our
work we also mention [1] where a directional total variation
was considered and [35] where an adaptive directional total
variation model was proposed for latent fingerprint segmen-
tation.

In this paper,we consider a newadaptive variational image
denoising model which is mostly inspired by the works
[3,15]. The regularizer has a formulation which should help
to preserve the edges in the estimated directions given by the
structure tensor but the regularizer should also encourage
smoothing along the edges. On the other hand, in the esti-
mated smooth areas, the regularizer simplifies to isotropic
smoothing. The pointwise positive weights in the regularizer
also try to help to preserve small-scale details.

In [3], the authors considered variants of [2] for denoising
and the regularizer was an interpolation between isotropic
total variation and Tikhonov regularization. On the other
hand, we consider in this paper a regularizer which in
some sense is an interpolation between directional varying
anisotropic total variation and Tikhonov regularization.

In the new model we consider in this paper, similar to
[15], the approximation of the unit vector field parallel to∇u
and the actual denoising step are coupled in the sense that
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the directional vector field is computed from the underlying
image. We utilize both the eigenvectors and the eigenvalues
of the structure tensor in the construction of the regularizer.
Compared to the energy in (1), our regularizer has a point-
wise separable formulation regarding the smoothing along
the level lines and in the direction orthogonal to them. This
separability is similar to the regularizer in (2). This separa-
bility property combined with the local coordinate system,
whose axes are the eigenvectors of the structure tensor, is
used to design the smoothing behaviour along the level lines
and in the direction orthogonal to them. Roughly speaking,
one can use locally linear or non-linear smoothing along the
edges, whereas in the direction orthogonal to the edges, the
smoothing is minor and of non-linear character in order to
prevent the edges from getting blurred.

2 The New Model

Let Ω ⊂ R
2 be an open and bounded rectangle and f ∈

L2(Ω). In this paper, we study variational image denoising
of an image f based on the minimization of the energy

λ|| f − u||2L2(Ω)
+ R(u) (3)

where the regularizer R is

R(u) :=
∫

Ω

α1(u)|∇u · ξ(u)|p1(u) + α2(u)|∇u · ξ(u)⊥|p2(u) dx

and λ > 0 is the global tuning parameter. In the regular-
izer, (ξ(u)(x), ξ(u)⊥(x)) is a pointwise, smoothly varying
orthonormal coordinate system computed from the image u
such that ξ(u)(x) is approximately parallel to ∇u(x) pro-
vided ∇u(x) is non-vanishing. The choices of the pointwise
weights α1(u)(x) and α2(u)(x) and the varying integrabil-
ities p1(u)(x) and p2(u)(x) aim at preserving the edges,
reducingnoise also along the edges ofu andpreserving small-
scale details.

For simplicity, at times we may omit the explicit depen-
dency of α1, α2, p1, p2, ξ and ξ⊥ on u.
The key features regarding the choices of the parameter func-
tions are:

1. 0 < ε ≤ α1, α2 ≤ 1, 1 ≤ p1, p2 ≤ 2. Here ε > 0 is
small. This assumption is needed when the existence of
a minimizer of the model is considered.

2. In the nearly constant, homogeneous areas, we have for
the pointwise weights α1(x) ≈ α2(x) ≈ 1 and for the
integrabilities p1(x) ≈ p2(x) ≈ 2 , so α1(u)|∇u ·
ξ(u)|p1(u) + α2(u)|∇u · ξ(u)⊥|p2(u) ≈ |∇u|2 by the
Pythagorean theorem. This aims at reducing the stair-
casing effect.

We mention that if α1 = α2 = 1, p1 = p2 = 2, then one
can actually solve the minimization of the energy (3) in
the case Ω = R

2. The solution is obtained by applying
a linear low-pass filter on f . This could be considered to
correspond to averaging f locally in a linear way. The
derivation of the low-pass filter in the Fourier domain is
made as e.g. in [10].

3. In the areas where the structure is one-dimensional, the
choices α1(x) ≈ 0, p1(x) ≈ 1 and p2(x) ≈ 2 try
to preserve the edges and at the same time encourage
smoothing along the edges. Another possibility is to use
also p2(x) ≈ 1.
Again, if α1 = 0, p2 = 2 and α2, ξ are constant, then one
could solve the minimization of the energy (3) in the case
Ω = R

2. In the Fourier domain, the solution is obtained
by applying the linear filter

2λ

2λ + 8π2α2|ξ⊥ · w|2

on f̂ (w). From the expression of the filter, we see that
the filter attenuates all sinusoidal components except
those oscillations which in the spatial domain are con-
stant along ξ⊥. Components which in the spatial domain
oscillate in the direction ξ⊥ are attenuated the most. In
the spatial domain, along ξ⊥, the filter has a low-pass
character.

4. In the textured areas, where the structure is clearly not
one-dimensional, or at the corners, p1(x) ≈ p2(x) ≈
1 which tries to preserve the small-scale details along
several directions.

To prove the existence of a minimizer of the new model
wemake the following assumptions on the pointwise varying
coordinate system, the pointwise weights and the integrabil-
ities:

If u ∈ L1(Ω), then ξ(u) ∈ C1(Ω;R2), α1(u), α2(u), (A)

p1(u), p2(u) ∈ C1(Ω), p1(u), p2(u) ∈ [1, 2], α1(u),

α2(u) ∈ [ε, 1], where ε ∈ (0, 1).

Continuity: If un → u in L1(Ω), then ξ(un) → ξ(u) in
(B)

C1(Ω;R2), α1(un) → α1(u), α2(un) → α2(u),

p1(un) → p1(u), p2(un) → p2(u) in C1(Ω).

3 Strong and Weak Forms

We denote the regularizer R in (3) by Estrong,
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Estrong(u) :=
∫

Ω

α1(u)|∇u · ξ(u)|p1(u)

+ α2(u)|∇u · ξ⊥(u)|p2(u) dx
(4)

which is defined at least if u is differentiable.
We aim to define a suitable weak form Eweak such that

Eweak(u) = Estrong(u) if u is smooth enough and if f ∈
L2(Ω) andλ > 0, then the energyλ|| f −u||L2(Ω)+Eweak(u)

has a minimizer in the space of functions of bounded varia-
tion. The choice of theweak form ismotivated by the analysis
made in [3] where a weak form of the regularizer of the form∫
Ω

|∇u|p(u) dx or
∫
Ω

|∇u|p( f ) dx was considered. We use
the results from [3] in many places in this section.

We aim to express the energy Estrong in such a way that in
the energy, the dependency on u does not involve the deriva-
tives of u. In the sameway, the total variation can be obtained
starting with the expression

∫
Ω

|∇u| dx . First, we proceed
formally to show how Eweak is obtained. Since for t ∈ R and
1 ≤ p ≤ 2, we have

|t |p = max
v≥0

(
pv(p−1)|t | − (p − 1)v p

)
,

then we get the expression (5) for |∇u · ξ(u)|p1(u).

|∇u · ξ(u)|p1(u)

= maxv1≥0

(
p1(u)v

(p1(u)−1)
1 |∇u · ξ(u)|

−(p1(u) − 1)v p1(u)
1

)

= maxv1≥0,σ1∈R,|σ1|≤1

(
p1(u)v

(p1(u)−1)
1 σ1∇u · ξ(u)

−(p1(u) − 1)v p1(u)
1

)

(5)

Analogously, we get (6) for |∇u · ξ(u)⊥|p2(u).

|∇u · ξ(u)⊥|p2(u) = maxv2≥0,σ2∈R,|σ2|≤1(
p2(u)v

(p2(u)−1)
2 σ2∇u · ξ(u)⊥ − (p2(u) − 1)v p2(u)

2

)

(6)

If it is possible to take the supremum outside of the integral,
then using the integration by parts, if ξ⊥ = (−(ξ)2, (ξ)1),
and if

A(u) :=
(

(ξ(u))1 (ξ(u)⊥)1
(ξ(u))2 (ξ(u)⊥)2

)
=
(

ξ(u)1 −ξ(u)2
ξ(u)2 ξ(u)1

)
, (7)

we see that we have at least the approximate expression (8)
for Estrong(u) where the occurrences of ∇u have vanished.
We can now define

Eweak : L1(Ω) → R ∪ {±∞}

as in (8) where we use the notation

||||(σ1, σ2)||∞||∞ := esssup
x∈Ω

max{|σ1(x)|, |σ2(x)|}.

Estrong(u) ≈ sup

{∫
Ω
div

(
A(u)

[
α1(u)p1(u)v

p1(u)−1
1 σ1

α2(u)p2(u)v
p2(u)−1
2 σ2

])
u

− α1(u)(p1(u) − 1)v p1(u)
1 − α2(u)(p2(u) − 1)v p2(u)

2 dx
∣∣∣

v1, v2 ∈ C1(Ω), σ1, σ2 ∈ C1
c (Ω), inf

x∈Ω
v1(x),

inf
x∈Ω

v2(x) > 0, || ||(σ1, σ2)||∞||∞ ≤ 1

}
=: Eweak(u)

(8)

Nextwe intend to show that Eweak isminorized by amulti-
ple of the total variation plus a constant. This result is similar
to [3, p. 75] and the result is needed later when the existence
of a minimizer is considered.We begin with a short technical
lemma.

Lemma 1 The function

y 
→
⎧⎨
⎩
(
1
y

) 1
y−1

, 1 < y ≤ 2,

e−1, y = 1

is a restriction of a C1 function g defined in (0,+∞). Also,
g is increasing on (1, 2) and thus g ≥ e−1 on [1, 2].
Proof Let g : (0,+∞) → R be defined by

g(y) :=
{
e

1
y−1 log

(
1
y

)
, y �= 1,

e−1, y = 1.

It is clear that g is a C1 function on (0, 1) ∪ (1,+∞). It is
also true that

lim
y→1

g(y) = 1

e
and lim

h→0

g(1 + h) − g(1)

h
= 1

2e

and

lim
y→1

d

dy

(
e

1
y−1 log

(
1
y

))
= 1

2e
.

The claim follows. ��
Next we prove that Eweak is minorized by a multiple of the
total variation plus a constant.

Proposition 1 Let ε ∈ (0, 1) be such that α1(u), α2(u) ∈
[ε, 1] for all u ∈ L1(Ω). Then

TV(u) ≤ 1

ε
Eweak(u) + C

for all u ∈ L1(Ω) where the constant C does not depend on
u.
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Proof Now

Eweak(u)

≥ sup
v1, v2, σ1, σ2

∫
Ω

div

(
A(u)

[
α1(u)p1(u)v

p1(u)−1
1 σ1

α2(u)p2(u)v
p2(u)−1
2 σ2

])
u

− α1(u)(p1(u) − 1)v p1(u)
1

− α2(u)(p2(u) − 1)v p2(u)
2 dx

where v1, v2 ∈ C1(Ω), inf v1, inf v2 > 0, σ1, σ2 ∈ C1
c (Ω),

σ 2
1 + σ 2

2 ≤ 1. Since the columns of A are linearly indepen-
dent, A is of full rank and invertible. Actually,

A−1 =
(

ξ1 ξ2
−ξ2 ξ1

)
.

Let v1 := g ◦ p1(u) where g is as in Lemma 1. Then
v1 ∈ C1(Ω), p1v

p1−1
1 = 1, inf x∈Ω v1(x) ≥ e−1 > 0 and v1

is bounded. Similarly, we select v2 := g ◦ p2(u). Then

Eweak(u) ≥ sup
σ 2
1 +σ 2

2 ≤1

∫
Ω

div

(
A(u)

[
α1(u)σ1
α2(u)σ2

])
u

− α1(u)(p1(u) − 1)v p1(u)
1

− α2(u)(p2(u) − 1)v p2(u)
2 dx .

Let (σ ′
1, σ

′
2) ∈ C1

c (Ω;R2), (σ ′
1)

2 + (σ ′
2)

2 ≤ 1, be given.
We select (σ1, σ2) such that

A(u)

[
α1(u) 0
0 α2(u)

] [
σ1
σ2

]
=
[

σ ′
1

σ ′
2

]
.

Then (σ1, σ2) ∈ C1
c (Ω;R2) and since ε ≤ α1, α2 ≤ 1 and

A−1 is length-preserving, we see that σ 2
1 +σ 2

2 ≤ 1
ε2

and thus

(εσ1)
2 + (εσ2)

2 ≤ 1. Now

∫
Ω

div

([
σ ′
1

σ ′
2

])
u dx= 1

ε

∫
Ω

div

(
A

[
α1 0
0 α2

] [
εσ1
εσ2

])
u dx

and thus

sup
(σ ′

1)
2+(σ ′

2)
2≤1

∫
Ω

div

([
σ ′
1

σ ′
2

])
u dx

≤ 1

ε
sup

σ 2
1 +σ 2

2 ≤1

∫
Ω

div

(
A

[
α1 0
0 α2

] [
σ1
σ2

])
u dx .

We mention that by a similar reasoning, it also follows that

sup
(σ ′

1)
2+(σ ′

2)
2≤1

∫
Ω

div

(
A

[
α1 0
0 α2

] [
σ ′
1

σ ′
2

])
u dx

≤ sup
σ 2
1 +σ 2

2 ≤1

∫
Ω

div

([
σ1
σ2

])
u dx .

Since 0 < ε ≤ α1, α2 ≤ 1, 1 ≤ p1, p2 ≤ 2, vi = g ◦ pi (u)

where g is bounded on [1, 2] by Lemma 1, we also get an
estimate for the constant C . ��

4 Equivalence of the Strong and Weak Forms for
Smooth Functions

In this section, we show that if u ∈ C1(Ω), then Estrong(u) =
Eweak(u).

Lemma 2 If u ∈ C1(Ω), then

Estrong(u) ≥ Eweak(u).

Proof Let v1, v2 ∈ C1(Ω), (σ1, σ2) ∈ C1
c (Ω;R2) be fixed,

where inf v1, inf v2 > 0 and ||σ1||L∞ , ||σ2||L∞ ≤ 1. If u ∈
C1(Ω), then using the fact that |t |p1 = maxv≥0(p1v p1−1|t |−
(p1 − 1)v p1), we see that |∇u · ξ |p1(u) ≥ p1v

p1−1
1 |∇u · ξ | −

(p1 − 1)v p1
1 ≥ p1v

p1−1
1 σ1∇u · ξ − (p1 − 1)v p1

1 . Using this
and the integration by parts we see that

Estrong(u) ≥
−
∫

Ω

div
(
α1 p1v

p1−1
1 σ1ξ + α2 p2v

p2−1
2 σ2ξ

⊥) u dx
−
∫

Ω

α1(p1 − 1)v p1
1 + α2(p2 − 1)v p2

2 dx

and since (σ1, σ2) ∈ C1
c (Ω;R2), ||σ1||L∞ , ||σ2||L∞ ≤ 1 and

v1 ∈ C1(Ω), v2 ∈ C1(Ω), where inf v1, inf v2 > 0, are
arbitrary, we get Estrong(u) ≥ Eweak(u). ��
Lemma 3 Let u ∈ C1(Ω) and ε > 0. Then there exists
σ1 ∈ C1

c (Ω) such that ||σ1||∞ ≤ 1 and

(∗) :=
∣∣∣∣
∫

Ω

α1|∇u · ξ |p1 dx

−
∫

Ω

α1 p1|∇u · ξ |p1−1σ1∇u · ξ

− α1(p1 − 1)|∇u · ξ |p1 dx
∣∣∣∣ < ε.

An analogous estimate holds for the triplet α2, p2 and ξ⊥.

Proof Set w1(x) := ∇u·ξ
|∇u·ξ | if |∇u · ξ | �= 0 and w1(x) = 0

otherwise. Then α1|∇u · ξ |p1 = α1|∇u · ξ |p1−1w1∇u · ξ .
Select σ1 ∈ C1

c (Ω) such that

||w1 − σ1||L1(Ω) <
1

n
. (9)
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Since σ1 can be obtained by convolving with the standard
mollifier a function whose absolute value is less than or equal
to one, it follows that σ1 can be chosen such that ||σ1||∞ ≤ 1.
Then

(∗) =
∣∣∣∣
∫

Ω

α1 p1|∇u · ξ |p1−1[w1∇u · ξ − σ1∇u · ξ ] dx
∣∣∣∣

≤
∫

Ω

α1 p1|∇u · ξ |p1 |w1 − σ1| dx .

Since u ∈ C1(Ω), then |∇u| ∈ L∞(Ω). By choosing n in
(9) large enough, we see that (∗) < ε. ��
Lemma 4 Let u ∈ C1(Ω) and ε > 0. Then there exist σ1 ∈
C1
c (Ω) and v1 ∈ C1(Ω) such that |σ1| ≤ 1, inf v1 > 0 and

(∗∗) :=
∣∣∣∣
∫

Ω

α1|∇u · ξ |p1 dx −
∫

Ω

α1 p1v
p1−1
1 σ1ξ · ∇u

− α1(p1 − 1)v p1
1 dx

∣∣∣∣ < ε.

An analogous estimate holds for the triplet α2, p2 and ξ⊥.

Proof Select σ1 by Lemma 3 corresponding to the tolerance
ε
2 . Since u ∈ C1(Ω), then |∇u| ∈ L∞(Ω). Let ρn := η1/n ∗
|∇u · ξ | where it is assumed that |∇u · ξ | = 0 outside Ω and
η is the standard mollifier. Let x ∈ Ω . Choose n so large that
B(x, 1/n) ⊂ Ω . Then

|ρn(x) − |∇u · ξ(x)||
=
∣∣∣∣
∫
B(x,1/n)

η1/n(x−y)[|(∇u · ξ)(y)| − |∇u · ξ(x)|] dy
∣∣∣∣

≤
∫
B(x,1/n)

η1/n(x − y)|(∇u · ξ)(y) − (∇u · ξ)(x)| dy.

It follows from the uniform continuity of∇u ·ξ that ρn(x) →
|∇u · ξ(x)| as n → ∞.

Let vn := ρn + 1
n . Then vn ∈ C1(Ω), inf vn > 0 for each

n and vn → |∇u · ξ | pointwise as n → +∞. The dominated
convergence theorem implies that

∫
Ω

α1 p1v
p1−1
n σ1ξ · ∇u − α1(p1 − 1)v p1

n dx →
∫

Ω

α1 p1|∇u · ξ |p1−1σ1ξ · ∇u − α1(p1 − 1)|∇u · ξ |p1 dx

as n → ∞. We set vn in the place of v1 in (∗∗). By adding
and subtracting the term

∫
Ω

α1 p1|∇u · ξ |p1−1σ1∇u · ξ −
α1(p1 − 1)|∇u · ξ |p1 dx and by using Lemma 3 we see that

(∗∗) ≤
∣∣∣∣
∫

Ω

α1|∇u · ξ |p1 dx

−
∫

Ω

α1 p1|∇u · ξ |p1−1σ1∇u · ξ

− α1(p1 − 1)|∇u · ξ |p1 dx
∣∣∣∣

+
∣∣∣∣
∫

Ω

α1 p1|∇u · ξ |p1−1σ1∇u · ξ

− α1(p1 − 1)|∇u · ξ |p1 dx
−
∫

Ω

α1 p1v
p1−1
n σ1ξ · ∇u − α1(p1 − 1)v p1

n dx

∣∣∣∣
<

ε

2
+ ε

2

provided n is large enough. ��

The next corollary follows directly from Lemmas 2 and 4.

Corollary 1 If u ∈ C1(Ω), then Eweak(u) = Estrong(u).

5 Existence of a Minimizer

The goal of this section is to show that the energy Eweak(u)+
λ|| f −u||2

L2(Ω)
, u ∈ L2(Ω), has a minimizer in BV(Ω). We

begin with a technical lemma.

Lemma 5 Let v1, v2 ∈ C1(Ω), inf v1, inf v2 > 0 and σ1,

σ2 ∈ C1
c (Ω) be fixed. Let A be as in (7). Then the map

u 
→ A(u)

[
α1(u)p1(u)v

p1(u)−1
1 σ1

α2(u)p2(u)v
p2(u)−1
2 σ2

]
=: G(u)

is continuous from L1(Ω) to C1
c (Ω;R2).

Proof Now for G(u) we have the expression (10).
Since v1 ∈ C1(Ω), inf v1 > 0 and p1(u) ∈ C1(Ω),

it follows that the function x 
→ v1(x)p1(u)(x)−1 is a C1(Ω)

function. This can be seen by writing v p−1 = e(p−1) log v and
applying the mean value theorem. Similarly for v2 and p2.
Then using Assumption (A) on page 3, we see that G(u) ∈
C1(Ω;R2). By using [3, Lemma 5] and Assumption (B) it
follows that u 
→ v

p1(u)−1
1 and u 
→ v

p2(u)−1
2 are continuous

maps from L1(Ω) to C1(Ω).
By Assumption (B) on page 3, u 
→ ξi (u), u 
→ pi (u)

and u 
→ αi (u) are continuous from L1(Ω) to C1(Ω). The
claim then follows using the Leibniz rule as in [3, p. 80]. ��

Theorem 1 Let v1, v2, σ1, σ2 and G be as in Lemma 5. Let
A be as in (7). Then
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u 
→
∫

Ω

div (G(u)) u − α1(u)(p1(u) − 1)v p1(u)
1

− α2(u)(p2(u) − 1)v p2(u)
2 dx

is continuous from L1(Ω) to R.

Proof Let un → u in L1(Ω). Using [3, Lemma 7] and
Assumption (B) on page 3we see that (p1(un)−1)v p1(un)

1 →
(p1(u) − 1)v p1(u)

1 in L1(Ω) as n → ∞ and an analogous
result holds for p2 and v2. By Assumption (B) on page 3,
α1(un) → α1(u) and α2(un) → α2(u) in C1(Ω). We get

∫
Ω

α1(un)(p1(un) − 1)v p1(un)
1

+ α2(un)(p2(un) − 1)v p2(un)
2 dx

→
∫

Ω

α1(u)(p1(u) − 1)v p1(u)
1

+ α2(u)(p2(u) − 1)v p2(u)
2 dx

as n → ∞. Next we show that
∫

Ω

div (G(un)) un dx →
∫

Ω

div (G(u)) u dx .

Now
∣∣∣∣
∫

div (G(u)) u − div (G(un)) un dx

∣∣∣∣
≤
∣∣∣∣
∫

div (G(u)) (u − un) dx

∣∣∣∣
+
∣∣∣∣
∫

[div (G(u)) − div (G(un))] un dx

∣∣∣∣
=: (∗) + (∗∗).

Here (∗) → 0 as n → ∞, since ||un − u||L1(Ω) → 0 as
n → ∞ and G(u) is a C1

c (Ω;R2) function by Lemma 5.
Since un → u in L1(Ω), then un is bounded in L1(Ω).

On the other hand, by Lemma 5,

||div (G(u)) − div (G(un))||L∞ → 0

as n → ∞ and thus (∗∗) → 0 as n → ∞. ��

G(u)=
[

ξ1(u)α1(u)p1(u)v
p1(u)−1
1 σ1−ξ2(u)α2(u)p2(u)v

p2(u)−1
2 σ2

ξ2(u)α1(u)p1(u)v
p1(u)−1
1 σ1+ξ1(u)α2(u)p2(u)v

p2(u)−1
2 σ2

]

(10)

Corollary 2 The functional Eweak is lower-semicontinuous
on L1(Ω).

Proof By the definition of Eweak and using Theorem 1 we
see that Eweak is a supremum of continuous functions so then
Eweak is lower-semicontinuous. ��

Now we come to the main result of this section.

Theorem 2 Let Ω ⊂ R
2 be an open rectangle, f ∈ L2(Ω),

λ > 0 and set

E(u) := Eweak(u) + λ|| f − u||2L2(Ω)

for u ∈ L2(Ω). Then there exists u ∈ BV(Ω) which is a
minimizer of E.

Proof Let (un) ⊂ L2(Ω) be a minimizing sequence for
E . Since E(0) = λ|| f ||2

L2(Ω)
< ∞, we see that E(un) is

bounded from above. Then by Proposition 1, TV(un) ≤ c
for each n where c > 0 does not depend on n. Since
L2(Ω) ↪→ L1(Ω),we see that ||un ||L1(Ω) ≤ C ||un||L2(Ω) ≤
C(|| f − un||L2(Ω) + || f ||L2(Ω)). We see that un ∈ BV(Ω)

and

||un||BV(Ω) = ||un||L1(Ω) + TV(un) ≤ C

for each n. Thus there exists u ∈ BV(Ω) and a subsequence
nk such that unk ⇀ u weakly* in BV(Ω) as k → ∞. Thus
unk → u in L1(Ω).

Using Corollary 2 we see that

Eweak(u) ≤ lim inf
k→∞ Eweak(unk ).

Since un is bounded in L2(Ω)we can also assume by select-
ing again a subsequence if necessary that unk ⇀ u in L2(Ω)

and thus || f −u||L2(Ω) ≤ lim infk→∞ || f −unk ||L2(Ω) which
combined with the previous gives that

E(u) ≤ lim inf
k→∞ E(unk )

and the proof is complete. ��

6 Parameter Functions

In this section, we discuss a possible choice of the pointwise
varying coordinate systemsatisfying the assumptions (A) and
(B) on page 3. The choice is based on smoothing of a matrix
representation of the image gradient field. We also discuss
how the pointwise weights and the varying integrabilities can
be chosen in general.

We begin by discussing the concept of the structure tensor.
In general, structure tensor can be used to infer something
about the local geometry of an image. By a tensor field we
understand a function from Ω to the space of symmetric,
positive semidefinite matrices of size 2 × 2.

Let u ∈ L1(Ω) be an arbitrary image. First, the Gaussian
kernel Gσ , where σ > 0 is fixed, is applied on u in order to
make the pointwise partial derivatives well defined. Let
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Sσ (u) :=
[

[∂xGσ ∗ u]2 [∂xGσ ∗ u] · [∂yGσ ∗ u
]

[∂xGσ ∗ u] · [∂yGσ ∗ u
] [

∂yGσ ∗ u
]2

]
.

(11)

Let ρ > 0 denote the size of the neighbourhood where the
average of the tensor field Sσ (u) is considered and set

S(u)(x) := Gρ ∗ Sσ (u)(x) =:
[
a(x) b(x)
b(x) c(x)

]
. (12)

The obtained tensor field is called the structure tensor of u.
The eigenvectors and eigenvalues of S(u)(x) can be used
to infer something about the local geometry of u. This is
based on a variational characterization of the eigenvalues of
a positive semidefinite matrix. We follow [32]. Let

S(u)(x) = λ1θ1θ
T
1 + λ2θ2θ

T
2

be an eigenvalue decomposition of S(u)(x). Here λ1 ≥ λ2 ≥
0 since S(u)(x) is positive semidefinite. If λ1 ≈ λ2 ≈ 0, it
is assumed that x is in the nearly constant intensity area. If
λ1 � λ2 ≈ 0, then around x the image structure is nearly
one-dimensional. If λ1 ≥ λ2 � 0, then x is in the corner
area or in the texture area where the texture is not locally
one-dimensional.

In (12), S(u) can also be obtained by applying the linear,
isotropic heat equation to the tensor field Sσ (u). There are
also non-linear smoothing processes which can be applied
to Sσ (u). Let us discuss the smoothing proposed in [17].

Let A(t) : Ω → R
2×2, A(t) :=

[
a11(t) a12(t)
a21(t) a22(t)

]
such that

A(0)(x) = Sσ (u)(x) and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ai j
∂t

= div(g(Gς ∗ A)∇ai j ) in Ω × (0, T ],
(
g(Gς ∗ A)∇ai j

) · n = 0 on ∂Ω × (0, T ],
ai j (x, 0) = (Sσ (u))i j (x).

(13)

Here g(M) = g̃(Λ)vΛvTΛ + g̃(λ)vλv
T
λ where it is assumed

that ΛvΛvTΛ + λvλv
T
λ is an eigenvalue decomposition of M

and g̃(s) = 1√
s+1

, s ≥ 0. In [17] it is proved that if A(0) is

pointwise positive semidefinite, then also A(t) is pointwise
positive semidefinite for t ∈ (0, T ].

In (12), if un → u in L1(Ω), then quite similarly as in
[15], it follows from Young’s inequality for convolution that
we have Sσ (un) → Sσ (u) in L2(Ω;R2×2). Since S(u) is
obtained from Sσ (u) by convolution where the convolution
kernel is smooth, then again by Young’s inequality for con-
volution we see that S(un) → S(u) in C1(Ω,R2×2). If the
matrix elements in (12) are considered, we have shown that
un → u in L1(Ω) implies thata(un) → a(u),b(un) → b(u)

and c(un) → c(u) in C1(Ω).
In (13), by working as in [33, Theorem 1] and using [17,

Lemmas 1-2] one could prove an L2 stability result: If A(t)

and An(t) are tensor fields obtained by the diffusion such that
An(0) → A(0) in L2(Ω;R2×2) as n → ∞, and if ρ > 0 is
a fixed time instant, then An(ρ) → A(ρ) in L2(Ω;R2×2) as
n → ∞. As in the linear case, un → u in L1(Ω) as n → ∞
implies that Sσ (un) → Sσ (u) in L2(Ω;R2×2) which in turn
implies that An(ρ) → A(ρ) in L2(Ω;R2×2)where An(0) =
Sσ (un) and A(0) = Sσ (u). If in the non-linear case, we call
the structure tensor S(u) the tensor field Ga ∗ A(ρ), where
a > 0, then as in the linear case we see that S(un) → S(u) in
C1(Ω,R2×2). In the numerical experiments, we assume that
the amount of this smoothing is negligible and we actually
use a = 0 and in the non-linear case we write

S(u) = A(ρ) :=
[
a(x) b(x)
b(x) c(x)

]
. (14)

If u is differentiable, then in the limiting case σ = ρ = 0 we
have e.g. in (12) that S(u) = ∇u(∇u)T and

[
(∂xu)2 (∂xu)(∂yu)

(∂xu)(∂yu) (∂yu)2

] ∇u

|∇u| = |∇u|2 ∇u

|∇u| .

We can then consider that the largest eigenvalue of the struc-
ture tensor S(u)(x) is approximately equal to |∇u|2.

The matrix S(u)(x) in (12) or in (14) has eigenvalues

λ1 := 1

2

(
a + c +

√
(a − c)2 + 4b2

)
(15)

and

λ2 := 1

2

(
a + c −

√
(a − c)2 + 4b2

)
. (16)

Since S(u)(x) is positive semidefinite, λ1(x), λ2(x) ≥ 0.
The unit eigenvector corresponding to the eigenvalue λ1 is
parallel to the vector

(2b, c − a +
√

(a − c)2 + 4b2) (17)

provided b �= 0.
Next we consider how (ξ, ξ⊥) can be chosen in order to

fulfil the assumptions (A) and (B) on page 3. We begin with
a short technical result.

Proposition 2 Let hn → h in C1(Ω,Rn) and S > 0
such that ||h||C1(Ω), ||hn||C1(Ω) < S

2 for all n. Let G ∈
C2(B(0, S),R). Then G ◦ hn → G ◦ h in C1(Ω,R) as
n → +∞.

Proof Using the mean value theorem we see that

sup
x∈Ω

|G(hn(x)) − G(h(x))|
≤ sup

|y|≤ S
2

|∇G(y)| sup
x∈Ω

|hn(x) − h(x)|
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which tends to zero as n → ∞. Now

∂ j (G ◦ h)(x) =
∑
k

(∂kG)(h(x))∂ j h
k(x).

Using this and the mean value theorem we get

sup
x∈Ω

|∂ j (G ◦ h(x)) − ∂ j (G ◦ hn(x))|

= sup
x∈Ω

∣∣∣∣
∑
k

[(∂kG)(h(x))[∂ j h
k(x) − ∂ j h

k
n(x)]

− [(∂kG)(hn(x)) − (∂kG)(h(x))]∂ j h
k
n(x)]

∣∣∣∣
≤ sup

|y|≤ S
2

|∇G(y)|
∑
k

sup
x∈Ω

|∂ j h
k(x) − ∂ j h

k
n(x)|

+
∑
k

sup
|y|≤ S

2

|∇∂kG(y)| sup
x∈Ω

|hn(x) − h(x)| · S
2

which tends to zero as n → ∞. Then the claim follows. ��
Now we come to the choice of (ξ, ξ⊥). Our choice is

based, as in anisotropic diffusion filtering [32], on the eigen-
vectors of the structure tensor. We use in addition some
regularization in order to get smooth dependencies. We can
replace in (17) the square root by its regularization s 
→√
s + δ2 where δ > 0 is small. Let G : R3 → R

2,

G(x, y, z) = (2y, z − x +√(x − z)2 + 4y2 + δ2)√
4y2 + (z − x +√(x − z)2 + 4y2 + δ2)2

and set

ξ(u)(x) := G(a(u)(x), b(u)(x), c(u)(x)).

Let ξ⊥(u)(x) := (−(ξ(u)(x))2, (ξ(u)(x))1). Then if un →
u in L1(Ω) implies that a(un) → a(u), b(un) → b(u) and
c(un) → c(u) inC1(Ω), it follows by applying Proposition 2
componentwise on the function G that we have ξ(un) →
ξ(u) in C1(Ω;R2).

We can do analogous regularization in (15) and (16), and
obtain regularized eigenvalues λ1 and λ2. If also the point-
wise weights α1 and α2 and the varying integrabilities p1
and p2 are obtained by applying a smooth function on the
regularized eigenvalues of S(u)(x) or on |∇Gσ ∗ u|2, then
the assumptions (A) and (B) on page 3 are valid.

7 Discretization

7.1 General Algorithm

In this section, we consider the numerical aspects of the new
model. Since in general the energy (3) is not convex with

respect to u, the minimization is challenging. As in [15], we
resort to iterative minimization. In [31], a lagged diffusivity
fixed point iteration, where the diffusivity is based on the
previous iterate, was proposed for the numerical solution of
the total variation denoising.

We use two nested loops in the algorithm. In the outer
loop we update the pointwise coordinate system (ξ, ξ⊥), the
pointwise weights α1, α2 and the pointwise integrabilities
p1, p2 using the previous iterate of u. We use the inner loop
to solve a non-quadratic minimization problem with respect
to u. There is no guarantee that the algorithm we use finds
an actual local minimizer of the total energy.

First, we regularize the energy (3) and instead consider
the energy

λ|| f − u||2L2(Ω)
+
∫

Ω

α1(u)
[
(∇u · ξ(u))2 + δ2

] p1(u)

2

+ α2(u)
[
(∇u · ξ⊥(u))2 + δ2

] p2(u)

2
dx,

where δ > 0 is small. If ξ , ξ⊥, α1, α2, p1 and p2 are fixed,
let

Eξ,α,p(u) := λ|| f − u||2L2(Ω)
+
∫

Ω

α1

[
(∇u · ξ)2 + δ2

] p1
2

+α2

[
(∇u · ξ⊥)2 + δ2

] p2
2

dx .

The functional gradient of Eξ,α,p is

∇Eξ,α,p(u) = 2λ(u − f )

− div

(
α1 p1

[
(∇u · ξ)2 + δ2

] p1
2 −1

(∇u · ξ)ξ

)

− div

(
α2 p2

[
(∇u · ξ⊥)2 + δ2

] p2
2 −1

(∇u · ξ⊥)ξ⊥
)

.

Let

λ1(u) := α1 p1

[(∇u · ξ)2+δ2]1− p1
2

, (18)

λ2(u) := α2 p2

[(∇u · ξ⊥)2+δ2]1− p2
2

(19)

and

A(u)

:=
[

λ1(u)ξ21 + λ2(u)(ξ⊥
1 )2 λ1(u)ξ1ξ2+λ2(u)ξ⊥

2 ξ⊥
1

λ1(u)ξ1ξ2+λ2(u)ξ⊥
1 ξ⊥

2 λ1(u)ξ22 +λ2(u)(ξ⊥
2 )2

]
.

Then

∇Eξ,α,p(u) = 2λ(u − f ) − div(A(u)∇u).
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We summarize the numerical steps in the algorithm below.
In the inner part of the algorithm, a fixed point iteration is
used to solve the equation 2λ(u − f ) − div(A(u)∇u) = 0
for u.

Algorithm:
i = 0;
ui = f ;
do

i = i + 1;
ξ = ξ(ui−1), ξ⊥ = ξ⊥(ui−1), α1 = α1(ui−1),
α2 = α2(ui−1), p1 = p1(ui−1), p2 = p2(ui−1);
v = ui−1;
for j = 1 : N

A = A(v);
Update v by solving
2λ(v − f ) − div(A∇v) = 0;

end
ui = v;

while ||ui − ui−1||2 > tolerance or the max. number
of iterations is not reached

7.2 Update of u

If h denotes the grid size, we assume that we know the noisy
image f at the points (ih, jh) where i , j ∈ Z. Let fi j :=
f (ih, jh) and similarly for u and the other functions. When
we update u, we assume that ξ , ξ⊥, α1, α2, p1 and p2 are
available at the locations (ih, jh). We discuss in section 7.3
how they are obtained. In λ1 of (18), the product ∇u · ξ =
∂xu ξ1 + ∂yu ξ2 at (ih, jh) is computed as

(∇u · ξ)i j = m
(
(D+

x u)i j , (D
−
x u)i j

)
(ξ1)i j

+ m
(
(D+

y u)i j , (D
−
y u)i j

)
(ξ2)i j

where m denotes the minmod function. Analogously (∇u ·
ξ⊥)i j is computed in λ2 of (19).

In the fixed-point algorithm, A is based on the previous
iterate of u. When A is fixed, we solve the equation of the
form 2λ(u − f ) − div(A∇u) = 0 as an evolution equation
by applying the AOS (additive operator splitting) scheme on
the version involving the time. For more on the AOS scheme
in image processing, see [34].

So we assume that A is fixed, A := [ a b
b c

]
. For div(A∇u)

we use the discretization described at the end of [32, Chap-
ter 3.4]. Then we can write

(div(A∇u))i j =
1∑

k=−1

Ai, j,k ui+k, j +
1∑

l=−1

Ci, j,l ui, j+l

+
1∑

k,l=−1

Bi, j,k,l ui+k, j+l

where Ai, j,k is constructed from a, Ci, j,l is constructed
from c and Bi, j,k,l is constructed from b. Referring to [32,

Chapter 3.4], we have e.g. Ai, j,−1 = ai−1, j+ai, j
2h21

, Ci, j,1 =
ci, j+1+ci, j

2h22
and Bi, j,1,1 = |bi+1, j+1|+bi+1, j+1

4h1h2
. To solve the equa-

tion 2λ(u − f ) − div(A∇u) = 0 we introduce an artificial
time variable and find the steady state of ∂t u + 2λ(u − f ) −
div(A∇u) = 0. If we discretize the previous equation we get

1

2
∂t u + λu −

1∑
k=−1

Ai, j,kui+k, j+

1

2
∂t u + λu −

1∑
l=−1

Ci, j,lui, j+l = W

where

W := 2λ f +
1∑

k,l=−1

Bi, j,k,lui+k, j+l .

If τ denotes the timestep, let ut+1
i j = vt+1

i j +wt+1
i j

2 where

vt+1
i j − uti j

2τ
+ λvt+1

i j −
1∑

k=−1

Ai, j,kv
t+1
i+k, j = 1

2
Wt

i j

and

wt+1
i j − uti j
2τ

+ λwt+1
i j −

1∑
l=−1

Ci, j,lw
t+1
i, j+l = 1

2
Wt

i j

which can be solved rapidly by using the tridiagonal matrix
algorithm as in [34].

7.3 Structure Tensor Computations

In (11), the partial derivatives ∂x and ∂y of v := Gσ ∗ u
are computed at the locations ((i + 1/2)h, ( j + 1/2)h)

using the formulas
vi+1, j−vi j+vi+1, j+1−vi, j+1

2h and
vi, j+1−vi j+vi+1, j+1−vi+1, j

2h . After the smoothing of Sσ (u) by
Gρ or by (13), we have S(u) defined at the locations
((i + 1/2)h, ( j + 1/2)h). We use ∇(Gσ ∗ u) and the eigen-
values and eigenvectors of S(u) to compute ξ , ξ⊥, α1, α2,
p1 and p2 at the locations ((i + 1/2)h, ( j + 1/2)h). These
functions can then be computed at the locations (ih, jh) as
the averages at the four locations ((i ± 1/2)h, ( j ± 1/2)h).
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8 Numerical Experiments

We begin this section by describing the choices of the weight
functions α1 and α2 and the integrabilities p1 and p2 in (3)
used in the experiments. The choices are motivated by the
key features mentioned in section 2.

We begin by constructing an auxiliary function which
changes its value smoothly from one to zero. Let γ (x) =
ax5 +bx4 +cx3 +dx2 +ex + f where the constants a, b, c,
d, e, f ∈ R. Let A > 0 and supposewe require thatγ (0) = 1,
γ (A) = 0, γ ′(0) = γ ′′(0) = γ ′(A) = γ ′′(A) = 0. Then
after some calculations we see that a = −6/A5, b = 15/A4,
c = −10/A3, d = e = 0 and f = 1. Then γ changes its
value smoothly from 1 at x = 0 to 0 at x = A.

Let M , N ∈ R
+, 0 < M < N such that if |∇u(x)| < M

we assume that x is in the smooth area and if |∇u(x)| > N ,
x is near an edge. Let A := N − M and ρ : [0,∞) → [0, 1]
where ρ(s) = 0 if 0 ≤ s ≤ M , ρ(s) = 1 if s ≥ N and
ρ(s) = 1 − γ (s − M) if M < s < N . Now ρ′(M) =
ρ′′(M) = ρ′(N ) = ρ′′(N ) = 0. Then ρ changes its value
smoothly from 0 at s = M to 1 at s = N .

Let

g := ρ ◦√λ1 (20)

where λ1 denotes the largest eigenvalue of S(u). Then g
works as an edge detector such that g ≈ 0 in the near con-
stant areas and g ≈ 1 in the non-smooth areas. We use the
ratio of the eigenvalues of S(u) to split the edges found by
g into one-dimensional edges and the rest, which consists of
corners and texture which is not one-dimensional. Let

ψ :=
√

λ2

λ1 + 0.01
(21)

which measures the pointwise anisotropy such that ψ ≈ 1
if λ1 ≈ λ2 and ψ ≈ 0 if λ1 >> λ2. See also [29] for
discussions on measuring the anisotropy in kernel regression
approach to denoising. The function ψ is used to split the
edge areas detected by g. Let

da := (1 − ψ)g

and

dr := ψg.

Then da ≈ 1 in the one-dimensional edge areas and da ≈ 0
otherwise. Analogously, dr ≈ 1 in the corners and texture
areas where the texture is not one-dimensional, and dr ≈ 0
otherwise.

In the numerical experiments of this paper, the pointwise
weights α1 and α2 are of the form

α1 = da
1 + k1λ21

+ dr
1 + k2λ21

+ (1 − da − dr ) (22)

and

α2 = da
1 + k3λ22

+ dr
1 + k2λ22

+ (1 − da − dr ) (23)

where k1, k2, k3 > 0 are constants.
Next we consider the choices of the integrabilities. Let

again A = N − M . Recalling how the function γ was con-
structed earlier in this section, let ϕ : [0,∞) → [1, 2]
such that ϕ(s) = 2 if s ≤ M , ϕ(s) = 1 if s ≥ N
and ϕ(s) = 1 + γ (s − M) for M < s < N . Then
ϕ′(M) = ϕ′′(M) = ϕ′(N ) = ϕ′′(N ) = 0 and ϕ changes
its value smoothly from 2 at s = M to 1 at s = N . In the
experiments of this paper, we use

p1 = ϕ ◦ |∇ut (·)| (24)

where t corresponds to the time needed to blur u using the
linear, isotropic heat equation such that the result equals to
the convolution with the Gaussian kernel Gσ . For the second
integrability we use

p2 = 2 − dr .

In Algorithm of Sect. 7.1, the maximum number of outer
iterations is set to be 25 in each experiment. We use 5 inner
iterations to solve 2λ(u − f ) − div(A(u)∇u) = 0 for u.
We use 10 AOS iterations with the timestep 0.1 to find a
candidate for the solution of the equation of the form 2λ(v −
f ) − div(A∇v) = 0.
We use the non-linear structure tensor obtained by (13) in

the experiments. We did not see much difference in terms of
the PSNR values when the linear structure tensor was used.
But visually, the non-linear version seemed to give some-
what better results near the edges and reduced rounding of
the corners. InGς of (13), we always use ς = 0.3. In the dis-
cretization of (13), we use the AOS schemewith the timestep
1.0.

In the numerical experiments, M and N refer to the values
used in the construction of g in (20) and p1 in (24). The
parameters k1, k2 and k3 refer to α1 and α2 in (22) and (23);
t1 refers to the time in (24) and L refers to the number of the
AOS iterations in (13).

In the experiments, we also consider the classical total
variation regularization which is based on the minimization
of the energy

∫
Ω

|∇u| dx + μ|| f − u||2L2(Ω)
. (25)
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We solve the corresponding Euler–Lagrange equation using
the minmod scheme with explicit time.

For each numerical comparison with the total variation
regularization, we minimized the energy (25) for several val-
ues ofμ and then we selected theμ for which the best PSNR
value was obtained. The PSNR (peak signal-to-noise ratio)
of an M × N pixel image u against the ground truth image
f0 is defined by

PSNR = 10 log10

(
(max( f0))2MN∑
i, j (ui j − f0i j )

2

)
.

The noise-free images used in the experiments have their
intensity values in the range [0, 255].

We also consider denoising results obtained by the edge-
enhancing diffusion method proposed byWeickert [32]. The
method is based on the diffusion equation

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= div(D∇u) in Ω × (0, T ],

u(·, 0) = f (·),
n · (D∇u) = 0.

(26)

Here D = g(|∇uσ |2)θ1θT1 +θ2θ
T
2 , g(s) = 1−exp

( −C4
(s/λ2)4

)
for s > 0, g(s) = 1 for s ≤ 0, θ2||∇uσ , |θ2| = 1, θ2 ⊥ θ1,
λ > 0 andC4 = 3.31488.Weuse t1 to denote the timeneeded
to blur u using the linear heat equation such that the result
corresponds to the convolution of u with the Gaussian kernel
Gσ . We used the explicit time scheme and the discretization
[32, Chapter 3.4] for div(A∇u). We ran the diffusion (26)
for several values of λ and t1 and then selected the stopping
time T such that the best PSNR value was obtained. We then
selected λ, t1 and T corresponding to the overall best PSNR
value.

In the experiments, we also used the second-order total
generalized variation regularizer [5] which is defined as

TGV2
α(u) := sup

{∫
Ω

u div2 v dx | v ∈ C2
c (Ω, S2×2),

||v||∞ ≤ α0, || div v||∞ ≤ α1

}

where S2×2 denotes the space of symmetric 2 × 2 matrices.
To minimize the total energy, we used the numerical imple-
mentation described in [4].

For comparisons, we also consider results obtained by the
non-localmeans filter [7] and theBM3Dmethod [9]. Regard-
ing the BM3D, we used the matlab code available at http://
www.cs.tut.fi/~foi/GCF-BM3D/. We ran this algorithm for
several parameter values and selected the one for which the
best PSNR value was obtained.

Regarding the implementation of the non-local means fil-
ter, we used

ûi, j = 1

Ci, j

∑
|r−i |≤a,|s− j |≤a

Ci, j (r, s) f (r, s) (27)

where

Ci, j (r, s) = e
− ||P((i, j),b)−P((r,s),b)||2

L2

h(2b+1)2σ2 (28)

for (r, s) �= (i, j). For the centre pixel of a patch,Ci, j (i, j) =
max(r,s) �=(i, j) Ci, j (r, s) is used. In (27) and (28), σ is the
standard deviation of the noise, f is the noisy image, a ∈ Z

+
is such that (2a+1)2 is the size of the searchwindow, b ∈ Z

+
is such that (2b+1)2 is the patch size, P((i, j), b) is a patch
of f such that (i, j) is the centre of the patch and (2b+1)2 is
the size of the patch, and h > 0 is a regularization parameter.
In the denominator of (27), Ci, j is a normalization factor,

Ci, j =
∑

|r−i |≤a,|s− j |≤a

Ci, j (r, s).

In the experiments, we ran the algorithm for several values
of a, b and h and then we selected the parameter values for
which the best PSNR value was obtained.

First, we consider the denoising of a synthetic image. In
Fig. 1, we see typical differences between the total variation
regularization and the new method. In the solution obtained
by the total variation regularization, some staircasing and
loss of contrast are present. The newmethod aims at reducing
these artefacts. In the newmethod,weusedλ = 0.05,M = 4,

Fig. 1 First column the original noise-free image and the noisy image.
Second column the restored image and the corresponding residual
obtainedby theTVdenoisingusingμ = 0.03.Third column the restored
image and the corresponding residual obtained by the newmethod using
λ = 0.05
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Table 1 The parameter values in the results obtained by the edge-
enhancing diffusion in Figs. 2, 3, 4, 5, 6, 7, 8 and 9

Image PSNR t1 λ T

Cameraman 28.2 0.1 16 0.57

Cameraman 24.3 0.2 16 2.85

Boat 29.4 0.2 11 0.89

Boat 26.5 0.4 11 2.45

Lena 27.9 0.2 10 2.38

Lena 25.7 0.4 11 4.24

Lighthouse 26.2 0.2 12 1.14

Lighthouse 23.7 0.2 14 2.82

Table 2 The parameter values in the results obtained by the non-local
means algorithm in Figs. 2, 3, 4, 5, 6, 7, 8 and 9

Image PSNR 2b + 1 2a + 1 h

Cameraman 29.1 3 31 0.8

Cameraman 25.0 13 15 0.3

Boat 29.8 11 7 0.5

Boat 26.6 21 11 0.2

Lena 28.4 19 11 0.3

Lena 25.9 25 11 0.2

Lighthouse 28.3 11 21 0.3

Lighthouse 26.1 19 23 0.2

Table 3 The parameter values used in the results obtained by the new
method in Figs. 2, 3, 4, 5, 6, 7, 8 and 9

λ M N k1 k2 k3 t1 L

0.07 2 3 10 0.0001 1.0 0.1 5

0.015 1 2 10 0.0001 1.0 0.2 15

0.18 4 5 1.0 0.0001 0.00001 0.1 25

0.09 4 5 1.0 0.0001 0.00001 0.2 25

0.1 4 5 1.0 0.0001 0.001 0.2 10

0.06 4 5 1.0 0.0001 0.001 0.4 15

0.1 4 5 1.0 0.0001 0.0001 0.1 25

0.04 4 5 1.0 0.0001 0.0001 0.2 25

The order of the images is as in Tables 1 and 2

N = 5, k1 = 1.0, k2 = 0.0001, k3 = 0.0001, t1 = 0.1 and
L = 25.

Next we consider the denoising of four standard test
images: cameraman, boat, Lena and lighthouse, each with
two different levels of noise. The parameter values used in
the edge-enhancing diffusion, the non-local means and the
new method are seen in Tables 1, 2 and 3.

First, the cameraman image. The solutions corresponding
to different noise levels are seen in Figs. 2 and 3. In Fig. 2cwe
used μ = 0.044, whereas in Fig. 3c, μ = 0.014. In the total

generalized variation results, we used α0 = 27, α1 = 13.5
in Fig. 2e and α0 = 92, α1 = 41.4 in Fig. 3e.

Next we consider the denoising of the boat test image in
Figs. 4 and 5. We used μ = 0.041 in Fig. 4c and μ = 0.018
in Fig. 5c. Regarding the total generalized variation results
we used α0 = 19, α1 = 14.25 in Fig. 4e and α0 = 50,
α1 = 32.5 in Fig. 5e.

Next we consider the denoising of the Lena test image in
Figs. 6 and 7. We see two noisy versions of this test image in
Figs. 6b and 7b. In the total variation regularization results
we used μ = 0.026 in Fig. 6c and μ = 0.014 in Fig. 7c.
In the total generalized variation results we used α0 = 38,
α1 = 22.8 in Fig. 6e and α0 = 100, α1 = 60 in Fig. 7e.

Finally, we consider the denoising of the lighthouse test
image in Figs. 8 and 9. In the solutions obtained by the
total variation regularization we used μ = 0.027 in Fig. 8c
and μ = 0.015 in Fig. 9c. In the total generalized variation
results, we used α0 = 35, α1 = 21 in Fig. 8e and α0 = 87,
α1 = 39.15 in Fig. 9e.

We see that in all the experiments in Figs. 2, 3, 4, 5, 6,
7, 8 and 9, in terms of the PSNR values, the new method
gives better results than the total variation regularization,
edge-enhancing diffusion and total generalized variation.
Nevertheless, just higher PSNR values do not necessarily
mean visually better. It also seems that the criterion we
used to select the ’best’ parameter values in the methods
proposed earlier in the literature may leave some noise espe-
cially in the results obtained by the edge-enhancing diffusion
method. Somewhat the same is with the results obtained by
the second-order total generalized variation.

From the experiments, it also seems that using the mini-
mization of the energy (3), the edges are still sharp but are
not as grainy as in the results produced by the total variation
regularization or the total generalized variation regulariza-
tion. In this aspect, the new method is quite similar to the
edge-enhancing diffusion method. The observation that the
new method can reduce noise efficiently along the boundary
is also quite expected from the key feature 3 in Sect. 2 since
provided the edge direction is estimated correctly, the linear
averaging along the edge reduces noise efficiently. This is
clearly seen in Fig. 7.

Compared to the total variation regularization, the new
method hardly suffers from the staircasing. The new method
is also quite as good as total variation at preserving edges
except very weak edges which our method tends to blur,
since in those areas our regularizer may simplify to isotropic
smoothing, but on the other hand, the total variation may
not place the weak edges correctly as can be seen with the
cameraman experiments. Also, the new method gives higher
or the same PSNR values than the implementation we used
of the NL means algorithm, except with the last image with
strong noise, which is not a surprise considering that the
lighthouse image has lot of repetitive components. In all

123



J Math Imaging Vis (2017) 57:56–74 69

Fig. 2 a Noise-free. b Noisy, PSNR = 22.1. c TV, PSNR = 28.9. d EED, PSNR = 28.2. e TGV, PSNR = 28.8. f NL means, PSNR = 29.1.
g New method, PSNR = 29.3. h B3MD, PSNR = 30.4

Fig. 3 a Noise-free. b Noisy, PSNR = 14.2. c TV, PSNR = 24.6. d EED, PSNR = 24.3. e TGV, PSNR = 24.6. f NL means, PSNR = 25.0.
g New method, PSNR = 25.7. h B3MD, PSNR = 26.3
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Fig. 4 a Noise-free. b Noisy, PSNR = 22.1. c TV, PSNR = 29.2. d EED, PSNR = 29.4. e TGV, PSNR = 29.3. f NL means, PSNR = 29.8.
g New method, PSNR = 30.0. h B3MD, PSNR = 30.9

Fig. 5 a Noise-free. b Noisy, PSNR = 16.1. c TV, PSNR = 26.3. d EED, PSNR = 26.5. e TGV, PSNR = 26.4. f NL means, PSNR = 26.6.
g New method, PSNR = 27.1. h B3MD, PSNR = 27.7
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Fig. 6 a Noise-free. b Noisy, PSNR = 18.6. c TV, PSNR = 27.2. d EED, PSNR = 27.9. e TGV, PSNR = 27.4. f NL means, PSNR = 28.4.
g New method, PSNR = 28.4. h B3MD, PSNR = 29.2

Fig. 7 a Noise-free. b Noisy, PSNR = 14.2. c TV, PSNR = 25.1. d EED, PSNR = 25.7. e TGV, PSNR = 25.2. f NL means, PSNR = 25.9.
g New method, PSNR = 26.4. h B3MD, PSNR = 26.9
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Fig. 8 a Noise-free. b Noisy, PSNR = 18.6. c TV, PSNR = 26.5. d EED, PSNR = 26.2. e TGV, PSNR = 26.3. f NL means, PSNR = 28.3.
g New method, PSNR = 28.4. h B3MD, PSNR = 29.9

Fig. 9 a Noise-free. b Noisy, PSNR = 14.2. c TV, PSNR = 24.0. d EED, PSNR = 23.7. e TGV, PSNR = 24.0. f NL means, PSNR = 26.1.
g New method, PSNR = 25.9. h B3MD, PSNR = 27.4
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the experiments, the best results are obtained by the B3MD
method, which is also a non-local method, contrary to our
method which is local.

9 Conclusion

In this paper, a new variational image denoising method is
proposed. The new method could be seen to be a two-step
method in which the steps are in some sense coupled. Struc-
ture tensor analysis is used to guide the denoising in such a
way that the energy minimization favours solutions whose
gradient fields respect the approximation obtained by the
structure tensor analysis. In the theoretical part, the exis-
tence of a minimizer of a weak form was considered. In the
numerical part, an algorithmwas proposed based on iterative
minimization. The numerical experiments demonstrated the
possible advantages of the new method over some existing
variational and partial differential equations methods. The
future considerations involve extending the method to the
non-local framework.
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