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Abstract We propose two models for the interpolation
betweenRGB images basedon thedynamicoptimal transport
model of Benamou and Brenier (Numer Math 84:375–393,
2000). While the application of dynamic optimal transport
and its extensions to unbalanced transform were examined
for gray-value images in various papers, this is the first
attempt to generalize the idea to color images. The non-trivial
task to incorporate color into the model is tackled by con-
sidering RGB images as three-dimensional arrays, where the
transport in theRGBdirection is performed in a periodicway.
Following the approach of Papadakis et al. (SIAM J Imaging
Sci 7:212–238, 2014) for gray-value images we propose two
discrete variationalmodels, a constrained and a penalized one
which can also handle unbalanced transport. We show that a
minimizer of our discretemodel exists, but it is not unique for
some special initial/final images. For minimizing the result-
ing functionalswe apply a primal-dual algorithm.One step of
this algorithm requires the solution of a four-dimensional dis-
cretized Poisson equation with various boundary conditions
in each dimension. For instance, for the penalized approach
we have simultaneously zero, mirror, and periodic boundary
conditions. The solution can be computed efficiently using
fast Sin-I, Cos-II, and Fourier transforms. Numerical exam-
ples demonstrate the meaningfulness of our model.

B Friederike Laus
friederike.laus@mathematik.uni-kl.de

Jan Henrik Fitschen
fitschen@mathematik.uni-kl.de

Gabriele Steidl
steidl@mathematik.uni-kl.de

1 Department of Mathematics, University of Kaiserslautern,
Kaiserslautern, Germany

1 Introduction

Color image processing is much more challenging compared
to gray-value image processing and usually, approaches for
gray-value images do not generalize in a straightforwardway
to color images. For example, one-dimensional histograms
are a very simple, but powerful tool in gray-value image
processing, while it is in general difficult to exploit his-
tograms of color images. In particular, there exist several
possibilities to represent color images [10]. In this paper we
consider the interpolation between two color images in the
RGB space (see Fig. 2 (left)) motivated by the fluid mechan-
ics formulation of dynamic optimal transport by Benamou
and Brenier [8] and the recent approaches of Papadakis et
al. [35] and [33] for gray-value images. In these works gray-
value images are interpreted as two-dimensional, finitely
supported density functions f0 and f1 of absolutely continu-
ous probability measures μ0 and μ1 (i.e., μi (A) = ∫

A fi dx ,
i = 0, 1). In particular, we have

∫
R2 f0 dx = ∫

R2 f1 dx = 1.
Therewith, intermediate images are obtained as the densi-
ties ft of the geodesic path dμt = ft dx with respect to the
Wasserstein distance between μ0 and μ1.

In this paper, we extend the transport model to discrete
RGB color images. The incorporation of color into the above
approach appears to be a non-trivial task and this paper is a
first proposal in this direction. We consider N1 × N2 RGB
images as three-dimensional arrays in R

N1,N2,3, where the
third direction is the “RGB direction” that contains the color
information; for an illustration see Fig. 1. Particular attention
has to be paid to this direction and its boundary conditions.
We propose to use periodic boundary conditions, which is
motivated as follows: assume we are given two color pixels
f0 and f1 ∈ R

1×1×3. Using mirror (Neumann) boundary
conditions in the third dimension, the transport of, e.g., a red
pixel f0 = (1, 0, 0) into a blue one f1 = (0, 0, 1) goes over
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Fig. 1 Left RGB image of size 4 × 2. Right Image as three-dimensional 4 × 2 × 3 array. The “mass” is the sum of the RGB values of all pixels
(Color figure online)

Fig. 2 Left RGB color cube. Middle/Right Color transfer between (1, 0, 0) (red) and (0, 0, 1) (blue) for mirror (middle) and periodic (right)
boundary conditions visualized in the RGB cube (Color figure online)

(0, 1, 0) (green), see Fig. 2 (middle), which is not intuitive
from the viewpoint of human color perception. Furthermore,
it implies that the transport depends on the order of the three
color channels, which is clearly not desirable. As a remedy,
we suggest to use periodic boundary conditions in the color
dimension. In case of a red and a blue pixel, it yields a trans-
port via violet, which is alsowhat onewould expect, compare
Fig. 2 (right) and see also Figs. 5 and 6.

In the following, we propose two variational models for
the transport of color images. To handle also the case of
unequal masses, the mass conservation constraint is relaxed.
Our first model contains the continuity equation as a con-
straint. It turns out that it generalizes the technique which
was proposed in [35] for gray-value images. The second
model penalizes the continuity equation, similarly it was
also considered for (continuous) gray-value images in [33].
Other approaches to unbalanced optimal transport can e.g.,
be found in [7,18,26,28].

The interpolation based on an optimal transport model
for a special class of images, namely so-called microtex-
tures, has been addressed by Rabin et al. in [37,41]. The
authors show that microtextures can be well modeled as a

realization of a Gaussian random field. In this case, theo-
retical results guarantee that the intermediate measures μt

are Gaussian as well and they can be stated explicitly in
terms of the means and covariance matrices learnt from the
given images f0 and f1. The idea can be generalized for
interpolating between more than two microtextures using
barycentric coordinates. The approach fails for some spe-
cial microtexture settings which usually do not appear in
practice.

Color interpolation between images of the same shape
can be realized by switching to the HSV or HSI space. Then
only the hue component has to be transferred using, e.g., by
a dynamic extension of the model for the transfer of cyclic
measures (periodic histograms) of Delon et al. [25,40]. For
an example we refer to [27]. This idea is closely related to the
affine model for color image enhancement in [34]. However,
these approaches transfer only the color and leave the original
edge structure of the image untouched.

Finally we mention that the interpolation between images
can also be tackled by other sophisticated techniques such as
metamorphoses, see [49]. These approaches are beyond the
scope of this paper. A combination of the optimal dynamic
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transport model with the metamorphosis approach was pro-
posed in [33].

The outline of our paper is as follows: in Sect. 2 we
recall basic results from the theory of optimal transport. At
this point, we deal with general p ∈ (1, 2] instead of just
p = 2 as in [35]. We propose discrete dynamic transport
models in Sect. 3. Here we prefer to give a matrix–vector
notation of the problem to make it more intuitive from a
linear algebra point of view. We prove the existence of a
minimizer and show that there are special settings where the
minimizer is not unique. In Sect. 4 we solve the resulting
minimization problems by primal-dual minimization algo-
rithms. It turns out that one step of the algorithm requires
the solution of a four-dimensional Poisson equation which
includes various boundary conditions and can be handled
by fast trigonometric transforms. Another step involves to
find the positive root of a polynomial of degree 2q − 1,
where 1

p + 1
q = 1 and p ∈ (1, 2]. For this task we pro-

pose to useNewton’s algorithm and determine an appropriate
starting point to ensure its quadratic convergence. Section 5
shows numerical results, some of which were also reported
at the SampTA conference 2015 [27]. More examples can
be found on our website http://www.mathematik.uni-kl.
de/imagepro/members/laus/color-OT. Finally, Sect. 6 con-
tains conclusions and ideas for future work. In particular,
additional priors may be used to improve the dynamic trans-
port, e.g., a total variation prior to avoid smearing effects.
The Appendix reviews the diagonalization of certain dis-
crete Laplace operators, and provides basic rules for tensor
product computations. Further it contains some technical
proofs.

2 Dynamic Optimal Transport

In this section we briefly review some basic facts on the
theory of optimal transport. For further details we refer to,
e.g., [1,43,50].

Let P(Rd) be the space of probability measures on R
d

and Pp(R
d), p ∈ [1,∞) the Wasserstein space of measures

having finite p-th moments

Pp(R
d) :=

{

μ ∈ P(Rd) :
∫

Rd
|x |pdμ(x) < +∞

}

.

Forμ0, μ1 ∈ P(Rd) letΠ(μ0, μ1) be the set of all probabil-
itymeasures onRd×R

d whosemarginals are equal toμ0 and
μ1. Therewith, the optimal transport problem (Kantorovich
problem) reads as

argmin
π∈Π(μ0,μ1)

∫

Rd
|x − y|p dπ(x, y).

One can show that for p ∈ [1,∞) a minimizer exists, which
is uniquely determined for p > 1 and also called optimal
transport plan. In the special case of the one-dimensional
optimal transport problem, if the measure μ0 is non-atomic,
the optimal transport plan is the same for all p ∈ (1,∞) and
can be stated explicitly in terms of the cumulative density
functions of the involved measures. The minimal value

Wp(μ0, μ1) :=
(

min
π∈Π(μ0,μ1)

∫

Rd
|x − y|p dπ(x, y)

) 1
p

defines a distance on Pp(R
d), the so-calledWasserstein dis-

tance.
Wasserstein spaces

(Pp(R
d),Wp(R

d)
)
are geodesic spa-

ces. In particular, there exists for any μ0, μ1 ∈ Pp(R
d) a

geodesic γ : [0, 1] → Pp(R
d) with γ (0) = μ0 and γ (1) =

μ1. For interpolating our images we ask for μt = γ (t),
t ∈ [0, 1].

At least theoretically there are several ways to com-
pute μt . If the optimal transport plan π is known, then
μt = Lt #π :=π ◦ L−1

t yields the geodesic path, where
Lt : Rd × R

d → R
d , Lt (x, y) = (1 − t)x + t y is the linear

interpolation map, see further [43]. This requires the knowl-
edge of the optimal transport plan π and of L−1

t . At the
moment there are efficient ways for computing the optimal
transport planπ only in special cases, in particular in the one-
dimensional case by an ordering procedure and for Gaussian
distributions in the case p = 2 using expectation and covari-
ance matrix. For p = 2 one can also use the fact that π

is indeed induced by a transport map T : Rd → R
d , i.e.,

π = (id, T )#μ0, which can be written as T = ∇ψ , where
ψ fulfills the Monge–Ampère equation, see [15]. However,
this second-order nonlinear elliptic PDE is numerically hard
to solve and so far, only some special cases were considered
[6,19,20,32]. Other numerical techniques to compute opti-
mal transport plans have been proposed, e.g., in [2,30,44,45].
Another approach consists in relaxing the condition of min-
imizing a Wasserstein distance using instead an entropy
regularizedWasserstein distance. Such distances can be com-
puted more efficiently by the Sinkhorn algorithm and were
appliedwithin a barycentric approachbyCuturi et al. [21,22].

The approach in this paper was inspired by the one of
Benamou and Brenier in [8]. It involves the velocity field
v : [0, 1]×R

d → R
d of thegeodesic curve joiningμ0 andμ1.

This velocityfield v(t, ·)has constant speed‖v(t, ·)‖L p(μt ) =
Wp(μ0, μ1). It can be shown that it minimizes the energy
functional

Ep(v, μ) :=
∫ 1

0

∫

Rd

1

p
|v(x, t)|p dμt (x) dt
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and fulfills the continuity equation

∂tμt + ∇x · (μtv(t, ·)) = 0,

where we say that t �→ μt is a measure-valued solution of
the continuity equation if for all compactly supported φ ∈
C1

(
(0, 1) × R

d
)
and T ∈ (0, 1) the relation

∫ T

0

∫

Rd
∂tφ(x, t) + 〈v(x, t),∇xφ(x, t)〉 dμt (x) dt = 0

holds true. For more details we refer to [43].
Assuming themeasuresμ0 andμ1 to be absolutely contin-

uouswith respect to theLebesguemeasure, i.e., dμi = fi dx ,
i = 0, 1, theoretical results (see for instance [50, Theo-
rem 8.7]) guarantee that the same holds true for dμt = ft dx ,
where ft can be obtained as the minimizer over v, f of

Ep(v, f ) =
∫ 1

0

∫

Rd

1

p
|v(x, t)|p f (x, t) dx dt (1)

subject to the continuity equation

∂t f (x, t) + ∇x · (v(x, t) f (x, t)) = 0,

f (0, ·) = f0, f (1, ·) = f1,

where we suppose ∪t∈[0,1] supp f (t, ·) ⊆ [0, 1]d with
appropriate (spatial) boundary conditions. Unfortunately, the
energy functional (1) is not convex in f and v. As a remedy,
Benamou and Brenier suggested in the case p = 2 a change
of variables ( f, v) �→ ( f, f v) = ( f,m). This idea can be
generalized to p ∈ (1,∞), see [43], which results in the
functional

∫ 1

0

∫

Rd
Jp
(
m(x, t), f (x, t)

)
dx dt, (2)

where Jp : Rd × R → R ∪ {+∞} is defined as

Jp(x, y) :=

⎧
⎪⎨

⎪⎩

1
p

|x |p
y p−1 if y > 0,

0 if (x, y) = (0, 0),

+∞ otherwise

(3)

and | · | denotes the Euclidean norm. This functional has to
be minimized subject to the continuity equation

∂t f (x, t) + ∇x · m(x, t) = 0, (4)

f (0, ·) = f0, f (1, ·) = f1, (5)

equipped with appropriate spatial boundary conditions.

Remark 1 The function Jp : Rd × R → R ∪ {+∞} defined
in (3) is the perspective function of ψ(s) = 1

p |s|p, i.e.,

Jp(x, y) = yψ
(
x
y

)
. For properties of perspective functions

see, e.g., [23]. In particular, sinceψ is convex for p ∈ (1,∞),
its perspective Jp(x, y) is also convex. Further, Jp(x, y)
is lower semi-continuous and positively homogeneous, i.e.,
Jp(λx, λy) = λJp(x, y) for all λ > 0.

3 Discrete Transport Models

In practice we are dealing with discrete images whose pixel
values are given on a rectangular grid. To get a discrete ver-
sion of the minimization problem we have to discretize both
the integration operator in (2) by a quadrature rule and the
differential operators in the continuity equation (4). The dis-
cretization of the continuity equation requires the evaluation
of discrete “partial derivatives” in time as well as in space.
In order to avoid solutions suffering from the well-known
checkerboard effect (see for instance [36]) we adopt the idea
of a staggered grid as in [35], see Fig. 3.

The differential operators in space and time are discretized
by forward differences, and depending on the boundary con-
ditions this results in the use of difference matrices of the
form

Dn := n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 1
−1 1

. . .

−1 1 0
−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n−1,n,

Dper
n := n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1
−1 1

. . .

1 0
−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n,n .

For the integration we apply a simple midpoint rule. To
handle this part, we introduce the averaging/interpolation
matrices

Sn := 1

2

⎛

⎜
⎜
⎜
⎝

1 1
1 1

. . .

1 1

⎞

⎟
⎟
⎟
⎠

∈ R
n−1,n,

Spern := 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1
1 1
1 1

. . .

1 1 0
1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n,n .
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Fig. 3 Staggered grid for the
discretization of the dynamic
optimal transport problem,
where N = P = 4. For periodic
boundary conditions, the
boundary values for m are equal,
while they are zero for
Neumann boundary conditions

Discretization for one spatial dimension + time In the fol-
lowing, we derive the discretization of (2) for one spatial
direction, i.e., for the transport of signals. The problem can
be formulated in a simple matrix–vector form using tensor
products of matrices which makes it rather intuitive from the
linear algebra point of view. Moreover, it will be helpful for
deriving the fast trigonometric transforms which will play a
rolewithin our algorithm. The generalization of our approach
to higher dimensions is straightforward and can be found in
Appendix 3.

We want to organize the transport between two given one-
dimensional, non-negative discrete signals

f0 :=
(
f0
(

j−1/2
N

))N

j=1
and f1 :=

(
f1
(

j−1/2
N

))N

j=1
.

We are looking for the intermediate signals ft for t = k
P ,

k = 1, . . . , P − 1. Using the notation ft (x) = f (x, t),
we want to find f ( j−1/2

N , k
P )

N ,P−1
j=1,k=1 ∈ R

N ,P−1. For m we
have to take the boundary conditions into account. In the
case of mirror boundary conditions, there is no flow over the
boundary and since m = f v the value of m is zero at the
boundary at each time. In the periodic case both boundaries
of m coincide. The values of m are taken at the cell faces j

N ,

j = κ, . . . , N − 1 and time
k− 1

2
P , k = 1, . . . , P , i.e., we are

looking for

(

m(
j
N ,

k− 1
2

P )

)N−1,P

j=κ,k=1
∈ R

N−κ,P , where

κ =
{
1 mirror boundary,
0 periodic boundary.

The midpoints for the quadrature rule are computed by aver-
aging the neighboring two values ofm and f , respectively. To

give a soundmatrix–vector notation of the discreteminimiza-
tion problem we reorder m and f columnwise into vectors
vec( f ) ∈ R

N (P−1) and vec(m) ∈ R
(N−κ)P , which we again

denote by f and m. For the vec operator in connection with
the tensor product ⊗ of matrices we refer to Appendix 2.
More specifically, let In ∈ R

n,n be the identity matrix and
set

Sf := ST
P ⊗ IN , Df := DT

P ⊗ IN ,

Sm :=
{
IP ⊗ ST

N mirror boundary,
IP ⊗ (

SperN

)T
periodic boundary,

Dm :=
{
IP ⊗ DT

N mirror boundary,
IP ⊗ (

Dper
N

)T
periodic boundary.

Finally, we introduce the vectors

f + := 1

2

(
f T0 , 0, f T1

)T
,

f − := P
(− f T0 , 0, f T1

)T
,

where we denote by 0 (and 1) arrays of appropriate size
with entries 0 (and 1). They are used to guarantee that the
boundary conditions are fulfilled. Now the continuity equa-
tion (4) together with the boundary conditions (5) for f can
be reformulated as requirement that (m, f ) has to lie within
the hyperplane

C0 :=

⎧
⎪⎨

⎪⎩

(
m
f

)

: (
Dm|Df

)

︸ ︷︷ ︸
A

(
m
f

)

= f −

⎫
⎪⎬

⎪⎭
. (6)

We will see in Proposition 3 that AAT is rank one deficient.
Since further 1TA = 0, we conclude that the under-
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determined linear system in (6) has a solution if and only if
1T f − = 0, i.e., if and only if f0 and f1 have the same mass

1T f0 = 1T f1. (7)

This resembles the fact that dynamic optimal transport is
performed between probability measures. The interpretation
of a color image as a probability density function has a major
drawback; to represent a valid density, the sum of all RGB
pixel values of the given images, i.e., the sum of the image
intensity values, has to be one (or at least equal). Therefore,
we consider more general the set

C := argmin
(m, f )

‖(Dm|Df)

(
m
f

)

− f −‖22. (8)

Note that the boundary conditions (5) for f are preserved,
while the mass conservation (7) is no longer required.
Clearly, if (7) holds true, then C coincides with C0. Let ιC
denote the indicator function of C defined by

ιC(x) :=
{
0 if x ∈ C,

+∞ if x /∈ C.

For p ∈ (1, 2], we consider the following transport problem:

Constrained Transport Problem

argmin
(m, f )

E(m, f ) := ‖Jp
(
Smm, Sf f + f +)‖1 + ιC(m, f ).

(9)

Here, the application of Jp is meant componentwise and the
summation over its (non-negative) components is addressed
by the �1-norm. The interpolation operators Sm and Sf arise
from the midpoint rule for computing the integral.

We can further relax the relaxed continuity assumption
(m, f ) ∈ C by replacing it by

∥
∥
∥
(
Dm|Df

)
(
m
f

)

− f −
∥
∥
∥
2

2
≤ τ,

where τ ≥ τ0 := min(m, f ) ‖(Dm|Df)(mT, f T)T − f −‖22.
For τ = τ0 we have again problem (9). Since there is a
correspondence between the solutions of such constrained
problems with parameter τ and the penalized problem with
a corresponding parameter λ, see [3,42,48], we prefer to
consider the following penalized problemwith regularization
parameter λ > 0:

Penalized Transport Problem

argmin
(m, f )

Eλ(m, f ) :=
∥
∥
∥Jp(Smm, Sf f + f +)

∥
∥
∥
1

+ λ

∥
∥
∥
∥(Dm|Df)

(
m
f

)

− f −
∥
∥
∥
∥

2

2

. (10)

Note that also for our penalized model the boundary con-
ditions (5) for f still hold true. In general, both models (9)
and (10) do not guarantee that the values of f stay within the
RGB cube during the transport. This is not a specific problem
for color images but can appear for gray-value images as well
(gamut problem). A usual way out is a final backprojection
onto the image range. An alternative in the constrainedmodel
is a simple modification of the constraining set in (8) towards

C := argminm, f ∈[0,1]3 ‖(Dm|Df)

(
m
f

)

− f −‖22. This leads to
inner iterations of the Poisson solver and a projection onto the
cube in the subsequent Algorithm 1. In the penalized prob-
lem, the term ι[0,1]3 could be added. However, we observed in
all our numerical experiments only very small violations of
the range constraint, which are most likely caused by numer-
ical reasons.

A penalized model for the continuous setting and gray-
value images was examined in [33]. For recent papers on
unbalanced transport we refer to [7,18,26,28].

To show the existence of a solution of the discrete transport
problems we use the concept of asymptotically level stable
functions. As usual, for a function F : Rn → R∪{+∞} and
μ > infx F(x), the level sets are defined by

lev(F, μ) := {x ∈ R
n : F(x) ≤ μ}.

By F∞ we denote the asymptotic (or recession) function of
F which according to [24], see also [4, Theorem 2.5.1], can
be computed by

F∞(x) = lim inf
x ′→x
t→∞

F
(
t x ′)

t
.

The following definition of asymptotically level stable func-
tions is taken from [4, p. 94]: a proper and lower semi-
continuous function F : Rn → R ∪ {+∞} is said to be
asymptotically level stable if for each ρ > 0, each real-
valued, bounded sequence {μk}k and each sequence {xk}k
satisfying

xk ∈ lev(F, μk), ‖xk‖2 → +∞,
xk

‖xk‖2 → x̃ ∈ ker(F∞), (11)

there exists k0 such that

xk − ρ x̃ ∈ lev(F, μk) for all k ≥ k0.

If for each real-valued, bounded sequence {μk}k there exists
no sequence {xk}k satisfying (11), then F is automatically
asymptotically level stable. In particular, coercive functions
are asymptotically level stable. It was originally exhibited in
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[5] (without the notion of asymptotically level stable func-
tions) that any asymptotically level stable function F with
inf F > −∞ has a global minimizer. A proof was also given
in [4, Corollary 3.4.2].With these preliminaries we can prove
the existence of minimizers of our transport models.

Proposition 1 The discretized dynamic transport models (9)
and (10) have a solution.

Proof We show that the proper, lower semi-continuous func-
tions E and Eλ are asymptotically level stable which implies
the existence of a minimizer. For the penalized problem, the
asymptotic function Eλ,∞ reads

Eλ,∞(m, f ) = lim inf
(m′, f ′)→(m, f ),

t→∞

Eλ

(
t
(
m′, f ′))

t
.

We obtain

Eλ

(
t
(
m′, f ′))

t
= 1

t

(∥∥
∥
∥Jp

(

t

(

Smm
′, Sf f ′ + 1

t
f +

))∥∥
∥
∥
1

+ λ

∥
∥
∥
∥
(
Dm|Df

)
(
tm′
t f ′

)

− f −
∥
∥
∥
∥

2

2

)

=
∥
∥
∥
∥Jp

(

Smm
′, Sf f ′ + 1

t
f +

)∥∥
∥
∥
1

+ λt

∥
∥
∥
∥
(
Dm|Df

)
(
m′
f ′
)

− 1

t
f −

∥
∥
∥
∥

2

2

.

Thus, (m̃, f̃ ) ∈ ker(Eλ,∞) implies

(m̃, f̃ ) ∈ ker
(
Dm|Df

)
, m̃ ∈ ker(Sm), Sf f̃ ≥ 0. (12)

For the constrained problem we have the same implica-
tions so that we can restrict our attention to the penal-
ized one. By the definition of Sm we obtain ker(Sm) ={
w ⊗ 1̃ : w ∈ R

P
}

for periodic boundary conditions and

even N and ker(Sm) = {0} otherwise, where 1̃ is defined as
1̃ = (1,−1, . . . , 1,−1)T ∈ R

N . In the case ker(Sm) = {0},
the first and second condition in (12) imply Df f̃ = 0 so that
by the definition of Df it holds f̃ = 0. In the other case, we
obtain by the first condition in (12) that f̃ = −D†

f Dmm̃,

where D†
f = (DT

f Df)
−1DT

f denotes the Moore-Penrose
inverse of Df . Then

Sf f̃ = −SfD
†
f Dmm̃ = −SfD

†
f Dm(w ⊗ 1̃)

for some w ∈ R
P . Straightforward computation shows

Sf f̃ = −SfD
†
f Dm

(
w ⊗ 1̃N

)
= −w̃ ⊗ 1̃N

for some w̃ ∈ R
P . Now the third condition in (12) can only

be fulfilled if w̃ = 0. Consequently we have in both cases

Sf f̃ = 0. (13)

Let ρ > 0, {μk}k be a bounded sequence and {(mk, fk)}k be
a sequence fulfilling (11). By (12) and (13) we conclude

Eλ

(
(
mk, fk

) − ρ
(
m̃, f̃

)
)

=
∥
∥
∥
∥Jp

(
Smmk, Sf fk + f +)

∥
∥
∥
∥
1

+ λ

∥
∥
∥
∥
(
Dm|Df

)
(
mk

fk

)

− f −
∥
∥
∥
∥

2

2

= Eλ

(
(mk, fk)

)
.

Since (mk, fk) ∈ lev(Eλ, μk), this shows that (mk, fk) −
ρ(m̃, f̃ ) ∈ lev(Eλ, λk) as well and finishes the proof. ��

Unfortunately, Jp(u, v) is not strictly convex on its
domain as it can be deduced from the following proposition.

Proposition 2 For any two minimizers (mi , fi ), i = 1, 2 of
(9) the relation

Smm1

Sf f1 + f − = Smm2

Sf f2 + f −

holds true.

Proof Weuse the perspective function notation fromRemark
1. For λ ∈ (0, 1) and (ui , vi ) with vi > 0, i = 1, 2, we have
(componentwise)

Jp (λ(u1, v1) + (1 − λ)(u2, v2))

= (λv1 + (1 − λ)v2) ψ
(

λu1+(1−λ)u2
λv1+(1−λ)v2

)

= (λv1 + (1 − λ)v2)ψ
(

λv1
λv1+(1−λ)v2

u1
v1

+ (1−λ)v2
λv1+(1−λ)v2

u2
v2

)

and if u1
v1

�= u2
v2

by the strict convexity of ψ that

Jp (λ(u1, v1) + (1 − λ)(u2, v2))

< λJp(u1, v1) + (1 − λ)Jp(u2, v2).

Setting ui := Smmi and vi := Sf fi + f −, i = 1, 2, we
obtain the assertion. ��

Remark 2 For periodic boundary conditions, even N and
f1 = f0 + γ 1̃, γ ∈ [0,min f0) the minimizer of (9) is not
unique. This can be seen as follows: obviously, we would
have a minimizer (m, f ) if m = w ⊗ 1̃ ∈ ker(Sm) for some
w ∈ R

P and there exists f ≥ 0 which fulfills the con-
straints. Setting f k/P := f ( j − 1/2, k)Nj=1, k = 0, . . . , P ,
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Algorithm 1: Primal-Dual Algorithm for the Constrained Problem (14)

Initialization: m(0) = 0, f (0) = 0, b(0)
m = b(0)

f = b̄(0)
u = b̄(0)

v = 0, θ ∈ (0, 1],
τ, σ with τσ < 1.
Iteration: For r = 0, 1, . . . iterate

1.

(
m(r+1)

f (r+1)

)

:= argmin
(m, f )∈C

1

2τ

∥
∥
∥
∥
∥

(
m
f

)

−
(
m(r)

f (r)

)

+ τσ

(
ST
m b̄

(r)
u

ST
f b̄

(r)
v

)∥∥
∥
∥
∥

2

2

2.

(
u(r+1)

v(r+1)

)

:= argmin
(u,v)

‖Jp(u, v)‖1 + σ

2

∥
∥
∥
∥
∥

(
u
v

)

−
(
Smm(r+1)

Sf f (r+1)

)

−
(

0
f +
b

)

−
(
b(r)
u

b(r)
v

)∥∥
∥
∥
∥

2

2

3. b(r+1)
u := b(r)

u + Smm
(r+1) − u(r+1)

b(r+1)
v := b(r)

v + Sf f
(r+1) + f +

b − v(r+1)

4. b̄(r+1)
u := b(r+1)

u + θ(b(r+1)
u − b(r)

u )

b̄(r+1)
v := b(r+1)

v + θ(b(r+1)
v − b(r)

v )

these constraints read−2Pw⊗1̃ = P( f (k−1)/P− f k/P )Pk=1.
Thus, any w ∈ R

P such that

f 1/P = f0 + 2w11̃, f 2/P = f0 + 2(w1 + w2)1̃, . . . ,

f 1 = f0 + 2(w1 + w2 + . . . + wP )1̃

are non-negative vectors provides a minimizer of (9). We
conjecture that the solution is unique in all other cases, but
have no proof so far.

4 Primal-Dual Minimization Algorithm

4.1 Algorithms

For the minimization of our functionals we apply the primal-
dual algorithm known as Chambolle-Pock algorithm [17,38]
in the form of Algorithm 8 in [14]. We use the following
reformulation of the problems:

Constrained Transport Problem

argmin
(m, f )

‖Jp(u, v)‖1 + ιC(m, f )

subject to Smm = u, Sf f + f + = v. (14)

Penalized Transport Problem

argmin
(m, f )

‖Jp(u, v)‖1 + λ

∥
∥
∥
∥
∥
∥
(Dm|Df)︸ ︷︷ ︸

A

(
m
f

)

− f −
∥
∥
∥
∥
∥
∥

2

2

subject to Smm = u, Sf f + f + = v. (15)

In the following we detail the first two steps of Algo-
rithms 1 and 2:

• Step 1 of Algorithm 1 requires the projection onto C,
• Step 1 of Algorithm 2 results in the solution of a linear
system of equations with coefficient matrix λATA + 1

τ
I

whose Schur complement can be computed via fast
trigonometric transforms,

• Step 2 of both algorithms is the proximal map of Jp.

4.2 Projection onto C

Step 1 of Algorithm 1 requires to find the orthogonal pro-

jection of a :=
(
m(r)

f (r)

)

− τσ

(
ST
mb̄

(r)
u

ST
f b̄

(r)
v

)

onto C. This means

that we have to find a minimizer of ‖Ax − f −‖2 for which
‖a − x‖2 attains its smallest value. Substituting y := a − x
we are looking for a minimizer y of ‖Ay − Aa + f −‖2 with
smallest norm ‖y‖2. By [11, Theorem1.2.10], thisminimizer
is uniquely determined by A†(Aa− f −). Therefore the pro-
jection of a onto C is given by

ΠC(a) = a − A† (Aa − f −)

= a − AT(AAT)†
(
Aa − f −) . (16)

Note that the projection onto C coincides with the one onto C0
if the given images f0 and f1 have the samemass. TheMoore-
Penrose inverse of the quadratic matrix AAT is defined as
follows: Let AAT have the spectral decomposition

AAT = Q diag(λ j ) Q
T.

Then it holds

(AAT)† = Q diag(λ̃ j ) Q
T, with λ̃ j :=

{
1
λ j

if λ j > 0,

0 otherwise.
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Algorithm 2: Primal-Dual Algorithm for the Penalized Problem (15)

Initialization: m(0) = 0, f (0) = 0, b(0)
u = b(0)

v = b̄(0)
u = b̄(0)

v = 0, θ ∈ (0, 1],
τ, σ with τσ < 1.
Iteration: For r = 0, 1, . . . iterate

1.

(
m(r+1)

f (r+1)

)

:= argmin
(m, f )

λ

2

∥
∥
∥
∥(Dm|Df )

(
m
f

)

− f −
b

∥
∥
∥
∥

2

2
+ 1

2τ

∥
∥
∥
∥
∥

(
m
f

)

−
(
m(r)

f (r)

)

+ τσ

(
ST
m b̄

(r)
u

ST
f b̄

(r)
v

)∥∥
∥
∥
∥

2

2

2 − 4. as in Algorithm 1

The following proposition shows the form of (AAT)† in the
one-dimensional spatial case. It appears that the projection
onto C amounts to solve a two-dimensional Poisson equation
which can be realized depending on the boundary conditions
by fast cosine and Fourier transforms in O(N P log(N P))

operations.

Proposition 3 Let CN :=
√

2
n

(
ε j cos

j (2k+1)π
2N

)N−1

j,k=0
with

ε0 := 1/
√
2 and ε j := 1, j = 1, . . . , N − 1 be the N-th

cosine matrix and FN :=
√

1
N

(
e

−2π i jk
N

)n

j,k=0
be the N-th

Fourier matrix. Set dmirr
N := and dperN := (

4 sin2 kπ
N

)N−1
k=0 .

Then the Moore-Penrose inverse (AAT)† in (16) is given by

(AAT)† =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(CT
P ⊗ CT

N−1) diag(d̃) (CP ⊗ CN−1)

mirror boundary,

(CT
P ⊗ F̄N ) diag(d̃) (CP ⊗ FN )

periodic boundary,

where

d :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

IP ⊗ N 2diag(dmirr
N−1) + P2diag(dmirr

P ) ⊗ IN−1

mirror boundary,

IP ⊗ N 2diag(dperN ) + P2diag(dmirr
P ) ⊗ IN

periodic boundary

and d̃ j := 1
d j

if d j > 0 and d j = 0 otherwise.

The proof is given in Appendix 3.

4.3 Schur Complement of λATA+ 1
τ
I

To find the minimizer in Step 1 of Algorithm 2 we set the
gradient of the functional to zerowhich results in the solution
of the linear system of equations

(
λATA + 1

τ
I
)
(
m
f

)

= λAT f − +
(
m(r)

f (r)

)

− τσ

(
ST
mb̄

(r)
u

ST
f b̄

(r)
v

)

.

Noting that λATA + 1
τ
I is a symmetric and positive definite

matrix, this linear system can be solved using standard con-
jugate gradient methods. Alternatively, the next proposition
shows how the inverse (λATA + 1

τ
I )−1 can be computed

explicitly with the help of the Schur complement and fast
sine, cosine, and Fourier transforms. The proposition refers
to the one-dimensional spatial setting but can be generalized
to the three-dimensional case in a straightforward way using
the results of Appendix 3.

Proposition 4 Let SN−1 :=
√

2
N

(
sin jkπ

N

)N−1

j,k=1
and dzeroN−1 :=

(
4 sin2 kπ

2N

)N−1
k=1 . Then the inverse of the matrix λATA + 1

τ
I

is given by

(
I −X−1Y
0 I

)(
X−1 0
0 S−1

)(
I 0

−Y TX−1 I

)

,

where
(i) for mirror boundary conditions

Y = DT
P ⊗ DN ,

X−1 = IP ⊗ SN−1diag(λN
2dzeroN−1 + 1

τ
)−1SN−1,

S−1 = (SP−1 ⊗ CT
N )diag

(
λP2dzeroP−1

⊗ (1 + τλN 2dmirr
N )−1 + 1

τ

)
(SP−1 ⊗ CN ),

(ii) for periodic boundary conditions

Y = DT
P ⊗ Dper

N ,

X−1 = IP ⊗ FNdiag(λN
2dperN + 1

τ
)−1 F̄N ,

S−1 = (SP−1 ⊗ FN )diag
(
λP2dzeroP−1

⊗(1 + τλN 2dperN )−1 + 1
τ

)−1
(SP−1 ⊗ F̄N ).

The proof is given in Appendix 3.

4.4 Proximal Map of Jp

Step 2 of Algorithm 1 consists of an evaluation of the
proximal map prox 1

σ
Jp

of Jp. This can be done using the
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proximalmap proxJ∗
p
of J ∗

p andMoreau’s identity proxφ(t)+
proxφ∗(t) = t . Therefore, we state in the following first the
dual function J ∗

p .

Lemma 1 For p ∈ (1,+∞) and 1
p + 1

q = 1 we have

J ∗
p (a, b) =

{
0 if (a, b) ∈ Kp,

+∞ otherwise,

where

Kp :=
{
(a, b) ∈ R

d × R : 1
q |a|q + b ≤ 0

}
.

For the proof we refer to [31] or [43, Lemma 5.17]. After
this preparation we are now able to compute prox 1

σ
Jp
.

Proposition 5 Let p ∈ (1, 2] and 1
p + 1

q = 1.

(i) Then for x∗ ∈ R
d , y∗ ∈ R and σ > 0 it holds

prox 1
σ
Jp

(x∗, y∗)

=
{

(0, 0) if (σ x∗, σ y∗) ∈ Kp,(
x∗ h(ẑ)

1+h(ẑ) , y
∗ + 1

σq ẑ
q
)
otherwise,

where

h(z) := (σ y∗ + 1
q z

q)zq−2

and ẑ ∈ R≥0 is the unique solution of the equation

z (1 + h(z)) − σ |x∗| = 0 (17)

in the interval
[
max(0, z0)

1
q ,+∞)

, where z0 :=−qσ y∗.
(ii) The Newton method converges for any starting point z ≥

z0 quadratically to the largest zero of (17).

Proof (i) By Moreau’s identity it holds

proxφ(t) + proxφ∗(t) = t

and since ( 1
σ
φ)∗(t) = 1

σ
φ∗(σ t) we conclude

(x̂, ŷ) = prox 1
σ
Jp

(x∗, y∗)

= (x∗, y∗) − 1

σ
proxσ J∗

p
(σ x∗, σ y∗), (18)

where prox 1
σ
J∗
p

= proxJ∗
p
since J ∗

p is an indicator function.

Note that by definition of Jp we have that ŷ ≥ 0 and ŷ = 0

Fig. 4 Projection onto the graph of the function φ(x) = − 1
q |x |q for

q = 3 (Color figure online)

only if |x̂ | = 0. Now, proxJ∗
p
(σ x∗, σ y∗) is the orthogonal

projection of (σ x∗, σ y∗) onto the set Kp (we could also
compute the epigraphical projection of (σ x∗, σ y∗) onto the
epigraph of φ(x) = 1

q |x |q and reflect y, see also Fig. 4).
If (σ x∗, σ y∗)∈Kp, then proxJ∗

p
(σ x∗, σ y∗)=(σ x∗, σ y∗)

and (x̂, ŷ) = (0, 0). So let (σ x∗, σ y∗) /∈ Kp, that means

σ y∗ + 1
q |σ x∗|q > 0.

The tangent plane of the boundary of Kp in (x, y) =
(x,− 1

q |x |q) is spanned by the vectors (eTi ,−|x |q−2xi )T,

i = 1, . . . , d, where ei ∈ R
d denotes the i-th canonical

unit vector. Hence, the projection (x, y) is determined by
y = − 1

q |x |q and

0 =
〈(

σ x∗
σ y∗

)

−
(
x
y

)

,

(
ei

−|x |q−2xi

)〉

= σ x∗
i − xi − (σ y∗ − y)|x |q−2xi , i = 1, . . . , d

so that

xi = σ x∗
i

1 + h(|x |) , i = 1, . . . , d.

Summing over the squares of the last equations gives

|x |2 = |x∗|2 σ 2

(1 + h(|x |))2 .

Since a solution has to fulfill

ŷ = y∗ − 1
σ
y = y∗ + 1

qσ
|x |q = σh(|x |)|x |2−q > 0,
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Fig. 5 Dynamic optimal transport between a red Gaussian and a blue one by the constrained model (9) with different boundary conditions for the
third (RGB) dimension. The initial and final images have the same mass. Top mirror boundary conditions, bottom periodic boundary conditions
(Color figure online)

it remains to search for the solutions with h(|x |) > 0. Now,
h(z) > 0 is fulfilled for z > 0 if and only if

σ y∗ + 1
q z

q > 0, (19)

which is the case if and only if z > z0 := max(0,−qσ y∗)
1
q .

Then z := |x | has to satisfy the equation

z (1 + h(z)) = σ |x∗|.

The function

ϕ(z) := z (1 + h(z)) − σ |x∗|

has exactly one zero in [z0,+∞). Indeed, by definition of
z0 and (19) we see that ϕ(z0) ≤ 0, but on the other hand we
have ϕ(z) → +∞ as z → +∞, so that ϕ has at least a zero
in [z0,+∞). Since q ≥ 2 for p ≤ 2 we have for

h′(z) = z2q−3 + (q − 2)
(
σ y∗ + 1

q
zq
)
zq−3 > 0, z > z0.

Hence h and then also ϕ is strictly monotone increasing for
z > z0. Therefore ϕ has at most one zero in [z0,+∞).
Finally, the assertion follows by plugging in (x, y) in (18).

(ii) Straightforward computation gives

h′′(z) = (3q − 5)z2q−4 + (q−2)(q− 3)(σ y∗+ 1
q z

q)zq−4,

ϕ′(z) = 1 + h(z) + zh′(z),
ϕ′′(z) = 2h′(z) + zh′′(z)

= 3(q−1)z2q−3+(q−1)(q−2)(σ y∗+ 1
q zq )zq−3>0, z>z0.

Since ϕ is monotone increasing and strictly convex for
z ≥ z0, the Newton method converges for any starting point
z ≥ z0 quadratically. ��

5 Numerical Results

In the following we provide several numerical examples. In
all cases we used P = 32 time steps and 2000 iterations in
Algorithms 1 and 2, respectively. The parameters σ and τ

were set to σ = 50 and τ = 0.99
σ

, so that στ < 1, which
guarantees the convergence of the algorithms. Of course, the
algorithms do not use tensor products, but relations such as
that stated in (26) and their higher dimensional versions. The
algorithms were implemented in Matlab and the computa-
tions were performed on a Dell computer with an Intel Core
i7, 2.93Ghz and 8GB of RAM usingMatlab 2014, Version
2014b on Ubuntu 14.04 LTS. Exemplary, the run time for
100× 100 color images and 32 time steps varies between 10
and 15minutes for the constrained and the penalizedmethod,
depending on the parameter choices for p, σ, τ , and λ. In
our current implementation of the penalized method the fast
transform approach is nearly as time consuming as the iter-
ative solution of the linear system of equations with the CG
method and an adequate initialization. If not explicitly stated
otherwise, the results are displayed for p = 2, in which case
the computation of the zeros in (17) slightly simplifies.

With our first experiments we illustrate the difference
betweenmirror and periodic boundary conditions in the color
dimension, where at this point that the initial and the final
images have the same mass. The images are displayed at
intermediate timepoints t = i

8 ,where i = 0, . . . , 8. In Fig. 5,
the transport of a red Gaussian into a blue one is shown,
either with mirror or with periodic boundary conditions in
the color dimension. Figure 61 depicts the transport between
two real images of polar lights. In order to have the equal
mass constraint fulfilled, we first normalized both images to
mass 1 and afterwards multiplied them with a common fac-
tor such that both images have realistic colors. Of course,
this procedure works only if the initial and the final image

1 Images from Wikimedia Commons: AGOModra_aurora.jpg
by Comenius University under CC BY SA 3.0, Aurora-
borealis_andoya.jpg by M. Buschmann under CC BY 3.0.
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Fig. 6 Dynamic optimal transport between two polar lights by the constrained model (9) with different boundary conditions for the third (RGB)
dimension. The initial and final images have the same mass. Top mirror boundary conditions, bottom periodic boundary conditions (Color figure
online)

Fig. 7 Example for different color transitions obtained with the con-
strained model (9) and periodic boundary conditions (first and fourth
row), where the initial and final color images have the same mass. The

second and fifth row show the corresponding intensity images, while
the third and sixth row give the results obtained using two-dimensional
transport of the initial and the final intensity images (Color figure online)

share approximately the same mass. In both cases the use of
periodic boundary conditions yields more realistic results.

Further examples of the constrained model (9) for several
Gaussians and real images are given in Figs. 7 and 82. The

2 Images fromWikimediaCommons:Europe_satellite_orthographic.jpg
and Earthlights_2002.jpg by NASA, Köhlbrandbrücke5478.jpg by
G. Ries under CC BY SA 2.5, Köhlbrandbrücke.jpg by HafenCity1
under CC BY 3.0.

first row in Fig. 7 shows the transport of a red and a yellow
Gaussian into a cyan and a blue Gaussian. The red and the
blue Gaussian are spatially more extended compared to the
yellow and the cyan one, but due to the fact that yellow and
cyan have higher intensities, the masses of the red and blue
Gaussians are approximately the same as those of the yellow
respective the cyan ones. This results in a very low inter-
action between the Gaussians during the transport, which is
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Fig. 8 Dynamic optimal transport between RGB images by the constrained model (9) with periodic boundary conditions. The initial and final
images have the same mass (Color figure online)

Fig. 9 Example for different color and shape transitions by the constrained model (9) with periodic boundary conditions. The initial and final
images do not have the same mass (Color figure online)

sightly visible in the background.Mainly, the red Gaussian is
transported via a light red into cyan and the yellow Gaussian
is transported over violet to blue. The next row displays the
intensity of the transported color images 1

3 (R + G + B),
in contrast to the (two-dimensional) transported intensity
images in the third row. One sees slight differences which
arise due to the fact that the small mass difference can be
transported only spatially and not through the color chan-
nels.

The experiment is repeated in the fourth until sixth row,
but this time the yellow and the cyan Gaussian are spa-
tially more extended, thus having a significantly higher mass
compared to the red respective the blueGaussian. As a conse-
quence, the interaction during the transport is higher, which
is also clearly visible in the corresponding intensity images
(fifth row). The color of the red Gaussian is transported sim-
ilar as before, while the yellow Gaussian splits into two
parts, one of them changing (as before) over violet to blue,
while the other one goes over a light green to cyan. Fur-
ther, as the Gaussians do not only travel in space, but also in
color direction, the results are slightly smoother compared

to the two-dimensional intensity transport, shown in the last
row.

Also for the real images, we assume that the images
have the same mass. Indeed, the initial and final images had
approximately the same overall sum of values, so that our
normalization had no significant effect. In the first row of
Fig. 8, a topographic map of Europe is transported into a
satellite image of Europe at night. The second row displays
the transport between two images of the Köhlbrandbrücke in
Hamburg. In both cases one nicely sees a continuous change
of color and shape during the transport.

In Fig. 9 we give further examples for the transport of
several Gaussians which may have different shapes in order
to illustrate the transport of color and shape. Here, the ini-
tial and final images have different masses. The first row
shows the transport of a yellow and a red Gaussian placed
at the top of the image into a green and a blue Gaussian
placed at the bottom. At this point, the yellow and the blue
Gaussian are slightly more spatially extended compared to
the red respective the green one. The red Gaussian changes
over violet to blue. The yellow Gaussian, however, splits
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Fig. 10 Comparison of our constrained model (9) with periodic boundary conditions with the approach in [41] for microtextures and the polar
lights. In both cases, our RGB model is on top of the series and microtexture model is at the bottom (Color figure online)

into two parts. While the main part is transported to green,
a small part is separated and changes over orange to blue. In
the second row, again a red and a yellow Gaussian are trans-
ported from the top into a green and a blue Gaussian at the
bottom, but this time the yellow and the green Gaussian are
spatially more extended. Additionally, the Gaussians are no
longer isotropic but have an ellipsoidal shape. In this case,
additionally to the color also the shape changes continuously
during time. Finally, the third row displays the transport of a
white Gaussian into a yellow one. It shows that there appears
no artificial color during the transport, but the color transi-
tion proceeds as one may expect when looking at the RGB
cube.

Nextwe compare our approachwith the approach ofRabin
et al. [41] for microtextures, which is to the best of our
knowledge the only approach that extends the dynamic opti-
mal transport problem to a special class of color images.
Note, however, that their approach is completely differ-
ent from ours and works only for microtextures. At this
point, microtextures are textures that fulfill the assumption
of being robust towards phase randomization, in contrast
to macrotextures, which usually contain periodic patterns
with big visible elements (such as brick walls) or—more
generally—the elements that form the texture pattern are
spatially arranged, see e.g., [29]. Based on the fact that
microtextures can be well modeled as multivariate Gaussian
distributions, the authors of [41] propose to compute geo-
desics with respect to the Wasserstein distance W2 between
the Gaussian distributions that are estimated from the input
textures f0 and f1. This approach has the advantage that

there exist closed-form solutions for the dynamic optimal
transport between Gaussian measures. However, it is lim-
ited to the special class of microtextures, as natural images
are not robust towards a randomization of their Fourier
phase. In Fig. 10 we compare the results of our approach
with the one for microtextures. In the case of microtex-
tures both approaches yield similar results. Note that the
approach of Rabin et al. [41] may fail for images which
are orthogonal at some frequencies in Fourier domain. The
second example demonstrates that the microtexture tech-
nique [41] fails for natural images which possess contours
and edges.

Next,we turn to the penalizedmodel (10). Figure 11 shows
the influence of the regularization parameter λ when trans-
porting a red Gaussian into a yellow one. Here, the initial and
the final image have significantly different mass. The images
are displayed at intermediate timepoints t = i

8 , i = 0, . . . , 8.
The results change for increasing λ from a nearly linear inter-
polation of the images to a transport of the mass. Further, for
large λ the results approach the one obtained with the con-
strained model (9), which is reasonable.

Finally, we consider the influence of the parameter p ∈
(1, 2]. The corresponding results for our penalized mo-
del (10) are given in Figs. 12 and 13. In all our experiments
we observed only rather small differences. Note however
that in [16] Wasserstein barycenters were considered for
p = 1, 2, 3 which show significant differences.

Further examples and videos, in particular for real images,
can be found on our website http://www.mathematik.uni-kl.
de/imagepro/members/laus/color-OT.
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Fig. 11 Comparison of penalized and constrained color optimal transport (from top to bottom) penalized optimal transport for different regular-
ization parameters λ ∈ {0.1, 1, 10, 100} and constrained optimal transport (Color figure online)

Fig. 12 Dynamic optimal transport of RGB images using the penalized model (10) with periodic boundary conditions. Comparison of p = 2 (top)
and p = 1.5 (bottom) for λ = 1. The images are displayed at intermediate timepoints t = i

4 , i = 0, . . . , 4 (Color figure online)

Fig. 13 Dynamic optimal transport of RGB images using the penalized model (10) with periodic boundary conditions and λ = 1 for p = 2 and
p = 1.5. From left to right initial images f0, f1, result for p = 2 and p = 1.5 at time t = 0.5 and the absolute difference between the two results
(Color figure online)
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6 Summary and Conclusions

Our contribution can be summarized as follows:

(i) We propose two discrete variational models for the
interpolation of RGB color images based on the
dynamic optimal transport approach. To this end, we
consider color images as three-dimensional objects,
where the “RGB direction” is handled in a periodic
way. We focus on a discrete matrix–vector approach.

(ii) Our first model relaxes the continuity constraint so that
a transport between images of different mass is possi-
ble,while the secondmodel allows evenmoreflexibility
by just penalizing the continuity constraint with differ-
ent regularization parameters.

(iii) We provided an existence proof and a brief discussion
on the uniqueness of the minimizer.

(iv) Interestingly, the step in the chosen primal-dual algo-
rithmwhich takes the continuity constraint into account
requires the solution of four-dimensional Poisson equa-
tions with simultaneous mirror/periodic (constrained
model) or zero/mirror/periodic boundary conditions
(penalized model). Here, fast sine, cosine, and Fourier
transforms come into the play.

(v) We consider the case p ∈ (1, 2] and give a careful
analysis of the proximal mapping of Jp, p ∈ (1, 2].
This includes the determination of a starting point for
the Newton algorithm to ensure its quadratic conver-
gence and a stable performanceof the overall algorithm.

(vi) We show numerous numerical examples.

There are several directions for future work.

(1) One possibility is to add several additional priors. So
far, the present model has difficulties to transfer sharp
contours. A remedy could be the penalization of a total
variation (TV) term with respect to f , which results for
some γ > 0 in the functional

argmin
(m, f )∈C

{‖Jp(Smm, Sf f + f +)‖1 + γTV( f )
}
. (20)

In the following we use a spatial TV term, summed over
time, i.e., in one dimension

TV( f ) = ‖(IP ⊗ DT
N ) f ‖1.

Figure 14 shows the performance of such a model in
the one-dimensional case. Here, the approach without
the TV term leads to some overshooting and blurring at
the edges. With the TV term the transport takes place
in a more natural way, in particular the sharp edges are
preserved.
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Fig. 14 Transport of a one-dimensional signal with sharp edges using
a TV-penalized functional (20) (top), where γ = 0.03 and the result
without TV regularization (bottom)

For the one-dimensional example this works well. How-
ever, in higher dimensions one has to be more careful.
In Fig. 15a comparison of an isotropic and an aniso-
tropic TV regularizer is shown. The isotropic one leads,
as could be expected, to a rounding of the corners. The
anisotropic regularizer prefers horizontal and vertical
edges. In this way, the shape of the object is preserved
during the transport. Note that due to the smeared bound-
ary the square appears to be smaller. To preserve the
shape of arbitrary transported objects, one would have
to adjust the regularizer according to the direction of the
edges.
The idea of penalizing TV terms for the transport can
be found for gray-value images, e.g., in [12,33]. For
image denoising a Wasserstein-TV model was success-
fully applied in [9,13,47].

(2) Using a barycentric approach the interpolation of micro-
textures in [41] works also between more than two
images. So far this task cannot be handled via the
dynamic optimal transport approach. One idea might it
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Fig. 15 Transport of a two-dimensional square with sharp edges using a TV-penalized functional, where γ = 0.05. First row isotropic TV, second
row anisotropic TV, third row no TV regularization (Color figure online)

be to formulate a dynamic barycenter optimal transport
problem or to use a multimarginal model, see e.g., Sec-
tion 1.4.7. in [43] and the references therein.
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Appendix 1:Diagonalization of StructuredMatrices

In the following we collect known facts on the eigenvalue
decomposition of various difference matrices. For further
information we refer, e.g., to [39,46]. The following matri-
ces Fn ,Cn and Sn are unitary, resp., orthogonal matrices. The
Fourier matrix

Fn :=
√

1
n

(
e

−2π i jk
n

)n

j,k=0

diagonalizes circulant matrices, i.e., for a := (a j )
n−1
j=0 ∈ R

n

we have
⎛

⎜
⎜
⎜
⎝

a0 an−1 . . . a1
a1 a0 . . . a2
...

. . .
...

an−1 a1 . . . a0

⎞

⎟
⎟
⎟
⎠

= F̄ndiag(
√
nFna)Fn

= Fndiag(
√
n F̄na)F̄n . (21)

In particular it holds

Δ
per
n := 1

n2
(Dper

n )TDper
n = 1

n2
Dper
n (Dper

n )T

=

⎛

⎜
⎜
⎝

2 −1 −1
−1 2 −1

. . .

−1 2 −1
−1 −1 2

⎞

⎟
⎟
⎠ = F̄ndiag(d

per
n )Fn (22)

with dpern := (
4 sin2 kπ

n

)n−1
k=0. The operator Δ

per
n typically

appears when solving the one-dimensional Poisson equation
with periodic boundary conditions by finite difference meth-
ods.

The DST-I matrix

Sn−1 :=
√

2
n

(

sin
jkπ

n

)n−1

j,k=1
,

and the DCT-II matrix

Cn :=
√

2
n

(

ε j cos
j (2k + 1)π

2n

)n−1

j,k=0
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with ε0 := 1/
√
2 and ε j := 1, j = 1, . . . , n − 1 are related

by

Dn = Sn−1

(
0 | diag(dzeron−1)

1
2

)
Cn, (23)

where dzeron−1 := (
4 sin2 kπ

2n

)n−1
k=1. Further they diagonalize

sums of certain symmetric Toeplitz and persymmetric Han-
kel matrices. In particular it holds

Δzero
n−1 := 1

n2
DnD

T
n

=

⎛

⎜
⎜
⎝

2 −1 0
−1 2 −1

. . .

−1 2 −1
0 −1 2

⎞

⎟
⎟
⎠

= Sn−1diag(d
zero
n−1)Sn−1 (24)

and

Δmirr
n := 1

n2
DT
nDn

=

⎛

⎜
⎜
⎝

1 −1 0
−1 2 −1

. . .

−1 2 −1
0 −1 1

⎞

⎟
⎟
⎠ = CT

ndiag(d
mirr
n )Cn (25)

with dmirr
n :=

(
0

dzeron−1

)

=
(
4 sin2 jπ

2n

)n−1

j=0
. The operators

Δzero
n−1 andΔmirr

n are related to the Poisson equation with zero
boundary conditions andmirror boundary conditions, respec-
tively.

Appendix 2: Computation with Tensor Products

The tensor product (Kronecker product) of matrices

A =
⎛

⎜
⎝

a1,1 · · · a1,n
... · · · ...

am,1 · · · am,n

⎞

⎟
⎠ ∈ C

m,n

and

B =
⎛

⎜
⎝

b1,1 · · · b1,t
... · · · ...

bs,1 · · · bs,t

⎞

⎟
⎠ ∈ C

s,t

is defined by

A ⊗ B :=
⎛

⎜
⎝

a1,1B · · · a1,n B
...

. . .
...

am,1B · · · am,n B

⎞

⎟
⎠ ∈ C

ms,nt .

The tensor product is associative and distributivewith respect
to the addition of matrices.

Lemma 2 (Properties of Tensor Products)

(i) (A ⊗ B)T = AT ⊗ BT for A ∈ C
m,n, B ∈ C

s,t .
Let A,C ∈ C

m,m and B, D ∈ C
n,n. Then the following

holds:
(ii) (A ⊗ B)(C ⊗ D) = AC ⊗ BD for A,C ∈ C

m,m and
B, D ∈ C

n,n.
(iii) If A and B are invertible, then A⊗ B is also invertible

and

(A ⊗ B)−1 = A−1 ⊗ B−1 .

The tensor product is needed to establish the connection
between images and their vectorized versions, i.e., we con-
sider images F ∈ R

n1×n2 columnwise reshaped as

f := vec(F) ∈ R
n1n2 .

Then the following relation holds true:

vec(AFBT) = (B ⊗ A) f. (26)

Appendix 3: Proofs and Generalization of the Ten-
sor Product Approach to 3D

Proof of Proposition 3 By definition of A and using (25),
(22), we obtain for periodic boundary conditions

AAT = IP ⊗ (
Dper

N

)T
Dper

N + DT
P DP ⊗ IN

= IP ⊗ N 2Δ
per
N + P2Δmirr

P ⊗ IN

=
(
CT

P ⊗ F̄N

)
diag

(
IP ⊗ N 2dperN

+ P2dmirr
P ⊗ IN

) (
CP ⊗ FN

)
.

Similarly we get with (25) for mirror boundary conditions

AAT = IP ⊗ DT
N−1DN−1 + DT

P DP ⊗ IN−1

= IP ⊗ N 2Δmirr
N−1 + P2Δmirr

P ⊗ IN−1

=
(
CT

P ⊗ CT
N−1

)
diag

(
IP ⊗ N 2dmirr

N−1

+ P2dmirr
N−1 ⊗ IN−1

)(
CP ⊗ CN−1

)

which finishes the proof. ��
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Proof of Proposition 4 By definition of A we obtain

λATA + 1
τ
I =

(
λDT

mDm + 1
τ
I λDT

mDf

λDT
f Dm λDT

f Df + 1
τ
I

)

=:
(

X Y
Y T Z

)

so that the inverse can be written by the help of the Schur
complement

S := Z − Y TX−1Y

as

(
X Y
Y T Z

)−1

=
(
I −X−1Y
0 I

)(
X−1 0
0 S−1

)(
I 0
−Y TX−1 I

)

.

By (22) and (24) we have with D ∈ {Dper
N , DN } that

X−1 = (
λDT

mDm + 1
τ
I
)−1 =

(
IP ⊗ λN 2DDT + 1

τ
I
)−1

= IP ⊗ (λN 2DDT + 1
τ
I )−1

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

IP ⊗ SN−1diag(λN 2dzeroN−1 + 1
τ
)−1SN−1

mirror boundary,

IP ⊗ FNdiag(λN 2dperN + 1
τ
)−1 F̄N

periodic boundary.

The Schur complement reads as

S =
(
λDT

f Df + 1
τ
I
)

− λ2DT
f DmX−1DT

mDf

=
(
λDPD

T
P ⊗ IN + 1

τ
I
)

− λ2
(
DP ⊗ DT

)(
IP ⊗

(
λN 2DDT + 1

τ
I
)−1)

(
DT

P ⊗ D
)

=
(
λDPD

T
P ⊗ IN + 1

τ
I
)

− λ2
(
DPD

T
P ⊗ DT

(
λDDT + 1

τ
IN
)−1

D
)

= λDPD
T
P ⊗

(
IN − λDT

(
λDDT + 1

τ
IN
)−1

D
)

+ 1

τ
I.

By (21) we have

(
Dper

N

)T = NFNdiag
(

− 1 + e+2π ik/N
)

k
F̄N

and

Dper
N = NFNdiag

(
− 1 + e−2π ik/N

)

k
F̄N

so that we obtain for periodic boundary boundary conditions

IN − λ
(
Dper

N

)T(
λDper

N

(
Dper

N

)T + 1
τ
IN
)−1

Dper
N

= FNdiag
(
1 + τ 1

λN2 d
per
N

)−1
F̄N .

Therewith it follows with (24)

S = SP−1diag
(
λP2dzeroP−1

)
SP−1

⊗ FNdiag
(
1 + τ 1

λN2 d
per
N

)−1
F̄N + 1

τ
I

=
(
SP−1 ⊗ FN

)
diag

(
λP2dzeroP−1

⊗
(
1 + τ 1

λN2 d
per
N

)−1 + 1
τ

)(
SP−1 ⊗ F̄N

)

which yields the assertion for S−1 in the periodic case.
For mirror boundary conditions we compute using (23)

S =
(
SP−1 ⊗ CT

N

)
diag

(
λP2dzeroP−1

⊗
(
1 + τ 1

λN2 d
mirr
N

)−1 + 1
τ

)(
SP−1 ⊗ CN

)

and inverting this matrix finishes the proof. ��
Discretization for three spatial dimensions + time For RGB
images of size N1×N2×N3, where N3 = 3, we have towork
in three spatial dimensions. Setting N := (N1, N2, N3), j :=
( j1, j2, j3) and defining the quotient j

N componentwise we
obtain

• fi =
(

fi
(

j−1/2
N

))N

j=(1,1,1)
∈ R

N1,N2,N3 , i = 0, 1,

• f =
(

f
(

j−1/2
N , k

P

))N ,P−1

j=(1,1,1),k=1
∈ R

N1,N2,3,P−1,

• m = (m1,m2,m3), with

(

m1

(
j1
N1

,
j2−1/2
N2

,
j3−1/2

3 ,
k−1/2

P

))N1−1,N2,3,P

j1=1, j2=1, j3=1,k=1

∈ R
N1−1,N2,3,P ,

(

m2

(
j1−1/2
N1

,
j2
N2

,
j3−1/2

3 ,
k−1/2

P

))N1,N2−1,3,P

j1=1, j2=1, j3=1,k=1

∈ R
N1,N2−1,3,P ,

(

m3

(
j1−1/2
N1

,
j2−1/2
N2

,
j3
3 ,

k−1/2
P

))N1,N2,2,P

j1=1, j2=1, j3=0,k=1

∈ R
N1,N2,3,P .

In the definition of m we take the periodic boundary for the
third spatial direction into account. Analogously as in the
one-dimensional case, when reshaping m and f into long
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vectors, the interpolation and differentiation operators can be
written using tensor products. For the interpolation operator
we have

Smm =
⎛

⎝
(IP ⊗ I3 ⊗ IN2 ⊗ ST

N1
)m1

(IP ⊗ I3 ⊗ ST
N2

⊗ IN1)m2

(IP ⊗ ST
3 ⊗ IN2 ⊗ IN1)m3

⎞

⎠

and

Sf f =
(
ST
P ⊗ I3 ⊗ IN2 ⊗ IN1

)
f,

which means, that Smm computes the average of mi with
respect to the i-th coordinate, i = 1, 2, 3, and Sf f computes
the average of f with respect to the time variable. Similarly
we generalize the difference operator. Then, reordering f and
m into large vectors, the matrix form of the operator A is

A =
(
IP ⊗ I3 ⊗ IN2 ⊗ DT

N1

∣
∣
∣ IP ⊗ I3 ⊗ DT

N2
⊗ IN1

∣
∣
∣

IP ⊗ (Dper
3 )T ⊗ IN2 ⊗ IN1

∣
∣
∣ DP ⊗ I3 ⊗ IN2 ⊗ IN1

)

so that AAT reads as

AAT = IP ⊗ I3 ⊗ IN2 ⊗ DT
N1
DN1

+ IP ⊗ I3 ⊗ DT
N2
DN2 ⊗ IN1

+ IP ⊗ (Dper
3 )T(Dper

3 ) ⊗ IN2 ⊗ IN1

+ DT
P DP ⊗ I3 ⊗ IN2 ⊗ IN1

= (
CT

P ⊗ F̄3 ⊗ CT
N2−1 ⊗ CT

N1−1

)
diag(d)

(
CP ⊗ F3 ⊗ CN2−1 ⊗ CN1−1

)
,

where

d := I3P(N2−1) ⊗ N 2
1 diag

(
dmirr
N1−1

)

+ I3P ⊗ N2
2diag

(
dmirr
N2−1

)
⊗ IN1−1

+ IP ⊗ 32diag
(
dper3

)
⊗ I(N2−1)(N1−1)

+ P2diag
(
dmirr
P

)
⊗ I3P(N2−1)(N1−1).

For the three-dimensional spatial setting we have to solve
a four-dimensional Poisson equation, which can be handled
separately in each dimension. For the constrained problem,
this can be computed using fast cosine andFourier transforms
with a complexity of O(N1N2P log(N1N2P)).
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