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Abstract We present in this paper the motivation and the-
ory of nonlinear spectral representations, based on convex
regularizing functionals. Some comparisons and analogies
are drawn to the fields of signal processing, harmonic analy-
sis, and sparse representations. The basic approach, main
results, and initial applications are shown. A discussion of
open problems and future directions concludes this work.
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homogeneous functionals · Total variation · Nonlinear
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1 Introduction

Nonlinear variational methods have provided very power-
ful tools in the design and analysis of image processing and
computer vision algorithms in recent decades. In parallel,
methods based on harmonic analysis, dictionary learning,
and sparse representations, as well as spectral analysis of
linear operators (such as the graph Laplacian) have shown
tremendous advances in processing highly complex sig-
nals such as natural images, 3D data, and speech. Recent
studies now suggest that variational methods can also be
analyzed and understood through a nonlinear generaliza-
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tion of eigenvalue analysis, referred to as nonlinear spectral
methods. Most of the current knowledge is focused on one-
homogeneous functionals, which will be the focus of this
paper.

The motivation and interpretation of classical linear filter-
ing strategies is closely linked to the eigendecomposition of
linear operators. In thismanuscript, wewill show that one can
define a nonlinear spectral decomposition framework based
on the gradient flow with respect to arbitrary convex one-
homogeneous functionals and obtain a remarkable number
of analogies to linear filtering techniques. To closely link the
proposed nonlinear spectral decomposition framework to the
linear one, let us summarize earlier studies concerning the
use of nonlinear eigenfunctions in the context of variational
methods.

One notion which is very important is the concept of
nonlinear eigenfunctions induced by convex functionals.
Throughout this paper, we will consider convex functionals
J either in a function space setting J : X → R for a Banach
space X embedded into L2 or—in a discrete setting—as a
function J : Rn → R. We will specify the considered set-
ting at those points where it is crucial. In either setting, we
refer to u as an eigenfunction of J if it admits the following
eigenvalue problem

λu ∈ ∂ J (u), and ‖u‖2 = 1, (1)

where λ ∈ R is the corresponding eigenvalue, and ∂ J (u) =
{p ∈ X ∗ | J (v) − J (u) − 〈p, v − u〉 ≥ 0} the subdifferen-
tial of J at u.

The analysis of eigenfunctions related to nonquadratic
convex functionals was mainly concerned with the total vari-
ation (TV) regularization, given by
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Fig. 1 Example of valid and nonvalid shapes as nonlinear eigenfunc-
tions with respect to the TV functional. Smooth enough convex sets,
which admit condition (2) (marked with a green check), are solutions
of the eigenvalue problem (1). Shapes with either too high curvature,
not convex or too elongated (marked with red X) are not valid

JTV(u) = sup
z∈C∞

c ,
‖z‖L∞(Ω)≤1

∫
Ω

u(x) div z(x) dx,

on a domain Ω , which for smooth functions u reduces to
JTV(u) = ∫

Ω
|∇u(x)| dx .

In the analysis of the variational TV denoising, i.e., the
ROF model from [51], Meyer [41] has shown an explicit
solution for the case of a disk (an eigenfunction of TV),
quantifying explicitly the loss of contrast and advocating the
use of T V − G regularization. Within the extensive stud-
ies of the TV flow [1,2,6,7,15,29,52] eigenfunctions of TV
(referred to as calibrable sets) were analyzed and explicit
solutions were given for several cases of eigenfunction spa-
tial settings. In [17] an explicit solution of a disk for the
inverse scale space flow is presented, showing its instanta-
neous appearance at a precise time point related to its radius
and height.

A highly notable contribution in [7] is the precise geo-
metric definition of convex sets which are eigenfunctions.
Let χC , be a characteristic function of the set C ⊂ R

2, then
it admits (1), with J the TV functional JTV, if

ess sup
q∈∂C

κ(q) ≤ P(C)

|C | , (2)

where C is convex, ∂C ∈ C1,1, P(C) is the perimeter of
C , |C | is the area of C , and κ is the curvature. In this case,
the eigenvalue is λ = P(C)

|C| . See Fig. 1 for some examples.
[7, Theorem 6] furthermore classified all possible eigen-
functions arising from the indicator function of a set. Such
eigenfunctions must arise from a union of sets C with the
above properties, all having the same eigenvalue P(C)

|C| and
additionally being sufficiently far apart.

In [9,44,46,48] eigenfunctions related to the total-
generalized-variation (TGV) [11] and the infimal convolu-
tion total variation functional [20] are analyzed in the case of a
bounded domain and their different reconstruction properties
on particular eigenfunctions of the TGV are demonstrated
theoretically as well as numerically.

Examples of certain eigenfunctions for different exten-
sions of the TV to color images are given in [26].

In [52] Steidl et al. have shown the close relations, and
equivalence in a 1D discrete setting, of the Haar wavelets to
both TV regularization and TV flow. This was later devel-
oped for a 2D setting in [57]. The connection between Haar
wavelets and TV methods in 1D was made more precise in
[10], who indeed showed that the Haar-wavelet basis is an
orthogonal basis of eigenfunctions of the total variation (with
appropriate definition at the domain boundary)—in this case
theRayleigh principle holds for thewhole basis. In thefield of
morphological signal processing, nonlinear transforms were
introduced in [25,40].

2 Spectral Representations

2.1 Scale Space Representation

We will use the scale space evolution, which is straight-
forward, as the canonical case of spectral representation.
Consider a convex (absolutely) one-homogeneous functional
J , i.e., a functional for which J (λu) = |λ|J (u) holds for all
λ ∈ R.

The scale space or gradient flow is

∂t u(t) = −p(t), p(t) ∈ ∂ J (u(t)), u(0) = f. (3)

We refer the reader to [3,56] for an overview over scale space
techniques.

A spectral representation based on the gradient flow
formulation (3) was the first work toward defining a non-
linear spectral decomposition and has been conducted in
[30,31] for the case of J being the TV regularization. In our
conference paper [14], we extended this notion to general
one-homogeneous functionals by observing that the solution
of the gradient flow can be computed explicitly for any one-
homogeneous J in the case of f being an eigenfunction. For
λ f ∈ ∂ J ( f ), the solution to (3) is given by

u(t) =
{

(1 − tλ) f for t ≤ 1
λ
,

0 else.
(4)

Note that in linear spectral transformations such as Fourier
or Wavelet-based approaches, the input data being an eigen-
function lead to the energy of the spectral representation
being concentrated at a single wavelength. To preserve this
behavior for nonlinear spectral representations, the wave-
length decomposition of the input data f is defined by

φ(t) = t∂t t u(t). (5)

Note that due to the piecewise linear behavior in (4), the
wavelength representation of an eigenfunction f becomes
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Fig. 2 Overview of the spectral framework

φ(t) = δ
(
t − 1

λ

)
f , where δ denotes a Dirac delta distribu-

tion. The namewavelength decomposition is natural because
for λ f ∈ ∂ J ( f ), ‖ f ‖ = 1, one readily shows that λ = J ( f ),
which means that the eigenvalue λ is corresponding to a gen-
eralized frequency. In analogy to the linear case, the inverse
relation of a peak in φ appearing at t = 1

λ
motivates the

interpretation as a wavelength, as discussed in more details
in the following section.

For arbitrary input data f , one can reconstruct the original
image by

f (x) =
∫ ∞

0
φ(t; x)dt. (6)

Given a transfer function H(t) ∈ R, image filtering can be
performed by

f H (x) :=
∫ ∞

0
H(t)φ(t; x)dt. (7)

Figure 2 gives an overview of the spectral decomposition
framework including two examples of applying transfer or
filter functions for texture enhancement and low pass fil-
tering. Some of the terms and notations (such as low-pass
filter (LPF) and spectrum S) are explained hereafter in
Sect. 3.

We would like to point out that Eq. (5) is an informal def-
inition of the wavelength decomposition which is supposed
to illustrate the general idea of nonlinear spectral decompo-
sitions. We refer the reader to our more theoretical work [16]
in which we give sense to (5) for one-homogeneous J in the

spatially discrete setting as elements in
(
W 1,1

loc (R+,Rn)
)∗
.

The discrete case also permits to show a sufficiently rapid
decrease of ∂t u(t) for the reconstruction (7) to hold for all
absolutely one-homogeneous regularization functions J . For
the sake of simplicity and readability, we will skip the tech-
nical details of the underlying approach in most parts of this
paper.
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3 Signal Processing Analogy

Up until very recently, nonlinear filtering approaches such
as (3) or related variational methods have been treated inde-
pendently of the classical linear point of view of changing
the representation of the input data, filtering the resulting
representation and inverting the transform. In [30,31] it was
proposed to use (3) in the case of J being the TV to define
a TV spectral representation of images that allows to extend
the idea of filtering approaches from the linear to the non-
linear case. This was later generalized to one-homogeneous
functionals in [14].

Classical Fourier filtering has some very convenient prop-
erties for analyzing and processing signals:

(1) Processing is performed in the transform (frequency)
domain by simple attenuation or amplification of desired
frequencies

(2) A straightforwardway to visualize the frequency activity
of a signal is through its spectrum plot. The spectral
energy is preserved in the frequency domain, through
the well-known Parseval’s identity.

(3) The spectral decomposition corresponds to the coeffi-
cients representing the input signal in a new orthonormal
basis.

(4) Both, transform and inverse transform are linear opera-
tions.

In the nonlinear setting, the first two characteristics are
mostly preserved.Orthogonality could so far onlybeobtained
for the particular (discrete) case of J (u) = ‖Vu‖1 with VV ∗
being diagonally dominant, [16]. Further orthogonality state-
ments are still an open issue. Finally, linearity is certainly
lost. In essence, we obtain a nonlinear forward transform
and a linear inverse transform. Thus following the nonlinear
decomposition, filtering can be performed easily.

In addition, we gain edge-preservation and new scale fea-
tures, which, unlike sines and cosines, are data-driven and
are therefore highly adapted to the image. Thus the filtering
has far less tendency to create oscillations and artifacts.

Let us first derive the relation between Fourier and the
eigenvalue problem (1). For

J (u) = 1

2

∫
|∇u(x)|2dx,

we get −	u ∈ ∂ J (u). Thus, with appropriate boundary
conditions, the sine waves arising from Fourier analysis are
eigenfunctions, in the sense of (1), where, for a frequency ω

of the sine waves, we have the relation λ = ω2. Other convex
regularizing functionals, such as TV and TGV, can therefore
be viewed as natural nonlinear generalizations.

A fundamental concept in linear filtering is ideal filters
[49]. Such filters either retain or diminish completely fre-
quencies within some range. In a linear time (space) invariant
system, a filter is fully determined by its transfer function
H(ω). The filtered response of a signal f (x), with Fourier
transform F(ω), filtered by a filter H is

f H (x) := F−1
(
H(ω) · F(ω)

)
,

withF−1 the inverseFourier transform.For example, an ideal
LPF retains all frequencies up to some cutoff frequency ωc.
Its transfer function is thus

H(ω) =
{
1 for 0 ≤ ω ≤ ωc,

0 else.

Viewing frequencies as eigenvalues in the sense of (1), one
can define generalizations of these notions.

3.1 Nonlinear Ideal Filters

The (ideal) LPF can be defined by Eq. (7) with H(t) = 1 for
t ≥ tc and 0 otherwise, or

LPFtc( f ) :=
∫ ∞

tc
φ(t; x)dt. (8)

Its complement, the (ideal) high-pass filter (HPF), is defined
by

HPFtc ( f ) :=
∫ tc

0
φ(t; x)dt. (9)

Similarly, band-(pass/stop)-filters are filters with low and
high cutoff scale parameters (t1 < t2)

BPFt1,t2( f ) :=
∫ t2

t1
φ(t; x)dt, (10)

BSFt1,t2( f ) :=
∫ t1

0
φ(t; x)dt +

∫ ∞

t2
φ(t; x)dt. (11)

For f being a single eigenfunction with eigenvalue λ0 =
1
t0
, the above definitions coincide with the linear defini-

tions, where the eigenfunction is either completely preserved
or completely diminished, depending on the cutoff eigen-
value(s) of the filter.

Again, the above point of view is rather illustrative than
mathematically precise. As mentioned above, the discrete

case allows to identify φ with elements of
(
W 1,1

loc

)∗
such that

onlymollified version of the above ideal filters is permissible;
see [16] for details.
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Fig. 3 Total variation spectral filtering example. The input image (top
left) is decomposed into its φ(t) components, the corresponding spec-
trum S1(t), Eq. (12), is on the top right. Integration of the φ’s over the
t domains 1, 2, and 3 (top right) yields high-pass, band-pass, and LPF,
respectively (chosenmanually here). The band-stop filter (bottom right)
is the complement integration domain of region 2. Taken from [14]

Fig. 4 A classical single peak example of a TV eigenfunction in R,
u(x) = Bw(x)

In Figs. 3 and 4, an example of spectral TV processing is
shown with the response of the four filters defined above in
Eqs. (8) through (11).

3.2 Spectral Response

As in the linear case, it is very useful to measure in some
sense the “activity” at each frequency (scale). This can help
identify dominant scales and design better the filtering strate-
gies (either manually or automatically). Moreover, one can

obtain a notion of the type of energywhich is preserved in the
new representation using some analog of Parseval’s identity.

In [30,31], a L1 type spectrum was suggested for the TV
spectral framework (without trying to relate to a Parseval
rule),

S1(t) := ‖φ(t; x)‖L1(Ω) =
∫

Ω

|φ(t; x)|dx . (12)

In [14], the following definition was suggested,

S22 (t) = t2
d2

dt2
J (u(t)) = 〈φ(t), 2tp(t)〉 . (13)

With this definition the following analog of the Parseval iden-
tity was shown:

‖ f ‖2 = −
∫ ∞

0

d

dt
‖u(t)‖2 dt

= 2
∫ ∞

0
〈p(t), u(t)〉 dt

= 2
∫ ∞

0
J (u(t)) dt

=
∫ ∞

0
S22 (t) dt. (14)

In [16] a third definition for the spectrum was suggested
(which is simpler and admits Parseval),

S23 (t) = 〈φ(t), f 〉 . (15)

It can be shown that a similar Parseval-type equality holds
here

‖ f ‖2 = 〈 f, f 〉 =
〈 ∫ ∞

0
φ(t)dt, f

〉
=

∫ ∞

0
〈φ(t), f 〉dt

=
∫ ∞

0
S23 (t) dt. (16)

While (12), (13), and (15) yield the intuition of possible def-
initions of the spectral decomposition, care has to be taken
to obtain mathematically precise definitions. In the discrete

case, we have φ ∈
(
W 1,1

loc (R+,Rn)
)∗
, such that S22 and S23

have to be interpreted as elements in
(
W 1,1

loc (R+,R)
)∗
. In

fact, in [16], we showed these two definitions to be equiva-
lent for sufficiently regular subdifferentials of J .

As an overview example, Table 1 summarizes the analo-
gies of the Fourier and TV-based spectral transformation.
There remain many open questions of further possible gen-
eralizations regarding Fourier-specific results, some ofwhich
are listed like the convolution theorem, Fourier duality prop-
erty (where the transform and inverse transform can be
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Table 1 Some properties of the
TV transform in R

n , compared
to the Fourier transform

TV transform Fourier transform

Transform Gradient flow:+ F(ω) = ∫
f (x)e−iωxdx

φ(t; x) = t∂t t u, ut ∈ −∂ J (u).

u|t=0 = f , (more representations in Table 1)

Inverse transform f (x) = ∫ ∞
0 φ(t; x)dt + f̄ + f (x) = 1

(2π)n

∫
F(ω)eiωxdω

Eigenfunctions λu ∈ ∂ J (u) + eiωx

Spectrum—amplitude Three alternatives: + |F(ω)|
S1(t) = ‖φ(t; x)‖L1 ,

S2(t)2 = 〈φ(t), 2tp(t)〉,
S3(t)2 = 〈φ(t), f 〉.

Translation f (x − a) φ(t; x − a) F(ω)e−iaω

Rotation f (Rx) φ(t; Rx), F(Rω)

Contrast change a f (x) φ(t/a; x) aF(ω)

Spatial scaling f (ax) aφ(at; ax) 1
|a| F( ω

a )

Linearity f1(x) + f2(x) Not in general F1(ω) + F2(ω)

Parseval’s identity
∫ | f (x)|2dx = ∫

S2(t)2dt = ∫
S3(t)2dt + ∫ | f (x)|2dx = ∫ |F(ξ)|2dξ , ξ := ω

2π

Orthogonality 〈φ(t), u(t)〉 = 0 + 〈eiω1x , eiω2x 〉 = 0, ω1 
= ω2

Open issues (some)

Fourier duality – F(x) ↔ f (−ξ), ξ := ω
2π

Convolution – f1(x) ∗ f2(x) ↔ F1(ω)F2(ω)

Spectrum—phase – tan−1
(
�(F(ω))/�(F(ω))

)

The symbol + denotes that the property holds for general one-homogeneous functionals

interchanged up to a sign), the existence of phase in Fourier,
and more.

4 Decomposition into Eigenfunctions

Let us consider the discrete case of J being a semi-norm on
R
n . As discussed in the Sect. 3, item 3, one of the fundamen-

tal interpretations of linear spectral decompositions arises
from it being the coefficients for representing the input data
in a new basis. This basis is composed of the eigenvectors of
the transform. For example, in the case of the cosine trans-
form, the input signal is represented by a linear combination
of cosines with increasing frequencies. The corresponding
spectral decomposition consists of the coefficients in this
representation, which therefore admits an immediate inter-
pretation.

Although the proposed nonlinear spectral decomposition
does not immediately correspond to a change of basis any-
more, it is interesting to see that the property of representing
the input data as a linear combination of (generalized) eigen-
functions can be preserved: In [14], we showed that for the
case of J (u) = ‖Vu‖1 and V being any orthonormal matrix,
the solution of the scale space flow (3) meets

Vu(t) = sign(ζ ) max(|ζ | − t, 0), (17)

where ζ = V f are the coefficients for representing f in the
orthonormal basis of V . It is interesting to see that the sub-
gradient p(t) in (3) admits a componentwise representation
of V p(t) as

(V p)i (t) =
{
sign(ζi ) if |ζi | ≥ t,
0 else.

(18)

The latter shows that p(t) can be represented by V T q(t)
for some q(t) which actually meets q(t) ∈ ∂‖V p(t)‖1. In
a single equation, this means p(t) ∈ ∂ J (p(t)) and shows
that the p(t) arising from the scale space flow are eigenfunc-
tions (up to normalization). Integrating the scale space flow
Eq. (3) from zero to infinity and using that there are only
finitely many times at which p(t) changes, one can see that
one can indeed represent f as a linear combination of eigen-
functions. Our spectral decomposition φ(t) then corresponds
to the change of the eigenfunctions during the (piecewise)
dynamics of the flow.

While the case of J (u) = ‖Vu‖1 for an orthogonal matrix
V is quite specific because it essentially recovers the lin-
ear spectral analysis exactly, we have shown in [16] that
the property of finitely many times at which p(t) changes
can be proved for any polyhedral one-homogeneous regular-
ization. If in addition, the subdifferentials are sufficiently
regular, e.g., as in the case of J (u) = ‖Vu‖1 and VV ∗
being diagonally dominant, then the property of p(t) being
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an eigenfunction for all times t remains true. We refer the
reader to [16] for more details. The analysis of such proper-
ties formore general one-homogeneous regularizations or the
extension of these results to a function space setting remains
as open questions.

5 Explicit TV Eigenfunctions in 1D

Let us consider the function space setting and give an analytic
expression of a large set of eigenfunctions of the TV in one
dimension with the signal domain being the entire real line.
We will later see that Haar wavelets are a small subset of
these, hence eigenfunctions are expected to represent signals
more concisely, with much fewer elements.

We give the presentation below in a somewhat informal
manner with the goal of rather explaining the main concept
of the findings than giving mathematical details. A formal
presentation of the theory of TV eigenfunctions can be found
e.g., in [7].

The TV functional can be expressed as

JTV(u) = sup
z∈C∞

c‖z‖L∞(Ω)≤1

〈u, div z〉. (19)

Let zu be an argument admitting the supremum of (19) then
it immediately follows that div zu ∈ ∂ JTV(u): in the one-
homogeneous case we need to show 〈u, div zu〉 = JTV(u)

which is given in (19); and in addition that for any v in the
space we have JTV(v) ≥ 〈v, p〉, p ∈ ∂ J (u),

JTV(v) = sup
‖z‖L∞(Ω)≤1

〈v, div z〉 ≥ 〈v, div zu〉.

From here on, we will refer to zu simply as z.
To understand better what z stands for, we can check the

case of smooth u and perform integration by parts in (19) to
have

JTV(u) = 〈∇u,−z〉.

Then as z also maximizes 〈∇u,−z〉, we can solve this point-
wise, taking into account that |z(x)| ≤ 1 and that the inner
product of a vector is maximized for a vector at the same
angle, to have

z(x)

{
= − ∇u(x)

|∇u(x)| for ∇u(x) 
= 0,
∈ [−1, 1] ∇u(x) = 0.

(20)

5.1 Single Peak

Let us consider the case of one-dimensional TV regulariza-
tion and define the following function of a single-unit peak
of width w

Bw(x) =
{
1 for x ∈ [0, w),

0 otherwise.
(21)

Then it is well known (e.g., [41]) that any function of the
type h · Bw(x − x0) is an eigenfunction of TV in x ∈ R with
eigenvalue λ = 2

hw
. Let us illustrate the latter by considering

the characterization of the subdifferential (20) and define

z(x) =
⎧⎨
⎩

−1 for x ∈] − ∞, x0],
2(x−x0)

w
− 1 for x ∈ (x0, x0 + w),

1 for x ∈ [x0 + w,∞[.

Although this z is clearly not a C∞
c function, it was shown

in [1,7] that functions z ∈ L∞(R) with div z ∈ L2(R) are
sufficient for the characterization of subgradients.

For the above z, on the one hand we have ∂x z(x) =
w
2 Bw(x−x0), and on the other hand zmeets equation (20) for
u = w

2 Bw(·−x0). Therefore, w
2 Bw(·−x0) ∈ ∂ JTV(w

2 Bw(·−
x0)), and after normalization with ‖w

2 Bw(·− x0)‖2 = w2

2 we
find that 1

w
Bw(· − x0) is an eigenfunction with eigenvalue

λ = 2
w
.

5.2 Set of 1D Eigenfunctions

Generalizing this analysis, one can construct for any eigen-
value λ an infinite set of piecewise constant eigenfunctions
(with a compact support).

Proposition 1 Let −∞ < x0 < x1, · · · < xn < ∞ be a set
of n + 1 points on the real line. Let

u(x) =
n−1∑
i=0

hi Bwi (x − xi ), (22)

with Bw(·) defined in (21), wi = xi+1 − xi , and

hi = 2(−1)i

λwi
. (23)

Then u(x) admits the eigenvalue problem (1) with J = JTV.

Proof One can construct the following z in the shape of
“zigzag” between −1 and 1 at points xi ,

z(x) = (−1)i
(
2(x − xi )

wi
− 1

)
, x ∈ [xi , xi+1),

and ∂x z = 0 otherwise. In a similar manner to the single peak
case, we get the subgradient element in ∂ JTV(u)

p(x) =
{

∂x z = (−1)i 2
wi

, x ∈ [xi , xi+1)

0, x /∈ [x0, xn). (24)

This yields p(x) = λu(x). ��
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Fig. 5 Illustration of Proposition 1, a TV eigenfunction u(x) in R

Fig. 6 A TV eigenfunction u(x) in a bounded domain
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Fig. 7 A few examples of functions meeting f ∈ ∂ JTV( f ) inR. (Note
that these are piecewise constant functions and the jumps should be
understood as discontinuities.)

In Figs. 5 and 6, we see examples of u, p, and z which
construct simple TV eigenfunctions in the unbounded and
bounded domains, respectively. In Fig. 7, several different
types of eigenfunctions are shown. Compared to wavelets,
they also oscillate (withmean zero value) but their variability
is significantly larger.

5.2.1 The Bounded Domain Case

The unbounded domain is easier to analyze in some cases;
however, in practice, we can implement only signals with
a bounded domain. We therefore give the formulation for
u ∈ Ω = [A, B) ⊂ R. Requiring JTV(1) = 〈p, 1〉 = 0 and
〈u, p〉 = 〈−∇u, z〉 leads to the boundary condition z|∂Ω =
0.

Thus, on the boundaries we have z = 0 with half the slope
of the unbounded case (see Fig. 6), all other derivations are
the same. Setting x0 = A, xn = B we get the solution of
(22) with hi defined slightly differently as

hi = 2ai (−1)i

λwi
, (25)

where ai = 1
2 for i ∈ {1, n − 1} and ai = 1 otherwise. See a

numerical convergence of λp to u in Fig. 12.

Remark Note that if u is an eigenfunction so is −u so the
formulas above are all valid also with the opposite sign.

6 Wavelets and Hard Thresholding

As we have seen in Sect. 4, the gradient flow with respect
to regularizations of the form J (u) = ‖Vu‖1 has a closed
form solution for any orthogonal matrix V . From equation
(18) one deduces that

φ(t) =
∑
i

ζiδ(t − |ζi |)vi ,

where vi are the rows of the matrix V , and ζi = (V f )i . In
particular, using definition (15) we obtain

(S3(t))
2 =

∑
i

(ζi )
2δ(t − |ζi |).

Peaks in the spectrum therefore occur ordered by the mag-
nitude of the coefficients ζi = (V f )i : The smaller |ζi | the
earlier it appears in the wavelength representation φ. Hence,
applying an ideal low-pass filter (8) on the spectral repre-
sentation with cutoff wavelength tc is exactly the same as
hard thresholding by tc, i.e., setting all coefficients ζi with
magnitude less than tc to zero.

6.1 Haar Wavelets

Wavelet functions are usually continuous and cannot repre-
sent discontinuities very well. A special case are the Haar
wavelets which are discontinuous and thus are expected to
represent much better discontinuous signals. The relation
between Haar wavelets and TV regularization in one dimen-
sion has been investigated, most notably in [52]. In higher
dimensions, there is no straightforward analogy, in the case
of isotropic TV, as it is not separable, contrary to the wavelet
decomposition (thus one gets disk-like shapes as eigenfunc-
tions as opposed to rectangles).

We will show here that even in the one-dimensional case,
TV eigenfunctions can represent signals in amuchmore con-
cise manner.

Let ψH (x) be a Haar mother wavelet function defined by

ψH (x) =
⎧⎨
⎩

1 for x ∈ [0, 1
2 ),−1 for x ∈ [ 12 , 1),

0 otherwise.
(26)
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Fig. 8 Example for a spectral decomposition: We evaluate the flow
of Eq. (3) for given data f shown on the left. We compute the spec-
tral decomposition (5), and compute a (discretized) version of the power
spectral S23 and S1 from (15) and (12) shown in themiddle and right plot,
respectively. Since there appear five distinct peaks, one can integrate the
spectral φ components at the respective time intervals (=band-pass fil-
ter), visualized in different colors, to obtain the five components shown
in Fig. 9
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Fig. 9 Decomposing f (Fig. 8, left) into the 5 elements represented
by the peaks in the spectrum using spectral TV

For any integer pair n, k ∈ Z, a Haar function ψ
n,k
H (x) ∈ R

is defined by

ψ
n,k
H (x) = 2n/2ψH (2nx − k). (27)

We now draw the straightforward relation between Haar
wavelets and TV eigenfunctions.

Proposition 2 A Haar-wavelet function ψ
n,k
H is an eigen-

function of TV with eigenvalue λ = 2(2+n/2).

Proof One can express the mother wavelet as

ψH (x) = B 1
2
(x) − B 1

2
(x − 1

2
),

and in general, any Haar function as

ψ
n,k
H (x) = hn

(
Bwn (x − xn,k

0 ) − Bwn (x − xn,k
0 − wn)

)
,

with hn = 2(n/2), wn = 2−(n+1), and xn,k
0 = 2−nk. Thus,

based on Proposition 1, we have that for any n, k ∈ Z, ψn,k
H

is an eigenfunction of TV with λ = 2
hnwn = 2(2+n/2). ��

In Figs. 8, 9, and 10, we show the decomposition of a sig-
nal f composed of three peaks of different widths. The TV
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Fig. 10 Decomposing f (Fig. 8, left) with Haar wavelets using 15
elements

Input f Haar wavelet Spectral TV
hard threshold ideal LPF

Fig. 11 Comparison of wavelet Haar hard-thresholding to spectral TV
hard-thresholding (ideal LPF). Although both representations can han-
dle well discontinuities, the spectral TV representation is better adapted
to the image edges and produces less artifacts

spectral decomposition shows five numerical deltas (corre-
sponding to the five elements depicted in Fig. 9). On the other
hand, the Haar-wavelet decomposition needs 15 elements to
represent this signal, thus the representation is less sparse. In
the 2D case, Fig. 11,we see the consequence of an inadequate
representation, which is less adapted to the data, where Haar
thresholding is compared to ideal TV LPF, depicting blocky
artifacts in the Haar case.

7 Rayleigh Quotients and SVD Decomposition

In the classical Hilbert space case and J being a quadratic
form, the Rayleigh quotient is defined by

RM (v) := vT Mv

vT v
, (28)

where for the real-valued case M is a symmetric matrix and
v is a nonzero vector. It can be shown that, for a given M , the
Rayleighquotient reaches itsminimumvalue at RM (v) = λ1,
where λ1 is the minimal eigenvalue of M and v = v1 is the
corresponding eigenvector (and similarly for the maximum).
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One can generalize this quotient to functionals, similar as
in [10], by

RJ (u) := J (u)2

‖u‖2 , (29)

where ‖ · ‖ is the L2 norm. We restrict the problem to the
nondegenerate case where J (u) > 0, that is, u is not in the
null-space of J .

To find aminimizer, an alternative formulation can be used
(as in the classical case):

min
u

{J (u)} s.t. ‖u‖2 = 1. (30)

Using Lagrange multipliers, the problem can be recast as

min
u

{
J (u) − λ

2

(
‖u‖2 − 1

)}
,

with the optimality condition

0 ∈ ∂ J (u) − λu,

which coincides with the eigenvalue problem (1). Note that
with the additional constraint of u being in the orthogonal
complement of the null-space of J in the case of J being
absolutely one-homogeneous, in which case one obtains the
minimal nonzero eigenvalue as aminimumof the generalized
Rayleigh quotient (30).

The work by Benning and Burger in [10] considers more
general variational reconstruction problems involving a lin-
ear operator in the data fidelity term, i.e.,

min
u

1

2
‖Au − f ‖22 + t J (u),

and generalizes Eq. (1) to

λA∗Au ∈ ∂ J (u), ‖Au‖2 = 1,

in which case u is called a singular vector. Particular empha-
sis is put on the ground states

u0 = arg min
u∈kern(J )⊥,

‖Au‖2=1

J (u)

for semi-norms J , which were proven to be singular vectors
with the smallest possible singular value. Although the exis-
tence of a ground state (and hence the existence of singular
vectors) is guaranteed for all reasonable J in regularization
methods, it was shown that the Rayleigh principle for higher
singular values fails. As a consequence, determining or even
showing the existence of a basis of singular vectors remains
an open problem for general semi-norms J .

In the setting of nonlinear eigenfunctions for one-
homogeneous functionals, the Rayleigh principle for the sec-
ond eigenvalue (given the smallest eigenvalue λ1 and ground
state u1) leads to the optimization problem

min
u

{J (u)} s.t. ‖u‖2 = 1, 〈u, u1〉 = 0. (31)

With appropriate Lagrange multipliers λ and μ, we obtain
the solution as a minimizer of

min
u

{J (u) − λ

2

(
‖u‖2 − 1

)
+ μ〈u, u1〉},

with the optimality condition

λu − μu1 = p ∈ ∂ J (u).

Weobserve that we can only guarantee u to be an eigenvector
of J if μ = 0, which is not guaranteed in general. A scalar
product with u1 and the orthogonality constraint yields μ =
−〈p, u1〉, which only needs to vanish if J (u) = ‖u‖, but not
for general one-homogeneous J .

An example of a one-homogeneous functional failing to
produce theRayleigh principle for higher eigenvalues (which
can be derived from the results in [10]) is given by J : R2 →
R,

J (u) = ‖Du‖1, D =
(
1 −2ε
0 1

ε

)
,

for 0 < ε < 1
2 . The ground state u = (u1, u2) minimizes

|u1 − 2εu2| + 1
ε
|u2| subject to ‖u‖2 = 1. It is easy to see

that u = ±(1, 0) is the unique ground state, since by the
normalization and the triangle inequality

1 = ‖u‖2 ≤ ‖u‖1 ≤ |u1 − 2εu2| + (1 + 2ε)|u2|
≤ |u1 − 2εu2| + 1

ε
|u2|,

and the last inequality is sharp if and only if u2 = 0. Hence
the only candidate v being normalized and orthogonal to u is
given by v = ±(0, 1). Without restriction of generality, we
consider v = (0, 1). Now, Dv = (−2ε, 1

ε

)
and hence

∂ J (v) =
{
DT (−1, 1)

}
=

{(
−1, 2ε + 1

ε

)}
,

which implies that there cannot be a λ > 0 with λv ∈ ∂ J (v).
A detailed characterization of functionals allowing for the
Rayleigh principle for higher eigenvalues is still an open
problem as well as the question whether there exists an
orthogonal basis of eigenvectors in general. However, in the
above example we are not able to construct an orthogonal
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basis of eigenvectors—this will become more apparent from
the characterization of eigenvectors in the next section.

8 Sparse Representation by Eigenfunctions

With our previous definitions, a convex functional induces a
dictionary by its eigenfunctions. Let us formalize this notion
by the following definition:

Definition 1 (Eigenfunction Dictionary) Let DJ be a dic-
tionary of functions in a Banach space X , with respect to a
convex functional J , defined as the set of all eigenfunctions,

DJ :=
⋃
λ∈R

{
u ∈ X | λu ∈ ∂ J (u), ‖u‖2 = 1

}
.

There are natural questions to be asked such as the fol-
lowing:

(1) What functions can be reconstructed by a linear combi-
nation of functions in the dictionary DJ ?

(2) Is DJ an overcomplete dictionary?
(3) Does DJ contain a complete orthonormal system ?
(4) How many elements are needed to express some type of

functions (or how sparse are they in this dictionary)?

We notice that for many functionals, in particular semi-
norms, there is a natural ambiguity between u and−u, which
are both elements ofDJ . Thus, we might either ask for coni-
cal combinations or identify u and −u as the same elements
of the dictionary.

So far the above questions have not been investigated sys-
tematically and there is no general answer.However, from the
existing examples we expect the eigenfunctions of a convex
one-homogeneous function to contain a basis, and often be
extremely overcomplete. Regarding the third aspect, it would
be desirable to have a criterion for when input data consist-
ing of a linear combination of eigenfunctions can actually be
decomposed into its original atoms.

For some simple cases, we can immediately give an
answer to the questions raised above. Firstly, note that in the
case of J (u) = ‖u‖1 any u = g

‖g‖2 with gi ∈ {−1, 0,+1} is
an eigenfunction (except g ≡ 0). Thus, even after removing
the sign ambiguity there still exist 3n/2 − 1 different eigen-
functions in R

n . Remarkably, the number of eigenfunctions
grows exponentially with the dimension of the space.

8.1 Total Variation Dictionaries

In the continuous setting, the result of Proposition 2 stating
that any Haar-wavelet function is a TV eigenfunction imme-
diate yields the existence of a basis of eigenfunction in this

case, too. (See for example [22] for details on the wavelet
reconstruction properties). Moreover, the explicit construc-
tion of eigenfunctions according to Proposition 1 along with
the freedom to choose the xi ∈ R arbitrarily yields that there
are uncountably many eigenfunctions and the dictionary is
overcomplete.

Without having the immediate connection to wavelets, the
above results extend to the c-dimensional TV regularization:

Corollary 1 For JTV : BV(Rc) → R being the TV func-
tional, any f ∈ L2(Rc) can be approximated up to a desired
error ε by a finite linear (respectively conical) combination
of elements from DJTV . Moreover, DJTV is an overcomplete
dictionary (so the linear combination is not unique).

Proof First of all, we can approximate any L2-function to
arbitrary precision with a linear combination of a finite num-
ber of piecewise constant functions. Since the Borel sets are
generated by balls, we can further construct an approxima-
tion to arbitrary precision with functions piecewise constant
on balls, i.e., linear combinations of characteristic functions
of balls. Since the latter are eigenfunctions of the TV, i.e.,
elements of DJ , the dictionary is complete. Moreover, since
there are Cheeger sets not equal to a ball, and their character-
istic functions are inDJ , too, the dictionary is overcomplete.

��
While the properties of eigenfunctions with respect to

the total variation regularization are fairly well understood,
the question for the properties of a dictionary of eigenfunc-
tions for general one-homogeneous regularization function-
als remains open. In [16], we showed that the regularization
J (u) = ‖Du‖1 for DD∗ being diagonally dominant always
yields the existence of a basis of eigenfunctions.We do, how-
ever, expect to have a significantly overdetermined dictionary
of eigenfunctions. Unfortunately, classical ways of determin-
ing eigenfunctions—such as the Rayleigh principle—fail in
the setting of generalized eigenfunctions (1) for nonquadratic
J as we have seen in the previous section. Nevertheless, for
absolutely one-homogeneous functions we can describe the
set of eigenvectors more precisely.

8.2 Dictionaries from One-Homogeneous Functionals

In the following, let us consider one-homogeneous function-
als J : Rn → R, which by duality can be represented as

J (u) = sup
q∈K

〈q, u〉 (32)

for some convex set K . In order to avoid technicalities
(related to a possible null-space of J ), we assume that K
has nonempty interior. The following result provides a char-
acterization of eigenvectors for nonzero eigenvalues:
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Lemma 1 Let J be defined by (32) and p ∈ ∂K satisfy

〈p, p − q〉 ≥ 0 ∀ q ∈ K . (33)

Then u = p
‖p‖ is an eigenvector with eigenvalue λ = ‖p‖.

Vice versa, if u is an eigenvector with eigenvalue λ 
= 0, then
p = λu satisfies (33).

Proof We have p ∈ ∂ J (u) if and only if p is the maximal
element in 〈q, u〉 over all q ∈ K . Hence, u is an eigenvector,
i.e., a positive multiple of p if and only if (33) holds. ��

This result has a straightforward geometric interpretation:
if u = λp is an eigenvector corresponding to λ 
= 0, then a
ball centered at zero is tangential to ∂K at p. In other words,
the hyperplane through p and orthogonal to p is tangential
to ∂K , more precisely K lies on one side of this hyperplane.

The above geometric insight allows a more precise under-
standing of the example from the previous section. For
J (u) = ‖Du‖1, we have

K = { DT e | ‖e‖∞ ≤ 1},

i.e., K is a sheared version of the unit square. For the specific
form of D in the example, the facets remaining parallel to
the second coordinate axis remain unchanged. If the shear-
ing is not too strong (ε < 1

2 ), the first tangential touch of a
ball centered at zero happens at p = ±(1, 0), which gives
the first eigenvector. A second tangential touch happens at
the extremal points of the sheared square, which obviously
yields an eigenvalue with nonzero first coordinate, hence
not orthogonal to the first eigenvector. The construction of
the minimal and maximal eigenvalue from this example can
indeed be generalized with a straightforward proof to the
general case:

Proposition 3 Let J be defined by (32) and p be a solution
of

‖p‖ → min
p∈∂K

, (34)

then λ = ‖p‖ is the minimal eigenvalue of J and u = λp is
a ground state. Let p be a solution of

‖p‖ → max
p∈∂K

, (35)

then λ = ‖p‖ is the maximal eigenvalue of J and u = λp is
a corresponding eigenvector.

9 Cheeger Sets and Spectral Clustering

As mentioned in the introduction, there is a large literature
on calibrable sets, respectively Cheeger sets, whose char-
acteristic function is an eigenfunction of the TV functional,

compare (2). Particular interest is of course paid to the lowest
eigenvalues and their eigenfunctions (ground states), which
are related to solutions of the isoperimetric problem, easily
seen from the relation λ = P(C)

|C| . Due to scaling invariance
of λ, the shape ofC corresponding to the minimal eigenvalue
can be determined by minimizing P(C) subject to |C | = 1.
Hence, the ground states of the TV functional are just the
characteristic functions of balls in the isotropic setting. Note
that the normalization of |C | = 1 is consistent with the con-
straint of ground states having a unit L2 norm. Interesting
variants are obtained with different definitions of the TV via
anisotropic vector norms. e.g., if one uses the �1-norm of
the gradient in the definition, then it is a simple exercise to
show that the ground state is given by characteristic functions
of squares with sides parallel to the coordinate directions.
In general, the ground state is the characteristic function of
the Wulff shape related to the special vector norm used (cf.
[8,28]) and is hence a fingerprint of the used metric.

On bounded domains or in (finite) discrete versions of the
total variation the situation differs, a trivial argument shows
that the first eigenvalue is simply zero, with a constant given
as the ground state. Since this is not interesting, it was even
suggested to redefine the ground state as an eigenfunction of
the smallest nonzero eigenvalue (cf. [10]). Themore interest-
ing quantity is the second eigenfunction, which is orthogonal
to the trivial ground state (i.e., has zero mean). In this case,
the Rayleigh principle always works (cf. [10]) and we obtain

λ2 = inf
u,

∫
u=0

JTV(u)

‖u‖2 . (36)

Depending on the underlying domain on which TV is con-
sidered (and again the precise definition of TV) one obtains
the minimizer as a function positive in one part and negative
in another part of the domain, usually with constant values
in each. Hence, the computation of the eigenvalue can also
be interpreted as some optimal cut through the domain.

The latter idea had a strong impact in data analysis (cf.
[12,13,39,50,53]), where the TV is defined as a discrete
functional on a graph, hence one obtains a relation to graph
cuts and graph spectral clustering. For data given in form of
a weighted graph, with weights wi j on an edge between two
vertices i, j in the vertex setW , the TV is defined as

J1,w(u) =
∑
i, j∈V

wi j |ui − u j | (37)

for a function u : V → R. Then a graph cut is obtained from
a minimizing u in

λ2 = inf
u,

∑
ui=0

J1,w(u)

‖u‖2 , (38)
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i.e., an eigenfunction corresponding to the second eigen-
value. The cut directly yields a clustering into the two classes

C+ = {i ∈ V | ui > 0} , C+ = {i ∈ V | ui < 0} . (39)

Note that in this formulation, the graph cut technique is
completely analogous to the classical spectral clustering
technique based on second eigenvalues of the graph Lapla-
cian (cf. [55]). In the setting (38), the spectral clusteringbased
on the graphLaplacian can be incorporated by using the func-
tional

J2,w(u) =
√ ∑

i, j∈V
wi j |ui − u j |2. (40)

Some improvements in spectral clustering are obtained if
the normalization in the eigenvalue problem is not done in
the Euclidean norm (or a weighted variant thereof), but some
�p-norm, i.e.,

λ2 = inf
u,

∑
ui=0

Jr,w(u)

‖u‖p
, (41)

for r = 1 or generalizations to weighted norms. We refer
to [39] for an overview, again the case p = 1 has received
particular attention. In the case of graph-total-variation, see a
recent initial analysis and a method to construct certain type
of concentric eigenfunctions in [4]. A thorough theoretical
study of eigenvalue problems and spectral representations for
such generalized eigenvalue problems is still an open prob-
lem, as for any nonHilbert space norm. The corresponding
gradient flow becomes a doubly nonlinear evolution equation
of the form

0 ∈ ∂‖∂t u‖p + ∂ J (u). (42)

The gradient flow for p = 1 and TV in the continuum is
related to the L1-TVmodel,which appears to have interesting
multiscale properties (cf. [58]).

A challenging problem is the numerical computation of
eigenvalues and eigenfunctions in the nonlinear setup, which
is the case also in the general case beyond the spectral cluster-
ing application. Methods reminiscent of the classical inverse
power method in eigenvalue computation (cf. e.g., [34]) have
been proposed and are used with some success, but it is dif-
ficult to obtain and guarantee convergence to the smallest or
second eigenvalue in general.

10 Numerical Implementation Issues

Here, we give the gradient flow approximation. We would
like to approximate ut = −p(u).We use theMoreau–Yosida

approximation [43] for gradient flow. The implicit discrete
evolution (which is unconditionally stable in dt) is

u(n + 1) = u(n) − dtp
(
u(n + 1)

)
.

We can write the above expression as

u(n + 1) − u(n) + dtp
(
u(n + 1)

)
= 0,

and see it coincideswith the Euler–Lagrange of the following
minimization:

E
(
u, u(n)

)
= J (u) + 1

2dt
‖u − u(n)‖2l2 , (43)

where u(n + 1) is the minimizer u of E
(
u, u(n)

)
and u(n)

is fixed. We now have a standard convex variational problem
which can be solved using various algorithms (e.g., [19,21,
24,33,47]).

To approximate the second time derivative utt (t), we store
in memory 3 consecutive time steps of u and use the standard
central scheme:

D2u(n) = u(n − 1) + u(n + 1) − 2u(n)

(dt)2
,

with n = 1, 2, . . ., u(0) = f , D2u(0) = 0. The time t is
discretized as t (n) = ndt . Therefore,

φ(n) = D2u(n)t (n) = n

dt
(u(n − 1) + u(n + 1) − 2u(n)) ,

(44)

and for instance the spectrum S1 is

S1(n) =
∑
i∈N

|φi (n)|, (45)

where i is a pixel in the image and N is the image domain.
In Fig. 12, we show a numerical computation for eigen-

functions and visualize the spatial convergence. We do a
single time step of a TV flow in the following way. Let f
be a TV eigenfunction in 1D in a bounded domain, which
admits Eqs. (22), (25), for simplicity we chose λ = 1. We
set n = 0, u(0) = f and find the minimizer of (43) for
a very small time step dt = ε (in our implementation we
had dt = 0.0001). Following Eq. (4), we should get that
u(n = 1, x) ≡ u(x) = (1 − dt) f (x). Note that the subdif-
ferential of any absolutely one-homogeneous regularization
function is zero-homogeneous, i.e., ∂ J (cu) = ∂ J (u) for all
c > 0, which means that f ∈ ∂ JTV( f ) implies 1

1−dt u(n =
1, x) ∈ ∂ J (u(n = 1, x)). For minimization, we use the
scheme of Chambolle–Pock [21], where we have internal
m iterations. Let um(x), pm(x) be the result of the numerical
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Fig. 12 Numerical implementation of a 1D TV eigenfunction,
Chambolle–Pock scheme [21]. The ratio p(x)

u(x) = λ1 should converge to
1/(1 − ε). It takes about 5000 iterations for the numerical scheme to
fully converge. Note that the error is data-dependent, where larger flat
regions converge much slower

scheme at iteration m. At full convergence, as m → ∞, we
have limm→∞ pm (x)

um (x) = λ1 ≈ 1 pointwise, as shown in the
green flat line of Fig. 12 (for m = 5000 iterations).

It is shown that such schemes are far better for oscillating
signals (works well for denoising), but when there are large
flat regions the local magnitude of p depends on the support
of that region and convergence is considerably slower (can be
orders ofmagnitude). For the 1D case shown here, alternative
schemes can be used which are much faster, such as [23,35].
Furthermore, for our purpose of constructing a full solution
path, variants of the homotopy method [45] or the adaptive
inverse scale space flow [18] would be well suited for the 1D
case as they can construct exact solutionswithout discretizing
the underlying equation in time. However, as far as we know,
there are no efficient schemes for higher dimensions which
deal well with flat regions. Thus alternative ways are desired
to solve such cases more efficiently.

11 Extensions to Other Nonlinear Decomposition
Techniques

As presented in [14], the general framework of nonlinear
spectral decompositions via one-homogeneous regulariza-
tion functionals does not have to be based on the gradient
flow Eq. (3), but may as well be defined via a variational
method of the form

u(t) = argmin
u

1

2
‖u − f ‖22 + t J (u), (46)

or an inverse scale space flow of the form

∂s p(s) = f − u(s), p(s) ∈ ∂ J (u(s)). (47)

Since the variational method shows exactly the same behav-
ior as the scale space flow for the input data f being an
eigenvector of J , the definitions of the spectral decomposi-
tion coincide with the one of the scale the flow. The behavior
of the inverse scale space flow on the other hand is different
in two respects. Firstly, it starts at u(0) being the projec-
tion of f onto the kernel of J and converges to u(s) = f
for sufficiently large s. Secondly, the dynamics for f being
an eigenfunction of J is piecewise constant in u(s) such
that only a single derivative is needed to obtain a peak in
the spectral decomposition. The behavior on eigenfunctions
furthermore yields the relation s = 1

t when comparing the
spectral representation obtained by the variational or scale
space method with the one obtained by the gradient flow.

In analogy to the linear spectral analysis, it is natural to
call the spectral representation of the inverse scale space flow
a frequency representation opposed to the wavelength repre-
sentation of the variational and scale space methods.

To be able to obtain frequency andwavelength representa-
tions for all three types of methods, we make the convention
that a filter H(t) acting on the wavelength representation φ
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Table 2 Six spectral representations of one-homogeneous functionals

Wavelength Frequency

Gradient flow φ(t) = t∂t t u(t) ψ(s) = 1
s2

φ( 1s )

∂t u(t) ∈ −∂ J (u(t)), u|t=0 =
f .

Variational minimization φ(t) = t∂t t u(t) ψ(s) = 1
s2

φ( 1s )

t J (u) + 1
2‖ f − u‖22.

Inverse scale space φ(t) = 1
t2

ψ( 1t ) ψ(s) = ∂su(s)

∂s p(s) = f − u(s), p(s) ∈
∂ J (u(s)).

should be equivalent to the filter H(1/t) acting the frequency
representation ψ , i.e.,

∫ ∞

0
φ(t)H(t) dt =

∫ ∞

0
ψ(t)H(1/t) dt.

By a change of variables one deduces that

ψ(t) = 1

t2
φ

(
1

t

)
respectively φ(t) = 1

t2
ψ

(
1

t

)

are the appropriate conversion formulas to switch from the
frequency to the wavelength representation and vice versa.
Table 2 gives an overview over the three nonlinear decom-
position methods and their spectral representation in terms
of frequencies and wavelength.

It can be verified that in particular cases such as regulariza-
tions of the form J (u) = ‖Vu‖1 for an orthonormal matrix
V , or for the data f being an eigenfunction of J , the gradient
flow, the variational method, and the inverse scale space flow
yield exactly the same spectral decompositions φ and ψ . In
[16], we are investigating more general equivalence results
and we refer the reader to [27] for a numerical comparison
of the above approaches. A precise theory of the differences
of the three approaches for a general one-homogeneous J ,
however, remains an open question.

12 Preliminary Applications

12.1 Filter Design for Denoising

One particular application of the spectral decomposition
framework could be the design of filters in denoising appli-
cations. It was shown in [31, Theorem2.5] that the popular
denoising strategy of evolving the scale space flow (3) for
some time t1, is equivalent to the particular filter

H(t) =
{
0 for 0 ≤ t ≤ t1
t−t1
t for t1 ≤ t ≤ ∞

in the framework of Eq. (7). The latter naturally raises the
question if this particular choice of filter is optimal for prac-
tical applications. While in case of a perfect separation of
signal and noise an ideal low pass filter (8) may allow a per-
fect reconstruction (as illustrated on synthetic data inFig. 13),
the spectral decomposition of natural noisy images will often
contain noise as well as texture in high-frequency compo-
nents.

In [42], a first approach to learning optimal denoising fil-
ters on a training dataset of natural images demonstrated
promising results. In particular, it was shown that optimal
filters neither had the shape of ideal low-pass filters nor of
the filter arising from evolving the gradient flow.

In future research projects, different regularization terms
for separating noise and signals in a spectral framework will
be investigated. Moreover, the proposed spectral framework
allows to filter more general types of noise, i.e., filters are not
limited to considering only the highest frequencies as noise.
Finally, the complete absence of high-frequency components
may lead to an unnatural appearance of the images, such that
the inclusion of some (damped) high-frequency components
may improve the visual quality despite possibly containing
noise. Figure 14 supports this conjecture by a preliminary
example.

12.2 Texture Processing

One can view the spectral representation as an extension
to infinite dimensions of multiscale approaches for texture
decomposition, such as [32,54]. In this sense, φ(t) of (5) is
an infinitesimal textural element (which goes in a continu-
ous manner from “texture” to “structure,” depending on t).
A rather straightforward procedure is therefore to analyze
the spectrum of an image and either manually or automati-
cally select integration bands that correspond to meaningful
textural parts in the image. This was done in [36], where a
multiscale orientation descriptor, based on Gabor filters, was
constructed. This yields for each pixel a multi-valued orien-
tation field, which ismore informative for analyzing complex
textures. See Fig. 15 as an example of such a decomposition
of the Barbara image.

In [37,38] a unique way of using the spectral represen-
tation was suggested for texture processing. It was shown
that textures with gradually varying pattern-sizes, pattern-
contrasts or illuminations can be represented by surfaces
in the three-dimensional TV transform domain. A spatially
varying texture decomposition amounts to estimating a sur-
face which represents significant maximal response of φ,
within a time range [t1, t2],

max
t∈[t1,t2]

{φ(t; x)} > ε
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Fig. 13 Example for perfect separation of noise and signal via
anisotropic TV regularization in the framework of nonlinear spectral
decompositions using the inverse scale space flow. From left to right
Clean image, corresponding spectrum of the clean image; noisy image,

spectrum of the noisy image with an ideal low pass filter to separate
noise and signal; reconstructed image after applying the ideal low-pass
filter. We used the definition S3 in this illustration of the spectrum

Fig. 14 Example for denoising natural images: The original image
(upper left) contains a lot of texture. If one tries to denoise the upper
right image with an ideal low-pass filter (using TV in a color space
that decouples intensities and chromaticities), we obtain the lower left
image. Since some of the high frequencies are completely suppressed,
the image looks unnatural. A designed filter as shown in the lower right

can produce more visually pleasing results (lower middle image). This
example was produced using the ISS framework such that the filters are
shown in frequency representation. Note that the suppression of color
artifacts seems to be significantly more important than the suppression
of oscillations

for each spatial coordinate x . In Fig. 16, a wall is shown with
gradually varying texture scales and its scale representation
in the spectral domain. A decomposition of structures with
gradually varying contrasts is shown in Fig. 17 where the
band-spectral decomposition (spatially varying scale separa-
tions) is compared to the best TV-G separation of [5].

13 Discussion and Conclusion

In this paper, we presented the rationale for analyzing
one-homogeneous variational problems through a spectral
approach. It was shown that solutions of the generalized
nonlinear eigenvalue problem (1) are a fundamental part of
this analysis. The quadratic (Dirichlet) energy yields Fourier
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(a) Input
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Fig. 15 Multiscale orientation analysis based on spectral decomposition a Barbara image, b TV spectrum of the image with separated scales
marked in different colors. c–e Multiscale decomposition, f–h. Corresponding orientation maps
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Fig. 16 Spectral analysis of a wall image, from [38]. a Input image of a brick wall b S(x) = maxt φ(t; x). c Approximation of S(x) by a plain

frequencies as solutions, and thus eigenfunctions of one-
homogeneous functionals can be viewed as new nonlinear
extensions of classical frequencies.

Analogies to the Fourier case, to wavelets and to dictio-
nary representationswere drawn. However, the theory is only
beginning to be formed and there are many open theoretical
problems, a few examples are

(1) More exact relations of the one-homogeneous spectral
representations to basis and frames representations.

(2) Understanding the difference between the gradient flow,
variational, and inverse scale space representations. As
we have shown in [16], a regularization J (u) = ‖Du‖1
with DD∗ being diagonally dominant yields the equiv-
alence between the spectral decomposition of all three
methods. Under a (weaker) regularity assumption on the
subdifferentials, we obtained the equivalence between
the gradient flow and the variational approach. We do,
however, expect the equivalence of all three methods to
hold undermore general assumptions. It would be of par-
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Fig. 17 Decomposition by a separation band in the spectral domain. a Input image, b the maximal φ response, c the separation band, d–e spectral
decomposition, f–g TV-G decomposition. Taken from [37]

ticular interest to classify the difference in cases where
the representations are not equivalent.

(3) Consistency of the decomposition: If we filter the spec-
tral decomposition of some input data f , e.g., by an ideal
low -pass filter at frequency T , and apply the spectral
decomposition again,will we see any frequencies greater
than T ?

(4) Are the regularizations investigated in [16] the most
general class of functions for which one can guarantee
orthogonality of the spectral representation φ?

(5) Spectral analysis of random noise: Can we expect to
classify the decay of coefficients from high to low fre-
quencies, for instance for Gaussian random noise? Does
this lead to implications about the optimal choice of fil-
ters for suppressing noise?

(6) Can the theory be extended from the one-homogeneous
case to the general convex one?

In addition, there are many practical aspects, such as

(1) Learning the regularization on a training setwith the goal
to separate certain features.

(2) Numerical issues, computing φ in a stable manner (as it
involves a second derivative in time), also can one design
better schemes than the ones given here, which are less
local and converge fast for any eigenfunction?

(3) Additional applications where the new representations
can help in better design of variational algorithms.

Some initial applications related to filter design and to
texture processing were shown. This direction seems as a
promising line of researchwhich can aid in better understand-

ing of variational processing and that has a strong potential
to provide alternative improved algorithms.
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