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Abstract The reconstruction of a 3D object or a scene is a
classical inverse problem in Computer Vision. In the case of
a single image this is called the Shape-from-Shading (SfS)
problem and it is known to be ill-posed even in a simplified
version like the vertical light source case. A huge number of
works deals with the orthographic SfS problem based on the
Lambertian reflectance model, the most common and sim-
plest model which leads to an eikonal-type equation when
the light source is on the vertical axis. In this paper, we
want to study non-Lambertian models since they are more
realistic and suitable whenever one has to deal with differ-
ent kind of surfaces, rough or specular. We will present a
unified mathematical formulation of some popular ortho-
graphic non-Lambertian models, considering vertical and
oblique light directions as well as different viewer positions.
These models lead to more complex stationary non-linear
partial differential equations of Hamilton–Jacobi type which
can be regarded as the generalization of the classical eikonal
equation corresponding to the Lambertian case. However, all
the equations corresponding to the models considered here
(Oren–Nayar and Phong) have a similar structure so we can
look for weak solutions to this class in the viscosity solu-
tion framework. Via this unified approach, we are able to
develop a semi-Lagrangian approximation scheme for the
Oren–Nayar and the Phong model and to prove a general
convergence result. Numerical simulations on synthetic and
real images will illustrate the effectiveness of this approach
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and the main features of the scheme, also comparing the
results with previous results in the literature.
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1 Introduction

The 3D reconstruction of an object starting from one or
more images is a very interesting inverse problem with many
applications. In fact, this problem appears in various fields
which range from the digitization of curved documents [15]
to the reconstruction of archaeological artifacts [24]. More
recently, other applications have been considered in astron-
omy to obtain a characterization of properties of planets and
other astronomical entities [27,41,66] and in security where
the same problem has been applied to the facial recognition
of individuals.

In real applications, several light sources can appear in
the environment and the object surfaces represented in the
scene can have different reflection properties because they
are made by different materials, so it would be hard to imag-
ine a scene which can satisfy the classical assumptions of the
3D reconstruction models. In particular, the typical Lam-
bertian assumption often used in the literature has to be
weakened. Moreover, despite the fact that the formulation of
the Shape-from-Shading problem is rather simple for a single
light source and under Lambertian assumptions, its solution
is hard and requires rather technicalmathematical tools as the
use of weak solutions to non-linear partial differential equa-
tions (PDEs). From the numerical point of view, the accurate
approximation of non-regular solutions to these non-linear
PDEs is still a challenging problem. In this paper, we want
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to make a step forward in the direction of a mathematical
formulation of non-Lambertian models in the case of ortho-
graphic projection with a single light source located far from
the surface. In this simplified framework,we present a unified
approach to two popularmodels for non-Lambertian surfaces
proposed by Oren–Nayar [47–50] and by Phong [51]. We
will consider light sources placed in oblique directions with
respect to the surface and we will use that unified formula-
tion to develop a general numerical approximation scheme
which is able to solve the corresponding non-linear partial
differential equations arising in the mathematical description
of these models.

To better understand the contribution of this paper, let us
start from the classical SfS problem where the goal is to
reconstruct the surface from a single image. In mathemat-
ical terms, given the shading informations contained in a
single two-dimensional gray level digital image I (x), where
x := (x, y), we look for a surface z = u(x) that corresponds
to its shape (hence the name Shape from Shading). This prob-
lem is described in general by the image irradiance equation
introduced by Bruss [8]

I (x) = R (N(x)) , (1)

where the normalized brightness of the given gray-value
image I (x) is put in relation with the function R(N(x)) that
represents the reflectance map giving the value of the light
reflection on the surface as a function of its orientation (i.e.,
of the normal N(x)) at each point (x, u(x)). Depending on
how we describe the function R, different reflection models
are determined. In the literature, the most common represen-
tation of R is based on the Lambertian model (the L-model in
the sequel) which takes into account only the angle between
the outgoing normal to the surface N(x) and the light source
ω, that is

I (x) = γD(x)N(x) · ω, (2)

where · denotes the standard scalar product between vec-
tors and γD(x) indicates the diffuse albedo, i.e., the diffuse
reflectivity or reflecting power of a surface. It is the ratio of
reflected radiation from the surface to incident radiance upon
it. Its dimensionless nature is expressed as a percentage and
it is measured on a scale from zero for no reflection of a
perfectly black surface to 1 for perfect reflection of a white
surface. The data are the gray-value image I (x), the direc-
tion of the light source represented by the unit vector ω and
the albedo γD(x). The light source ω is a unit vector, hence
|ω| = 1. In the simple case of a vertical light source, that is
when the light source is in the direction of the vertical axis,
this gives rise to an eikonal equation. Several questions arise,
even in the simple case: Is a single image sufficient to deter-
mine the surface? If not, which set of additional informations

is necessary to have uniqueness? How can we compute an
approximate solution? Is the approximation accurate? It is
well known that for Lambertian surfaces there is no unique-
ness and other informations are necessary to select a unique
surface (e.g., the height at each point of local maximum for
I (x)). However, rather accurate schemes for the classical
eikonal equation are now available for the approximation.
Despite its simplicity, the Lambertian assumption is very
strong and does not match with many real situations that is
why we consider in this paper some non-Lambertian models
trying to give a unified mathematical formulation for these
models.

In order to set this paper into a mathematical perspective,
we should mention that the pioneering work of Horn [28,29]
and his activity with his collaborators at MIT [30,31] pro-
duced the first formulation of the SfS problem via a PDE
and a variational problem. These works have inspired many
other contributions in this research area as one can see look-
ing at the extensive list of references in the two surveys
[19,85]. Several approaches have been proposed, we can
group them in two big classes (see the surveys [19,85]):
methods based on the resolution of PDEs and optimiza-
tion methods based on a variational approximation. In the
first group the unknown is directly the height of the surface
z = u(x), one can find here rather old papers based on the
method of characteristics [6,17,29,38,45,46,60] where one
typically looks for classical solutions. More recently, other
contributionswere developed in the framework ofweak solu-
tions in the viscosity sense starting from the seminal paper
by Rouy and Tourin [61] and, one year later, by Lions–Rouy
and Tourin [40] (see e.g., [4,9–11,22,23,33,36,53,56,62]).
The second group contains the contribution based on min-
imization methods for the variational problem where the
unknown are the partial derivatives of the surface, p = ux
and q = uy (the so-called normal vector field. See e.g.,
[7,16,26,30,32,67,68,82]). It is important to note that in this
approach one has to couple the minimization step to com-
pute the normal field with a local reconstruction for u which
is based usually on a path integration. This necessary step
has also been addressed by several authors (see [18] and ref-
erences therein). We should also mention that a continuous
effort has been made by the scientific community to take into
account more realistic reflectance models [2,3,59,76,77],
different scenarios including perspective camera projection
[1,14,44,54,70,75] and/or multiple images of the same
object [83,84]. The images can be taken from the same point
of view but with different light sources as in the photometric
stereo method [37,42,43,69,81] or from different points of
view but with the same light source as in stereo vision [13].
Recent works have considered more complicated scenarios,
e.g., the case when light source is not at the optical center
under perspective camera projection [35]. It is possible to
consider in addition other supplementary issues, as the esti-
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mation of the albedo [5,64,65,86] or of the direction of the
light source that are usually considered known quantities for
the model but in practice are hardly available for real images.
The role of boundary conditions which have to be coupled
with the PDE is also a hard task. Depending on what we
know, the model has to be adapted leading to a calibrated or
uncalibrated problem (see [25,57,83,84] for more details).
In this work we will assume that the albedo and the light
source direction are given.

Regarding the modeling of non-Lambertian surfaces we
also want to mention the important contribution of Ahmed
and Farag [1]. These authors have adopted the modeling
for SfS proposed by Prados and Faugeras [52,55] using a
perspective projection where the light source is assumed
to be located at the optical center of the camera instead at
infinity and the light illumination is attenuated by a term
1/r2 (r represents here the distance between the light source
and the surface). They have derived the Hamilton–Jacobi
(HJ) equation corresponding to the Oren–Nayar model, and
developed an approximation via the Lax–Friedrichs sweep-
ing method. They gave there an experimental evidence that
the non-Lambertianmodel seems to resolve the classical con-
cave/convex ambiguity in the perspective case if one includes
the attenuation term1/r2. In [2] they extended their approach
for various image conditions under orthographic andperspec-
tive projection, comparing their results for the orthographic
L-model shown in [63,85]. Finally, we also want to men-
tion the paper by Ragheb and Hancock [58] where they treat
a non-Lambertian model via a variational approach, inves-
tigating the reflectance models described by Wolff and by
Oren and Nayar [50,79,80].

1.1 Our Contribution

In this paper we will adopt the PDE approach in the frame-
work of weak solutions for Hamilton–Jacobi equations. As
we said, we will focus our attention on a couple of non-
Lambertian reflectance models: the Oren–Nayar and the
Phong models [47–51]. Both models are considered for an
orthographic projection and a single light source at infinity,
so no attenuation term is considered here. We are able to
write the Hamilton–Jacobi equations in the same fixed point
form useful for their analysis and approximation and, using
the exponential change of variable introduced by Kružkov in
[39], we obtain natural upper bound for the solution. More-
over, we propose a semi-Lagrangian approximation scheme
which can be applied to both themodels, prove a convergence
result for our scheme that can be applied to this class of
Hamilton–Jacobi equations, hence to both non-Lambertian
models. Numerical comparisons will show that our approach
is more accurate also for the 3D reconstructions of non-
smooth surfaces.

A similar formulation for the Lambertian SfS problem
with oblique light direction has been studied in [23] and here
is extended to non-Lambertian models. We have reported
some preliminary results just for the Oren–Nayar model in
[72].

1.2 Organization of the Paper

The paper is organized as follows. After a formulation of
the general model presented in Sect. 2, we present the SfS
models starting from the classical Lambertian model (Sect.
3). In Sects. 4 and 5, we will give details on the construction
of the non-linear PDE which corresponds, respectively, to
the Oren–Nayar and the Phong models. Despite the differ-
ences appearing in these non-Lambertian models, we will be
able to present them in a unified framework showing that the
Hamilton–Jacobi equations for all the above models share a
common structure. Moreover, the Hamiltonian appearing in
these equations will always be convex in the gradient ∇u.
Then, in Sect. 6, we will introduce our general approxi-
mation scheme which can be applied to solve this class of
problems. In Sect. 7, we will apply our approximation to a
series of benchmarks based on synthetic and real images. We
will discuss some issues like accuracy, efficiency, and the
capability to obtain the maximal solution showing that the
semi-Lagrangian approximation is rather effective even for
real images where several parameters are unknown. Finally,
in the last sectionwewill give a summary of the contributions
of this work with some final comments and future research
directions.

2 Formulation of the General Model

We fix a camera in a three-dimensional coordinate system
(Oxyz) in such a way that Oxy coincides with the image
plane and Oz with the optical axis. Let ω = (ω1, ω2, ω3) =
(ω̃, ω3) ∈ R

3 (with ω3 > 0) be the unit vector that rep-
resents the direction of the light source (the vector points
from the object surface to the light source); let I (x) be the
function that measures the gray level of the input image at
the point x := (x, y). I (x) is the datum in the model since
it is measured at each pixel of the image, for example in
terms of a gray level (from 0 to 255). In order to construct a
continuous model, we will assume that I (x) takes real val-
ues in the interval [0, 1], defined in a compact domain Ω

called “reconstruction domain” (with Ω ⊂ R
2 open set), I :

Ω → [0, 1], where the points with a value of 0 are the dark
point (blacks), while those with a value of 1 correspond to a
complete reflection of the light (white dots, with a maximum
reflection).
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Fig. 1 An object on a flat background. Ω indicates the region inside
the silhouette, ∂Ω the boundary of it

We consider the following assumptions:

A1 There is a single light source placed at infinity in the
direction ω (the light rays are, therefore, parallel to each
other);

A2 The observer’s eye is placed at an infinite distance from
the object you are looking at (i.e., there is no perspective
deformation);

A3 There are no autoreflections on the surface.

In addition to these assumptions, there are other hypothesis
that depend on the different reflectance models (we will see
them in the description of the individual models).

Being valid the assumption (A2) of orthographic projec-
tion, the visible part of the scene is a graph z = u(x) and the
unit normal to the regular surface at the point corresponding
to x is given by

N(x) = n(x)
|n(x)| =

(− ∇u(x), 1
)

√
1 + |∇u(x)|2 , (3)

where n(x) is the outgoing normal vector.
Weassume that the surface is standingon aflat background

so the height function, which is the unknown of the problem,
will be non-negative, u : Ω → [0,∞). We will denote by
Ω the region inside the silhouette and we will assume (just
for technical reasons) that Ω is an open and bounded subset
of R2 (see Fig. 1). It is well known that the SfS problem is
described by the image irradiance Eq. (1) and depending on
how we describe the function R different reflection models
are determined. We describe below some of them. To this
end, it would be useful to introduce a representation of the
brightness function I (x) where we can distinguish differ-
ent terms representing the contribution of ambient, diffuse
reflected, and specular reflected light. We will write then

I (x) = kA IA(x) + kD ID(x) + kS IS(x), (4)

where IA(x), ID(x), and IS(x) are, respectively, the above-
mentioned components and kA, kD , and kS indicate the

percentages of these components such that their sum is equal
to 1 (we do not consider absorption phenomena). Note that
the diffuse or specular albedo is inside the definition of ID(x)
or IS(x), respectively. In the sequel, we will always consider
I (x) normalized in [0, 1]. This will allow to switch on and
off the different contributions depending on themodel. Let us
note that the ambient light term IA(x) represents light every-
where in a given scene. In the whole paper, we will consider
it as a constant and we will neglect its contribution fixing
kA = 0. Moreover, for all the models presented below we
will suppose uniform diffuse and/or specular albedo and we
will put them equal to 1, that is all the points of the surface
reflect completely the light that hits them.We will omit them
in what follows. As we will see in the following sections, the
intensity of diffusely reflected light in each direction is pro-
portional to the cosine of the angle θi between surface normal
and light source direction, without taking into account the
point of view of the observer, but another diffuse model (the
Oren–Nayar model) will consider it in addition. The amount
of specular reflected light towards the viewer is proportional
to (cos θs)

α , where θs is the angle between the ideal (mir-
ror) reflection direction of the incoming light and the viewer
direction, α being a constant modeling the specularity of the
material. In this way, we have a more general model and,
dropping the ambient and specular component, we retrieve
the Lambertian reflection as a special case.

3 The Lambertian Model (L-model)

For a Lambertian surface, which generates a purely diffuse
model, the specular component does not exist, then in (4) we
have just the diffuse component ID on the right side. Lam-
bertian shading is view independent, hence the irradiance Eq.
(1) becomes

I (x) = N(x) · ω. (5)

Under these assumptions, the orthographic SfS problem con-
sists in determining the function u : Ω → R that satisfies
Eq. (5). The unit vector ω and the function I (x) are the only
quantities known.

For Lambertian surfaces [30,31], just considering an
orthographic projection of the scene, it is possible to model
the SfS problem via a non-linear PDE of the first order
which describes the relation between the surface u(x) (our
unknown) and the brightness function I (x). In fact, recalling
the definition of the unit normal to a graph given in (3), we
can write (5) as

I (x)
√
1 + |∇u(x)|2 + ω̃ · ∇u(x) − ω3 = 0, in Ω (6)

where ω̃ = (ω1, ω2). This is an Hamilton–Jacobi type equa-
tion which does not admit in general a regular solution. It is
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known that the mathematical framework to describe its weak
solutions is the theory of viscosity solutions as in [40].

The Vertical Light Case

If we choose ω = (0, 0, 1), Eq. (6) becomes the so-called
“eikonal equation”:

|∇u(x)| = f (x) for x ∈ Ω, (7)

where

f (x) =
√

1

I (x)2
− 1. (8)

The points x ∈ Ω where I (x) assumes maximum value
correspond to the case in which ω and N(x) have the same
direction: these points are usually called “singular points.”

In order to make the problem well-posed, we need to add
boundary conditions to theEqs. (6) or (7): they can require the
value of the solution u (Dirichlet boundary conditions type),
or the value of its normal derivative (Neumann boundary con-
ditions), or an equation that must be satisfied on the boundary
(the so-called boundary conditions “state constraint”). In this
paper, we consider Dirichlet boundary conditions equal to
zero assuming a surface on a flat background

u(x) = 0, for x ∈ ∂Ω, (9)

but a second possibility of the same type occurs when it is
known the value of u on the boundary, which leads to the
more general condition

u(x) = g(x), for x ∈ ∂Ω. (10)

Unfortunately, adding a boundary condition to the PDE that
describes the SfS model is not enough to obtain a unique
solution because of the concave/convex ambiguity. In fact,
the Dirichlet problem (6)–(10) can have several weak solu-
tions in the viscosity sense and also several classical solutions
due to this ambiguity (see [29]). As an example, all the sur-
faces represented in Fig. 2 are viscosity solutions of the same
problem (7)–(9) which is a particular case of (6)–(10) (in
fact the equation is |u′| = −2x with homogenous Dirichlet
boundary condition). The solution represented in Fig. 2a is
the maximal solution and is smooth. All the non-smooth a.e.
solutions, which can be obtained by a reflection with respect
to a horizontal axis, are still admissible weak solutions (see
Fig. 2b). In this example, the lack of uniqueness of the viscos-
ity solution is due to the existence of a singular point where
the right-hand side of (7) vanishes. An additional effort is
then needed to define which is the preferable solution since
the lack of uniqueness is also a big drawback when trying to
compute a numerical solution. In order to circumvent these

Fig. 2 Illustration of the concave/convex ambiguity. a maximal solu-
tion and b a.e. solutions giving the same image. Figure adapted from
[19]

difficulties, the problem is usually solved by adding some
information such as height at each singular point [40].

For analytical and numerical reasons it is useful to
introduce the exponential Kružkov change of variable [39]
μv(x) = 1− e−μu(x). In fact, setting the problem in the new
variable v we will have values in [0, 1/μ] instead of [0,∞)

as the original variable u so an upper bound will be easy
to find. Note that μ is a free positive parameter which does
not have a specific physical meaning in the SfS problem.
However, it can play an important role also in our conver-
gence proof as we will see later (see the remark following
the end of Theorem 1). Assuming that the surface is stand-
ing on a flat background and following [23], we can write
(6) and (9) in a fixed point form in the new variable v.
To this end let us define bL : Ω × ∂B3(0, 1) → R

2 and
f L : Ω × ∂B3(0, 1) × [0, 1] → R as

bL(x, a) := 1

ω3
(I (x)a1 − ω1, I (x)a2 − ω2) , (11)

f L
(
x, a, v(x)

) := − I (x)a3
ω3

(
1 − μv(x)

)+ 1 (12)

and let B3 denote the unit ball in R
3. We obtain

Lambertian Model

{
μv(x) = T L(x, v(x),∇v) for x ∈ Ω,

v(x) = 0 for x ∈ ∂Ω,
(13)

where

T L(·) := min
a∈∂B3

{bL(x, a) · ∇v(x) + f L(x, a, v(x))}.

It is important to note for the sequel that the structure of
the above first-order Hamilton–Jacobi equation is similar to
that related to the dynamic programming approach in control
theory, where b is a vector field describing the dynamics of
the system and f is a running cost. In that framework the
meaning of v is that of a value function which allows to
characterize the optimal trajectories (here they play the role
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Fig. 3 Facet model for surface patch d A consisting of many V-shaped
Lambertian cavities. Figure adapted from [34]

of characteristic curves). The interested reader can find more
details on this interpretation in [21].

4 The Oren–Nayar Model (ON-model)

The diffuse reflectance ON-model [47–50] is an extension
of the previous L-model which explicitly allows to handle
rough surfaces. The idea of this model is to represent a rough
surface as an aggregation of V-shaped cavities, each with
Lambertian reflectance properties (see Fig. 3).
In [48] and, withmore details, in [50], Oren andNayar derive
a reflectance model for several type of surfaces with differ-
ent slope-area distributions. In this paper we will refer to the
model called by the authors the “Qualitative Model,” a sim-
pler version obtained by ignoring interreflections (see Sect.
4.4 of [48] for more details).

Assuming that there is a linear relation between the irradi-
ance of the image and the image intensity, the ID brightness
equation for the ON-model is given by

ID(x) = cos(θi )
(
A + B sin(α) tan(β)M(ϕi , ϕr )

)
(14)

where

A = 1 − 0.5 σ 2(σ 2 + 0.33
)−1 (15)

B = 0.45σ 2(σ 2 + 0.09)−1 (16)

M(ϕi , ϕr ) = max
{
0, cos(ϕr − ϕi )

}
. (17)

Note that A and B are two non-negative constants depending
on the statistics of the cavities via the roughness parameter
σ . We set σ ∈ [0, π/2), interpreting σ as the slope of the
cavities. In this model (see Fig. 4), θi represents the angle
between the unit normal to the surface N(x) and the light
source direction ω, θr stands for the angle between N(x)
and the observer direction V, ϕi is the angle between the
projection of the light source direction ω and the x1 axis
onto the (x1, x2)-plane, ϕr denotes the angle between the
projection of the observer direction V and the x1 axis onto
the (x1, x2)-plane, and the two variables α and β are given
by

α = max {θi , θr } and β = min {θi , θr } . (18)

Fig. 4 Diffuse reflectance for theON-model. Figure adapted from [34]

Since the vectorsω andV are fixed and given, their projection
on the incident plane is obtained considering their first two
components over three (seeEq. (21)). In thisway, the quantity
max{0, cos(ϕr − ϕi )} is computed only once for a whole
image.
We define (see Fig. 4):

cos(θi ) = N · ω = −ω̃ · ∇u(x) + ω3√
1 + |∇u(x)|2 (19)

cos(θr ) = N · V = −ṽ · ∇u(x) + v3√
1 + |∇u(x)|2 (20)

cos(ϕr − ϕi ) = (ω1, ω2) · (v1, v2) = ω̃ · ṽ (21)

sin(θi ) =
√
1 − (cos(θi ))2 = gω(∇u(x))

√
1 + |∇u(x)|2 (22)

sin(θr ) =
√
1 − (cos(θr ))2 = gv(∇u(x))

√
1 + |∇u(x)|2 , (23)

where

gω(∇u(x)) :=
√
1 + |∇u(x)|2 − (−ω̃ · ∇u(x) + ω3)2

gv(∇u(x)) :=
√
1 + |∇u(x)|2 − (−ṽ · ∇u(x) + v3)2.

For smooth surfaces, we have σ = 0 and in this case
the ON-model reduces to the L-model. In the particular case
ω = V = (0, 0, 1), or,more precisely,when cos(ϕr−ϕi ) ≤ 0
(e.g., the casewhen theunit vectorsω andV are perpendicular
weget cos(ϕr−ϕi ) = −1) theEq. (14) simplifies and reduces
to a L-model scaled by the coefficient A. This means that the
model is more general and flexible than the L-model. This
happenswhenonly one of the twounit vectors is zero or,more
in general, when the dot product between the normalized
projections onto the (x1, x2)-plane of ω and V is equal to
zero.

Also for this diffuse model we neglect the ambient com-
ponent, setting kD = 1. As a consequence, in the general
Eq. (4) the total light intensity I (x) is equal to the diffuse
component ID(x) (described by Eq. (14)). This is why we
write I (x) instead of ID(x) in what follows.
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To deal with this equation one has to compute the min
and max operators which appear in (14) and (18). Hence,
we must consider several cases described in detail in what
follows. For each case we will derive a partial differential
equation that is always a first-order non-linear HJ equation:
Case 1 θi ≥ θr and (ϕr − ϕi ) ∈ [0, π

2 ) ∪ ( 32π, 2π ]
The brightness Eq. (14) becomes

I (x) = cos(θi )

(
A + B sin(θi )

sin(θr )

cos(θr )
cos

(
ϕr − ϕi

))

(24)

and by using the formulas (19)–(23) we arrive to the follow-
ing HJ equation

I (x)
(√

1 + |∇u(x)|2
)

+ A
(
ω̃ · ∇u(x) − ω3

)

−B

(
ω̃ · ṽ) gω

(∇u(x)
)
gv

(∇u(x)
)(− ω̃ · ∇u(x) + ω3

)

√
1 + |∇u(x)|2 (− ṽ · ∇u(x) + v3

)

= 0, (25)

where ω̃ := (ω1, ω2) and ṽ := (v1, v2).
Case 2 θi < θr and (ϕr − ϕi ) ∈ [0, π

2 ) ∪ ( 32π, 2π ]
In this case the brightness Eq. (14) becomes

I (x) = cos(θi )

(
A + B sin(θr )

sin(θi )

cos(θi )
cos

(
ϕr − ϕi

))
(26)

and by using again the formulas (19)–(23) we get

I (x)
(
1 + |∇u(x)|2)

+A
(
ω̃ · ∇u(x) − ω3

)√
1 + |∇u(x)|2

−B
(
ω̃ · ṽ) gω

(∇u(x)
)
gv

(∇u(x)
) = 0.

(27)

Case 3 ∀ θi , θr and (ϕr − ϕi ) ∈ [π
2 , 3

2π ]
In this case we have the implication max{0, cos(ϕr −ϕi )} =
0. The brightness Eq. (14) simplifies in

I (x) = A cos(θi ) (28)

and the HJ equation associated to it becomes consequentially

I (x)
(√

1 + |∇u(x)|2)+ A
(
ω̃ · ∇u(x) − ω3

) = 0, (29)

that is equal to the L-model scaled by the coefficient A.
Case 4 θi = θr and ϕr = ϕi
This is a particular case when the position of the light source
ω coincides with the observer direction V but it is not on the
vertical axis. This choice implies max{0, cos(ϕi −ϕr )} = 1,
then defining θ := θi = θr = α = β, Eq. (14) simplifies to

I (x) = cos(θ)
(
A + B sin(θ)2 cos(θ)−1

)
(30)

and we arrive to the following HJ equation

(
I (x) − B

)(√
1 + |∇u(x)|2

)
+ A

(
ω̃ · ∇u(x) − ω3

)

+B

(− ω̃ · ∇u(x) + ω3
)2

√
1 + |∇u(x)|2 = 0.

(31)

Note that this four cases are exactly the same cases reported
and analyzed in [35]. This is not surprising since the
reflectancemodel used there is always the same one proposed
by Oren and Nayar. However, here we get different HJ equa-
tions since we consider an orthographic camera projection
and cartesian coordinates, whereas in [35] the HJ equations
are derived in spherical coordinates under a generalized per-
spective camera projection. Another major difference is that
in that paper the light source is close to the camera but is not
located at the optical center of the camera.

The Vertical Light Case

If ω = (0, 0, 1), independently of the position of V, the
analysis is more simple. In fact, the first three cases con-
sidered above reduce to a single case corresponding to the
following simplified PDE for the brightness Eq. (14)

I (x) = A
√
1 + |∇u(x)|2 . (32)

In this way we can put it in the following eikonal-type equa-
tion, analogous to the Lambertian eikonal Eq. (7):

|∇u(x)| = f (x) for x ∈ Ω, (33)

where

f (x) =
√

A2

I (x)2
− 1. (34)

Following [72], we write the surface as S(x, z) = z −
u(x) = 0, for x ∈ Ω , z ∈ R, and ∇S(x, z) = (−∇u(x), 1),
so (31) becomes

(I (x) − B)|∇S(x, z)|
+A (−∇S(x, z) · ω)

+ B
( ∇S(x,z)

|∇S(x,z)| · ω
)2 |∇S(x, z)| = 0.

(35)

Defining

d(x, z) := ∇S(x, z)/|∇S(x, z)| (36)

and

c(x, z) := I (x) − B + B (d(x, z) · ω)2 , (37)
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using the equivalence

|∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z} (38)

we get

max
a∈∂B3

{c(x, z) a · ∇S(x, z) − Aω · ∇S(x, z)} = 0. (39)

Let us define the vector field for the ON-model

bON (x, a) :=
(
c(x, z)a1 − Aω1, c(x, z)a2 − Aω2

)

Aω3
, (40)

and

f ON (x, z, a, v(x)
) := −c(x, z)a3

Aω3

(
1 − μv(x)

)+ 1. (41)

Then, introducing the exponential Kružkov change of vari-
able μv(x) = 1 − e−μu(x) as already done for the L-model,
we can finally write the fixed point problem in the new vari-
able v obtaining the

Oren-Nayar Model

{
μv(x) = T ON (x, v(x),∇v), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(42)

where

T ON (·) := min
a∈∂B3

{bON (x, a) · ∇v(x)+ f ON (x, z, a, v(x))}

Note that the simple homogeneous Dirichlet boundary
condition is due to the flat background behind the object
but a condition like u(x) = g(x) can also be considered if
necessary. Moreover, the structure is similar to the previous
Lambertian model although the definition of the vector field
and of the cost are different.

In the particular case when cos(ϕr − ϕi ) = 0, Eq. (14)
simply reduces to

I (x) = A cos(θ) (43)

and, as a consequence, the Dirichlet problem in the variable
v is equal to (42) with c(x, z) = I (x).

5 The Phong Model (PH-model)

The PH-model is an empirical model that was developed
by Phong [51] in 1975. This model introduces a specular

Fig. 5 Geometry of the Phong reflection model

component to the brightness function I (x), representing the
diffuse component ID(x) in (4) as the Lambertian reflectance
model.

A simple specular model is obtained putting the incidence
angle equal to the reflection one andω,N(x) andR(x) belong
to the same plane.

This model describes the specular light component IS(x)
as a power of the cosine of the angle between the unit vectors
V and R(x) (it is the vector representing the reflection of the
light ω on the surface). Hence, the brightness equation for
the PH-model is

I (x) = kD
(
N(x) · ω

)+ kS
(
R(x) · V)α, (44)

where the parameter α ∈ [1, 10] is used to express the
specular reflection properties of a material and kD and kS
indicate the percentages of diffuse and specular components,
respectively. Note that the contribution of the specular part
decreases as the value of α increases.

Starting to see in details the PH-model in the case of
oblique light source ω and oblique observer V.
Assuming that N(x) is the bisector of the angle between ω

and R(x) (see Fig. 5), we obtain

N(x) = ω + R(x)
||ω + R(x)|| (45)

which implies

R(x) = ||ω + R(x)||N(x) − ω. (46)

From the parallelogram law, taking into account thatω,R(x)
and N(x) are unit vectors, we can write ||ω + R(x)|| =
2(N(x) · ω), then we can derive the unit vector R(x) as fol-
lows:
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R(x) = 2
(
N(x) · ω

)
N(x) − ω

= 2

(−ω̃ · ∇u(x) + ω3√
1 + |∇u(x)|2

)
N(x) − (

ω1, ω2, ω3
)

=
(−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2
)(− ∇u(x), 1

)

− (
ω1, ω2, ω3

)
. (47)

With this definition of the unit vector R(x) we have

R(x) · V
=
(−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2
) (− ∇u(x) · ṽ + v3

)− ω · V.

(48)

Then, setting α = 1, that represents the worst case, Eq. (44)
becomes

I (x)
(
1 + |∇u(x)|2)

− kD
(− ∇u(x) · ω̃ + ω3

)(√
1 + |∇u(x)|2)

− 2kS
(− ∇u(x) · ω̃ + ω3

)(− ṽ · ∇u(x) + v3
)

+ kS
(
ω · V)(1 + |∇u(x)|2) = 0, (49)

towhichwe add aDirichlet boundary condition equal to zero,
assuming that the surface is standing on a flat blackground.
Note that the cosine in the specular term is usually replaced
by zero if R(x) · V < 0 (and in that case we get back to the
L-model).
Aswehavedone for the previousmodels,wewrite the surface
as S(x, z) = z−u(x) = 0, for x ∈ Ω , z ∈ R, and∇S(x, z) =
(−∇u(x), 1), so (49) will be written as

(
I (x) + kS(ω · V)

)|∇S(x, z)|2
kD
(∇S(x, z) · ω

)(|∇S(x, z)|)

− 2kS
(∇S(x, z) · ω

)(∇S(x, z) · V) = 0. (50)

Dividing by |∇S(x, z)|, defining d(x, z) as in (36) and
c(x) := I (x) + kS(ω · V), we get

c(x)|∇S(x, z)| − kD
(∇S(x, z) · ω

)

−2kS
(∇S(x, z) · ω

)(
d(x, z) · V) = 0. (51)

By the equivalence |∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z)} we

obtain

max
a∈∂B3

{
c(x) a · ∇S(x, z) − kD

(∇S(x, z) · ω
)

− 2kS
(∇S(x, z) · ω

)(
d(x, z) · V)

}
= 0. (52)

Let us define the vector field

bPH (x, a) := 1

QPH (x, z)
MPH (x, z) (53)

where

QPH (x, z) := 2kSω3
(
d(x, z) · V)+ kDω3, (54)

and

MPH
i (x, z) := (c(x)ai − kDωi

− 2kS ωi
(
d(x, z) · V)) , i = 1, 2. (55)

Let us also define

f PH (x, z, a, v(x)
) := − c(x)a3

QPH (x, z)

(
1 − μv(x)

)+ 1. (56)

Again, using the exponential Kružkov change of variable
μv(x) = 1 − e−μu(x) as done for the previous models, we
can finally write the non-linear fixed point problem

Phong Model

{
μv(x) = T PH (x, v(x),∇v), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(57)

where

T PH (·) := min
a∈∂B3

{bPH (x, a) · ∇v(x)+ f PH (x, z, a, v(x))}

A. Oblique Light Source and Vertical Position of the
Observer

In the case of oblique light source ω and vertical observer
V = (0, 0, 1), the dot product R(x) · V becomes

R(x) · V = −2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2 − ω3

= −2ω̃ · ∇u(x) + ω3
(
1 − |∇u(x)|2)

1 + |∇u(x)|2 . (58)

The fixed point problem in v will be equal to (57) with the
following choices

c(x) := I (x) + ω3kS,

QPH (x, z) := 2kS
(
d(x, z) · ω

)+ kDω3,

bPH (x, a) :=
(
c(x)a1 − kDω1, c(x)a2 − kDω2

)

QPH (x, z)
. (59)
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B. Vertical Light Source and Oblique Position of the
Observer

When ω = (0, 0, 1) the definition of the vector R(x)
reported in (47) becomes

R(x) =
( −2∇u(x)
1 + |∇u(x)|2 ,

2

1 + |∇u(x)|2 − 1

)
(60)

and, as a consequence, the dot product R(x) ·V with general
V is

R(x) · V = −2̃v · ∇u(x) + v3(1 − |∇u(x)|2)
1 + |∇u(x)|2 . (61)

Hence, the fixed point problem in v is equal to (57) with

c(x) := I (x) + v3kS,

QPH (x, z) := 2kS
(
d(x, z) · V)+ kD,

bPH (x, a) := 1

QPH (x, z)
(c(x)a1, c(x)a2) . (62)

C. Vertical Light Source and Vertical Position of the
Observer

If we choose ω ≡ V = (0, 0, 1), Eq. (49) simplifies in

I (x)
(
1 + |∇u(x)|2)− kS

(
1 − |∇u(x)|2) (63)

− kD
(√

1 + |∇u(x)|2) = 0.

Working on this equation one can put it in the following
eikonal-type form, which is analogous to the Lambertian
eikonal Eq. (7):

|∇u(x)| = f (x) for x ∈ Ω, (64)

where now

f (x) =
√√√
√√√

k2D − 2I+(x)I−(x) + k2D
√
Q(x)

2

(
I (x) + kS

)2 , (65)

with

I+(x) := I (x) + kS, (66)

I−(x) := I (x) − kS, (67)

Q(x) := k2D + 8k2S + 8 I (x) kS . (68)

Remark on the control interpretation The above analysis
has shown that all the cases corresponding to the models
proposed by Oren–Nayar and by Phong lead to a stationary
Hamilton–Jacobi equation of the same form, namely

μv(x) = min
a∈∂B3

{
b(x, a) · ∇v(x) + f

(
x, z, a, v(x)

)}
,

where the vector field b and the cost f can vary according
to the model and to the case. This gives to these models
a control theoretical interpretation which can be seen as a
generalization of the control interpretation for the original
Lambertian model (which was related to the minimum time
problem). In this framework, v is the value function of a
rescaled (by theKružkov change of variable) control problem
in which one wants to drive the controlled system governed
by

ẏ(t) = b
(
y(t), a(t)

)

(a(·) here is the control function taking values in ∂B3) from
the initial position x to the target (the silhouette of the object)
minimizing the cost associated to the trajectory. The running
cost associated to the position and the choice of the control
will be given by f . More informations on this interpretation,
which is not crucial to understand the application to the SfS
problem presented in this paper, can be found in [21].

6 Semi-Lagrangian Approximation

Now, let us state a general convergence theorem suitable for
the class of differential operators appearing in the models
described in the previous sections. As we noticed, the unified
approach presented in this paper has the big advantage to give
a unique formulation for the three models in the form of a
fixed point problem

μv(x) = T M (x, v,∇v), for x ∈ Ω, (69)

where M indicates the model, i.e., M = L , ON , PH .
We will see that the discrete operators of the ON-model

and the PH-model described in the previous sections satisfy
the properties listed here. In order to obtain the fully discrete
approximation we will adopt the semi-Lagrangian approach
described in the book byFalcone andFerretti [21]. The reader
can also refer to [12] for a similar approach to various image
processing problems (including non-linear diffusionsmodels
and segmentation).

LetWi = w(xi ) so thatW will be the vector solution giv-
ing the approximation of the height u at every node xi of the
grid. Note that in one dimension the index i is an integer num-
ber, in two dimensions i denotes a multi-index, i = (i1, i2).
We consider a semi-Lagrangian scheme written in a fixed
point form, so we will write the fully discrete scheme as

Wi = T̂i (W ). (70)

Denoting by G the global number of nodes in the grid, the
operator corresponding to the oblique light source is T̂ :
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R
G → R

G that is defined componentwise by

T̂i (W ) := min
a∈∂B3

{
e−μh I [W ](x+

i ) − τ F(xi , z, a)
}+ τ, (71)

where I [W ] represents an interpolation operator based on
the values at the grid nodes and

x+
i := xi + hb(xi , a) (72)

τ := (
1 − e−μ h)/μ (73)

F(xi , z, a) := P(xi , z)a3
(
1 − μWi

)
(74)

P : Ω × R → R is continuous and nonnegative. (75)

Since w(xi + hb(xi , a)) is approximated via I [W ] by inter-
polation onW (which is defined on the gridG), it is important
to use amonotone interpolation in order to preserve the prop-
erties of the continuous operator T in the discretization. To
this end, the typical choice is to apply a piecewise linear
(or bilinear) interpolation operator I1[W ] : Ω → R which
allows to define a function defined for every x ∈ Ω (and not
only on the nodes)

w(x) = I1[W ](x) =
∑

j

λi j (a)Wj , (76)

where

∑

j

λi j (a) = 1 for x =
∑

j

λi j (a)x j . (77)

A simple explanation for (76)–(77) is that the coefficients
λi j (a) represent the local coordinates of the point x with
respect to the grid nodes (see [21] for more details and
other choices of interpolation operators). Clearly, in (71)
we will apply the interpolation operator to the point x+

i =
xi + hb(xi , a) and we will denote by w the function defined
by I1[W ].
Comparing (71) with its analogue for the vertical light case
we can immediately note that the former has the additional
term τ F(xi , z, a) which requires analysis.

Theorem 1 Let T̂i (W ) the i-th component of the operator
defined as in (71). Then, the following properties hold true:

1. Let
a3 ≡ arg min

a∈∂B3

{
e−μhw

(
xi +hb(xi , a)

)−τ F(xi , z, a)
}

and assume

P(xi , z)a3 ≤ 1. (78)

Then 0 ≤ W ≤ 1
μ
implies 0 ≤ T̂ (W ) ≤ 1

μ
.

2. T̂ is a monotone operator, i.e., W ≤ W implies T̂ (W ) ≤
T̂ (W ).

3. T̂ is a contraction mapping in L∞([0, 1/μ)G) if
P(xi , z) a3 < μ.

Proof

1. To prove that W ≤ 1
μ
implies T (W ) ≤ 1

μ
we just note

that

T̂ (W ) ≤ e−μh

μ
+ τ = 1

μ
. (79)

Let W ≥ 0; then

T̂ (W ) ≥ −τ P(xi , z) a3
(
1 − μWi

)+ τ

= τ
(
1 − P(xi , z) a3

(
1 − μWi

))
.

(80)

This implies that T̂ (W ) ≥ 0 if P(xi , z) a3 ≤ 1 since
0 ≤ 1 − μWi ≤ 1.

2. In order to prove that T̂ is monotone, let us observe first
that for each couple of functions w1 and w2 such that
w1(x) ≤ w2(x) for every x ∈ Ω implies

e−μh
[
w1
(
x + hb(x, a∗)

)− w2
(
x + hb(x, a)

)]

− τ P(x, z)(a∗
3 (1 − μw1(x)) − a3(1 − μw2(x)))

≤ e−μh
[
w1
(
x + hb(x, a)

)− w2
(
x + hb(x, a)

)]

+ τ P(x, z)a3
(
w1(x) − w2(x)

)
, (81)

where a∗ and a are the two arguments corresponding to
the minimum on a of the expression

e−μhw
(
x + hb(x, a)

)− τ P(x, z)a3
(
1 − μw(x)

)
(82)

respectively, for w = w1, w2. Hence, if we take now
two vectors W and W such that W ≤ W and we
denote, respectively, byw andw the corresponding func-
tions defined by interpolation, we will have w(x) =
I1[W ](x) ≤ I1[W ](x) = w(x), for every x ∈ Ω ,
because the linear interpolation operator I1 is monotone.
Then, by (71), setting x+

i = xi + hb(xi , a) we get

T̂i (W ) − T̂i (W ) ≤ e−μh[I1[W ](x+
i )) − I1

[
W
](
x+
i )
)]

+ τ P
(
xi , z

)
a3
(
Wi − Wi

) ≤ 0, (83)

where the last inequality follows from P ≥ 0. So we can
conclude that T̂ (W )− T̂ (W ) ≤ 0. Note that this property
does not require condition (78) to be satisfied.

3. Let us consider now two vectorsW andW (dropping the
condition W ≤ W ) and assuming

P(xi , z)a3 < μ. (84)
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To prove that T is a contractionmapping note that follow-
ing the same argument used to prove the second statement
we can obtain (83). Then, by applying the definition of
I1, we get

T̂ (W ) − T̂ (W ) ≤
(
e−μh + τ P

(
xi , z

)
a3
)

||W − W ||∞.

Reversing the role of W and W , one can also obtain

T̂ (W ) − T̂ (W ) ≤
(
e−μh + τ P

(
xi , z

)
a3
)

||W − W ||∞

and conclude then that T̂ is a contraction mapping in L∞
if and only if

e−μh + τ P
(
xi , z

)
a3 < 1 (85)

and this holds true if the bound (84) is satisfied.

��
Remark on the role of μ The parameter μ can be tuned to

satisfy the inequality which guarantees the contraction map
property for T̂ . This parameter adds a degree of freedom in
the Kružkov change of variable and modifies the slope of v.
However, in the practical applications we have done in our
tests, this parameter has been always set to 1 so in our expe-
rience this parameter does not seem to require a fine tuning.

Remark on the choice of the interpolation operator
Although I1 can be replaced by a high-order interpolation
operator (e.g., a cubic local Lagrange interpolation), the
monotonicity of the interpolation operator plays a crucial role
in the proof because we have to guarantee that the extrema
of interpolation polynomial stay bounded by the minimum
and maximum of the values at the nodes. This property is not
satisfied by quadratic or cubic local interpolation operators
and the result is that this choice introduces spurious oscil-
lations in the numerical approximation. A cure could be to
adopt Essentially Non-Oscillatory (ENO) interpolations. A
detailed discussion on this point is contained in [21].

Remark on the minimization. In the definition of the fixed
point operator T̂ there is a minimization over a ∈ ∂B3. A
simple way to solve it is to build a discretization of ∂B3

based on a finite number of points and get the minimum by
comparison. One way to do it is to discretize the unit sphere
by spherical coordinates, even a small number of nodes will
be sufficient to get convergence. A detailed discussion on
othermethods to solve theminimizationproblem is contained
in [21].

Let us consider now the algorithm based on the fixed point
iteration
{
Wn = T̂

(
Wn−1

)
,

W 0 given.
(86)

We can state the following convergence result

Theorem 2 Let Wk be the sequence generated by (86). Then
the following results hold:

1. Let W 0 ∈ S = {W ∈ R
G : W ≥ T̂ (W )}, then the Wk

converges monotonically decreasing to a fixed point W ∗
of the T̂ operator;

2. Let us chooseμ > 0 so that the condition P(xi , z)a3 ≤ μ

is satisfied. Then, Wk converges to the unique fixed point
W ∗ of the T̂ . Moreover, if W 0 ∈ S the convergence is
monotone decreasing.

Proof

1. Starting from a point in the set of super-solutions S, the
sequence is non-increasing and lives in S which is a
closed set bounded from below (by 0). Then, Wk con-
verges and the limit is necessarily a fixed point for T̂ .

2. The assumptions guaranteed by Theorem 1 are satis-
fied and T̂ is a contraction mapping in [0, 1/μ], so the
fixed point is unique. The monotonicity of T̂ implies
that starting from W 0 ∈ S the convergence is monotone
decreasing.

��
It is important to note that the change of variable allows

for an easy choice of the initial guess W 0 ∈ S for which
we have the natural choice W 0 = (1/μ, 1/μ, . . . , 1/μ) and
monotonicity can be rather useful to accelerate convergence
as shown in [20]. A different way to improve convergence
is to apply Fast Sweeping or Fast Marching methods as
illustrated in [71,73]. A crucial role is played by boundary
conditions on the boundary of Ω , where usually we impose
the homogeneous Dirichlet boundary condition, v = 0. This
condition implies that the shadowsmust not cross the bound-
ary of Ω , so the choice ω3 = 0 corresponding to an infinite
shadow behind the surface is not admissible. However, other
choices are possible: to impose the height of the surface on
∂Ω we can set v = g or to use a more neutral boundary
condition we can impose v = 1 (state constraint boundary
condition). More informations on the use of boundary con-
ditions for these type of problems can be found in [21].

6.1 Properties of the Discrete Operators ̂T ON and ̂T PH

We consider a semi-Lagrangian (SL) discretization of (42)
written in a fixed point form, so we will write the SL fully
discrete scheme for the ON-model as

Wi = T̂ ON
i (W ), (87)

where ON is the acronym identifying the ON-model. Using
the same notations of the previous section, the operator cor-
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responding to the oblique light source is T̂ ON : RG → R
G

that with linear interpolation can be written as

T̂ ON
i (W ) := min

a∈∂B3

{
e−μh I1[W ](x+

i )−τ FON (xi , z, a)
}+τ,

where

τ := 1 − e−μ h

μ

bON (xi , a) := 1

Aω3

(
c(xi , z)a1 − Aω1, c(xi , z)a2 − Aω2

)

c(xi , z) := I (xi ) − B + B
(
d(xi , z) · ω

)2

d(xi , z) := ∇S(xi , z)/|∇S(xi , z)|
FON (xi , z, a) := PON (xi , z

)
a3
(
1 − μWi )

)

PON (xi , z) := c(xi , z)

Aω3
.

Note that, in general, PON will not be positive but that
condition can be obtained tuning the parameter σ since the
coefficients A and B depend on σ . This explains why in
some tests we will not be able to get convergence for every
value of σ ∈ [0, π/2). Once the non-negativity of PON is
guaranteed, we can follow the same arguments of Theorem
1 to check that the discrete operator T̂ ON satisfies the three
properties which are necessary to guarantee convergence as
in Theorem 2 provided we set P = PON in that statement.

For the Phong model, the semi-Lagrangian discretization
of (57) written in a fixed point form gives

Wi = T̂ PH
i (W ), (88)

where T̂ PH : RG → R
G , that is defined componentwise by

T̂ PH
i (W ) := min

a∈∂B3

{
e−μh I1[W ](x+

i

)−τ FPH (xi , z, a
)}+τ,

where, in the case of oblique light source and vertical position
of the observer,

τ := 1 − e−μ h

μ

bPH (xi , a) :=
(
c(xi )a1 − kDω1, c(xi )a2 − kDω2

)

QPH (xi , z)
c(xi ) := I (xi ) + ω3kS

d(xi , z) := ∇S
(
xi , z

)
/
∣
∣∇S

(
xi , z

)∣∣

QPH (xi , z) := 2kS
(
d(xi , z) · ω

)+ kDω3

FPH (xi , z, a) := PPH (xi , z
)
a3
(
1 − μWi )

)

PPH (xi , z) := c(xi )

QPH (xi , z)
.

Here the model has less parameters and PPH will always
be non-negative. Again, following the same arguments of

Theorem 1, we can check that the discrete operator T̂ PH

satisfies the three propertieswhich are necessary to guarantee
convergence as in Theorem 2 provided we set P = PPH in
that statement.

7 Numerical Simulations

In this section, we show some numerical experiments on syn-
thetic and real images in order to analyze the behavior of the
parameters involved in the ON-model and the PH-model and
to compare the performances of these models with respect to
the classical L-model and with other numerical methods too.
All the numerical tests in this section have been implemented
in language C++. The computer used for the simulations is a
MacBook Pro 13′ Intel Core 2 Duo with speed of 2.66 GHz
and 4 GB of RAM (so the CPU times in the tables refer to
this specific architecture).

We denote by G the discrete grid in the plane getting back
to the double index notation xi j , G := card(G) = n ×
m. We define Gin := {xi j : xi j ∈ Ω} as the set of grid
points inside Ω; Gout := G \ Gin . The boundary ∂Ω will
be then approximated by the nodes such that at least one of
the neighboring points belongs to Gin . For each image we
define a map, called mask, representing the pixels xi j ∈ Gin

in white and the pixels xi j ∈ Gout in black. In this way it
is easy to distinguish the nodes that we have to use for the
reconstruction (the nodes inside Ω) and the nodes on the
boundary ∂Ω (see e.g., Fig. 6b).

Regarding the minimization over a ∈ ∂B3 that appears
in the definition of the fixed point operators associated to
the models, in all the tests we discretize the unit sphere by
spherical coordinates, considering 12 steps in θ and 8 in φ,
where θ is the zenith angle and φ is the azimuth angle.

7.1 Synthetic Tests

If not otherwise specified, all the synthetic images are defined
on the same rectangular domain containing the support of
the image, Ω ≡ [−1, 1] × [−1, 1]. We can easily modify
the number of the pixels choosing different values for the
steps in space Δ x and Δ y. The size used for the synthetic
images is 256×256 pixels, unless otherwise specified. X and
Y represent the real size (e.g., for Ω ≡ [−1, 1] × [−1, 1],
X = 2,Y = 2). For all the synthetic tests, since we know
the algebraic expression of the surfaces, the input image ren-
dering in gray levels is obtained using the corresponding
reflectance model. This means that for each model and each
value of parameter involved in it, the reconstruction will start
from a different input image. Clearly, this is not possible for
real images, so for these tests the input image will be always
the same for all the models, independently of the values of
the parameters. Moreover, we fix μ = 1 and we choose the
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Fig. 6 Sphere via the L-model. a Input image; b mask; c surface

value of the tolerance η for the iterative process equal to
10−8 for the tests on synthetic images, using as stopping rule
|Wk+1 − Wk |max ≤ η, where k + 1 denotes the current iter-
ation. We will see that dealing with real images, sometimes
we will need to increase η.

Test 1: Sphere For this first test we will use the semisphere
defined as

{
u(x, y) = √

r2 − x2 − y2 (x, y) ∈ Gin,

u(x, y) = 0 (x, y) ∈ Gout ,
(89)

where

Gin := {
(x, y) : x2 + y2 ≤ r2

}
, (90)

r := min{X,Y }
2

+ 2 δ̃, (91)

and δ̃ := max{Δx,Δy}.
As example, we can see in Fig. 6 the input image, the

corresponding mask and the surface reconstructed by the L-
model. The values of the parameters used in the simulations
are indicated in Table 1. Note (in Table 2) that when the spec-
ular component is zero for the PH-model, we just have the
contribution of the diffuse component so we have exactly the
same error values of the L-model, as expected. By increasing
the value of the coefficient kS and, as a consequence, decreas-
ing the value of kD , in the PH-model the L2(I ) and L∞(I )
errors on the image grow albeit slightly and still remain of the
same order of magnitude, whereas the errors on the surface
decrease. For the ON-model, the same phenomenon appears
when we set the roughness parameter σ to zero: we bring
back to the L-model and, hence, we obtain the same errors
on the image and the surface. Note that the errors in L2(I )
and L∞(I ) norm for the image and the surface, decrease by
increasing the value of σ . This seem to imply that the model
and the approximation work better for increasing roughness
values.

We point out that the errors computed on the images I in
the different norms are over integer between the input image
and the image computed a posteriori using the value of u just
obtained by the methods. This is why small errors become
bigger since can jump from an integer to the other one, as for
the Phong case.

Table 1 Sphere: parameter
values used in the models

Model σ kD kS α

LAM

ON-00 0

ON-04 0.4

ON-08 0.8

PH-s00 1 0 1

PH-s04 0.6 0.4 1

PH-s08 0.2 0.8 1

Table 2 Synthetic sphere: L2, L∞ errors with vertical light source
ω = (0, 0, 1)

SL-schemes L2(I ) L∞(I ) L2(S) L∞(S)

LAM 0.0046 0.0431 0.0529 0.0910

ON-00 0.0046 0.0431 0.0529 0.0910

ON-04 0.0039 0.0353 0.0513 0.0882

ON-08 0.0035 0.0314 0.0506 0.0881

PH-s00 0.0046 0.0431 0.0529 0.0910

PH-s04 0.0064 0.0471 0.0511 0.0896

PH-s08 0.0090 0.0706 0.0386 0.0752

Table 3 Synthetic sphere:
iterations and CPU time in
seconds for the models with
vertical light source
ω = (0, 0, 1)

SL-schemes Iter. (sec.)

LAM 2001 2.14

ON-00 2001 2.06

ON-04 2020 2.24

ON-08 2016 2.24

PH-s00 2001 2.11

PH-s04 2008 2.45

PH-s08 2056 2.27

In Table 3, we reported the number of iterations and the
CPU time (in seconds) referred to the three models with
the parameter indicated in Table 1. For all the models, also
varying the parameters involved, the number of iterations is
always about 2000 e the CPU time slightly greater than 2
seconds, so the computation is really fast.
Test 2: Ridge tent In tests on synthetic images, the relevance
of the choice of amodel depends onwhichmodel was used to
compute the images. In the previous test, the parameters that
are used for the 3D reconstruction are identical to those used
to compute the synthetic sphere input images, so there is a
perfect match. However, for real applications, it is relevant to
examine the influence of an error in the parameter values. To
this end we can produce an input image with the Oren–Nayar
model using σ = 0.1 and then process this image with the
samemodel using a different value of σ to see how the results
are affected by this error. This is what we are going to do for
the ridge tent. Let us consider the ridge tent defined by the
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Fig. 7 Tent via the ON-model with σ = 0.3: a Input image; b 3D
reconstruction

following equation

⎧
⎪⎨

⎪⎩

u(x, y) = min
{−2 |x | + 4

5 X,−|y| + 2
5 Y
}

(x, y) ∈ Gin,

u(x, y) = 0 (x, y) ∈ Gout ,

(92)

where

Gin :=
{
(x, y) : x

X
,
y

Y
<

2

5

}
.

In Fig. 7 we can see an example of reconstruction obtained
by using the ON-model with σ = 0.3, under a vertical
light source ω = (0, 0, 1). A first remark is that the surface
reconstruction is good even if in this case the surface is not
differentiable. Moreover, note that there are no oscillations
near the kinks where there is jump in the gradient direction.
Let us examine the stability with respect to the parameters.
We have produced seven input images for the ridge tent, all
of size 256×256, with the following combinations ofmodels
and parameters:

LAM Lambertian model;
ON1 Oren–Nayar model with σ = 0.1;
ON3 Oren–Nayar model with σ = 0.3;
ON5 Oren–Nayar model with σ = 0.5;
PH1 Phong model with α = 1 and kS = 0.1;
PH3 Phong model with α = 1 and kS = 0.3;
PH5 Phong model with α = 1 and kS = 0.5.

Then we have computed the surfaces corresponding to all the
parameter choices (i.e., matching and not matching the first
choice). The results obtained in this way have been compared
in terms of L2 and L∞ normerrorswith respect to the original
surface. The errors obtained by the ON-model are shown in
Tables 4 and 5 for the PH-model.

Analyzing the errors in Tables 4 and 5, we can observe
that using the same model to generate the input image and
to reconstruct the surface is clearly the optimal choice. The
errors on the surface grow more as we consider a parameter

Table 4 Ridge tent, ON-model: L2, L∞ errors for the surface

L2 LAM ON1 ON3 ON5

LAM 0.0067 0.0172 0.0933 0.1920

ON1 0.0082 0.0068 0.0821 0.1801

ON3 0.0832 0.0700 0.0086 0.1033

ON5 0.1946 0.1784 0.0923 0.0067

L∞ LAM ON1 ON3 ON5

LAM 0.0094 0.0315 0.1942 0.4060

ON1 0.0199 0.0093 0.1701 0.3805

ON3 0.1784 0.1507 0.0118 0.2156

ON5 0.4104 0.3769 0.1976 0.0094

In each column the model used to produce the input image, in the row
the model used for the 3D reconstruction

Table 5 Ridge tent, PH-model: L2, L∞ errors for the surface

L2 LAM PH1 PH3 PH5

LAM 0.0067 0.0841 0.2867 0.6146

PH1 0.0586 0.0067 0.1996 0.5031

PH3 0.1403 0.0955 0.0073 0.2687

PH5 0.1915 0.1664 0.0976 0.0060

L∞ LAM PH1 PH3 PH5

LAM 0.0094 0.1740 0.6068 1.3123

PH1 0.1243 0.0108 0.4202 1.0741

PH3 0.3167 0.2245 0.0149 0.5718

PH5 0.4503 0.4241 0.2907 0.0093

In each column the model used to produce the input image, on the row
the model used for the 3D reconstruction

σ other than the one used to generate the input image as
data for the 3D reconstruction. For the ON-model we loose
one or two order of magnitude, depending on the “distance”
of the parameter from the source model. For the PH-model
we can observe that the L2 and L∞ errors grow more as we
consider a different kS for the generation of the image and for
the reconstruction, loosing one or two order of magnitude.
However, the twomodels seem tobe rather stablewith respect
to a variationof theparameters since the errors donot increase
dramatically varying the parameters.
Test 3: Concave/convex ambiguity for theON-modelWecon-
sider this test in order to show that the ON-model is not able
to overcome the concave/convex ambiguity typical of the
SfS problem although it is a model more realistic than the
classical L-model. Let us consider the following function

u(x, y) =
{

−(1 − (
x2 − y2

))2 + 1, if
(
x2 + y2

)
< 2,

0 otherwise.

(93)
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Fig. 8 Example of concave/convex ambiguity for the ON-model with
σ = 0.5 and ω = (0, 0, 1). a Original Surface, b maximal solution,
c approximated surface with value in the origin equal to zero

Wediscretize the domainΩ = [−1.5, 1.5]×[−1.5, 1.5]with
151×151 nodes. The fixed point has been computed with an
accuracy of η = 10−4 and the stopping rule for the algorithm
based on the fixed point iteration defined in (86) is |Wk+1 −
Wk |max ≤ η, where k + 1 denotes the current iteration. The
iterative process starts with W 0 = 0 on the boundary and
W 0 = 1 inside in order to proceed from the boundary to the
internal constructing a monotone sequence (see [7,23] for
details on the approximation of maximal solutions).
Looking at Fig. 8 we can note that the scheme chooses
the maximal viscosity solution stopping after 105 iterations,
which does not coincide with the original surface. In order
to obtain a reconstruction closer to the original surface, we
fix the value in the origin at zero. In this way we forced the
scheme to converge to a solution different from the maximal
solution (see Fig. 8c). We obtained this different solution
shown in Fig. 8c after 82 iterations.
Test 4: Concave/convex ambiguity for the PH-model The
fourth synthetic numerical experiment is related to the sinu-
soidal function defined as follows:
⎧
⎨

⎩
u(x, y) = 0.5 + 0.5 sin

(π x

Δx

)
sin

(
π y

Δy

)
, (x, y) ∈ Gin,

u(x, y) = 0, (x, y) ∈ Gout .

(94)

With this test we want to show that also the PH-model is not
able to overcome the concave/convex ambiguity typical of
the SfS problem.

Figure 9 shows the results related to the PH-model with
kS = 0, 0.5, 0.8. In the first column one can see the input
images generated by the PH-model using the values of the
parameter before mentioned. In the second column we can
see the output images computed a posteriori using the depth
just computed and approximating the gradient via finite
difference solver. What we can note is that even if the recon-
structed a posteriori images match with the corresponding
input images, the SL method always chooses the maximal
solution even varying the parameters kD and kS . By adding
some informations as shown in the previous test it is possible
to achieve a better result, but these additional informations
are not available for real images.

Fig. 9 Synthetic sinusoidal function: example of concave/convex
ambiguity for the PH-model with kS = 0, 0.5, 0.8 for each row from
the top to the bottom, respectively

Test 5: Role of the boundary conditions With this fifth test
we want to point out the role of the boundary condition (BC),
showing how good BC can significantly improve the results
on the 3D reconstruction. We will use the synthetic vase
defined as follows:

{
u(x, y) = √

P(ȳ)2 − x2 (x, y) ∈ Gin,

u(x, y) = g(x, y) (x, y) ∈ Gout ,
(95)

where ȳ := y/Y ,

P(ȳ) := (− 10.8 ȳ6 + 7.2 ȳ5 + 6.6 ȳ4 − 3.8 ȳ3

− 1.375 ȳ2 + 0.5 ȳ + 0.25
)
X (96)

and

Gin := {
(x, y)|P(ȳ)2 > x2

}
.

In Fig. 10, one can see on the first row the input images
(size 256 × 256) generated by the L-model, ON-model, and
the PH-model, from left to right, respectively. On the second
row we reported the 3D reconstruction with homogeneous
Dirichlet BC (g(x, y) = 0). As we can see, there is a con-
cave/convex ambiguity in the reconstruction of the surface. If
we consider the correct boundary condition, that is the height
of the surface at the boundary of the silhouette that we can
easily derive in this case being the object a solid of rotation,
what we obtain is visible in the third row of the same Fig. 10.

In Tables 6 and 7 we can see the number of iterations, the
CPU time and the error measures in L2 and L∞ norm for
the method used with homogeneous and non-homogeneous
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Fig. 10 Synthetic vase under vertical light source [ω = (0, 0, 1)]:
example of concave/convex ambiguity solved by using correct Dirichlet
BC. On the first row from left to right: input images generated by L-
model, ON-model with σ = 0.2 and PH-model with kS = 0.4. On the
second row: 3D reconstruction with homogeneous Dirichlet BC. On the
last row: 3D reconstruction with Dirichlet BC u(x, y) = g(x, y)

Table 6 Synthetic vase: number of iterations, CPU time in seconds and
L2, L∞ errors on the surface with vertical light source ω = (0, 0, 1)
using homogeneous Drichlet BC

SL-schemes Iter. (sec.) L2(S) L∞(S)

LAM 1010 0.54 0.1614 0.3015

ON-02 1011 0.53 0.1613 0.3015

ON-04 1008 0.54 0.1610 0.3015

PH-s02 1007 0.54 0.1619 0.3015

PH-s04 1009 0.55 0.1621 0.3015

Dirichlet BC, respectively. Looking at these errors we can
note that in each table the values are almost the same for the
different models. Comparing the values of the two tables one
can see that we earn an order of magnitude using good BC,
that confirms what we noted looking at Fig. 10.
Test 6: Comparison with other numerical approximations
In this sixth and last test of this subsection dedicated to
synthetic tests we will compare the performance of our
semi-Lagrangian approach with other methods used in the
literature. For this reason, we will use a very common image
used in the literature, that is the vase, defined in the previ-
ous test through the (95). More in detail, we will compare
the performance of our semi-Lagrangian method with the
Lax–Friedrichs Sweeping (LFS) scheme adopted by Ahmed
and Farag [2] under vertical and oblique light source. Also

Table 7 Synthetic vase: number of iterations, CPU time in seconds and
L2, L∞ errors on the surface with vertical light source ω = (0, 0, 1)
using non-homogeneous Drichlet BC

SL-schemes Iter. (sec.) L2(S) L∞(S)

LAM 1337 0.70 0.0286 0.0569

ON-02 1335 0.70 0.0284 0.0558

ON-04 1341 0.70 0.0282 0.0562

PH-s02 1330 0.70 0.0284 0.0560

PH-s04 1330 0.70 0.0280 0.0558

these authors derive some similar HJ equations for the L-
model in [1], and generalize this approach for various image
conditions in [2], comparing their results on the only L-
model with the results shown in [63] and the algorithms
reported in [85].Unfortunately,we cannot compare our semi-
Lagrangian approximation for the PH-model with no other
schemes since, to our knowledge, there are no table of errors
for the PH-model under orthographic projection in the liter-
ature. In order to do the comparison, we will consider the
vase image of size 128×128 as used in the other papers. We
start to remind the error estimations used: given a vector A
representing the reference depth map on the grid and a vector
Ã representing its approximation, we define the error vector
as e = A − Ã and

err1 := ||e||L1 = 1

N

∑

i

|ei |

err2 := ||e||L2 =
{
1

N

∑

i

|ei |2
}1/2

,

where N is the total number of grid points used for the compu-
tation, i.e., the grid points belonging toGin . These estimators
are called mean and standard deviation of the absolute error.
In Table 8, we compare the error measures for the different
SfS algorithms under the L-model with ω = (0, 0, 1). What
we can note is that our semi-Lagrangian method is better
than the other ones also if we consider Dirichlet boundary
condition equal to zero (as used by Ahmed and Farag in their
work [2]), but the better result is with correct BC, shown in
bold in the last row. In Table 9, we can see the same methods
applied to the L-model but under a different light source, that
is (1, 0, 1). Also in this case, our approach obtains always the
smallest errors and the best is with non-homogeneousDirich-
let BC, as noted before.

Only with respect to the LFS used by Ahmed and Farag,
we can compare the performance of our semi-Lagrangian
scheme under the ON-model as well, since the other authors
only consider the L-model. In this context, we show in
Table 10 the error measures for the two SfS algorithms
with σ = 0.2, under vertical position of light source and
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Table 8 Synthetic vase: error measures related to the different methods
for the L-model with vertical light source ω = (0, 0, 1)

Methods err1 err2

Best [85] 8.1 11.1

[63] 2.8 2.0

[2] 0.22 0.4

Our proposed (BC = 0) 0.1570 0.1717

Our proposed (BC �= 0) 0.0349 0.0385

In bold the best performances

Table 9 Synthetic vase: error measures related to the different methods
for the L-model with oblique light source (1, 0, 1)

Methods err1 err2

Best [85] 7.9 13.9

[63] 4.1 2.6

[2] 1.2 2.2

Our proposed (BC = 0) 0.0683 0.1061

Our proposed (BC �= 0) 0.0218 0.0242

In bold the best performances

Table 10 Synthetic vase: error measures related to the SL and LFS
methods for the ON-model with σ = 0.2 under vertical light source
(ω = (0, 0, 1)) and vertical viewer V = (0, 0, 1)

Methods err1 err2

[2] 0.6 1.0

Our proposed (BC = 0) 0.1568 0.1715

Our proposed (BC �= 0) 0.0348 0.0384

In bold the best performances

viewer [ω = (0, 0, 1),V = (0, 0, 1)]. As before, the best
result is obtained using the semi-Lagrangian scheme with
non-homogeneous Dirichlet BC. The reconstructions corre-
sponding to the error measures shown in the three last Tables
8, 9, and 10 obtained applying our scheme and compared to
[2] are shown in Fig. 11. The reconstruction obtained by the
twomethods are comparable. In particular, in the second col-
umn regarding the oblique light source case we can note that
our scheme reconstructs a surface that incorporates the black
shadow part (see [23] for more details on this technique),
avoiding the effects of “dent” present in the reconstruction
obtained by Ahmed and Farag visible in the last row, second
column.

Finally, in Table 11 we reported the number of iterations
and the CPU time in seconds with the comparison with
respect to [2]. This shows that the SL-scheme is competi-
tive also in terms of CPU time. Of course, in the case of
oblique light source the number of iterations, and hence the
CPU time needed is much more bigger. Just think that for the
reconstruction under the L-model with oblique light source

Fig. 11 Synthetic vase: from top to bottom, Input images, recovered
shapes by our approach with homogeneous Dirichlet BC and with non-
homogeneous BC, recovered shape by [2]. First column: L-model with
vertical light source (0,0,1). Second column: L-model with oblique light
source (1,0,1). Third column: ON-model with σ = 0.2, ω = (0, 0, 1),
V = (0, 0, 1). Input images size: 128 × 128

Table 11 Synthetic vase: iterations and CPU time in seconds for the
L-model and the ON-model with vertical light source ω = (0, 0, 1).
Image size: 128 × 128

Schemes Model Iter. (sec.)

[2] L-model - 0.5

Our approach (BC = 0) L-model 611 0.09

Our approach (BC �= 0) L-model 792 0.11

[2] ON-model - 1.5

Our approach (BC = 0) ON-model 612 0.09

Our approach (BC �= 0) ON-model 791 0.12

(1, 0, 1) and BC �= 0 visible in the second column of the
third row of Fig. 11, we need 15513 iterations (CPU time:
147.40 seconds). If we double the size of the input image,
considering the vase 256 × 256 visible in Fig. 10, for the
reconstruction visible in the third row, first column of the
same Fig. 10, we need 30458 iterations to get convergence,
that we obtain in 1163 seconds.
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Fig. 12 Synthetic vase: The first row shows the input image and the
recovered shape by our approach with non-homogeneous BC based
on the PH-model with kS = 0.2, ω = (0, 0, 1) and V = (0, 0, 1).
The second row shows the input image and the recovered shape by the
approximate Ward’s method illustrated in [2] with σ = 0.2, ρd = 0.67,
ρs = 0.075, ω = (0, 0, 1), V = (0, 0, 1). Input images size: 128× 128

Table 12 Synthetic vase: error
measures related to the cases
shown in Fig. 12

Methods err1 err2

Ward in [2] 0.8 1.3

PH-model 0.03 0.04

In bold the best performances

Since it is difficult to compare the performance of our
approach based on the PH-model with other schemes based
on the same reflectance model under orthographic projec-
tion for the consideration made before, we report in Fig.
12 the performances obtained by our method based on the
PH-model compared to the approximate Ward’s method on
the vase test (Cf. Fig. 7 in [2]). What we can see is that
both the two methods reconstruct the surface in a quite good
way, without particular distinctions in the goodness of the
reconstructions. In order to analyze the results not only in
a qualitative way but also in a quantitative one, we report
the mean and the standard deviation of the absolute errors in
Table 12. Looking at this table, we can note that our approach
seems to be superior, obtaining the reconstruction with errors
smaller of one order with respect to the other model.

7.2 Real Tests

In this subsection we consider real input images. We start
considering the goldenmask of Agamemnon taken from [78]
and then modified in order to get a picture in gray tones. The
size of the modified image really used is 507 × 512. The

Fig. 13 Agamemnon images (size 507× 512). a Input image, bmask

Table 13 Real Agamemnon
mask: parameter values used in
the models with vertical light
source ω = (0, 0, 1)

Model σ kD kS α

LAM

ON-04 0.4

ON-08 0.8

ON-10 1

PH-s04 0.6 0.4 1

PH-s08 0.2 0.8 1

PH-s10 0 1 1

input image is visible in Fig. 13a, the associated mask used
for the 3D reconstruction in Fig. 13b. The second real test
is concerning the real vase (RV in the following) visible in
Fig. 16, taken from [19]. The size of the input image shown
in Fig. 16a is 256 × 256. The reconstruction domain ΩRV ,
shown in Fig. 16b, is constituted by the pixels situated on the
vase. For the real cases, the input image is the same for all
the models and we can compute only errors on the images
since we do not know the height of the original surface. For
the real tests we will use the same stopping criterion for the
iterative method before defined for the synthetic tests, i.e.,
|Wk+1 − Wk |max ≤ η.
Test 7: Agamennon mask For this test we will compare the
results regarding 3D reconstruction of the surface obtained
with a vertical light source ωvert = (0, 0, 1) and an oblique
light source ωobl = (0, 0.0995, 0.9950). The values of the
parameters used in this test are reported in Table 13. For a
vertical light source, we refer to Table 14 for the number
of iterations and the CPU time (in seconds) and to Table 15
for the errors obtained with a tolerance η = 10−8 for the
stopping rule of the iterative process. Clearly, the number of
iteration and the errors of the two non-Lambertian models
are the same of the classical Lambertian model when σ for
the ON-model and kS for the PH-model are equal to zero
(and for this reason we do not report them in the tables). In
all the other cases, the non-Lambertian models are faster in
terms of CPU time and need a lower number of iterations
with respect to the L-model.
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Table 14 Real Agamemnon
mask: iterations and CPU time
in seconds for the models with
vertical light source
ω = (0, 0, 1)

SL-schemes Iter. (sec.)

LAM 3921 24.48

ON-04 2751 12.48

ON-08 1943 11.41

ON-10 1818 8.79

PH-s04 2127 9.89

PH-s08 1476 6.90

PH-s10 1325 6.33

Table 15 Real Agamemnon
mask: L2, L∞ errors with
vertical light source
ω = (0, 0, 1)

SL-schemes L2(I ) L∞(I )

LAM 0.0371 0.4745

ON-04 0.0375 0.4627

ON-08 0.0440 0.4627

ON-10 0.0501 0.4627

PH-s04 0.0383 0.4824

PH-s08 0.0391 0.4941

PH-s10 0.0393 0.5098

Fig. 14 Agamennon mask: results with vertical light source. On the
first row the output images, on the second row the 3D reconstruction
with vertical view, on the third row the 3D reconstruction with oblique
view

In Table 15 we can observe that the L2 errors produced by
the ON-model increase by increasing the value of σ . How-
ever, the L∞ errors are lower than the error obtained with
the Lambertian model. With respect to the PH-model, all the
errors increase by increasing the value of the parameter kS ,
as observed for synthetic images.

Table 16 Real Agamemnon
mask: parameter values used in
the models with an oblique light
source
ωobl = (0, 0.0995, 0.9950)

Model σ kD kS α

LAM

ON-01 0.1

ON-02 0.2

ON-03 0.3

PH-s02 0.8 0.2 1

PH-s03 0.7 0.3 1

PH-s04 0.6 0.4 1

Table 17 Real Agamemnon
mask: number of iterations and
CPU time in seconds for the
different models with oblique
light source
ωobl = (0, 0.0995, 0.9950)

SL-schemes Iter. (sec.)

LAM 321 117.9

ON-01 315 246.0

ON-02 361 281.5

ON-03 396 264.6

PH-s02 427 285.2

PH-s03 564 373.6

PH-s04 680 484.1

Table 18 Real Agamemnon
mask: L2, L∞ errors with
oblique light source
ωobl = (0, 0.0995, 0.9950)

SL-schemes L2(I ) L∞(I )

LAM 0.0585 0.4863

ON-01 0.0663 0.4588

ON-02 0.0670 0.4471

ON-03 0.0708 0.5451

PH-s02 0.1141 0.5725

PH-s03 0.1580 0.6196

PH-s04 0.2063 0.6706

In Fig. 14, we can see the output image and the 3D recon-
struction in a single case for each models. What we can note
is that no big improvements we can obtain visually.

For the oblique light case, we consider the values for the
parameters reported in Table 16.

Looking at Table 17 we can note that the oblique cases
require higher CPU timewith respect to the vertical cases due
to the fact that the equations are more complex because of
additional terms involved. Because of these additional terms
involved in the oblique case, in Table 18 we have reported
the results obtained using the parameters shown in Table 16
with a value of the tolerance η for the stopping rule of the
iterative method equal to 10−3. This is the maximum accu-
racy achieved by the non-Lambertian models since roundoff
errors coming from several terms occur and limit the accu-
racy.

In Fig. 15, we can see the output image and the 3D recon-
struction in a single case for each models. What we can note
is that also using more realistic illumination models as the
two non-Lambertian considered, we do not obtain a so better
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Fig. 15 Agamennon mask: results with oblique light source ωobl =
(0, 0.0995, 0.9950). On the first row the output images, on the second
row the 3D reconstruction with vertical view, on the third row the 3D
reconstruction with oblique view

Fig. 16 Real vase images (size 256 × 256). a Input image, b mask

approximation of the ground truth solution. This is due to
the missing important informations (e.g., the correct oblique
light source direction, the values of the parameter involved
that are known for the models but not available in the real
cases) and also due to the fact that we are using a first-order
method of approximation.
Test 8: Real vase With this test we want to investigate the
stability of our method with respect to the presence of noise.
In fact, looking at Fig. 16a we can consider that RV is
a noisy version of the synthetic vase used in the Tests 5
and 6. The test was performed using a vertical light source
ω = (0, 0, 1). The output images, computed a posteriori by
using the gradient of u approximated via centered finite dif-
ferences starting from the values of u just computed by the
numerical scheme, are visible in Fig. 17, first column. The

Fig. 17 Real vase: Output images and 3D reconstructions. On the first
row the L-model, on the second row the ON-model with σ = 0.2, on
the third row the PH-model with kS = 0.2

Table 19 Real vase: L2, L∞
errors with vertical light source
ω = (0, 0, 1)

SL-schemes L2(I ) L∞(I )

LAM 0.0093 0.0784

ON-02 0.0094 0.0784

ON-04 0.0111 0.0824

PH-s02 0.0095 0.0824

PH-s04 0.0098 0.0824

reconstruction obtained with the three models are visible in
the same Fig. 17, second column.What we can note is that all
the reconstructions, obtained using homogeneous Dirichlet
BC, suffer for a concave/convex ambiguity, as already noted
for the synthetic vase (SV in the following). Since it is visible
looking at the SV and the RV tests that we obtain results with
errors of the same order of magnitude around 10−2, consid-
ering that RV is a noisy version of SV, Table 19 shows that
the method is stable in the presence of noise in the image.

Finally, in Fig. 18 one can note the behavior of the ON-
model by varying the value of the parameter σ . Since in real
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Fig. 18 Real vase: 3D reconstructions related to the ON-model, vary-
ing σ . From left to right σ = 0.2, 0.4, 0.6

situations we do not know it (as other parameters like the
light source direction) we can only vary it in order to see
the one which gives the best fit with the image. Looking at
Fig. 18 what we can observe is that increasing the value of σ

the reconstruction shows a wider concave/convex ambiguity,
which affects more pixels. But this holds only in this specific
case, not in general for all the real images as a rule.
Test 9: Corridor As an illustrative example, let us consider
a real image of a corridor (see Fig. 19) as a typical example
of a scene which can be useful for a robot navigation prob-
lem. The test has been added as an illustrative example to
show that even for a real scene which does not satisfy all the
assumptions and for which several informations are missing
(e.g., boundary conditions) the method is able to compute
a reasonable accurate reconstruction in the central part of
the corridor (clearly the boundaries are wrong due to a lack
of information). The size of this image is 600 × 383. Note
that for this picture we do not know the parameters and the
light direction in the scene. It seems that there is a diffused
light and more than one light source. So this picture does not
satisfy many assumptions we used in the theoretical part. In
order to apply our numerical schemewe considered a Dirich-
let boundary condition equal to zero at the wall located at the
bottom of the corridor. In this way, we have a better percep-
tion of the depth of the scene. In Fig. 20 we can see the output
images (on the first column) and the 3D reconstructions (on
the second column) obtained by L-model, ON-model with
σ = 0.1 and PH-model with kS = 0.2. In this example, the
PH-model seems to recognize the scene better than the ON-
model. In some sense this is probably due to the fact that it
has less parameters so it is easier to tune to a real situation
where the information on the parameters is not available. We
point out that this test is just an illustration of the fact that
coupling SfSwith additional informations (e.g., coming from
distance sensors to fix boundary conditions) can be useful to
describe a scene.
Test 10:Other tests on real images In order to demonstrate the
applicability of our proposed approach for real data,we added
here other experiments conducted on a real urn, real rabbit,
and real Beethoven’s bust. The input images and the related
recovered shapes obtained by the three models studied under

Fig. 19 Image of a real scene (size 600 × 383)

Fig. 20 Output images and 3D reconstructions of a scene for a robot
path planning application. On the first row the L-model, on the second
row the ON-model with σ = 0.1, on the third row the PH-model with
kS = 0.2

different light directions and parameters are shown in Fig. 21.
As visible from Fig. 21, the results are quite good, even for
pictures like the rabbit or the bust of Beethoven, which have
many details, even if they still suffer for the concave/convex
ambiguity typical of the SfS problem.

8 Conclusions

In this paper, we derived non-linear PDEs of first order,
i.e., Hamilton–Jacobi equations, associated to the non-
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Fig. 21 Experiments on real images: input images and the recovered
shapes obtained by our approach. On the first row: urn reconstructed by
theL-modelwithω = (0, 0, 1). On the second row: rabbit reconstructed
by the ON-model with σ = 0.2, ω = (0, 0, 1), V = (0, 0, 1). On
the third row: Beethoven reconstructed by the PH-model with ω =
(0.0168, 0.198, 0.9801), kS = 0.2

Lambertian reflectance models ON-model and PH-model.
We have obtained the model equations for all the possible
cases, coupling vertical or oblique light source with ver-
tical or oblique position of the observer. This exhaustive
description has shown that these models lead to stationary
Hamilton–Jacobi equations with a same structure and this
allows for a unified mathematical formulation in terms of
fixed point problem. This general formulation is interesting
because we can switch on and off the different terms related
to ambient, diffuse, and specular reflection in a very simple
way. As a result, this general model is very flexible to treat
the various situations with vertical and oblique light sources.
Unfortunately, we have observed that none of these models
is able to overcome the typical concave/convex ambiguity
known for the classical Lambertian model. Despite these
limitations, the approach presented in this paper is able to
improve the Lambertian model that is not suitable to deal
with realistic images coming from medical or security appli-
cation. The numerical methods presented here can be applied
to solve the equations corresponding to the ON-model and
the PH-model in all the situations although they suffer for the
presence of several parameters related to the roughness or to
the specular effect. Nonetheless, looking at the comparisons

with other methods or models shown in this paper, one can
see that the semi-Lagrangian approach is competitive with
respect to other techniques used, both in terms of CPU time
and accuracy. As we have seen, in the complex non-linear
PDEs associated to non-Lambertian models the parameters
play a crucial role to obtain accurate results. In fact, vary-
ing the value of the parameters it is possible to improve the
approximation with respect to the classical L-model. We can
also say that for real images the PH-model seems easier to
tune, perhaps because we need to manage less parameters.

Focusing the attention on the tests performed with an
oblique light source, we have to do some comments that are
common to the PH-model and the ON-model. Several terms
appear in these models and each of them gives a contribution
to the roundoff error. Note that the accumulation of these
roundoff errors makes difficult in the oblique case to obtain
a great accuracy. A possible improvement could be the use
of second order schemes, that release the link between the
space and the time steps which characterizes and limits the
accuracy for first-order schemes. Another interesting direc-
tion would be to extend this formulation to other reflectance
models (like e.g., the Ward’s model) and/or to consider per-
spective projection also including an attenuation term which
can help to resolve the concave/convex ambiguity or con-
sidering more than one input image with non-Lambertian
models, that solves the well-known ambiguity (see [74] for
a first step in this last direction considering the Blinn–Phong
model). These directions will be explored in future works.
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