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Abstract The Focal Stack Transform integrates a 4D light-
field over a set of appropriately chosen 2D planes. The result
of such integration is an image focused on a determined depth
in 3D space. The set of such images is the Focal Stack of the
lightfield. This paper studies the existence of an inverse for
this transform. Such inverse could be used to obtain a 4D
lightfield from a set of images focused on several depths of
the scene. In this paper, we show that this inversion cannot
be obtained for a general lightfield and introduce a subset of
lightfields where this inversion can be computed exactly. We
examine the numerical properties of such inversion process
for general lightfields and examine several regularization
approaches to stabilize the transform. Experimental results
are provided for focal stacks obtained from several plenoptic
cameras. From a practical point of view, results show how
this inversion procedure can be used to recover, compress,
and denoise the original 4D lightfield.
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1 Introduction

Computational photography is based on capturing and
processing discrete samples of all the light rays in the 3D
space [1]. These light rays are described by the 7D plenoptic
function [2] in terms of position, orientation, spectral con-
tent, and time. This can be simplified to a 4D lightfield [3,4]
by considering only the value of each ray as a function of its
position and orientation in a static scene, and by constraining
each ray to have the same value at every point along its direc-
tion of propagation. Compared to conventional photography,
which captures 2D images, computational photography cap-
tures the entire 4D lightfield. This 4D lightfield extends the
capabilities of current commercial cameras with new fea-
tures such as refocusing [5–7], 3D depth estimation [8–10]
or super-resolution [11–13].

There are several methods to obtain a 4D lightfield. In
this paper, we will use a plenoptic camera [14]. A plenoptic
camera uses a microlens array inside a conventional camera
body to measure the intensity and direction of light rays.
There are several commercial models of plenoptic cameras
available [15,16]. Since the complete 4D lightfield inside the
camera is recorded, new 2Dphotographs can be computed by
tracing and projecting all the rays to desired virtual imaging
planes. This so-called digital refocusing enables to change
focus after the picture is taken, as well as extending the depth
of field without decreasing the aperture.

The set of refocused images is called the focal stack
of the scene. A particular image in the focal stack can be
modeled through the continuous Photography integral oper-
ator [3]. Since the plenoptic image is discrete, to obtain a
refocused photograph it is necessary to discretize the Photog-
raphy operator. Then, it is necessary to solve two problems:
to interpolate the lightfield and to approximate the integration
process. There are severalmethods to perform this discretiza-
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tion: the brute-force approach interpolates the lightfield by
nearest neighbor and approximates the integral by sums. If
we assume that the plenoptic camera is composed of n × n
microlenses and that eachmicrolens generates a n×n image,
the brute-force approach would need O(n4) operations to
generate a refocused photograph. A significant improvement
to this performance was obtained in [5] with the “Fourier
Slice Photography” (FSP) technique that reformulates the
problem in the Fourier domain. The FSP method is based on
the extraction of an appropriate dilated 2D slice in the 4D
Fourier transform of the lightfield. In this case, interpolation
takes place in the 4D Fourier domain using a 4D Kaiser–
Bessel filter. This decreases the computational cost of the
discretization of the Photography operator to O(n4log(n))

operations to generate a focal stack with O(n2) refocused
photographs.Anothermethod that uses the frequencydomain
is the Discrete Focal Stack Transform (DFST) that uses
4D trigonometric interpolation in the spatial domain and
a discretization of the integral operator [6]. The Discrete
Focal Stack Transform is fast [17] and can be computed in
O(n4log(n)) for a n4 lightfield. It also can be described ana-
lytically.

This paper studies the existence of an inverse for the Focal
Stack transform. Such inverse should take the focal stack of
a scene as its input and produce a 4D lightfield as its out-
put. This would make a 4D lightfield equivalent to its focal
stack and new procedures for capturing lightfields based on
refocused images from standard conventional cameras could
be developed. Such inverse could also be used for lightfield
compression purposes since the focal stack images are highly
redundant. In this paper, we show that this is not the case in
general. We introduce the concept of Π -constant lightfields,
which includes the Lambertian lightfields, where this inver-
sion is theoretically possible. We also study the numerical
properties of this inversion procedure. Finally, we provide
some experimental results that show that the lightfield cap-
tured from a plenoptic camera can be well approximated
using a Π -constant lightfield and we study the performance
of the inverse for general lightfields using numerical inver-
sion with regularization.

This paper is divided infive sections. InSect. 2wedescribe
the algorithms to compute the Focal Stack in the frequency
domain that are based on the Fourier Slice technique in [5,6].
In Sect. 3, we study the inversion of the Focal Stack transform
and discuss its properties. Section4 contains some experi-
mental results and Sect. 5 includes conclusions and future
work.

2 Previous Work

Conventional 2D photographs are obtained in plenoptic cam-
eras through the Photography transform. This transform

u=(u1, u2)´

x=(x1, x2)´
u1

u2 x2

x1

Lens Sensor

F

αF

t=(t1, t2)´

t2
t1

Fig. 1 Two plane parameterization of the lightfield

takes a lightfield as its input and generates a photograph
focused on a determined plane [5,18]. The Photography
transform will be defined by means of a two-plane parame-
terization of the lightfield inside the plenoptic camera. We
will write LF (x, u) as the radiance traveling from position
u = (u1, u2)T on a domain defined by the aperture of the
lens plane to position x = (x1, x2)T over the sensor extent.
F is the distance between the lens and the sensor (see Fig. 1
adapted from [5]).

To compute conventional photographs, the sensor plane
is virtually placed at any distance αF inside the camera (see
Fig. 1). LetP [LF ] be the operator that transforms a lightfield
LF at a sensor depth F into a photograph formed at sensor
depth αF . The operator can be formulated as

Pα [LF ] (t) = 1

α2F2

∫
LF

(
u

(
1 − 1

α

)
+ t, u

)
du. (1)

This equation shows how to compute a photograph Pα [LF ]
formed at a virtual sensor plane that is located at distance αF
from the lens plane. Pixels in the 2D photograph depend on
the spatial variable t = (t1, t2)T as seen on Fig. 1. When we
compute the photographs for every virtual sensor distance
αF , we obtain the Focal Stack transform S of the lightfield.

To render the 2D photograph, we usually want the image
taken from a constant lightfield to be a constant independent
of α, so we normalize the Photography Operator removing
the 1/(α2F2) term. Also, in order to make the discretiza-
tion of the focal stack easier, we reparametrize the focusing
distance using (1 − 1/α) = q leading to the normalized
Photography operator defined as

Pq [L] (t) =
∫

L (uq + t, u) du. (2)

In practice, the normalized Photography operator cannot be
used since a plenoptic camera only captures discrete samples
of the lightfield. To discretize Pq [L], we need to resample
the lightfield and to approximate the integration process.

After defining the basics of the Photography transform,
we introduce in Table 1 a summary of the symbols that will
be used in the paper.
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Table 1 Notation table

L (x, u) A 4D lightfield

x Spatial 2D variable for the lightfield
images

u Spatial 2D variable for the microlenses

F Distance between the lens plane and the
sensor plane

α The virtual sensor plane for refocusing is
placed at αF

q Change of variables, q = (1 − 1/α)

Pq [L] (t) A photograph at depth q and spatial
position t

t Spatial 2D variable for the photograph

L̂ (ξ , η) The Fourier transform of the lightfield

ξ 2D frequency counterpart of x

η 2D frequency counterpart of u

S[L] (t, q) Focal stack image at depth q and spatial
position t

Π [L] (t, q) Back-projection operator at depth q and
spatial position t

Π̂ [L] (ξ , κ) Fourier transform of the back-projection
operator at depth frequency κ and
spatial frequency ξ

δ Dirac’s delta

Nx × Nx Number of microlenses

Nu × Nu Number of pixels behind each microlens

nx Defined from Nx = 2nx + 1

nu Defined from Nu = 2nu + 1

nq Defined from nq = 2nxnu , Nq = 2nq + 1

Nq Defined from Nq = 2nq + 1

ϕ An arbitrary function

W (ξ) The set
{
κ/Π̂ [L] (ξ , κ) �= 0

}

Dk Finite difference approximation to the kth
derivative

D̂k Fourier transform of the finite difference
approximation to the kth derivative

∇L (x, u) Gradient of the lightfield

λ, β, γ Regularization parameters

2.1 The Fourier Slice Theorem

A simple discretization of Pq [L] could be done by resam-
pling the lightfield through local interpolation and replacing
the integration process with sums. This is the brute-force
approach that needs O(n4) operations to generate a single
refocused photograph of size n2. A significant improvement
in the computational complexity can be achieved through the
Fourier Slice Photography technique that studies the Photog-
raphy operator in the frequency domain. The main result is
the Fourier Slice Photography Theorem [5], which states that
in the frequency domain, a photograph is a 2D slice of the

4D lightfield. Then, photographs focused at different depths
correspond to slices at different slopes in the 4D space. We
may write the Fourier Slice Photography Theorem as

Pq [L] (t) =
∫

L̂ (ξ ,−qξ) e2π i t·ξdξ , (3)

where ξ is the 2D spatial frequency, the dot symbol · is the
scalar product, and L̂ is the Fourier transformof the lightfield:

L̂ (ξ , η) =
∫ ∫

L (x, u) e−2π i(x·ξ+u·η)dxdu. (4)

Therefore, to obtain a photograph Pq [L] (t)we have to com-
pute first the Fourier transform of the lightfield L̂ using
the 4D integral in (4). After that, we have to evaluate the
slice L̂ (ξ ,−qξ ) and finally we have to compute the inverse
Fourier transform of the slice. It only remains to specify how
to resample in the frequency domain as required by the slic-
ing operator. In the Fourier Slice Photography technique,
this resampling process is carried out with the Kaiser-Bessel
filter, to minimize aliasing. The algorithm generates O(n2)
photographs of size n2 with a computational complexity of
O(n4log(n)) and obtains a significant improvement in com-
putational complexity over the direct approach.

2.2 The Discrete Focal Stack Transform

TheDiscrete Focal Stack transform [6] is an alternative to the
Fourier Slice Photography technique based on trigonometric
interpolation. The Discrete Focal Stack Transform uses the
following decomposition of (2) [17]:

Pq [L] (t) =
∫ ∫

L (x, u) δ (x − uq − t) dxdu (5)

and the δ representation in the Fourier domain:

δ (x) =
∫

e−2π iξ ·xdξ (6)

The combination of (5) and (6) leads to

Pq [L] (t)

=
∫ (∫ ∫

L (x, u) e−2π i(x−uq)·ξdxdu
)
e2π iξ ·tdξ

(7)

Then, we obtain the following decomposition of the focal
stack S using the Fourier transform of S [L] (t, q) with
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respect to q

S [L] (t, q) = Pq [L] (t)

=
∫∫ (∫∫

L̂ (ξ , u) e2π i(u·ξ−κ)qdqdu
)
e2π iξ ·te2π iqκdξdκ

=
∫∫ (∫

L̂ (ξ , u) δ (u · ξ − κ) du
)
e2π iξ ·te2π iqκdξdκ

(8)

Therefore, defining the back-projection operator Π in the
frequency domain as

Π̂ [L] (ξ , κ) =
∫

L̂ (ξ , u) δ (u · ξ − κ) du, (9)

we obtain

S [L] (t, q) =
∫ ∫

Π̂ [L] (ξ , κ) e2π iξ ·te2π iqκdξdκ, (10)

where variables t, q are in the spatial domain and variables
ξ , κ are in the frequency domain.

The Fast Discrete Focal Stack transform discretizes (2)
using trigonometric interpolation to obtain a discrete counter-
part to (10). For a discretized lightfield composed of Nx ×Nx

microlenses of size Nu × Nu with Nx = 2nx + 1, Nu =
2nu + 1, the photograph Pq [L] (t) is computed as

Pq [L] (t) =
nu∑

u=−nu

L (uq + t, u)

= 1

N x

nu∑
u=−nu

nx∑
ξ=−nx

L̂ (ξ , u) e2π i
(uq+t)·ξ

Nx

= 1

N x

nx∑
ξ=−nx

e2π i
t·ξ
Nx

nu∑
u=−nu

L̂ (ξ , u) e2π i
q(u·ξ)
Nx

Now, for nq = 2nxnu, Nq = 2nq + 1

e2π i
q(u·ξ)
Nx =

nq∑
κ=−nq

δNq (u · ξ − κ) e2π i
κq
Nx , δNq (x)

= 1

Nq

nq∑
κ=−nq

e
2π i κx

Nq

So

S [L] (t, q) = Pq [L] (t)

= 1

N x

nx∑
ξ=−nx

nq∑
κ=−nq

( nu∑
u=−nu

L̂ (ξ , u) δNq

(u · ξ − k)) e2π i
κq
Nx e2π i

t·ξ
Nx , N x = N 2

x (11)

Then, defining the discrete back-projection operatorΠ in the
frequency domain as

Π̂ [L] (ξ , κ) =
nu∑

u=−nu

L̂ (ξ , u) δNq (u · ξ − κ) (12)

we obtain the discrete version of (10)

S [L] (t, q) = Pq [L] (t)

= 1

N x

nx∑
ξ=−nx

nq∑
κ=−nq

Π̂ [L] (ξ , κ) e2π i
κq
Nx e2π i

t·ξ
Nx

(13)

The Fast Discrete Focal Stack transform [17] computes the
back-projections in O(n4). The inverse Fourier transform of
the back-projections are computed in O(n4logn) to obtain
the final computational complexity of the DFST.

3 The Inversion of the Discrete Focal Stack
Transform

In this section, we study the inversion of the Discrete Focal
Stack Transform both in the continuous and discrete case.We
introduce the concept of Π -constant lightfields that includes
the Lambertian lightfields, where this inversion is theoret-
ically possible. We also study the numerical properties of
this inversion procedure and propose several regularization
methods to stabilize the transform.

3.1 The Continuous Case

Our main result is to make explicit what information of the
lightfield can be exactly recovered from the focal stack.

Theorem Given a lightfield L and the back-projection oper-
ator:

Π̂ [L] (ξ , κ) =
∫

L̂ (ξ , u) δ (u · ξ − κ) du, (14)

then, the focal stack S [L] and Π [L] can be obtained from
each other using:

Π̂ [L] = Ŝ [L] (15)

This result shows that the back-projection operator Π̂ [L] is
the Fourier transform of the focal stack S [L] and conversely
that the focal stack is the inverse Fourier transform of Π̂ [L].
The result easily follows from (10).

An immediate consequence of the preceding theorem is
that the Focal Stack transform is not invertible in general. For
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example, if we take L (x, u) = u1 for−1/2 ≤ u1 ≤ 1/2 and
0 elsewhere then we have L̂(ξ , u) = δ (ξ) u1 so Π̂ (ξ , κ) =
δ (ξ) δ (κ)

∫
u1du = 0. Since−L (x, u) gives the samevalue

for Π̂ (ξ , k) both lightfields generate the same focal stack and
the Focal Stack transform is not invertible.

Although the Focal Stack transform is not invertible in
general, there are special cases of lightfields that can be
inverted. The simplest invertible lightfields are those for
which L̂ (ξ , u) is constant along all planes ξ · u = κ . We
will call them Π -constant. Then, for a Π -constant lightfield
there exists a function ϕ, such that the relation L̂ (ξ , u) =
ϕ (ξ , ξ · u) holds. Then

Π̂ [L] (ξ , κ) = ϕ (ξ , κ)

∫
δ (u · ξ − κ) du. (16)

Note that for a Π -constant lightfield we can directly recover
the lightfield from the back-projections. Renaming variable
u to v and substituting κ = ξ · u in (16) we have

Π̂ [L] (ξ , ξ · u) = L̂ (ξ , u)

∫
δ (ξ · v − ξ · u) dv. (17)

Then, using (15) and (16) for aΠ -constant lightfield we have

Ŝ [L] (ξ , κ) = ϕ (ξ , κ)

∫
δ (u · ξ − κ) du. (18)

Finally, substituting κ for ξ · u

L̂ (ξ , u) = Ŝ [L] (ξ , ξ · u)∫
δ (ξ · (v − u)) dv

(19)

where for example in a square aperture region −nu ≤ νi ≤
nu we have for ξ = (ξ1, ξ2)

T

∫
δ (ξ · (v − u)) dv

=

⎧⎪⎪⎨
⎪⎪⎩

2nu
max(|ξ2|,|ξ1|) + κ+l|ξ2||ξ1| −m < κ < −l

2nu
max(|ξ2|,|ξ1|) −l ≤ κ ≤ m

2nu
max(|ξ2|,|ξ1|) − κ−l|ξ2||ξ1| l < κ < m

κ = ξ · u, l = nu
∣∣∣∣ξ2∣∣ − ∣∣ξ1∣∣∣∣ ,m = nu

∣∣∣∣ξ2∣∣ + ∣∣ξ1∣∣∣∣ (20)

Note that (19) can also be written as

L̂ (ξ , u) = Ŝ [L] (ξ , ξ · u)

Ŝ [δ] (ξ , ξ · u)
(21)

where δ is the lightfield L (x, u) = δ (x) .Therefore, in order
to recover the original lightfield, the image from the focal
stack Ŝ [L] (ξ , ξ · u) has to be deconvolved with the kernel
Ŝ [δ] (ξ , ξ · u).

3.1.1 Lambertian Lightfields

An important subset of lightfields is Lambertian lightfields,
where the radiance emitted in the scene is independent of the
direction. We now show that Lambertian lightfields are Π -
constant and therefore invertible. The proof follows from the
fact that if L is a Lambertian lightfield, there exists functions
λ (x) , φ (x) such that for all x, u, the lightfield L is uniquely
determined from the equation L (x + λ (x) u, u) = φ (x).
Then, for afixed u L̂ (ξ , u) is determined through the integral
equation

∫
L̂ (ξ , u) e2π iξ ·(x+λ(x)u)dξ = φ (x) (22)

The preceding equation is exactly the same substituting u
for v = u + μξ⊥, with ξ⊥ a vector orthogonal to ξ . Then,
for all u and μ the relation: L̂ (ξ , u) = L̂(ξ , u + μξ⊥)

holds. This means that we can remove the ξ⊥ direction
without changing the value of L̂ (ξ , u) . Now, since vec-
tor u can be decomposed as u = (ξ/‖ξ‖2)(ξ · u) +
(ξ⊥/‖ξ⊥‖2)(ξ⊥ · u), we can write L̂(ξ , u) as L̂(ξ , u) =
L̂(ξ , (ξ/‖ξ‖2)(ξ · u) + (ξ⊥/‖ξ⊥‖2)(ξ⊥ · u)).Removing the
ξ⊥ direction we have L̂ (ξ , u) = L̂

(
ξ ,

(
ξ/‖ξ‖2) (ξ · u)

)
. So

L̂ (ξ , u) depends on ξ and ξ · u and there exists a function
ϕ such that L̂ (ξ , u) = ϕ (ξ , ξ · u). Therefore, Lambertian
lightfields are Π -constant and invertible.

3.2 The Discrete Case

To study the discrete case, we will use the Discrete Focal
Stack Transform to obtain a result analogous to (15). Using
the discrete back-projections in (12), we have

1

Nq
Ŝ [L]

(
t, q

Nx

Nq

)
(ξ , κ) = Π̂ [L] (ξ , κ) (23)

and

Π [L] (t, q) = 1

Nq
S [L]

(
t, q

Nx

Nq

)
(24)

The result follows from (13). If the lightfield is Π -constant
we have the following relations in the discrete case that are
the analogous to (17), (19), (21)

Π̂ [L] (ξ , u · ξ) = L̂ (ξ , u)

nu∑
v=−nu

δNq (v · ξ − u · ξ) (25)

L̂ (ξ , u) =
Ŝ [L]

(
t, q Nx

Nq

)
(ξ , ξ · u)

Nq
∑nu

u=−nu δNq (ξ · v − ξ · u)
(26)
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L̂ (ξ , u) =
Ŝ [L]

(
t, q Nx

Nq

)
(ξ , ξ · u)

Ŝ [δ]
(
t, q Nx

Nq

)
(ξ , ξ · u)

(27)

where δ is a lightfield in case when L (x, u) = δNx (x).
Similarly to the continuous case, the recovery of the lightfield
can also be expressed as a deconvolution problem.

3.3 Direct Focal Stack Inversion

Using the result in (27) in the previous section, we have
derived a formula analogous to (21) that can be used for
the inversion of the lightfield if we assume that the lightfield
is Π -constant. However, the practical use of this inversion
formula for focal stacks obtained from plenoptic cameras is
very limited. In first place, we need a huge number of images
in the focal stack to use (26), (27). For a typical plenoptic
camera with 255× 255 microlenses and 9× 9 pixels behind
eachmicrolens, we need Nq = 2nq+1 = 2033 images in the
focal stack to use the inversion formula.Another problem that
arises is the range of the slope variable q. To avoid aliasing in
the images of the focal stack, in a plenoptic camera we need
|qNx/Nq | ≤ 1. In our case, this leads to |q| ≤ (Nq/Nx ) ≈
Nu (in the preceding example this would give 17 images)
while the range of q in (26), (27) is |q| ≤ nq . To summarize,
for the lightfield example, we set before using a plenoptic
camera we will typically have 17 unaliased planes out of
2033 in the focal stack and the rest will be aliased so the
inversion formula in (26), (27) is not practical.

3.4 Partial Focal Stack Inversion

To obtain a practical procedure, we need to invert the focal
stack using a reduced number of its unaliased images. In this
section, we show how this can be done. In the discrete case,
we have for arbitrary q (11):

Ŝ [L] (t, q) (ξ) =
nq∑

κ=−nq

Π̂ [L] (ξ , κ) e2π i
κq
Nx (28)

Defining the set: W (ξ) = {κ/Π̂ [L] (ξ , κ) �= 0}, the equa-
tion in (28) is equivalent to

Ŝ [L] (t, q) (ξ) =
∑

κ∈W (ξ)

Π̂ [L] (ξ , κ) e2π i
κq
Nx (29)

Using (29), we see that for each fixed ξ we obtain a system of
linear equations where Ŝ [L] are the known images from the
focal stack, the back-projections Π̂ [L] are the unknowns,

and both are connected through the coefficients e2π i
κq
Nx . The

linear system can be written for several q values and κ ∈

W (ξ) in matrix form as

ŝ = Gπ̂ , ŝi = Ŝ [L] (t, qi ) (ξ) , Gi, j = e2π i
κ j qi
Nx , π̂ i

= Π̂ [L] (ξ , κi )with − m ≤ i ≤ m,−n ≤ j ≤ n, 2m + 1

= N 2
u , 2n + 1 = cardinal (W (ξ)) . (30)

Then, we obtain the following result:

Proposition For each ξ , the back-projection values Π̂ [L] (ξ ,

κ) for k ∈ W (ξ) can be obtained from at most N 2
u images

in the focal stack with slopes qi = i
n , n ≥ Nq/Nx , i =

−m . . .m, 2m + 1 = N 2
u .

The proof follows from the fact that the coefficient matrix
G of the linear system in (30) is of Vandermonde type. Note
that the preceding proposition also allows us to recover the
complete 4D lightfield for a Π -constant lightfield using a
focal stack with N 2

u images. The result is immediate since
a Π -constant lightfield can be directly recovered from the
back-projections Π (25). For the typical lightfield, we set
before this would lead to a set of 81 images from the focal
stack. Those N 2

u images can be taken from the non-aliasing
range in the focal stack fromaplenoptic camera takingn = m
in the previous result since Nq/Nx ≈ Nu .

A relevant fact about the linear system in (30) is that the
minimal number of equations to determine a particular fre-
quency ξ may be much lower than N 2

u . For example, the
linear system in (30) for ξ = 0 is Ŝ [L] (0, q) = Π̂ [L] (0, 0).
Then, to determine Π̂ [L] (0, 0) only one equation is needed
and the rest are redundant. An example of linear system
where the maximum number of equations is needed hap-
pens if ξ = (

ξ1, ξ2
)
and ξ1, ξ2 are coprime and

∣∣ξ1∣∣ >

Nu,
∣∣ξ2∣∣ > Nu . Therefore, the effective volume of data to

store the back-projections is lower than the volume of data
of the lightfield. For the typical lightfield, we set before with
255×255microlenses and9×9pixels behind eachmicrolens,
the size needed to store the back-projections is 96.51% of
the original lightfield.

3.5 Numerical Analysis and Regularization

In the preceding section, it was shown that it is possible to
recover the lightfield from a partial section of the focal stack
under theΠ -constant assumption. However, there are several
problems with this approach from a numerical point of view.
As shown in the previous section, if we use N 2

u images some
frequencies will have overdetermined linear systems. There-
fore, a minimal amount of noise would make the inversion
fail. Of course, we could remove the redundant equations
to make the system determined, but this procedure will not
use all the data available. Instead of directly using (30), to
cope with image noise we could compute Π̂ [L] (ξ , k) for
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k ∈ W (ξ) as the solution of

π̂opt = argmin
π̂

‖ŝ − Gπ̂‖2, (31)

leading to

π̂opt =
(
GTG

)−1
GT ŝ, (GTG)i j=

∑
l

e2π i
(κi−κ j )ql

Nx ,

(32)

where
(
GTG

)−1
GT is the Moore–Penrose pseudo-inverse

of G.
The structure of the linear systems in (30), (32) poses

another problem since it is a Vandermonde system that is
ill-conditioned [19]. Therefore, additional information must
be provided to obtain a solution. This process is called reg-
ularization [20]. There are different formulations that can
be used to describe the solution of the regularized problem.
In general, some regularization measurement Reg is used to
promote desired solutions. A common choice for the regu-
larization measurement is

Reg (L) = ‖DkL‖p
p, 1 ≤ p ≤ ∞ (33)

where Dk is a finite difference approximation to the kth deriv-
ative with D0 = I , the identity operator, by convention. The
most common choices of p are p = 1 and p = 2.

3.5.1 L2 Regularization

If p = 2 in (33) the regularization is called L2 or Tikhonov
regularization [21] so Reg(L) = ‖DkL‖22. In order to use
L2 regularization we rewrite (28) as

Ŝ [L] (t, q) (ξ) =
nu∑

u=−nu

L̂ (ξ , u) e2π i
q(u·ξ)
Nx (34)

That is a collection of linear equations with unknowns
L̂ (ξ , u) for each ξ when q varies. Defining the prod-
uct of two operators: A (α,β) , B (λ,μ) as AB (α,μ) =∑
β

A (α,β) B (β,μ), (34) can be written as

ŝ = Gl̂, ŝq = Ŝ [L] (t, q) (ξ) , G (q, u) = e2π i
q(u·ξ)
Nx , l̂ (u)

= L̂ (ξ , u) (35)

We will use k = 0 in (35) and define the solution to the
regularized linear system through the following optimization
problem:

L̂ (ξ , u)opt = argmin
l̂

‖ŝ − Gl̂‖2 + λ‖l̂‖2 (36)

whereλ is a regularization parameter, ‖ŝ−Gl̂‖2 is the data-fit
term, and Reg (l) = ‖l̂‖2 is the regularization measurement
that enforces smooth solutions. The normal equations for the
preceding system are

(
GTG + λI

)
l̂ = GT ŝ (37)

with

GTG (u, v) = ∑
q e

2π i
q((u−v)′ξ)

Nx , I (u, v) = 1 if u = v and
I (u, v) = 0 in other case.

The system in (37) has N 2
u equations and N 2

u unknowns.
The value for λ has to be determined beforehand. Differ-
ent choices of the parameter λ results in a tradeoff between
the smoothness of the solution and a good data fit. There
are several techniques to select the regularization parameter
including the discrepancy principle, L-curve or Generalized
Cross Validation [22]. Since we have N 2

x linear systems
with N 2

u unknowns, the total computational cost for light-
field inversion is O(N 2

x N
6
u ).The L2 regularization technique

tends to produce a smoothing effect on the solution so other
regularization approaches can also be employed [20] as we
will see in the next section.

3.5.2 Total Variation (TV) Regularization

The total variation regularization was introduced for image
denoising and reconstruction in [23]. It is designed to pre-
vent oscillations in the regularized solution while allowing
for discontinuities. The anisotropic version of the TV reg-
ularization uses Reg(L) = ‖D1L‖. We will use a superior
isotropic TV model, which takes the form

Reg(L) =
∑
x,u

√(
Dx1L

)2 + (
Dx2L

)2+(
Du1L

)2+(
Du2L

)2

=
∑
x,u

‖∇L (x, u) ‖ (38)

This model is a generalization of TV regularization from
images to lightfields. The isotropic TV is the L1 norm of dis-
cretized lightfield gradient magnitudes. The L1 -norm in the
regularizer introduces non-linearities and the minimization
of (38) is more complex than the L2 case. A simple pro-
cedure that solves this problem is called variable splitting,
which decouples the L2 data fit in (36) and the L1 regular-
izer by introducing new variables and converting the solution
to the problem into simple minimization steps. There are
several techniques to minimize this new problem like the
augmented Lagrangian method [24], split Bregman iterative
method [25], or additive half-quadratic algorithm [26]. To
use the additive half-quadratic algorithm we begin by defin-
ing the finite difference operators for lightfields in frequency
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space:

D̂x1L (ξ1, ξ2, u1, u2) = L̂ (x1 + 1, x2, u1, u2)

−L̂ (x1, x2, u1, u2) =
(
e2π i

ξ1
Nx − 1

)
L̂ (ξ1, ξ2, u1, u2)

D̂x2L (ξ1, ξ2, u1, u2) = L̂ (x1, x2 + 1, u1, u2)

−L̂ (x1, x2, u1, u2) =
(
e2π i

ξ2
Nx − 1

)
L̂ (ξ1, ξ2, u1, u2)

D̂u1 L̂ (ξ1, ξ2, u1, u2) = L̂ (ξ1, ξ2, u1 + 1, u2)

−L̂ (ξ1, ξ2, u1, u2)

D̂u2 L̂ (ξ1, ξ2, u1, u2) = L̂ (ξ1, ξ2, u1, u2 + 1)

−L̂ (ξ1, ξ2, u1, u2) (39)

That can be written as

D̂x1L = Rx1 L̂, Rx1 =
(
e2π i

ξ1
Nx − 1

)
I,

D̂x2L = Rx2 L̂, Rx2 =
(
e2π i

ξ2
Nx − 1

)
I

D̂u1L = Ru1 L̂, Ru1 (u, v) = I (u, v − (1, 0)) − I (u, v) ;
D̂u2L = Ru2 L̂, Ru2 (u, v) = I (u, v − (0, 1)) − I (u, v) .

(40)

Then, to obtain the optimal solution of

L̂ (ξ , u)opt = argmin
l̂

γ

2
‖ŝ − Gl̂‖2 + β

2

∑
x,u

‖∇L (x, u) ‖

(41)

The additive half-quadratic algorithm proceeds by the mini-
mization of the relaxed function
[
l̂, v̂

]
opt

= argmin
l

γ

2
‖ŝ − Gl̂‖2

+ β

2

∑
i∈{x1,x2,u1,u2}

‖Ri l̂ − v̂i‖2 + ‖v̂i‖ (42)

where v̂i (ξ , u) are N 2
u auxiliary variables for each i . The

minimization proceeds by an alternate minimization in the
variables L̂ (ξ , u) and v̂i (ξ , u). Optimization in L̂ (ξ , u)

leads to the normal equations:

⎛
⎝GTG + β/γ

∑
i∈{x1,x2,u1,u2}

RT
i Ri

⎞
⎠ l̂ = GT ŝ

+β/γ
∑

i∈{x1,x2,u1,u2}
RT
i v̂i (43)

That is a system for each ξ with N 2
u equations and N 2

u
unknowns assuming that the v̂i are fixed. Optimization of

(42) with respect to the v̂i for a fixed l̂ leads to the closed-
form solution

viopt = Di l
‖Di l‖ max

(
‖Di l‖ − 1

β
, 0

)
(44)

Note that this second optimization is performed in the orig-
inal spatial space while the first optimization is performed
in the frequency space, so each minimization step changes
between both spaces. Since themethod is iterative, its compu-
tational complexity depends on the number of iterations. The
computational complexity of each iteration is O(N 2

x N
6
u ).

The values for γ and β have to be determined before-
hand. Different choices for the parameters result in a tradeoff
between the smoothness of the solution and a good data fit.
Since the optimization method is iterative, it is necessary
to provide an initial starting point for the algorithm. Setting
v̂i = 0 and computing l̂ from (43) lead to a starting point for
l̂ that is the solution to the L2 regularization problem

L̂ (ξ , u)opt = argmin
l̂

γ

2
‖ŝ − Gl̂‖2 + β

2

∑
x,u

‖∇L (x, u) ‖2

(45)

with Reg (L) = ‖D1L‖22. This is the initial point, we will
use for the TV regularization in the experiments.

4 Experimental Results

In this section, we provide some computational results for the
inversion of the Focal Stack. To test the applicability of the
inversion procedure, we have processed several lightfields
from several plenoptic cameras. The central image of the
lightfields is shown in Fig. 2. Following the order in the fig-
ure, the statue lightfield has 291×291×7×7 pixels and the
faces lightfield has 291× 291× 5× 5 pixels and were taken
from a research plenoptic camera. The toys, belfry, bicycle,
and batteries lightfields were taken with a Lytro camera and
have 377 × 377 × 7 × 7 pixels. Finally, the elephant and
watch lightfields were taken with a Raytrix camera and have
377×377×9×9 pixels. Faces and statue lightfield had round
microlenses that were cutoff to obtain square microlenses to
process similarly all the lightfields. Lytro and Raytrix light-
field cameras have hexagonal microlenses in a hexagonal
lattice thatwere interpolated to provide squaremicrolenses in
a square lattice [27]. Lytro imageswere affected byvignetting
and noise. Noise is also noticeable in the statue and faces
lightfield. Raytrix images are in black and white while the
rest of plenoptic images are in color. Lightfield values are
normalized in the range [0,1].
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Fig. 2 Central images from the statue, faces, toys, belfry, bicycle, batteries, elephant, and watch lightfields

Table 2 Quality measures for lightfield reconstruction using the Π -
constant assumption

Lightfield MSE × 106 PSNR SSIM

Statue 184 37.363 0.988

Faces 185 37.330 0.993

Toys 224 36.503 0.963

Belfry 62 42.049 0.995

Bicycle 105 39.772 0.994

Batteries 223 36.521 0.987

Elephant 24 46.170 0.997

Watch 20 47.048 0.998

4.1 The Π-Constant Assumption

In Sect. 3.1, we introduced theΠ -constant lightfield assump-
tion since inversion is not possible in thegeneral case. In order
to test the validity of this assumption, we have recovered
the lightfields described in the previous section assuming
that they are Π -constant by means of formula (27). To mea-
sure the quality of the reconstruction, we have computed the
Mean Squared Error (MSE), the Peak Signal-to-Noise Ratio
(PSNR), and the Structural Similarity IndexMeasure (SSIM)
[28]. Those measures are averaged over all the images of the
lightfield to obtain lightfield quality measures. In Table 2, we
show quantitative results of the reconstruction error. Quali-
tative results are presented in Sect. 4.2.2.

Results show that recovery based on the Π -constant
assumption is a very good approximation to the original light-

field with a standard deviation of the error around 1% of
the true values and a structural similarity above 0.95 in all
cases. However, as shown in Sect. 3.3, despite its accuracy
this reconstruction is not practical due to the high number of
planes that are needed.

4.2 Regularized Reconstruction

Regularized reconstruction tries to invert the discrete focal
stack transform computing for each ξ the solution L̂ (ξ , u)

of a linear system. We have performed several experiments
for various types of regularizers: L2 regularization of 0th
order and 1st order, and L1 isotropic TV regularization. As
explained in Sect. 3.5.2 the initial point for TV regulariza-
tion is computed from L2 1st-order regularization. In order
to test the dependency of the reconstruction with respect to
the number of images in the focal stack, we have set differ-
ent values for its number. All planes are equispaced in the
non-aliasing range to use the proposition in Sect. 3.4. The
results for the Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity Index Measure (SSIM) are shown on
Tables 3 and 4.

The parameter values for regularization have been λ =
10−6 for the L2 0th order regularization and γ = 107,
β = 102 for the 1st order regularization and were optimized
for the recovery of all lightfields. The number of iterations
for the TV regularization was set to 10. Although regular-
ization parameters should be adjusted for each camera and
each value of the number of planes, we adopted this approach
due to the robustness of the error measures with respect to
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Table 3 PSNR of lightfield
reconstruction for several
regularizers

PSNR Number of planes

Lightfield Method 3 5 7 11 17 23 31 41

Statue L2 0th 24.400 26.532 27.508 27.923 28.101 28.110 28.112 28.111

L2 1st 24.590 26.632 27.488 27.887 28.208 28.267 28.293 28.307

L1 TV 24.730 26.698 27.469 27.876 28.214 28.289 28.315 28.338

Faces L2 0th 28.671 30.767 31.330 31.788 31.857 31.860 31.860 31.856

L2 1st 28.762 30.808 31.403 31.889 32.130 32.176 32.201 32.219

L1 TV 28.954 30.906 31.478 32.017 32.310 32.351 32.404 32.412

Toys L2 0th 28.012 29.871 30.776 31.186 31.279 31.288 31.294 31.295

L2 1st 28.180 29.918 30.748 31.154 31.309 31.334 31.353 31.359

L1 TV 28.540 30.152 30.911 31.323 31.538 31.594 31.622 31.644

Belfry L2 0th 29.220 31.825 33.127 33.705 33.853 33.870 33.881 33.891

L2 1st 29.508 32.110 33.319 33.929 34.115 34.114 34.177 34.168

L1 TV 30.065 32.429 33.283 33.825 34.087 34.140 34.127 34.213

Bicycle L2 0th 28.347 30.938 32.322 32.915 33.005 33.033 33.039 33.044

L2 1st 28.617 31.174 32.466 33.024 33.160 33.216 33.227 33.250

L1 TV 29.075 31.487 32.543 33.116 33.283 33.379 33.383 33.437

Batteries L2 0th 24.610 26.288 27.017 27.494 27.568 27.578 27.580 27.580

L2 1st 24.531 26.149 26.880 27.365 27.513 27.553 27.573 27.584

L1 TV 24.781 26.373 27.087 27.594 27.788 27.845 27.872 27.885

Elephant L2 0th 27.037 35.492 38.000 39.448 39.707 39.817 39.782 39.843

L2 1st 27.565 35.428 37.539 38.524 38.646 38.731 38.502 38.646

L1 TV 27.978 35.981 38.994 38.813 38.994 39.242 38.220 38.831

Watch L2 0th 29.123 36.212 39.224 40.149 40.387 40.509 40.548 40.568

L2 1st 29.610 36.497 38.929 39.432 39.488 39.638 39.562 39.555

L1 TV 30.115 36.664 38.620 38.680 38.993 39.318 39.065 38.928

the regularization parameters. The data-fit term in (36) was
divided by the number of planes. This allows to use the same
regularization parameters for all problems.

Numerical results in Tables 3 and 4 show that the lightfield
recovery error stabilizes around 11 planes that is approxi-
mately 2 times the width of the microlens. For 11 planes, the
PSNR of the research camera is in the range [27.9, 32.0]
with SSIM in the range [0.84, 0.92]. For the Lytro cam-
era, the PSNR is in the range [27.6, 33.9] with SSIM in the
range [0.88, 0.94] and for the Raytrix camera the PSNR is
around 40 with SSIM around 0.99. The difference in the
recovery results can be attributed to the quality of the images
since research and Lytro lightfield images are noisier than
Raytrix lightfield images. Note that for a typical lightfield
with 255 × 255 microlenses and 9 × 9 pixels behind each
microlens this would lead to a recovery from a volume of
data that is 22.2% of the original lightfield. The quantitative
performance of the different regularizers is similar, although
numerical results show that in general the PSNR and SSIM
are ordered from lower to higher values as L2 0th order, L2

1st order, and TV regularization. A qualitative comparison
of the recovery process is presented in Sect. 4.2.2.

4.2.1 Error Distribution in the Lightfield

Numerical results in Tables 3 and 4 show the mean error
from all the images in the lightfield. A relevant question is
the distribution of the error in all the images. To evaluate the
error distribution for the images in the lightfield, we show in
Fig. 3 the PSNR for each of the 7 × 7 images in the statue
lightfield that has theworst recovery results with L2 0th order
regularization. The coefficient of variation of the PSNR and
SSIM between all the lightfield images is small with values
0.0081 and 0.0274, respectively.

We have also studied the spatial distribution of the recov-
ery error. It is measured as the absolute difference between
the recovered lightfield and the true lightfield. The results
can be seen in Fig. 4 for the central image of the lightfields in
Fig. 2 and L1 TV regularization with 11 planes. Results show
that errors are very low for most pixels of the image (light-
field values are in the range [0,1]). Errors are higher in the
statue image (that can be attributed to noise) and the batteries
image (there are specular reflections that violate the Lam-
bertian assumption). Note that errors increase around depth
discontinuities as shown in the belfry and bicycle images.
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Table 4 SSIM of lightfield
reconstruction for several
regularizers

SSIM Number of planes

Lightfield Regularization 3 5 7 11 17 23 31 41

Statue L2 0th 0.649 0.767 0.803 0.824 0.834 0.834 0.834 0.834

L2 1st 0.658 0.770 0.802 0.823 0.840 0.843 0.844 0.845

L1 TV 0.662 0.770 0.800 0.821 0.839 0.842 0.844 0.844

Faces L2 0th 0.833 0.885 0.900 0.915 0.918 0.918 0.918 0.918

L2 1st 0.835 0.884 0.901 0.917 0.924 0.926 0.926 0.927

L1 TV 0.835 0.882 0.898 0.915 0.924 0.926 0.927 0.927

Toys L2 0th 0.814 0.856 0.876 0.887 0.891 0.891 0.891 0.891

L2 1st 0.818 0.858 0.878 0.890 0.894 0.894 0.895 0.895

L1 TV 0.830 0.868 0.887 0.899 0.906 0.907 0.907 0.907

Belfry L2 0th 0.818 0.883 0.906 0.918 0.920 0.920 0.920 0.920

L2 1st 0.825 0.887 0.909 0.922 0.926 0.926 0.927 0.927

L1 TV 0.834 0.887 0.907 0.920 0.925 0.926 0.927 0.927

Bicycle L2 0th 0.860 0.912 0.931 0.941 0.942 0.942 0.942 0.942

L2 1st 0.865 0.915 0.933 0.943 0.945 0.946 0.946 0.946

L1 TV 0.873 0.917 0.933 0.943 0.946 0.947 0.947 0.947

Batteries L2 0th 0.763 0.824 0.854 0.872 0.874 0.874 0.874 0.874

L2 1st 0.764 0.825 0.855 0.874 0.879 0.880 0.881 0.881

L1 TV 0.770 0.828 0.857 0.876 0.883 0.884 0.885 0.885

Elephant L2 0th 0.891 0.985 0.994 0.996 0.996 0.996 0.996 0.996

L2 1st 0.901 0.984 0.992 0.994 0.994 0.994 0.994 0.994

L1 TV 0.916 0.986 0.992 0.994 0.994 0.994 0.994 0.994

Watch L2 0th 0.900 0.982 0.994 0.995 0.995 0.995 0.995 0.995

L2 1st 0.907 0.983 0.992 0.994 0.994 0.994 0.994 0.994

L1 TV 0.919 0.984 0.992 0.994 0.994 0.994 0.994 0.994
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Fig. 3 Error distribution of the PSNR and SSIM in the lightfield images
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Fig. 4 Spatial distribution of the recovery absolute error. It ismeasured
as the absolute difference between the recovered lightfield and the true
lightfield. Results are shown for the central images in the statue, faces,

toys, belfry, bicycle, batteries, elephant, and watch lightfields. The reg-
ularization used has been L1 TV with a number of planes equal to 11

Fig. 5 Focal stack with Np = 11 planes for the statue lightfield

Fig. 6 Focal stack with Np = 11 planes for the elephant lightfield

4.2.2 Qualitative Results

In order to test qualitatively the lightfield recovery, we have
selected the statue lightfield with the worst recovery results
and the elephant lightfield with the best recovery results.
The focal stack for Np = 11 planes is shown in Fig. 5 for
the statue lightfield and Fig. 6 for the elephant lightfield. To
present the results,wehave also selected thenumber of planes
with worst recovery results Np = 3, the number of planes
where error stabilizes Np = 11, and the number of planes
with best recovery results Np = 41. We have also selected
for comparison the central image of the lightfield. In accor-
dance with the preceding quantitative results in Figs. 7 and
8, we can see that there is no visual appreciable difference
between Np = 11 and Np = 41. Comparing the recovered
central image with the original central lightfield image, we

also can see that even small details are restored. Note that
lightfield images are extended depth of field (DOF) images,
so one feature of the lightfield recovery technique is that it
is capable to compute extended DOF images from a set of
defocused images.

4.2.3 Lightfield Denoising

A consequence of the regularization process is the attenua-
tion of oscillations in the lightfield. This causes that noise in
lightfield images is reduced. Therefore, the inversion process
could also be used to reduce noise in lightfield images by
selecting appropriate parameter values to select the strength
of the regularization. We have selected the noisiest statues
and faces lightfields to show this denoising effect. As can be
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Fig. 7 First row Central image of the lightfield (left) and recovery with theΠ -constant assumption (right). Second row, from left to right Recovery
with Np = 3 for L2 0th order, L2 1st order, and TV regularization. Third and fourth row Recovery with Np = 11 and with Np = 41 with the same
regularizers
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Fig. 8 First row Central image of the lightfield (left) and recovery with theΠ -constant assumption (right). Second row, from left to right Recovery
with Np = 3 for L2 0th order, L2 1st order, and TV regularization. Third and fourth row Recovery with Np = 11 and with Np = 41 with the same
regularizers
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Fig. 9 Top Detail from the central image of the faces and statue lightfield. Bottom Detail from the central image of the faces and statue recovered
lightfields with TV regularization

Fig. 10 Details from the
batteries lightfield where
non-Lambertian specularities
are present. Note the quality in
the reconstruction despite the
specular reflection on the
surfaces

seen in Fig. 9, the recovery process effectively denoises the
images in the lightfield.

4.2.4 Lightfield Recovery Under Non-Lambertian Scenes

As explained in Sect. 3.1.1, lightfield inversion is exact
for Lambertian lightfields. Then, it is interesting to study
the behavior of the lightfield recovery process under non-
Lambertian scenes. A common extension to the Lambertian
assumption is the dichromatic model [29]. In this approach,
the light reflected from the objects has two independent
components, which correspond to Lambertian diffuse reflec-
tion and a specular non-Lambertian component. In Fig. 10,
we study the qualitative performance of the reconstruction
process under strong specular components. We have selected
a detail from the batteries lightfield. It can be seen that the
reconstruction process is able to recover both the diffuse and
specular components of the original lightfieldwith high qual-

ity. The quantitative results of the difference between these
two lightfield images are presented in Fig. 4.

Another source of non-Lambertian behavior appears at
surface discontinuities even if the individual surfaces in the
scene have a Lambertian reflectance. Then, it is interesting
to study the recovery technique around depth discontinu-
ities. We have selected the belfry lightfield due to its strong
depth changes between the foreground and the background.
As shown in Fig. 11, for a detail of two side-images from
the lightfield, the reconstruction around depth discontinuities
also has a good quality. Note that the parallax in the light-
field images is also recovered. The numerical error results of
the reconstruction error around the discontinuity can also be
found in Fig. 4.

Finally, in order to obtain a better understanding of the
dependence of the reconstruction error under the Lambertian
assumption, we have computed a photoconsistency measure
[8] for eachpoint in the scene. It is obtained from the lightfield
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Fig. 11 Top Detail from two belfry lightfield images. Bottom Detail recovered from the belfry lightfield. Note the differences in position between
the foreground and background in the left and right images

Fig. 12 Numerical study of the dependence of the recovery error (vertical axis) against a Lambertian photoconsistency error measure (horizontal
axis) for the belfry (left) and batteries (right) lightfield

by measuring the variance of the intensity of all rays emanat-
ing from a surface point at a given depth. Since the depth of a
given point on the surface is unknown, we compute the mini-
mum of this measure for all possible point depths. Therefore,
for a Lambertian surface, the photoconsistency errormeasure
should be ideally zero for any point. Deviations from this
assumptiondue to specularities or discontinuities should gen-
erate higher values. To study the dependence between both
errors, we have computed a 2D histogram with the minus
logarithm of both the photoconsistency and reconstruction
errors in the horizontal and vertical axis, respectively. There-
fore, lower errors for both measures are in the top and right
side of the histogram. These values are accumulated for all
surface points and rendered in Fig. 12 for the belfry and bat-
teries lightfields. Numerical results show that lower values
of photoconsistency error lead to lower values of the recon-
struction error.

5 Conclusions

We have presented a new technique for the recovery of a
lightfield from its Focal Stack. This recovery is based on the
inversion of the Discrete Focal Stack transform. The inver-
sion process has been studied in the continuous case and it is
shown that this inversion is not possible in general. However,
there is a subset of lightfields where this inversion is possi-
ble. This subset, that we callΠ -constant lightfields, has been
characterized and it is shown that it includes the important
case of Lambertian lightfields. A simple and direct inversion
procedure has been developed for these lightfields. The pre-
ceding results have been also studied in the discrete case,
and a similar direct procedure has been developed. A draw-
back of the direct procedure is that it needs a large number
of images in the focal stack. Therefore, a theoretical result
has been provided that ensures that inversion for Π -constant
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lightfields is possible solving a linear system of equations for
a focal stack with a volume of data equal to the volume of
data of the lightfield. We have studied the inversion of this
linear system, and we have shown that is bad-conditioned, so
regularization procedures have been proposed and detailed.
The inversion method has been tested with several images
from plenoptic cameras. Experimental results show that Π -
constant lightfields are a very good approximation to real
world lightfields. To study practical inversion procedures, we
have studied the inversion of general lightfields with regular-
ization. The experimental results show that general lightfields
can be recovered from a focal stack with a limited number
of images with high precision, so a focal stack can be used
as a compressed representation of a lightfield. The inversion
method is accurate enough to recover parallax and depth dis-
continuities. This method can also be employed to obtain
an extended depth of field image from a focal stack. Due to
the regularization effect, the inversion procedure can also be
used to denoise the lightfield. Future extensions to this paper
will include the study of the optimal placement of planes in
the focal stack to decrease its number in the recovery process
and porting the technique to Graphical Processing Units and
Field Programmable Gate Arrays.
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