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Abstract We propose techniques for approximating bilevel
optimization problems with non-smooth lower level prob-
lems that can have a non-unique solution. To this end, we
substitute the expression of a minimizer of the lower level
minimizationproblemwith an iterative algorithm that is guar-
anteed to converge to a minimizer of the problem. Using
suitable non-linear proximal distance functions, the update
mappings of such an iterative algorithm can be differentiable,
notwithstanding the fact that the minimization problem is
non-smooth.

Keywords Bilevel optimization · Non-smooth lower level
problem · Bregman proximity function

1 Introduction

Weconsider numerical methods for solving bilevel optimiza-
tion problems of the form:
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min
ϑ

L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ),
(1)

where L (denoted loss function) is a function penalizing the
differences between the output of the lower level problem
x∗(ϑ) and some given ground truth data. In addition, L can
also contain a regularizer on the parameter vector ϑ , e.g., a
sparsity prior. The mapping x∗(ϑ) is the solution of an opti-
mization problem (parametrized by ϑ) that solves a specific
task, e.g., multi-label segmentation.

In the general bilevel literature, (1) is often presented as a
leader–follower problem. The leader (upper level problem)
tries to optimize the next move (minimization of the upper
level problem) under consideration of the move of an oppo-
nent, the follower. Given some information ϑ to the follower,
the leader tries to anticipate the follower’s next move (mini-
mization of the lower level problem).

In this paper, we focus on a class of problems that allows
for non-smooth convex functions x �→ E(x, ϑ) in the lower
level problem, e.g., sparse models based on the �1-norm.
Such models have become very popular in the computer
vision, image processing, and machine learning communi-
ties since they are robust with respect to noise and outliers in
the input data.

Due to the possibly high dimensionality of the parameter
vector, we pursue the minimization of the bilevel problem
(1) using gradient-based methods. Hence, a descent direc-
tion ofLwith respect to ϑ must be determined. Its estimation
involves the Jacobian of the solution map x∗(ϑ)with respect
to the parameter vector ϑ , which causes three kinds of prob-
lems:

(i) The solution mapping x∗(ϑ) is only defined implicitly
(as a minimizer of the lower level problem).
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(ii) The lower level’s solution is not unique.1

(iii) The lower level problem is non-smooth.

(i) A reduction to a single-level problem by explicitly
solving the lower level problem is not always possible. Nev-
ertheless, if the lower level problem is sufficiently smooth,
sometimes, it can be replaced by its optimality condition,
and the implicit function theorem (cf. Sect. 4.1) provides an
explicit formula for the derivative of the solution map. This
approach does not work for non-smooth lower level prob-
lems.

(ii) Consider the example

min
ϑ∈R

(x∗(ϑ) − 1)2

s.t.x∗(ϑ) ∈ arg min
x∈[0,1] ϑx,

(2)

which reduces to minimization of a step function

min
ϑ∈R

L(x∗(ϑ)), L(x∗(ϑ)) =

⎧
⎪⎨

⎪⎩

1, if ϑ>0;
0, if ϑ<0;
[0, 1], if ϑ = 0.

A gradient-based method will get stuck almost every-
where, as the derivative vanishes for all ϑ �= 0. Similar
situations arise for robust models in the lower level problem.
By definition, the solution is not affected by small perturba-
tions of the input data (or the parameter ϑ). For instance in
the multi-label segmentation problem, small changes in the
pixel likelihoods do not change the segmentation result; the
energy landscape of the loss function will have the form of a
high-dimensional step function.

(iii) Due to the non-smoothness of the lower level prob-
lem, standard calculus cannot be applied. In variational
(non-smooth) analysis, there are many generalizations of
derivatives, such as the convex subdifferential, the Fréchet
subdifferential, or the limiting subdifferential. However, they
are often set-valued and generalizations of the chain rule
and rely on constraint qualifications that are sometimes quite
restrictive and often hard to verify.

In the conference version of this paper [30], we intro-
duced an approach to overcome the smoothness restriction
in some cases of practical interest. The idea is to replace the
lower level problem by an iterative algorithm that is guaran-
teed to converge to a solution of the problem. If the update
mapping of the algorithm is a smooth function, the chain
rule can be applied to the composition of these update map-
pings recursively and the exact derivatives with respect to the
parameter vector ϑ can be computed. Algorithms based on

1 Note that the bilevel problem as in (1) is not well-defined in this case.
We discuss some details in Sect. 3.

Bregman distances are key for this development. The number
of iterations of the iterative algorithm steers the approxima-
tion quality of the lower level problem.

The iterative algorithm that replaces the lower level is
stopped after a small number of iterations. However, once the
algorithm and the number of iterations are fixed, the result-
ing bilevel optimization problem seeks for optimal ϑ for
exactly this algorithm and this (fixed) number of iterations.
Numerically, the derivative that is involved in gradient-based
minimization is exact: the number of chain rule recursions is
finite. This is in contrast to an approach based on the optimal-
ity condition of a smooth approximation of the lower level
problem. In this case, the descent direction is based on the
derivative of the optimality condition evaluated at the mini-
mizer of the lower level problem, which is only determined
approximately.

Beyond the analysis of the conference paper, we discuss
approximations to the derivative evaluation that reduce the
memory requirements and the computational cost signifi-
cantly. We extend the class of problems that can be used
in our framework and give some more details about the gen-
eral implementation of our approach. Moreover, we consider
the limiting case, i.e., the fixed point equation of an iterative
algorithm in the lower level problem.

We point out several applications of our approach and
evaluate it for a multi-label segmentation problem coupled
with a convolutional neural network.

2 Related Work

We propose a simple approximation of the lower level
problem that naturally addresses non-smoothness and non-
uniqueness.

For a non-unique solution map (a set-valued mapping)
of the lower level problem (1) is not even well defined
(cf. Remark 1). Dempe et al. [14] describe three possible
options to copewith this problem. The optimistic bilevel opti-
mization problem assumes a cooperative strategy of leader
and follower, i.e., in case of multiple solutions the follower
tries to minimize the upper level objective. The pessimistic
bilevel problem is the other extreme, where the leader tries to
bound the damage that the follower could cause by its move.
The selection function approach assumes that the leader can
always predict the follower’s choice. Of course, these three
approaches are the same for lower level problems with a
unique output.

Our approach does not fall into any of the three cases;
however, the selection function approach is the closest.
The difference is that our approximation changes the out-
put also at (originally) unique points. Our solution strategy
reduces the solution map to be single-valued, similar to the
approaches mentioned above.
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Dempe et al. [14] classify the following optimality con-
ditions.2 The primal Karush–Kuhn–Tucker (KKT) transfor-
mation replaces the lower level problem by the necessary
and sufficient optimality condition for a convex function.
The equivalence to the original problem is shown in [15].
The classical KKT transformation substitutes the lower level
problem with the classical KKT conditions. Due to the extra
variable, the problems are not fully equivalent anymore (see
[14]). This approach,which leads to a non-smoothmathemat-
ical problemwith complementary constraints (MPEC), is the
most frequently used one. The third approach is the optimal
value transform, which introduces a constraint that bounds
the lower level objective by the optimal value function.

Our approach is—in the limit—motivated by the first class
of the primal KKT transformation. We consider the fixed
point equation of an algorithm, which represents the opti-
mality condition without introducing additional variables,
and approximate this situation with finitely many iterations
of the algorithm.

We focus on gradient-based methods, such as gradient
descent, L-BFGS [25], non-linear conjugate gradient [1,19],
Heavy-ball method [40], iPiano [29], and others, for solving
the bilevel optimization problem. In particular, this paper
focuses on the estimation of descent directions. As one
option, the gradient can be approximated numerically with
finite differences such as in [16]. We rather pursue what is
known as algorithmic/automatic differentiation. It is based
on the idea to decompose the derivative evaluation into small
parts by means of a chain rule, where the analytic derivative
of each part is known. A whole branch of research deals with
this technique [21]. Obviously, the idea to differentiate an
algorithm in the lower level problem is not new [17,37]. The
difference is that our algorithm has a smooth update mapping
while actually minimizing a non-smooth objective function.
Another idea to approach a non-smooth problemwith an iter-
ative algorithm is presented in [12], where a chain rule for
weak derivatives is used (cf. Sect. 4.4).

The special case of a lower level problem that depends
linearly on the parameters is treated by structured output sup-
port vector machines [38]. The linear structure of the lower
level problem allows the construction of an upper bound of
the upper level objective function, which needs to be mini-
mized. In general, this approach is only an approximation to
the bilevel problem in (1), which can be solved using sub-
gradient descent.

There are several practical examples of bilevel optimiza-
tion in the computer vision and machine learning. Bilevel
optimization was considered for task-specific sparse analy-
sis prior learning [32] and applied to signal restoration. In
[10,11,23], a bilevel approach was used to learn a model
of natural image statistics, which was then applied to var-

2 The classification in [14] applies to the optimistic bilevel problem.

ious image restoration tasks. A variational formulation for
learning a good noise model was addressed in [35] in a PDE-
constrained optimization framework, with some follow-up
works [6,7,34]. In machine learning, bilevel optimization
was used to train an SVM [4] and other techniques [27].
Recently, it was used for the end-to-end training of a Convo-
lutional Neural Network (CNN) and a graphical model for
binary image segmentation [33] (cf. Sect. 8).

Finally, we refer to [13] for an annotated bibliography
with many references regarding the theoretical and practical
development in bilevel optimization.

Preliminaries

We work in a Euclidean vector space R
N of dimension N

equipped with the standard Euclidean norm ‖ · ‖ := √〈·, ·〉
that is induced by the standard inner product. We use the
notation R := R∪{∞} to denote the extended real numbers.

We use the notation [x ∗ a] for x, a ∈ R
N to denote the

set {x ∈ R
N | ∀i : xi ∗ ai }, where ∗ ∈ {<,≤,=,≥,>} is a

binary relation on R × R. For example, [x ≥ 0] denotes the
non-negative orthant in R

N .

3 The Bilevel Problem

We consider bilevel optimization problems of the form:

min
ϑ∈RP

L(x∗(ϑ), ϑ) + �(ϑ)

s.t. x∗(ϑ) ∈ arg min
x∈RN

E(x, ϑ).
(3)

The function � : R
P → R is assumed to be proper, lower

semi-continuous, convex, and “prox-friendly”3 and the func-
tion L : R

N × R
P → R to be continuously differentiable on

dom �. The optimization variable is the (parameter) vector
ϑ ∈ R

P . It appears implicitly and explicit in the upper level
problem. It is implicit via the solution mapping x∗(ϑ) ∈ R

N

of the lower level problem and explicit in � and in the second
argument of L. The lower level is a minimization problem in
the first variable of a proper, lower semi-continuous function
E : R

N ×R
P → R. For each ϑ ∈ R

P , the objective function
(energy) x �→ E(x, ϑ) is assumed to be convex.

Note that our formulation includes constrained optimiza-
tion problems in the upper and lower level problems. The
functions � and E are defined as extended-valued (real) func-
tions. Of course, in order to handle the constraints efficiently
in the algorithm, the constraint sets should not be too com-
plicated.

3 The associated proximity operator has a closed-form solution or the
solution may be determined efficiently numerically.
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In order to solve the optimization problem in (3), we can
apply iPiano [29], a gradient-based algorithm that can han-
dle the non-smooth part �(ϑ). The extension of iPiano in
[28, Chapter6] allows for a prox-bounded (non-convex, non-
smooth) function �(ϑ). Informally, the update step of this
algorithm (for the parameter vector ϑ) reads

ϑk+1 ∈ proxαk�

(
ϑk − αk∇ϑL(x∗(ϑk), ϑk)

+βk(ϑ
k − ϑk−1)

)
, (4)

where proxαk�
denotes the proximity operator of the function

�, αk is a step size parameter, and βk steers the so-called iner-
tial effect of the algorithm (usually βk ∈ [0, 1]). For details
about αk and βk , we refer to [28,29], where convergence
to a stationary point (a zero in the limiting subdifferen-
tial) is proved under mild assumptions. We could also apply
proximal gradient descent (forward–backward splitting) [2]
(βk = 0). In our experiments, iPiano was usually faster and
less sensitive to local optima, however. If the non-smooth
term is not present, several gradient-based solvers can be
used [1,19,25,40].

The structure of the update step in (4) points out that the
main aspect in applying such gradient-based algorithm is
the evaluation of the gradient ∇ϑL(x∗(ϑ), ϑ). The remain-
der of this paper deals with exactly this problem: compute
∇ϑL(x∗(ϑ), ϑ) with a solution mapping ϑ �→ x∗(ϑ) of a
possibly non-smooth objective function in the lower level.
Note that the following approximations naturally yield or
require a unique solution of the lower level problem.

Remark 1 The formulation (3) of a bilevel optimization
problem onlymakes sensewhen argminx∈RN E(x, ϑ) yields
a unique minimizer. In that case, optimality of the bilevel
problem can be derived from standard optimality conditions
in non-linear programming. If the lower level problem does
not provide a unique solution, the loss function L must be
defined on the power set of R

N and a different notion of
optimality must be introduced. Since this results in problems
beyond the scope of this paper, we refer to [14]. A common
circumvention is to consider the corresponding optimistic
bilevel problem.

4 Computing Descent Directions

For a given parameter value ϑ ∈ R
P , we would like to com-

pute a descent direction ofL in (3) with respect to ϑ to find a
numerical solution using some gradient-basedmethod.Obvi-
ously, we need the derivative of the solution map x∗(ϑ) with
respect toϑ . In the following,wepresent strategies to approx-
imate the (possibly non-smooth) lower level problem and to
compute a descent direction.

4.1 Derivative of a Smoothed Lower Level Problem

If the objective function of the lower level problem of (3)
can be approximated well with a twice continuously differ-
entiable function (again denoted E), we can make use of
the implicit function theorem to find the derivative of the
solution map with respect to ϑ . The optimality condition of
the lower level problem is ∇x E(x, ϑ) = 0, which under
some conditions implicitly defines a function x∗(ϑ). As we
assume that the problem minx E(x, ϑ) has a solution, there
is (x∗, ϑ) such that ∇x E(x∗, ϑ) = 0. Then, under the con-
ditions that ∇x E(x∗, ϑ) is continuously differentiable and
(∂(∇x E)/∂x)(x∗, ϑ) is invertible, there exists an explicit
function x∗(ϑ) defined on a (open) neighborhood of x∗.
Moreover, the function x∗(ϑ) is continuously differentiable
at ϑ and it holds that

∂x∗

∂ϑ
(ϑ) =

(

−∂(∇x E)

∂x
(x∗(ϑ), ϑ)

)−1
∂(∇x E)

∂ϑ
(x∗(ϑ), ϑ).

Using the Hessian HE (x∗(ϑ), ϑ) := ∂2E
∂x2

(x∗(ϑ), ϑ) yields

∂x∗

∂ϑ
(ϑ) = −(HE (x∗(ϑ), ϑ))−1 ∂2E

∂ϑ∂x
(x∗(ϑ), ϑ). (5)

The requirement for using (5) from the implicit function the-
orem is the continuous differentiability of ∂E/∂x and the
invertibility of HE . Application of the chain rule yields the
total derivative of the loss function L of (3) w.r.t. ϑ

dL
dϑ

= −
[
∂L
∂x

H−1
E

]
∂2E

∂ϑ∂x
+ ∂L

∂ϑ
, (6)

where the function evaluation at (x∗(ϑ), ϑ) is dropped for
brevity. A clever way of setting parentheses, as it is indi-
cated by the squared brackets, avoids explicit inversion of
the Hessian matrix. However, for large problems iterative
solvers are required.

4.2 Derivative of Iterative Algorithms

We can replace the minimization problem in the lower level
of (3) by an algorithm that solves this problem, i.e., the
lower level problem is replaced by an equality constraint.
This approach shows three advantages: (i) after approximat-
ing the lower level of (3) by an algorithm, the approach is
exact; and (ii) the update step of the algorithm can be smooth
without the lower level problem to be smooth; (iii) the output
is always unique (for a fixed initialization), which circum-
vents the critical issue of a non-unique lower level solution.

Let A and A(n) : X × R
P → X describe one or n iter-

ations, respectively, of algorithm A for minimizing E in
(3). For simplicity, we assume that the feasible set mapping

123



J Math Imaging Vis (2016) 56:175–194 179

ϑ �→ {x ∈ R
N | (x, ϑ) ∈ domL} is constant,4 i.e., the same

X is assigned to all ϑ ∈ R
P . Note that X = R

N is permitted.
For fixed n ∈ N, we replace (3) by

min
ϑ

L(x∗(ϑ), ϑ) + �(ϑ)

s.t. x∗(ϑ) = A(n+1)(x (0), ϑ),
(7)

where x (0) is some initialization of the algorithm. The solu-
tion map of the lower level problem x∗(ϑ) is the output of
the algorithm A after n + 1 iterations. If we write down one
iteration of the algorithm, i.e., x (n+1)(ϑ) = A(x (n)(ϑ), ϑ),
we have to assume that x (n) depends on the choice of ϑ .
However, this dependency can be dropped for the first iter-
ate, which emerges from the initialization.

A suitable algorithm has the properties that x (n)(ϑ) con-
verges pointwise (i.e., for each ϑ) to a solution of the
lower level problem as n goes to infinity and E(x (n), ϑ) =
E(A(n)(x (0), ϑ), ϑ) → minx E(x, ϑ) for n → ∞. Note that
for Bregman proximity functions in algorithmA, the solution
for n → ∞ could lie on bdry(X), despite x (n) ∈ int(X) for
all n. However, this matters only for an asymptotic analysis.

If A is (totally) differentiable with respect to ϑ , then, by
the standard chain rule, A(n) is differentiable with respect
to ϑ as well. This way, we obtain a totally differentiable
approximation to the lower level problem of (3), where the
approximation quality can simply be controlled by the num-
ber of iterations. For the so-called descent algorithms, it holds
that

E(x (n+1), ϑ) − min
x

E(x, ϑ) ≤ E(x (n), ϑ) − min
x

E(x, ϑ).

A large number of iterations usually approximate the mini-
mum of E better than a small number of iterations.

Nevertheless, also the small number of iterations is inter-
esting for our approach.Once the certain number of iterations
is fixed, the bilevel optimization problem seeks for an optimal
performance with exactly this chosen number of iterations.
Solving the bilevel optimization problem accurately with a
small number of iterations n of the lower level algorithm can
result in a better performance than a poorly solved bilevel
problem with a large number of iterations in the lower level.

Our approach is well suited for minimizing the bilevel
problem using gradient-based methods. The differentiation
of L with respect to ϑ in (7) is exact; once an algorithm is
selected, no additional approximation is required for comput-
ing the derivatives. In contrast, the smoothing approach from
Sect. 4.1 requires the minimization of a smooth objective
function, the solution of which can be found only approxi-

4 More generally, the concept of outer semi-continuity of the feasible set
mapping is needed, otherwise a gradient-based method could converge
to a non-feasible point.

matively. Therefore, the descent direction, which is based on
the optimality condition, is always erroneous.

The “smoothing parameter” in our approach is the number
of iterations of the algorithm that replaces the lower level
problem. Since the algorithm’s updatemapping is assumed to
be smooth, in particular, locally Lipschitz continuous, which
formally means that

‖A(x, ϑ) − A(y, ϑ)‖ ≤ const. ‖x − y‖

holds in a neighborhood of the initial point, the variation of
the output after one iteration is limited. Therefore, intuitively,
for a large number of iterations n, less smoothness of A(n)

can be expected.
In order to obtain the derivative of the lower level problem

of (7), there are two prominent concepts: forward mode and
backward mode. For any vector ξ ∈ R

N , the forward mode
corresponds to evaluating the derivative as

ξ� dx (n+1)

dϑ
(ϑ)

= ξ�
[

∂A
∂x

(x (n), ϑ)
dx (n)

dϑ
(ϑ)

]

+ ξ� ∂A
∂ϑ

(x (n), ϑ), (8)

whereas the backward mode/reverse mode evaluates the
derivative as

(
dx (n+1)

dϑ
(ϑ)

)�
ξ

=
(
dx (n)

dϑ
(ϑ)

)� [(
∂A
∂x

(x (n), ϑ)

)�
ξ

]

+
((

∂A
∂ϑ

(x (n), ϑ)

)�
ξ

)

, (9)

where the squared brackets symbolize the different orders of
evaluating the terms. In both approaches, replacing and eval-
uating the term dx (n)/dϑ using the preceding iterate (n − 1)
is done in the respective order.

Mathematically both concepts result in the same solution.
However, numerically the approaches are very different. The
reverse mode is usually more efficient when the optimiza-
tion variable ϑ is high dimensional (i.e., P is large) and the
range of the objective function L is low dimensional—it is
always 1 in our setting. This corresponds to ξ being a column
vector instead of a derivative matrix. The forward mode is
often easier to implement, since it is executed in the same
order as the optimization algorithm itself and can be com-
puted online, i.e., during the iteration of the algorithm. As
a downside, each partial derivative must be initialized and
propagated through the iterations. Therefore, the memory
requirement is vastly increasing with the dimension P . We

123



180 J Math Imaging Vis (2016) 56:175–194

focus on the reverse mode for evaluating the derivatives, due
to its computationally more appealing nature.

The backward mode is executed in the reverse order of the
iterations of the algorithm and needs the optimum x∗, which
is x (n+1) in our case, for executing the first matrix vector
multiplication. All intermediate results toward the optimum
must be available. The implementation of the backwardmode
(9) is shown in Algorithm 1.

Algorithm 1 Derivative of an abstract algorithm

– Assumptions: A is totally differentiable.
– Initialization at n + 1:

z(n+1) :=
(

∂L
∂x

(x∗(ϑ), ϑ)

)�
∈ R

N and w(n+1) := 0 ∈ R
P

– Iterations (n ≥ 0): Update

for n to 0 :
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(n) = w(n+1) +
(

∂A
∂ϑ

(x (n), ϑ)

)�
z(n+1)

z(n) =
(

∂A
∂x (n)

(x (n), ϑ)

)�
z(n+1)

– Final derivative of L in (7) w.r.t. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))� + ∂L
∂ϑ

(x∗(ϑ), ϑ) .

This approach is quite expensive. But, for a reasonable num-
ber of iterations, it is still practical. It is still faster than the
inversion of the Hessian matrix in Sect. 4.1; see (6). In the
following section, we present approximations that reduce the
cost significantly.

4.3 Derivative of Fixed Point Equations

We generalize the result from Sect. 4.1, where the lower level
problem of (3) is replaced by the first-order optimality con-
dition of a smooth approximation. The idea is to consider a
different optimality condition. A point is optimal, if it satis-
fies the fixed point equation of an algorithmA : X×R

P → X
solving the original lower level problem, i.e., we address the
bilevel problem:

min
ϑ

L(x∗(ϑ), ϑ)

s.t. x∗(ϑ) = A(x∗(ϑ), ϑ),
(10)

where X ⊂ R
N is as in Sect. 4.2 and we have a fixed point

x∗. This approach is more general than the one in Sect. 4.1,
since we could actually first smoothly approximate the lower
level problem and then consider the fixed point equation. For

many algorithms, both approaches are equivalent, because
optimization algorithms are often derived from the first-order
optimality condition.

Following the idea of Sect. 4.2, we can consider a differen-
tiable fixed point equation without the lower level problem
to be differentiable. An algorithm that has a differentiable
update rule yields a differentiable fixed point equation.

Assume that (x∗, ϑ) solves the fixed point equation. By
differentiating the fixed point equation, we obtain

dx

dϑ
(ϑ) = ∂A

∂x
(x∗(ϑ), ϑ)

dx

dϑ
(ϑ) + ∂A

∂ϑ
(x∗(ϑ), ϑ),

which can be rearranged to yield

dx

dϑ
(ϑ) =

(

I − ∂A
∂x

(x∗(ϑ), ϑ)

)−1
∂A
∂ϑ

(x∗(ϑ), ϑ). (11)

Assuming that the spectral radius of (∂A/∂x)(x∗(ϑ), ϑ) is
smaller than 1, we can approximate the inversion using the
geometric series:

dx

dϑ
(ϑ) =

∞∑

n=0

(
∂A
∂x

(x∗(ϑ), ϑ)

)n
∂A
∂ϑ

(x∗(ϑ), ϑ),

where ((∂A/∂x)(x∗(ϑ), ϑ))n means the n-fold matrix prod-
uct with itself. Let us approximate this term with a finite
summation of 0, . . . , n0. Then by a simple rearrangement,
for ξ ∈ R

N , we have (by abbreviating (∂A/∂x)(x∗(ϑ), ϑ)

by ∂A/∂x ; the same for ∂A/∂ϑ)
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ξ� dx

dϑ
(ϑ) ≈ ξ�

n0∑

n=0

(
∂A
∂x

)n
∂A
∂ϑ

= ξ� ∂A
∂x

(
∂A
∂ϑ

+ ∂A
∂x

(
∂A
∂ϑ

+ · · ·
))

= ξ�
[

∂A
∂x (n0)

dx (n0)

dϑ

]

+ ξ� ∂A
∂ϑ

.

The difference between the last line in this equation and
(8) and (9) is the evaluation point of the terms. While
in (8) and (9) the terms for dx (n+1)/dϑ are evaluated at
(x (n)(ϑ), ϑ), here, all terms are evaluated at (x∗(ϑ), ϑ).
Although the condition on the spectral radius is rarely met
in practice, this approximation works well empirically and
needs to store only the optimum of the algorithm. This leads
to an immense reduction of the memory requirements.

4.4 Weak Differentiation of Iterative Algorithms

The approach in [12] also considers an algorithm replac-
ing the non-smooth lower level problem. Their underlying
methodology, however, is based on weak differentiability,
which can be guaranteed for Lipschitz continuous mappings
thanks to Rademacher’s theorem. If all iteration mappings
are Lipschitz continuous with respect to the iteration vari-
able and the parameterϑ , weak differentiability follows from
the chain rule for Lipschitz mappings [18, Theorem 4]. For
details, we refer to [12], in particular Sect. 4.

5 Explicit Derivatives for Exemplary Algorithms

The framework ofBregmanproximity functions is key for the
idea to approximate a non-smooth optimization problem by
an algorithm with smooth update mappings. In this section,

we instantiate two such algorithms. Details and examples of
Bregman proximity functions are postponed to Sect. 6.1. For
understanding this section, it suffices to know that Dψ(x, x̄)
provides a distance measure between two points x and x̄ , and
it can be used to define a Bregman proximity operator proxψ

which generalizes the common proximity operator that is
based on the Euclidean distance.

5.1 Derivative of Forward–Backward Splitting

Let us consider forward–backward splitting [24,31] with
Bregman proximity function Dψ (e.g., [3]). It applies to min-
imization problems of the form:

min
x∈RN

f (x) + g(x),

where f : R
N → R is a continuously differentiable, convex

functionwithLipschitz continuous gradient and g : R
N → R

is a proper, lower semi-continuous, convex function with a
(Bregman) proximity operator that is easy to evaluate. The
update rule of the forward–backward splitting we consider is

x (n+1) = arg min
x∈RN

g(x;ϑ) + f (x (n);ϑ)

+
〈
∇ f (x (n);ϑ), x − x (n)

〉
+ 1

α
Dψ(x, x (n))

=: proxψ
αg

(
∇ψ(x (n)) − α∇ f (x (n);ϑ);ϑ

)

=: proxψ
αg

(
y(n)(x (n);ϑ);ϑ

)
,

(12)

wherewedenote y(n)(x (n);ϑ) := ∇ψ(x (n))−α∇ f (x (n);ϑ),
the intermediate result after the forward step. The implemen-
tation of the reverse mode for determining the derivative of
the solution map of the lower level problem with respect to
ϑ is given in Algorithm 2.
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Algorithm 2 Derivative of a forward–backward splitting algorithm

– Assumptions: proxψ
αg and id + α∇ f are totally differentiable.

– Initialization at n + 1:

z(n+1) :=
(

∂L
∂x

(x∗(ϑ), ϑ)

)�
∈ R

N and w(n+1) := 0 ∈ R
P

– Iterations (n ≥ 0): Update (where derivatives of proxψ
αg are evaluated at (y(n), ϑ)

and derivatives of ∇ f at (x (n);ϑ))

for n to 0 :
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(n) = w(n+1) +
((

∂ proxψ
αg

∂ϑ

)�
+

(

− α
∂(∇ f )

∂ϑ

)�(
∂ proxψ

αg

∂y

)�)

z(n+1)

z(n) =
(

id − α
∂(∇ f )

∂x

)�(
∂ proxψ

αg

∂y

)�
z(n+1)

– Final derivative of L in (7) w.r.t. ϑ:

dL
dϑ

(x∗(ϑ), ϑ) = (w(0))� + ∂L
∂ϑ

(x∗(ϑ), ϑ).

5.2 Derivative of Primal–Dual Splitting

Since the primal–dual algorithm with Bregman proximity
functions from [9] provides uswith a flexible tool, we specify
the implementation of the reverse mode for this algorithm. It
applies to the convex–concave saddle-point problem

min
x

max
y

〈Kx, y〉 + f (x) + g(x) − h∗(y),

which is derived fromminx f (x)+g(x)+h(Kx), where f is
convex and has a Lipschitz continuous gradient and g, h are
proper, lower semi-continuous convex functions with simple
proximity operator for g and for the convex conjugate h∗.

Let the forward iteration of the primal–dual algorithmwith
variables x (n) = (u(n), p(n)) ∈ R

Nu+Np be given as

u(n+1) = PDu(u
(n), p(n), ϑ)

:= argmin
u

〈
∇ f (u(n)), u − u(n)

〉
+ g(u)

+
〈
Ku, p(n)

〉
+ 1

τ
Du(u, u(n))

p(n+1) = PD p(2u
(n+1) − u(n), p(n), ϑ)

:= argmin
p

h∗(p) −
〈
K (2u(n+1) − u(n)), p

〉

+ 1
σ
Dp(p, p

(n)),

(13)

where f, g, h, K can depend on ϑ . The step size parameter
τ and σ must be chosen according to (τ−1 − L f )σ

−1 ≥ L2,
where L = ‖K‖ is the operator norm of K and L f is the
Lipschitz constant of ∇ f .

To illustrate the application of the chain rule throughout
the primal–dual algorithm, we show a graphical represen-
tation of the information flow in Fig. 1, where we use the
following abbreviations (analogously for PD p):

PD(n)
u := PDu(u

(n), p(n), ϑ);
PD(n)

p := PD p(2u
(n+1) − u(n), p(n), ϑ);

∂uPDu := ∂PDu

∂u
; ∂pPDu := ∂PDu

∂p
; ∂ϑPDu := ∂PDu

∂ϑ
.

Remark 2 In Sect. 5.1, we evaluated the forward and the
backward steps separately using the chain rule. Of course,
this could be done here as well.

Based on this graphical representation, it is easy to derive
Algorithm 3.
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Fig. 1 The graph shows how
the information is backprogated
to estimate the derivatives in
Algorithm 3. The derivatives at
the nodes show what derivative
is to be evaluated from this point
downwards through the graph.
The edges represent
multiplicative (transposed)
factors. The final derivative is
the sum over all leaf nodes

du∗
dϑ

dϑ du(n)

dϑ
dp(n)

dϑ

dϑ du(n−1)

dϑ
dp(n−1)

dϑ
dϑ

dϑ du(n−2)

dϑ
dp(n−2)

dϑ
dϑ

∂uPD(n)
u ∂pPD(n)

u

∂ϑPD(n)
u

∂uPD(n−1)
u ∂pPD(n−1)

u

∂ϑPD(n−1)
u

∂uPD(n−2)
u ∂pPD(n−2)

u

∂ϑPD(n−2)
u

∂pPD(n−1)
p

∂ϑPD(n−1)
p

2∂uPD(n−1)
p

−∂uPD(n−1)
p

∂pPD(n−2)
p

∂ϑPD(n−2)
p

2∂uPD(n−2)
p

−∂uPD(n−2)
p

2∂uPD(n−3)
p

Algorithm 3 Derivative of a primal–dual algorithm

– Assumptions: PDu and PD p are totally differentiable.
– Initialization at n + 1:

z(n+1) :=
(

∂L
∂u

(u∗(ϑ), ϑ)

)�
∈ R

Nu , q(n+1) := 0 ∈ R
Np

and w(n+1) := 0 ∈ R
P

– Iterations (n ≥ 0): Update

for n to 0 :
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(n) = w(n+1) +
(

∂PD(n)
u

∂ϑ

)�
z(n+1) +

(
∂PD(n)

p

∂ϑ

)�
q(n+1)

q(n) =
(

∂PD(n)
u

∂p

)�
z(n+1) +

(
∂PD(n)

p

∂p

)�
q(n+1)

z(n) =
(

∂PD(n)
u

∂u

)�
z(n+1) + 2

(
∂PD(n−1)

p

∂u

)�
q(n) −

(
∂PD(n)

p

∂u

)�
q(n+1)

– Final derivative of L in (7) with A = (PDu,PD p) w.r.t. ϑ:

dL
dϑ

(u∗(ϑ), ϑ) = (w(0))� + ∂L
∂ϑ

(u∗(ϑ), ϑ).

A running average is used to implement the ergodic
primal–dual algorithm whose output is the average of
all iterates, i.e., u∗ = 1

n+1

∑n
i=0 u

(i): denote s(n)
u :=

1
n+1

∑n
i=0 u

(i), then s(n+1)
u = 1

n+2u
(n+1) + n+1

n+2 s
(n)
u . Since

the derivative is a linear operator, we can estimate the deriv-
ative for the ergodic primal–dual sequence by averaging all
w(n). These can be computed as a running average in the loop
of Algorithm 3.

6 “Smoothing” Using Bregman Proximity

Splitting-based techniques like those inSect. 5 usually handle
non-smooth terms in the objective function via a (non-
linear/Bregman) proximal step. Convex conjugation makes
terms in the objective amenable for simple and differentiable
proximal mappings. Adding the possibility of considering a
primal, primal–dual, or dual formulation yields many exam-
ples of practical interest.
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In the following, we introduce the class of Bregman func-
tions that can be used in combination with the algorithms
in Sect. 5. Then, we discuss a few examples that allow the
reformulation of several non-smooth terms arising in appli-
cations.

6.1 Bregman Proximity Functions

We consider Bregman proximity functions [5] with the fol-
lowing properties: Let ψ : R

N → R be a 1-convex function
with respect to the Euclidean norm, i.e., it is strongly convex
with modulus 1, and denote its domain by X := domψ . We
assume that ψ is continuously differentiable on the interior
of its domain int(X) and continuous on its closure cl(X).

Then, ψ generates a Bregman proximity function
Dψ : X × int(X) → R by

Dψ(x, x̄) := ψ(x) − ψ(x̄) − 〈∇ψ(x̄), x − x̄〉 . (14)

For a sequence (xn)n∈N converging to x ∈ X , we require that
limn→∞ Dψ(x, xn) = 0. The 1-convexity of ψ implies that
the Bregman function satisfies the inequality

Dψ(x, x̄) ≥ 1

2
‖x − x̄‖2, ∀x ∈ X, x̄ ∈ int(X).

These are the kind of Bregman proximity functions con-
sidered in [9]. Obviously, ψ(x) = 1

2‖x‖2 corresponds to
Dψ(x, x̄) = 1

2‖x − x̄‖2.
In iterative algorithms, the Bregman proximity function

is used via the proximity operator for a proper, lower semi-
continuous, convex function g : X → R

proxψ
αg(x̄) := argmin

x∈X αg(x) + Dψ(x, x̄), (15)

where we define proxαg := prox
1
2 ‖·‖2
αg .

There are two kinds of Bregman proximity functions:
(i) the function ∇ψ can be continuously extended to X , i.e.,
Dψ can be defined on X × X , and (ii) ψ is differentiable on
int(X) (i.e.,∇ψ cannot necessarily be extended to cl(X)). In
this case, Dψ(x, x̄) makes sense only on X × int(X) and we

must assure that proxψ
αg(x̄) ∈ int(X) for any x̄ ∈ int(X). For

this, we need to assume that ‖∇ψ(x)‖ → ∞ whenever x
approaches a boundary point bdry(X) := cl(X) � int(X)

(which is sometimes referred to as ψ being essentially
smooth [36]).

While solutions of the proximity operator for the first class
can lie on the boundary bdry(X), this is not possible for the
second class; boundary points can be reached only in the
limit when the proximity operator is applied sequentially.
Moreover, for x̄ ∈ bdry(X), (14) would imply that, unless
x = x̄ , the Bregman distance is +∞ for any x , which can

be represented by δ[x=x̄](x). This means that x̄ ∈ bdry(X)

is always a fixed point of this Bregman proximity operator.
This precludes application of the fixed point approach from
Sect. 4.3.

6.2 Examples of Bregman Functions

Since Bregman proximity functions play a key role in this
paper, we consider a few examples.

Example 1 The Euclidean length ψ(x) = 1
2‖x‖22 is contin-

uously differentiable on the whole space R
N and, therefore,

belongs to class (i) of Bregman proximity functions.

Example 2 The Bregman proximity function generated by
ψ(x) = 1

2 ((x+1) log(x+1)+(1− x) log(1− x)) is defined
on the interval (−1, 1) and can be continuously extended to
[−1, 1], and is continuously differentiable on (−1, 1) with
|ψ ′(x)| → ∞ when x → ±1. It is 1-strongly convex.

Example 3 The entropy function ψ(x) = x log(x), which
can be continuously extended to [x ≥ 0], is continuously dif-
ferentiable on [x > 0] with derivative ψ ′(x) = log(x) + 1.
The derivative cannot be continuously extended to x = 0.
For x → 0 we have |ψ ′(x)| → +∞. Unfortunately, this
function is not even 1-strongly convex on [x ≥ 0]. However,
the function ax log(x) is 1-strongly convex when restricted
to a bounded subset [0, 1/a], a > 0. For a = 1, the Breg-
man function Dψ(x, x̄) = x(log(x) − log(x̄)) − (x − x̄) is
generated.

Example 4 The entropy function can also be used in higher
dimensions. Unfortunately, it is hard to assert a simple eval-
uation of an associated proximity mapping in this case.
Consider a polyhedral set ∅ �= X ∈ R

N given by

X = {x ∈ R
N | ∀i = 1, . . . , M : 〈ai , x〉 ≤ bi }

=
M⋂

i=1

{x ∈ R
N | 〈ai , x〉 ≤ bi }

for vectors 0 �= ai ∈ R
N , and bi ∈ R

M , i = 1, . . . , M .
Then, the generating function

ψ(x) =
M∑

i=1

(bi − 〈ai , x〉) log(bi − 〈ai , x〉)

is designed such that for any point x̄ ∈ int(X) any other
point x /∈ X is “moved infinitely far away” with respect to
the Bregman distance Dψ(x, x̄). Therefore, ‖∇ψ(x)‖ →
∞ for x tends towards a point on the boundary bdry(X).
Nevertheless, ψ is continuous on X and strongly convex, if
X is bounded.
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6.3 Examples of Smooth Bregman Proximity Operators

The Bregman proximity functions that we presented are par-
ticularly interesting if the evaluation of the proximalmapping
(15) is a constrainedminimization problem, i.e., the involved
function g in proxψ

g is extended-valued and +∞ outside
the constraint (closed) convex set X ⊂ R

N . The Bregman
function can replace or simplify the constraint set. In the
following, we consider a few examples of practical interest.
The class of functions that are amenable to our approach can
be broadened significantly thanks to the concept of (convex)
conjugation.

We consider a basic class of functions g(x) = 〈x, c〉 +
δX (x) for some c ∈ R

N . The associated (non-linear) prox-
imity operator from (15) is given by

proxψ
αg(x̄) = argmin

x∈X α 〈x, c〉 + Dψ(x, x̄).

The corresponding (necessary and sufficient) optimality con-
dition, which has a unique solution, is

0 ∈ c + ∇ψ(x) − ∇ψ(x̄) + ∂δX (x)

⇔ ∇ψ(x̄) − c ∈ ∇ψ(x) + NX (x),

where NX (x) denotes the normal cone at x of the set X .
Suppose x̄ ∈ int(X). If ψ is chosen such that ‖∇ψ(x)‖ →
+∞ for x → x̃ ∈ bdry(X), then the solution of the proximal
mapping is in int(X). Since NX (x) = 0 for x ∈ int(X), the
optimality condition simplifies to

∇ψ(x̄) − c = ∇ψ(x), (16)

i.e., the constraint is implicitly taken care of by the Bregman
proximity function. Summarizing, the goal of our approach
(for this basic function g) consists of determining ψ , respec-
tively Dψ , such that

– the constraint set can be handled implicitly,
– (16) can be solved efficiently (possibly in closed form),
– and the solution function of (16), which yields the solu-
tion of (16) for a given x̄ , is required to be differentiable
w.r.t. x and ϑ , where possibly c = c(ϑ).

Example 5 For a linear function g(x) = 〈c, x〉 + δ[x≥0](x),
the entropy function from Example 3 can be summed up for
each coordinate to remove the non-negativity constraint. The
proximity operator reads

(

prox
∑

j x j log x j
αg (x̄)

)

i

= x̄i exp(−αci ).

A closer look at the iterations of the forward–backward split-
ting (FBS) algorithm (12) reveals that such a function g arises

with c = ∇ f (x̄), i.e., in the iterations of FBS for the mini-
mization of

min
x∈RN

f (x) + δ[x≥0](x).

Aparticular instance of this problem is the non-negative least
squares problem, i.e., f (x) = 1

2‖Ax − b‖22 with a matrix A
and a vector b.

Example 6 The most frequent application of the entropy-
prox is for the minimization of a linear function g(x) =
〈c, x〉 over the unit simplex inR

N . Since the entropy function
restricts the solution of the proximity operator to the positive
orthant, projecting a point x̄ ∈ R

N+ onto the unit simplex {x ∈
R

N | ∑N
i=1 xi = 1 and xi ≥ 0} reduces to the projection onto

the affine subspace {x ∈ R
N | ∑N

i=1 xi = 1}, which can be
given in closed form, i.e.,

(

prox
∑

j x j log x j
αg (x̄)

)

i

= x̄i exp(−αci )
∑N

j=1 x̄ j exp(−αc j )
.

This proximal problem arises for example in the multi-label
segmentation problem in Sect. 8.1 or in Matrix games (see
[9, Sect. 7.1]).

Example 7 For the function g(x) = 〈c, x〉 + δ[−1≤x≤1](x)
the Bregman function fromExample 2 reduces theminimiza-
tion problem in the proximal mapping to an unconstrained
problem. The proximal mapping with ψ(x) = ∑

i
1
2 ((xi +

1) log(xi + 1) + (1 − xi ) log(1 − xi )) reads:

(

proxψ
αg(x̄)

)

i

= exp(−2αci ) − 1−x̄i
1+x̄i

exp(−2αci ) + 1−x̄i
1+x̄i

.

Obviously, this example can be adjusted to any Cartesian
product of interval constraints. The importance of this exem-
plary function g becomes clear in the following.

Functions that are linear on a constraint set also arisewhen
conjugate functions are considered. For instance, the �1-norm
can be represented as

‖x‖1 = max
y

〈x, y〉 + δ[−1≤y≤1](y).

In combination with the primal–dual (PD) algorithm (13),
this representation results in subproblems of the type dis-
cussed in the preceding examples. From this perspective,
optimization problems involving a linear operator D and the
�1-norm ‖Dx‖1 are also easy to address.

This idea of conjugation can be put into a slightly larger
framework, as the convex conjugate of any positively one-
homogeneous proper, lsc, convex function is an indicator
function of a closed convex set. Unfortunately, it is required
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Fig. 2 Visualization of the loss
function L(x(ϑ), ϑ) for the 1D
example (17) on the left side.
The optimum is marked with a
black star. On the right-hand
side, the solution map of the
lower level problem is shown
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that projecting onto such a set is easy (“prox-friendliness”).
Therefore, the following example is restricted to the (addi-
tively) separable case.

Example 8 Let g be an (additively) separable, positively
one-homogeneous, proper, lsc, convex function g(x) =
∑N

i=1 gi (xi ). Thanks to its properties g coincides with its
bi-conjugate function g∗∗ and we can consider

g(x) = g∗∗(x) =
N∑

i=1

max
yi

xi yi − δYi (yi ),

where Yi = [ai , bi ] is a closed interval in R. Again, the dual
update step of (13) involves problems such as in Example 7
with h∗(y) = ∑

i δYi (yi ).

7 Toy Example

The bilevel problem that we consider here is a parameter
learning problem of a one-dimensional non-negative least
squares problem:

min
ϑ∈R

1

2
(x∗(ϑ) − g)2

s.t. x∗(ϑ) = argmin
x∈R

λ

2
(ϑx − b)2 + 1

2
x2 + δ[x≥0](x),

(17)

where ϑ is the optimization variable of the bilevel problem,
b ∈ R is the input of the least squares problem, and λ is a
positive weighting parameter. Given ϑ and b, the lower level
problem solves the non-negative least squares problem. The
squared Euclidean loss function in the upper level problem
compares the output of the lower level problem for some ϑ

and b to the ground truth g := x∗(ϑ∗), which is generated by
solving the lower level problem with some predefined value
ϑ∗. The goal of the bilevel optimization problem is to find
ϑ∗ given b and g.

The analytic solution of the lower level problem (the solu-
tion map) is

x∗(ϑ) = max
(
0,

λϑb

1 + λϑ2

)

and is shown on the right-hand side of Fig. 2. It is obviously a
non-smooth function with a non-differentiable point at ϑ =
0. Plugging the solution map into the upper level problem
shows the actual objective to be minimized; see the left-hand
side of Fig. 2.

7.1 Experimental Setup

In the following experiments, we numerically explore the
gradients computed with the proposed techniques.We do not
consider the actual minimization of the bilevel problem. The
computed gradients could be used by anyfirst-order gradient-
based method.

7.1.1 Analytic Subdifferential

For ϑ �= 0, the standard chain rule from calculus can be
applied and we can directly write down the derivative of the
whole problem, namely

dL
dϑ

(x(ϑ)) = λb(1 − λϑ2)

(1 + λϑ2)2
(x(ϑ) − g).

For ϑ = 0, we consider the derivative

dL
dϑ

(x(ϑ)) = [0, λb(x(0) − g)],

where [0, λb] is replaced by [λb, 0] if λb < 0.

7.1.2 Implicit Differentiation Approach Sect. 4.1

In order to apply this technique, we must smooth the lower
level problem. Since we want to avoid solutions x∗(ϑ) = 0,
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we introduce a log-barrier and replace the lower level prob-
lem by

fμ(x, ϑ) := λ

2
(ϑx − b)2 + 1

2
x2 − μ log(x)

for some small μ > 0. Thus, we can drop the non-negativity
constraint. To compute the gradient via the implicit differ-
entiation formula (6), we minimize fμ with respect to x
and compute the second derivatives (we abbreviate the x-
derivative with f ′

μ and ϑ-derivative with ∂ϑ fμ)

f ′
μ(x, ϑ) = λϑ(ϑx − b) + x − μ

x
;

f ′′
μ(x, ϑ) = λϑ2 + 1 + μ

x2
;

∂ϑ f ′
μ(x, ϑ) = 2λϑx − λb.

(18)

Then, (6) yields

dL
dϑ

(x∗(ϑ))=−(x(ϑ)−g)( f ′′
μ(x∗(ϑ), ϑ))−1∂ϑ f ′

μ(x∗(ϑ), ϑ).

This approach is denoted Smoothed-impl.

7.1.3 Algorithmic Differentiation Approach Sect. 4.2

We consider two algorithms: projected gradient descent and
forward–backward splitting with Bregman proximity func-
tions. Both algorithms are splitting methods that distribute
the objective into a smooth function f and a non-smooth
function g, for our example it reads

f (x, ϑ) = λ

2
(ϑx − b)2 + 1

2
x2 and g(x) = δ[x≥0](x).

Projected gradient descent operates by a gradient descent
step with respect to the smooth function f followed by a
projection onto the (convex) set [x ≥ 0]:

x (n+1) = proj[x≥0](x (n) − α f ′(x (n), ϑ))

=max(0, x (n) − α f ′(x (n))).
(19)

Note that the projection onto the convex set can also be inter-
preted as solving the proximity operator associated with the
function g.

The second algorithm is obtained by changing the distance
function for evaluating the proximity operator to theBregman
distance from Example 3. It results in

x (n+1) = xn exp(−α f ′(x (n), ϑ)). (20)

As we assume that x0 ∈ [x > 0] the Bregman proximity
function ensures that the solution stays in the feasible set.
Thus, the back-projection can be dropped.

To apply Algorithm 1 or 2, we need the second derivatives
of the update steps (19) and (20). The second derivatives of
f = fμ with μ = 0 are given in (18). Although (19) is
not differentiable, it is differentiable almost everywhere, and
in the experiment, we formally applied the chain rule and
assigned an arbitrary subgradient wherever it is not unique,
i.e.,

∂ proj[x≥0]
∂x

(x, ϑ) =

⎧
⎪⎨

⎪⎩

0, if x<0;
1, if x>0;
[0, 1], if x = 0;

and
∂ proj[x≥0]

∂ϑ
= 0. This approach is denoted Proj.GD.

For (20), we use Algorithm 1 and obtain5

∂A
∂ϑ

(x (n), ϑ) = − αx exp(−α f ′(x (n), ϑ))
∂ f ′

∂ϑ
(x (n), ϑ)

∂A
∂x

(x (n).ϑ) = exp(−α f ′(x (n), ϑ))

− αx (n) exp(−α f ′(x (n), ϑ)) f ′′(x (n), ϑ).

This approach is denoted Bregman-FB.

7.1.4 Implicit Differentiation of the Fixed Point Equation
Approach from Sect. 4.3

As explained above, direct differentiation of the fixed
point equation of an algorithm implies two techniques.
One is by applying Algorithm 1 to (20) but evaluating all
derivatives at the optimum (denoted Bregman-FB2). The
other is to do the numerical inversion as in (11) (denoted
Bregman-FB-impl).

7.2 Analysis of the 1D Example

In the experiments, we focus on the estimation of the gra-
dient (in Fig. 3). Therefore, the step size parameters of the
individual algorithms are chosen such that a comparable con-
vergence of the lower level energy is achieved, if possible.

For Proj.GD, Bregman-FB, and Bregman-FB2, the
chain rule must be applied recursively. We plot the change
of the gradient accumulation along these back-iterations (of
200 forward iterations) in bottom of Figure 4 and the energy
evolution in the upper part of this figure.

In this example, we can observe a linear decrease in the
contribution to the respective final gradient value, which
shows that back-iterations can be stopped after a few iter-
ations without making large errors.

5 Note that we kept the order of the terms given by the chain rule, since
for multi-dimensional problems the products are matrix products and
are, in general, not commutative.
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Fig. 3 Analytic tangents to the
upper level objective function of
(17) at ϑ = 0.3 and ϑ = 0. The
function is non-smooth and,
thus, at ϑ = 0 there exists many
tangent lines
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Fig. 4 The upper row shows
the energy decrease along the
forward iterations. The lower
row shows the convergence to
the respective gradient value
along the back-iterations. On the
left-hand side the plot is
generated with ϑ = 0.3 and on
the right-hand side with ϑ = 0.
The “-impl” methods do not
appear in the bottom row as no
back-iterations are involved. For
ϑ = 0, due to the simple
structure of the lower level
problem, projected gradient
descent converges exactly in one
iteration, thus it is not shown.
The gradient converges linearly
to its final value, which means
that often a few back-iterations
are enough to achieve a gradient
estimate of good quality
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Interestingly, the approximations Bregman-FB2 and
Proj.GD2work well, as they show the same gradient accu-
mulation asBregman-FB andProj.GD, respectively.This
situation changes when the number of forward iterations is
reduced. For about 15 forward iterations, a difference of order
10−4 becomes visible (case ϑ = 0.3).

Figures 5 and 6 address the convergence of the gradi-
ent towards the analytic gradient, with respect to different
approximation accuracies (varied by the number of back-
iterations). Figure 5 shows the convergence for ϑ = 0.3 and
Fig. 6 for ϑ = 0. Numerically, we observe convergence to
the analytic gradients.

Surprisingly, all methods perform equally well in the case
ϑ = 0. The estimated gradient lies always in the subdif-
ferential at this point. The range of the subdifferential is

indicated with bright green color in Fig. 6. While Proj.GD
and Proj.GD2 estimate a gradient from the boundary of
the subdifferential, the other methods estimate a subgradient
from the interior. However, all of these values are feasible
and belong to the analytic subdifferential.

8 Application to Multi-Label Segmentation

In this section, we show how the idea can be applied in prac-
tice. To this end, we introduce a multi-label segmentation
model. We use a convolutional neural network (CNN) to
parametrize the segmentation model. Alternatively, this con-
struction can be thought of as having a segmentation model
as the final stage of a deep neural network. In this setting,
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Fig. 5 Convergence of the numerical gradients towards the analytic
gradient for ϑ = 0.3. Row-wise, from left to right, the number of back-
iterations is increased: 5, 10, 20, 50, 100, 200.More back-iterations lead
to more accurate gradient estimates. The “-impl” methods always per-

form equally, as no back-iterations are required. Smoothed-impl
performs worst due to the rough approximation. Our methods
Bregman-FB, Bregman-FB2, and Bregman-FB-impl are the
best and converge slightly better than Proj.GD and Proj.GD2
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Fig. 6 Convergence of the numerical gradients towards the analytic
gradient for ϑ = 0. Row-wise, from left to right, the number of back-
iterations is increased: 5, 10, 20, 50, 100, 200. All methods perform

equally well, as they lie in the bright green area that indicates the range
of the subdifferential (Color figure online)
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the bilevel problem amounts to finding the parameters of the
CNN such that the loss on training data is minimized. The
presented approach provides a generic way to train such sys-
tems in an end-to-end fashion.

8.1 Model

Given a cost tensor c ∈ XNl , where X = R
Nx Ny , that assigns

to each pixel (i, j) and each label k, i = 1, . . . , Nx , j =
1, . . . , Ny , k = 1, . . . , Nl , a cost cki, j for the pixel taking label

k.We often identifyR
Nx×Ny withR

Nx Ny by (i, j) �→ i+( j−
1)Nx to simplify the notation. The sought segmentation u ∈
XNl[0,1], where X[0,1] = [0, 1]Nx Ny ⊂ X , is represented by a
binary vector for each label. As a regularizer for a segment’s
plausibility, we measure the boundary length using the total
variation (TV). The discrete derivative operator ∇ : X → Y ,
where we use the shorthand Y := X × X (elements from Y
are considered as column vectors), is defined as

(∇uk)i, j :=
(

(∇uk)xi, j
(∇uk)yi, j

)

∈ Y (= R
2Nx Ny ),

Du :=(∇u1, . . . ,∇uNl ),

(∇uk)xi, j :=
{
uki+1, j − uki, j , if 1 ≤ i < Nx , 1 ≤ j ≤ Ny

0, if i = Nx , 1 ≤ j ≤ Ny .

(∇uk)yi, j is defined analogously. From now on, we work with
the image as a vector indexed by i = 1, . . . , Nx Ny . Let ele-
ments in Y be indexed with j = 1, . . . , 2Nx Ny . Let the inner
product in X and Y be given, for uk, vk ∈ X and pk, qk ∈ Y ,
as

〈
uk, vk

〉

X
:=

Nx Ny∑

i=1

uki v
k
i ,

〈
pk, qk

〉

Y
:=

2Nx Ny∑

j=1

pkj q
k
j ,

〈u, v〉XNl :=
Nl∑

k=1

〈
uk, vk

〉

X
, 〈p, q〉Y Nl :=

Nl∑

k=1

〈
pk, qk

〉

Y
.

The (discrete, anisotropic) TV norm is given by

‖Du‖1 :=
Nl∑

k=1

2Nx Ny∑

j=1

|(∇uk)j|,

where | · | is the absolute value. In the following, the variables
i = 1, . . . , Nx Ny and j = 1, . . . , 2Nx Ny always run over
these index sets, thus we drop the specification; we adopt the
same convention for k = 1, . . . , Nl .We define the pixel-wise
non-negative unit simplex

Nl :=
{
∀(i, k) : 0 ≤ uki ≤ 1

and ∀i : ∑
k u

k
i = 1 u ∈ XNl

}
, (21)

and the pixel-wise (closed) �∞-unit ball around the origin

B�∞
1 (0) :=

{
[∀(j, k) : |pkj | ≤ 1]p ∈ Y Nl

}
.

Finally, the segmentation model reads

min
u∈XNl

〈c, u〉XNl + ‖WDu‖1, s.t. u ∈ Nl , (22)

where we use a diagonal matrix W to support contrast-
sensitive penalization of the boundary length.

This model and the following reformulation as a saddle-
point problem are well known (see, e.g., [8])

min
u∈XNl

max
p∈Y Nl

〈WDu, p〉Y Nl + 〈u, c〉XNl ,

s.t. u ∈ Nl , p ∈ B�∞
1 (0). (23)

The saddle-point problem (23) can be solved using the
ergodic primal–dual algorithm [9], which leads to an iterative
algorithm with totally differentiable iterations. The primal
update in (13) is discussed in Example 6 and the dual update
of (13) is essentially Example 7. As a consequence, Algo-
rithm 3 can be applied to estimate the derivatives. A detailed
derivation of the individual steps of the algorithm can be
found in [30].

8.2 Parameter Learning

We consider (22) where the cost c is given by the output
of a CNN which takes as input an image I ∈ XNc to be
segmented and is defined via a set of weights ϑ . Formally,
we have cki = fki (ϑ,I) with f : R

Nϑ × XNc → XNl , where
Nc denotes the number of channels of the input image and
Nϑ is the number of weights parametrizing the CNN.

The training set consists of NT images I1, . . . ,INT ∈
XNc and their corresponding ground truth segmentations
g1, . . . , gNT ∈ {1, . . . , Nl}Nx Ny .

The parameters ϑ of the CNN are cast as an instance of
the general bilevel optimization problem (3):

min
ϑ∈RNϑ

NT∑

t=1

Nx Ny∑

i=1

log
( Nl∑

k=1

exp(uki (ϑ,It ))
)

− gti (ϑ,It )

s.t. u(ϑ,It ) = arg min
u∈XNl

E(u, f(ϑ,It )), (24)

where energy E in the lower level problem is (22) and the
higher level problem is defined as the softmax loss.

Remark 3 We could equivalently use a multinomial logistic
loss, since ui(ϑ,It ) lies in the unit simplex by construction.
We use this definition to allow for a simplified treatment of
the case of training a CNN without the global segmentation
model.
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Fig. 7 Training error versus number of iterations of the algorithmsolv-
ing the lower level problem. From left to right, average per-pixel loss,
per-pixel accuracy, and time per outer iteration. The timing includes the
forward pass as well as the gradient computations. Timings were taken

on an NVIDIA Geforce Titan X GPU. A higher number of iterations
clearly lead to lower error, but come at the cost of a higher computational
complexity

8.3 Experiments

We implemented our approach as a custom layer in the Mat-
ConvNet framework [39]. We used the Stanford Background
dataset [20], which consists of 715 input images and pixel-
accurate ground truth consisting of the geometric classes
sky, vertical, and horizontal. We used ADAM [22] for the
minimization of the higher level problem.We found that gen-
eral plain stochastic gradient descent performs poorly in our
setting, since the global segmentation model can lead to van-
ishing gradients.

In a first experiment, we used a small subset of 9 images
from the dataset to show the influence of the number of iter-
ations used to solve the lower level problem (22) on the
training objective. We learned a small network consisting
of four layers of alternating convolutions with a kernel width
of 3 pixels and ReLU units followed by a fully connected
layer. We added 3 × 3 max-pooling layers with a stride
of two after the first and the second convolutional layers,
which effectively downsamples the responses by a factor
of 4. We added an up-convolutional layer to upsample the
responses to the original image size. The penultimate layer
of the CNN consists of a multiplicative scaling (analogous to
a scalar smoothness parameter) of the CNN output followed
by the global segmentation model (22). We ran ADAM with
a learning rate of 10−3 for a total of 1000 iterations with a
mini-batch size of one image to learn the parameters of this
network.

Figure 7 shows the average per-pixel loss, the average
pixel accuracy as well as the time per ADAM iteration vs.
number of iterations used to solve the lower level problem
(inner iterations). This experiment shows that by solving the
lower level problem to higher accuracy, the overall capacity
and thus the accuracy of the system can be enhanced. This
comes at the price of a higher computational complexity,
which increases linearly with the number of iterations.

Table 1 Accuracy on the Stanford Background dataset [20]

Test Train

Acc IoU Acc IoU

FCN 92.40 82.65 97.54 92.21

FCN + Global 93.00 84.01 97.90 93.53

Bold values indicate that the CNN with global segmentation model
performs better than the plain CNN model

Finally, we performed a large-scale experiment on this
dataset. We partitioned the images into a training set of
572 images and used the remaining 143 images for test-
ing. We used the pre-trained Fully Convolutional Network
FCN-32s [26] as a basis for this experiment. We adapted the
geometry of the last two layers to this dataset and retrained
the network. We then added a multiplicative scaling layer
followed by the global segmentation model and refined the
parameters. The number of inner iterations was set to 100,
which provides a good trade-off between accuracy and com-
putational complexity. We use a mini-batch size of 5 images
and a learning rate of 10−3.

The average accuracy in terms of the average pixel accu-
racy (Acc) in percent and Intersection over Union (IoU)
on both the test and the training sets is shown in Table 1.
We compare the plain Fully Convolutional Network FCN to
the network with the additional global segmentation model
FCN+Global. We observed an increase of 1.4 % in terms of
IoU on the test set when using the global model. This can
be attributed to the fact that the CNN alone already provides
good but coarse segmentations and the segmentation model
uses only simple pairwise interactions. As such, it is unable
to correct gross errors of the CNN.

Since the presented approach is applicable to a broad
range of energies, training ofmore expressive energies which
include more complex interactions (cf. [41]) is a promising
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Fig. 8 Example results from the test set. Row-wise, from left to right input image, CNN, CNN+Global, ground truth. The global model is able to
align results to edges and is able to correct spurious errors

direction for future research. Example segmentations from
the test set are shown in Fig. 8.

Remark 4 For a comparison to the smoothing approach from
Sect. 4.1, we refer to the conference version [30].

9 Conclusion

We considered a class of bilevel optimization problems with
non-smooth lower level problem. By an appropriate approxi-
mation, we can formulate an algorithmwith a smooth update
mapping that solves a non-smooth optimization problem in
the lower level. This allows us to apply gradient-based meth-
ods for solving the bilevel optimization problem. A second
approach directly considers the fixed point equation of the
algorithm as an optimality condition for the lower level prob-
lem. Key for both ideas are Bregman proximity functions.

The idea of estimating gradients for an abstract algorithm
was exemplified for a forward–backward splitting method
and a primal–dual algorithm with Bregman proximity func-
tions. Several potential application examples were shown. A
toy example confirmed our results and provided some more
intuition. The contribution of our idea to practical applica-
tions was demonstrated by a multi-label segmentation model
that was coupled with a convolutional neural network.

There are several open questions, for example conver-
gence of the sequence of gradients or a full classification of
optimization problems that allow for algorithmswith smooth
update mapping.
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