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Abstract Recovering the 3D shape of an object from
shading is a challenging problem due to the complexity of
modeling light propagation and surface reflections. Photo-
metric Stereo (PS) is broadly considered a suitable approach
for high-resolution shape recovery, but its functionality is
restricted to a limited set of object surfaces and controlled
lighting setup. In particular, PS models generally consider
reflection from objects as purely diffuse, with specularities
being regarded as a nuisance that breaks down shape recon-
struction. This is a serious drawback for implementing PS
approaches, since most common materials have prominent
specular components. In this paper, we propose a PS model
that solves the problem for both diffuse and specular com-
ponents aimed at shape recovery of generic objects with the
approach being independent of the albedo values thanks to

R. Mecca: Marie Curie fellow of the Istituto Nazionale di Alta
Matematica.

B S. Tozza
tozza@mat.uniroma1.it

R. Mecca
roberto.mecca@eng.cam.ac.uk

M. Duocastella
marti.duocastella@iit.it

A. Del Bue
alessio.delbue@iit.it

1 Dipartimento di Matematica, Sapienza - Università di Roma,
Piazzale Aldo Moro, 5, 00185 Rome, Italy

2 Engineering Department, University of Cambridge,
Trumpington Street, Cambridge CB2 1PZ, UK

3 Pattern Analysis & Computer Vision Department, Istituto
Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy

4 Nanoscopy, Istituto Italiano di Tecnologia, Via Morego, 30,
16163 Genova, Italy

the image ratio formulation used. Notably, we show that by
including specularities, it is possible to solve the PS prob-
lem for a minimal number of three images using a setup
with three calibrated lights and a standard industrial camera.
Even if an initial separation of diffuse and specular com-
ponents is still required for each input image, experimental
results on synthetic and real objects demonstrate the feasi-
bility of our approach for shape reconstruction of complex
geometries.

Keywords Photometric Stereo · Blinn–Phong model ·
Image ratio

1 Introduction

Since the seminal paper by Woodham [37], Photometric
Stereo (PS) has been considered a very accurate procedure
for tridimensional shape reconstruction. Despite its wide
use in many applications [34,38,39], PS suffers from sev-
eral limitations that constrain its applicability to restricted
scenarios. In particular, one of the most challenging issues
refers to specularity, where standard PS remains substan-
tially inaccurate. This spans from the consideration that most
works dealing with PS assume objects under observation to
give exclusively diffuse reflection (Lambertian). Considering
the general theory of image formation in which reflections
have contributions from both diffuse and specular compo-
nents [25,36], PS approaches implicitly assume specularities
are negligible with respect to the global reflection of light
[15,16]. Due to the usual sparsity of the specular compo-
nent, this assumption is reasonable when several images are
used (typically >10). However, it fails when fewer images
are considered. This can limit considerably the application of
PS to (near-)real-time setups where a minimal set of images
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Fig. 1 The top row shows three images of a painted ceramic cup. The
bottom row shows the normalmapwhere artifacts have been highlighted
and the 3D shape reconstruction using traditional PS [37]. Bottom
images show artifacts due to specular reflections

(i.e., three) is necessary to optimize performance. Conse-
quently, one would greatly benefit from a new methodology
for PS shape recovery which considers such minimal set of
data. For this reason, extracting information from the specu-
lar component is essential even for well-studied objects, such
as ceramic objects and faces, since in these cases neglecting
specular effects prevents accurate shape reconstruction as
shown in Fig. 1.

Here we propose a method that, given an input image
separated into two components, diffused and specular, can
efficiently reconstruct the 3D shape of an object with varying
albedo using only three images under different light condi-
tions. Our approach results in improved shape reconstruction
compared to standard PS methods with global reflection
assumed purely diffuse. In addition, our method also shows
reconstruction improvements compared to PS in which only
the diffuse component separated from the specular one is
considered [2].

In summary, this work contributes to the state of the art
with

– a methodology for reconstructing surfaces with general
bidirectional reflectance distribution functions (BRDFs)
by using three images given a preliminary diffuse and
specular reflection separation [18,32];

– a processing procedure aimed at using both diffuse [23]
and specular components with a new mathematical for-
mulation based on the Blinn–Phong shading model.

1.1 Related Work

Aiming at providing a self-contained overview of the PS
approaches, we start by discussing methods dealing with
Lambertian reflection, and then we consider works that
explicitly model specular components.

Once we assume that objects reflect light diffusely, the
most complex case subsistswhenever no information is avail-
able about the lighting setup. In such uncalibrated scenario,
both the surface properties and lighting parameters of the
scene have to be computed. Regarding this problem, fac-
torization methods have provided efficient and closed form
solutions. They are based on the fact that a set of images taken
from a static point of view and subject to varying lights lies in
a certain subspace. In particular, the reflection components
can be described with a bilinear model which is a compact
representation of the given image data. Hayakawa [12] first
made evident such bilinear modeling assuming a Lambertian
surface and a single light source. Basri et al. [4] used a more
descriptive photometricmodel based on a spherical harmonic
representation of lighting variations. Their approach can deal
with images of Lambertian objects under unknown lighting
conditions. These classical methods in PS, which do not have
any depth assumption of the shape, are always subject to the
bas-relief ambiguity [5]. On the contrary, Shi et al. [33] per-
formed an automatic radiometric calibration by identifying
a new set of constraints that can solve the Generalized Bas-
Relief (GBR) transformation. A recent work by Papadhimitri
andFavaro [27] approximates theGBRparameters efficiently
by taking into account the information coming from the local
diffuse reflectance maxima.

Furthermore, there are several recent works that study the
uncalibrated PS problem with the added difficulty of dealing
with specular reflection. In particular, [19] uses more than
one hundred images, limiting the shape recovery to a con-
cave/convex ambiguity and providing an approach capable
to deal with objects with uniform reflectance. Chandraker et
al. [7] recover surface iso-contours from differential images
by restricting the positions of the light sources to a circle
around the camera axis. In this case, additional information
is required such as an initial normal to determine surface nor-
mals. In addition, such differential formulation uses image
equation ratios with the aim to simplify the problem elim-
inating the dependence on photometric invariants such as
albedo.

Besides the specific limitations of the methods mentioned
before, the most important drawback assuming uncalibrated
setups is the number of images required. Since the image
acquisition is achieved by sequentially turning on and off the
light sources surrounding the static object under observation,
this approach is not feasible for shape recovery of movable
or deformable objects.

Robust PS has been deeply studied by Ikehata et al. [15,
16] where general isotropic surfaces have been taken into
account. These approaches are based on regressions and they
use tens of images for accurate shape reconstruction. The
reason why this method needs several images is due to its
mathematical formulation. In fact, the irradiance equation
is based on diffuse reflection and specular components are
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considered outliers or negligible. In a similar way, [10,17,
24] treated strong specularities and shadows as missing data
and they solved for the diffuse component through a matrix
completion problem. However, when using a minimal set
of images (e.g., 3, or 4 as in [3]), it is likely that specular
components make the bilinear regression fail.

Alternatively, calibrated PS setups offer a more efficient
and reliable method for 3D shape recovery. This is due
to the knowledge a priori of the parameters describing the
light sources and the consequent reduction in the number of
images necessary for shape reconstruction. In this frame-
work, Higo et al. [14] proposed an energy minimization
method using six parameters to be tuned and with the specu-
lar lobe parametrized as a weak extension of the Lambertian
shading model. Furthermore, the method works for surfaces
showing either diffuse or specular reflection. Chung and Jia
[8] used at least six images. However, the boundary of the
shadow must be accurately separated, since it provides con-
straints for calculating the normal of the surface.

In general, and for the diffuse component only, the cali-
brated active system setup has led to a high number of custom
solutions [31] that typically require a laboratory setup and
accurate calibration of the devices. Instead, Hernandez et al.
[13] used a less restrictive calibrated setup with only three
non-collinear colored lights in a dark room with surfaces
that were also photometrically calibrated. Recently, Ander-
son et al. [1] have extended this approach to arbitrary colored
surfaces. Using three calibrated light sources is a conve-
nient solution that allows the implementation of real-time
3D acquisition systems by multicolor illumination.

2 Formulation of the General Model

The general model presented in this manuscript is based on
fixing a camera in a three-dimensional coordinate system
(Oxyz) and illuminating an objectwith different light sources.
The camera is placed in such a way that Oxy coincides with
the image plane and Oz with the optical axis.

Let ωi = (ωi
1, ω

i
2, ω

i
3) = (ω̃i , ωi

3) ∈ R
3 (with ωi

3 > 0
for each i-th vector) be the unit vectors that represent the
directions of the light sources. The images Ii : Ω → [0, 1]
are the grayscale values of the i-th image at point (x, y)
belonging to the image domain Ω , see Fig. 2.

The assumptions we consider are commonly used in the
PS field. We list them as follows:

A1. The light propagates uniformly for each source with the
directionωi (therefore, the light rays are parallel to each
other)

A2. Orthographic viewing geometry
A3. There are no inter-reflections on the surface.

Under the assumption (A2) of orthographic projection, the
visible part of the scene is a graph z = u(x, y) and the unit
normal to the surface at the image point corresponding to
(x, y) is given by

N(x, y) = n(x, y)

|n(x, y)| = (−∇u(x, y), 1)
√
1 + |∇u(x, y)|2 , (1)

where n(x, y) is the outgoing normal vector.
We consider the image function defined by the following

irradiance equation:

I (x, y) = R(N(x, y)), (2)

where I (x, y) is the normalized brightness of the given gray-
value image, N(x, y) is the unit normal to the surface at
point (x, y, u(x, y)), and R(N(x, y)) is the reflectance map
giving the value of the light reflection on the surface as a
function of N(x, y) at each point. Depending on how we
describe the function R, different reflectionmodels are deter-
mined. We will describe and use two of them. As proposed
in [9], it would be useful to introduce a representation of the
brightness function I (x, y) in which we can distinguish dif-
ferent terms representing the contribution of ambient, diffuse
reflected, and specular reflected light such that

I (x, y) = kA A(x, y) + kDD(x, y) + kSS(x, y), (3)

where A(x, y),D(x, y), and S(x, y) are the above-mentioned
components, and kA, kD , and kS indicate the percentages of
these components, respectively, such that their sum is equal
to 1. In this paper, we consider the Lambertian model for the
diffuse component D(x, y) and the so-called Blinn–Phong
model for the specular component S(x, y) [6]. We remark
that even if the Blinn–Phong shading model is not physi-
cally based, a recent evaluation [26] shows that it provides
good specular shading results compared to other physically
based models. Finally, throughout the paper, we neglect the
ambient component by setting kA = 0. We start with a brief
description of these models.

2.1 Lambertian Model

By definition, a Lambertian surface is a purely diffuse reflec-
tor and, consequently, the specular component does not exist.
So, the general Eq. (3) becomes

I (x, y) = kDD(x, y), (4)

whose diffuse component D(x, y) is

D(x, y) = ρD(x, y)N(x, y) · ω, (5)
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Fig. 2 The scheme explains the Blinn–Phong model for a sphere on a
flat background. On the left, the grayscale image defined in the rectan-
gleΩ , sectioned through the central red line. On the right, its schematic
section showing the unit vectors involved in the shadingmodeling. The

vector ω is uniform for all the points in the image plane and it points
toward the light source. The viewing vector V is fixed pointing in the
vertical direction. The intermediate vector H bisects V and ω (Color
figure online)

where ρD(x, y) indicates the albedo of the diffuse part, i.e.,
the diffuse reflectivity or reflecting power of a surface. In
other words, the albedo consists of the ratio of reflected
radiation from the surface to incident radiation upon it. Its
dimensionless nature is expressed as a percentage and it is
measured on a scale from 0 for no reflection (a perfectly
black surface) to 1 for a perfect reflection for a white sur-
face. Recalling that the sum kA +kD +kS must be equal to 1,
for a Lambertian surface kD = 1 and this parameter can be
omitted. In this way, the irradiance Eq. (2) can be rewritten
as follows:

Ii (x, y) = ρD(x, y)N(x, y) · ωi , (6)

for each image Ii (x, y) obtained by lighting up the surface
u using the i-th light source ωi . The orthogonal PS problem
consists in determining the function u : Ω → R that satisfies
Eq. (6), where the unit vectors ωi and the functions Ii (x, y)
are the only quantities known in the problem.

In this model, we can note that the measured light in each
image only depends on the scalar product between N(x, y)
andωi and the parameterρD(x, y), which describes the phys-
ical properties of the surface reflection.

In order to solve our problem, let us first fix the number
of images (i.e., light sources) to n = 2, and let us recall from
[20] that one can solve the PS problem for Lambertian sur-
faces considering the following linear differential problem:

{
bD(x, y) · ∇u(x, y) = fD(x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(7)

where bD is a diffuse 2D vector field defined in Ω by

bD(x, y) = D2(x, y)ω̃
′ − D1(x, y)ω̃

′′, (8)

with ω̃′ = (ω′
1, ω

′
2) and ω̃′′ = (ω′′

1 , ω
′′
2), and

fD(x, y) = D2(x, y)ω
′
3 − D1(x, y)ω

′′
3 . (9)

From now, in order to avoid confusion between components
of the same vector and different vectors, we will use the
following notation: ′,′′ ,′′′ as superscripts will denote three
different vectors (e.g., ω′,ω′′,ω′′′), the numbers 1, 2, 3 as
subscriptswill indicate the components of a vector (e.g.,ω′ =
(ω′

1, ω
′
2, ω

′
3)).

Note that the problem in Eq. (7) is solved regardless of
the albedo values thus providing an approach that can model
objects with varying material properties.

Even if the differential problem (7) has a unique solu-
tion, the need of the boundary condition g(x, y), which is
unknown in our case, obliges us to use a third image. Sec-
tion 5 will explain in practice how to use the information
coming from three diffuse available pixels and how to use
(7) when the diffuse component is corrupted (e.g., specular-
ities).

2.2 Blinn–Phong Specular Model

There are different models that account for specular reflec-
tions. In this paper we consider one of the most popular
ones, the Blinn–Phong model [6]. As graphically explained
in Fig. 2, it is amodification of the Phongmodel [28]. Briefly,
specularities are modeled based on the intermediate vectorH
that bisects the angle between the unit vectors ω and V. By
using this model, it is possible to produce a faster algorithm
in terms of CPU timewhen both observer and light source are
placed at infinity because H is independent of the position
and orientation of the surface.
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For this model, the specular component related to the i-th
image Ii (x, y) is defined as follows:

Si (x, y) = ρS(x, y)
(
Hi · N(x, y)

)c
, (10)

where ρS(x, y) is the specular albedo,Hi = V+ωi

|V+ωi | = hi

|hi | =
( hi1

|hi | ,
hi2
|hi | ,

hi3
|hi |

)
and c is a positive constant that measures the

shininess of the surface. Next, wewill use the following nota-
tion: h̃′ = (h′

1, h
′
2) and h̃′′ = (h′′

1, h
′′
2), in order to compact

the writing as already done for the vectors ω̃′, ω̃′′.
We next present a novel approach regarding the treatment

of specularities. Our strategy is based on extending the dif-
ferential method proposed in [20] to specularities with image
ratios. This yields to

Equation for S2︷ ︸︸ ︷

n(x, y) · h′

|h′|(S1(x, y)) 1
c

= |n(x, y)|
(ρS(x, y))

1
c

︸ ︷︷ ︸
Equation for S1

= n(x, y) · h′′

|h′′|(S2(x, y)) 1
c

(11)

which makes the differential problem similar to (7), that is

{
bS(x, y) · ∇u(x, y) = fS(x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(12)

with the same boundary conditions and defined by the fol-
lowing functions:

(bS, fS) = |h′′|(S2(x, y)) 1
c h′ − |h′|(S1(x, y)) 1

c h′′. (13)

Note that also for the specular case, the problem is albedo
independent.

Given this new set of equations, we can obtain the solution
for the normal field by extracting information directly from
the specular component. Even if the viewer direction V has
been considered arbitrary, we require V3 > 0 as assumed
for the vectors ωi (with ωi

3 > 0 for each i-th vector). From a
theoretical point of view, such assumption simply means that
also Hi lie in the upper semisphere. In the rigorous mathe-
matical development,wewill see how this is required in order
to prove the uniqueness of the solution for (12).

Wewill explain in Sect. 6, devoted to the numerical experi-
ments, how the specular component affects the reconstruction
in the presence of noise.

3 The New Differential Approach

In the previous section, we derived a new linear differen-
tial problem for specular reflection (12) based on previous
work using diffuse reflection (7). With the aim to merge both

reflection effects, we combine these linear equations with a
weight α(x, y) ∈ {0, 1} as follows:
{
b(x, y) · ∇u(x, y) = f (x, y) ∀(x, y) ∈ Ω,

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω,
(14)

where

b(x, y) = α(x, y)bD(x, y) + (1 − α(x, y))bS(x, y) (15)

and

f (x, y) = α(x, y) fD(x, y) + (1 − α(x, y)) fS(x, y). (16)

In this way, if α = 1 we have the differential problem (7)
for the Lambertian model. Instead, if α = 0 we obtain the
specular problem (12). We consider α as a given coefficient,
provided by the separation procedure between specular and
diffuse components. The well-posedness of problem (14) is
guaranteed by proving that both diffuse (7) and specular (12)
problems are well-posed. Since (7) has been already proven
to be well-posed in [20], we only need to focus on (12).

3.1 Well-Posedness of the Specular Model

In order to verify that the problem (12) is well-posed, we
start by proving that the vector field bS never vanishes in Ω .

Lemma 1 If there are nopoints (x, y) ∈ Ω of black shadows
for the image functions (i.e., I1(x, y) �= 0 and I2(x, y) �= 0),
we have that |bS(x, y)| �= 0.

Proof Let us prove this result by contradiction. Suppose that
there exists a point (x̄, ȳ) ∈ Ω such that

{
|h′′|(S2(x, y)) 1

c h′
1 − |h′|(S1(x, y)) 1

c h′′
1 = 0,

|h′′|(S2(x, y)) 1
c h′

2 − |h′|(S1(x, y)) 1
c h′′

2 = 0.
(17)

Since we want to consider the dependence of the image
functions I1(x, y) and I2(x, y) on all the other model coeffi-
cients, wemake these functions explicit by using theEq. (10),
obtaining the following non-linear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|h′′|ρS(x, y)
1
c
n(x, y)

|n(x, y)| · h′′

|h′′|h
′
1

−|h′|ρS(x, y)
1
c
n(x, y)

|n(x, y)| · h′

|h′|h
′′
1 = 0,

|h′′|ρS(x, y)
1
c
n(x, y)

|n(x, y)| · h′′

|h′′|h
′
2

−|h′|ρS(x, y)
1
c
n(x, y)

|n(x, y)| · h′

|h′|h
′′
2 = 0,

(18)

that is
{
n(x, y) · h′′h′

1 − n(x, y) · h′h′′
1 = 0,

n(x, y) · h′′h′
2 − n(x, y) · h′h′′

2 = 0.
(19)
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Now, we compute
∂u

∂x
and

∂u

∂y
. We omit the dependence

on (x, y) in order to ease the notation. By considering n =
( − ∂u

∂x
,−∂u

∂y
, 1

)
, we solve the following system:

{
(−∇u · h̃′′ + h′′

3)h
′
1 − (−∇u · h̃′ + h′

3)h
′′
1 = 0,

(−∇u · h̃′′ + h′′
3)h

′
2 − (−∇u · h̃′ + h′

3)h
′′
2 = 0,

(20)

that can be rewritten as follows:

{(
(−∇u · h̃′′ + h′′

3),−(−∇u · h̃′ + h′
3)

) · (h′
1, h

′′
1) = 0,(

(−∇u · h̃′′ + h′′
3),−(−∇u · h̃′ + h′

3)
) · (h′

2, h
′′
2) = 0.

This means that the vectors (h′
1, h

′′
1) and (h′

2, h
′′
2) are orthog-

onal to
(
(−∇u · h̃′′ +h′′

3),−(−∇u · h̃′ +h′
3)

)
simultaneously.

We can consider two cases:

1. The vectors (h′
1, h

′′
1) and (h′

2, h
′′
2) are orthogonal and

coincident (that is, (h′
1, h

′′
1) ≡ (h′

2, h
′′
2)).

2. Both (h′
1, h

′′
1) and (h′

2, h
′′
2) are orthogonal and placed in

the opposite direction (that is, h′
1 = −h′

2 and h
′′
1 = −h′′

2).

By parametrizing the vectors h′,h′′ with spherical coor-
dinates having ϕ and θ as zenith and azimuth angles,
respectively, we can rewrite the previous two cases accord-
ingly. That is, the first case iswhen θ1, θ2 ∈ {π

4 , 5π
4 }, whereas

in the second case θ1, θ2 ∈ { 3π4 , 7π
4 }.

For both cases, we can consider, instead of the two null
components of the vectorbS , only one equation (because they
are the same in such cases). Let us consider, for example, the
first

(
−∇u · h̃′′ + h′′

3

)
h′
1 −

(
−∇u · h̃′ + h′

3

)
h′′
1 = 0, (21)

that is

−∂u

∂x
h′′
1h

′
1 − ∂u

∂y
h′′
2h

′
1 + h′′

3h
′
1 + ∂u

∂x
h′
1h

′′
1 + ∂u

∂y
h′
2h

′′
1

− h′
3h

′′
1 = 0,

which is

−∂u

∂x
h′′
1h

′
1 − ∂u

∂y
h′′
1h

′
1 + h′′

3h
′
1 + ∂u

∂x
h′
1h

′′
1 + ∂u

∂y
h′
1h

′′
1

− h′
3h

′′
1 = 0.

This implies

h′′
3

h′
3

= h′′
1

h′
1

= h′′
2

h′
2
.

Then, using the spherical coordinates parametrizing the vec-
tors h′,h′′, we get

cosϕ2

cosϕ1
= sin ϕ2 cos θ2

sin ϕ1 cos θ1
= sin ϕ2 sin θ2

sin ϕ1 sin θ1
. (22)

Our goal is to prove that θ1 = θ2 in order to obtain the
contradiction because in this case we have that h̃

′ = h̃
′′
(i.e.,

ω̃′ + Ṽ = ω̃′′ + Ṽ ⇔ ω̃′ = ω̃′′ that implies ω′ = ω′′) and
this it is not the case for the photometric stereo technique.

It is clear that, for both cases, if cos θ2
cos θ1

= +1, then θ1 = θ2,

while cos θ2
cos θ1

= −1 means θ1 �= θ2.
Let us suppose, by contradiction again, that θ1 �= θ2. Then,

from (22) we have

cosϕ2

cosϕ1
= − sin ϕ2

sin ϕ1
⇒ tan ϕ1 = − tan ϕ2,

which is not possible because ϕ1, ϕ2 ∈ [0, π
2 ], since the

vectors ω′, ω′′, and V belong to the superior part of the unit
sphere, which implies that h′ and h′′ will also belong to the
same region of the unit sphere. 
�

With the aim to use the characteristics method, we need to
show that the information traveling on such curves crosses the
image domain. For Lipschitz continuous surfaces, the image
function could present jump discontinuities corresponding to
the curves where the surface is not differentiable. Let us call
such curves as γ (t) and since they could represent an obsta-
cle to the information propagation due to the characteristics
method, we need the following result showing that a unique
(then weak) solution exists.

Theorem 1 Let γ (t) be a regular curve of discontinuity for
the functions bS(x, y) and fS(x, y). Let (x, y) ∈ γ (t), and
let n(x, y) be the outgoing normal with respect to the setΩ+
located on the right of γ (t). Then we have

[
lim(x,y)→(x,y)

(x,y)∈Ω+
bS(x, y) · n(x, y)

]

·
[
lim(x,y)→(x,y)

(x,y)∈Ω−
bS(x, y) · n(x, y)

]
≥ 0.

(23)

Proof We give the guideline of the proof which can be seen
as a variation of the equivalent proof in [20]. Let us define
the quantities

I+
1 := lim

(x,y)→(x,y)
(x,y)∈Ω+

I1(x, y), I−
1 := lim

(x,y)→(x,y)
(x,y)∈Ω−

I1(x, y),

I+
2 := lim

(x,y)→(x,y)
(x,y)∈Ω+

I2(x, y), I−
2 := lim

(x,y)→(x,y)
(x,y)∈Ω−

I2(x, y).

In order to work with the vector field bS(x, y) in the neigh-
borhood of (x, y), we consider the relations
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lim
(x,y)→(x,y)

(x,y)∈Ω+

bS(x, y) = (b+
1 , b+

2 )

= |h′′|(I+
2 )

1
c h̃′ − |h′|(I+

1 )
1
c h̃′′,

lim
(x,y)→(x,y)

(x,y)∈Ω−

bS(x, y) = (b−
1 , b−

2 )

= |h′′|(I−
2 )

1
c h̃′ − |h′|(I−

1 )
1
c h̃′′.

(24)

Denoting by (n1, n2) = (n1(x, y), n2(x, y)) the two coor-
dinates of n(x, y) and replacing (24) in the inequality (23),
we obtain

b+
1 b

−
1 n

2
1 + b+

2 b
−
2 n

2
2 + n1n2

(
b+
1 b

−
2 + b+

2 b
−
1

) ≥ 0,

which gives, in explicit terms,

(
|h′′|(I+

2 )
1
c h′

1 − |h′|(I+
1 )

1
c h′′

1

)

·
(
|h′′|(I−

2 )
1
c h′

1 − |h′|(I−
1 )

1
c h′′

1

)
n21

+
(
|h′′|(I+

2 )
1
c h′

2 − |h′|(I+
1 )

1
c h′′

2

)

·
(
|h′′|(I−

2 )
1
c h′

2 − |h′|(I−
1 )

1
c h′′

2

)
n22

+
[ (

|h′′|(I+
2 )

1
c h′

1 − |h′|(I+
1 )

1
c h′′

1

)

·
(
|h′′|(I−

2 )
1
c h′

2 − |h′|(I−
1 )

1
c h′′

2

)

+
(
|h′′|(I+

2 )
1
c h′

2 − |h′|(I+
1 )

1
c h′′

2

)

·
(
|h′′|(I−

2 )
1
c h′

1 − |h′|(I−
1 )

1
c h′′

1

) ]
n1n2 ≥ 0. (25)

For each coefficient that multiplies n21, n
2
2, and n1n2, we sub-

stitute the Eq. (10) and, after some algebraic simplifications,
we get, respectively, the following (26), (27), and (28)

i−1 i
+
1

(
h′′
1

)2 − i+1 i
−
2 h

′
1h

′′
1 − i−1 i

+
2 h

′
1h

′′
1 + i−2 i

+
2

(
h′
1

)2 (26)

i−1 i
+
1

(
h′′
2

)2 − i+1 i
−
2 h

′
2h

′′
2 − i−1 i

+
2 h

′
2h

′′
2 + i−2 i

+
2

(
h′
2

)2 (27)

− i+1 i
−
2 h

′′
1h

′
2 − i−1 i

+
2 h

′′
1h

′
2 + 2i−2 i

+
2 h

′
1h

′
2

+ 2i−1 i
+
1 h

′′
1h

′′
2 − i+1 i

−
2 h

′
1h

′′
2 − i−1 i

+
2 h

′
1h

′′
2 (28)

where

i+1 :=
(

− ∂u

∂x
,−∂u

∂y

)+
· (
h′
1, h

′
2

) + h′
3,

i−1 :=
(

− ∂u

∂x
,−∂u

∂y

)−
· (
h′
1, h

′
2

) + h′
3,

i+2 :=
(

− ∂u

∂x
,−∂u

∂y

)+
· (
h′′
1, h

′′
2

) + h′′
3,

i−2 :=
(

− ∂u

∂x
,−∂u

∂y

)−
· (
h′′
1, h

′′
2

) + h′′
3.

(29)

This allows us to write the following equalities

i+1 − i−1 = ξ · (h′
1, h

′
2),

i+2 − i−2 = ξ · (h′′
1, h

′′
2), (30)

where ξ =∇u− −∇u+. This reduces the problem to a previ-
ously solved one in [20], which allows to end the proof. 
�

4 W-PS with No Boundary Condition

In the previous section, we considered the PS problem with
only two images assuming knowledge of the boundary con-
dition g(x, y). However, for most real applications, the depth
on the boundary is not available. It is therefore important to
find a way to solve the PS problem without requiring knowl-
edge of the boundary condition. An interesting way to do that
is by using more than two images obtained by using different
light sources. However, in this case, an additional constraint
on the lighting directions is required: the light sources have
to be non-coplanar. This inconvenience has been studied in
[22] with respect to the PS with three images.

To solve the PS problemwithout knowledge of the bound-
ary condition, we consider the following numerical strategy.
First, we select a single arbitrarily valued initial seed point
within the reconstruction domain. Next, we robustly manip-
ulate the path of the characteristics as in [21].

4.1 Controlling the Characteristic Field

Let us start by considering the PS problemwith three images.
We can consider a set of unique image pairs and arrive to the
following system of linear PDEs:

⎧
⎨

⎩

b(1,2)(x, y) · ∇u(x, y) = f (1,2)(x, y)
b(1,3)(x, y) · ∇u(x, y) = f (1,3)(x, y)
b(2,3)(x, y) · ∇u(x, y) = f (2,3)(x, y),

(31)

where b(h,k)(x, y) and f (h,k)(x, y) are linear combinations
using data acquired with the h-th and k-th light with (h, k) ∈(3
2

)
, that is the set of pairs of integer indiceswith no repetition,

i.e., (1,2), (1,3), and (2,3).
In order to define a numerical strategy we need to manipu-

late the path along which the information travels. To do that,
we can use following theorem:

Theorem 2 Let bp(x, y) be the vector field of (31) where
p ∈ (3

2

)
. Then, ∀p1, p2 ∈ (3

2

)
and ∀(x, y) ∈ Ω we have:

bp1(x, y) · bp2(x, y) �= ±∣
∣bp1(x, y)

∣
∣
∣
∣bp2(x, y)

∣
∣. (32)

Proof In order to not involve too many parameters, let us
fix the indices p1 and p2 as (1, 2) and (1, 3), respectively.
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In order to prove that b(1,2) and b(1,3) are never parallel, we
consider the contradiction assuming that there exists a point
(x̃, ỹ) ∈ Ω such that

b(1,2)(x̃, ỹ) · b(1,3)(x̃, ỹ) = ±∣
∣b(1,2)(x̃, ỹ)

∣
∣
∣
∣b(1,3)(x̃, ỹ)

∣
∣.

(33)

For the sake of clarity, we omit the dependence on (x̃, ỹ).
Now, by squaring both sides of (33), we obtain

[
b(1,2)
1 · b(1,3)

1 + b(1,2)
2 · b(1,3)

2

]2

=
[
(b(1,2)

1 )2 + (b(1,2)
2 )2

] [
(b(1,3)

1 )2 + (b(1,3)
2 )2

]
(34)

that, with simplifications, means that we have just to verify

2
[
b(1,2)
1 · b(1,3)

1

] [
b(1,2)
2 · b(1,3)

2

]

=
[
b(1,2)
1 b(1,3)

2

]2 +
[
b(1,3)
1 b(1,2)

2

]2
. (35)

By writing b(1,2) and b(1,3) explicitly, we get

2 [(αA + (1 − α)B) (αG + (1 − α)L)

(αC + (1 − α)D) (αE + (1 − α)F)]

= [(αA + (1 − α)B) (αG + (1 − α)L)]2

+ [(αC + (1 − α)D) (αE + (1 − α)F)]2 (36)

where
A = D2ω

′
1 − D1ω

′′
1 , B = |h′′|(S2)1/ch′

1 − |h′|(S1)1/ch′′
1

C = D2ω
′
2 − D1ω

′′
2 , D = |h′′|(S2)1/ch′

2 − |h′|(S1)1/ch′′
2

E = D3ω
′
1−D1ω

′′′
1 , F = |h′′′|(S3)1/ch′

1−|h′|(S1)1/ch′′′
1

G = D3ω
′
2−D1ω

′′′
2 , L = |h′′′|(S3)1/ch′

2−|h′|(S1)1/ch′′′
2 .

After some manipulation on (36), we arrive to the following
condition:

α(AG − CE) + α(1 − α)[AL + BG − CF − DE]
+ (1 − α)2(BL − DF) = 0. (37)

Depending on the values of α, we can distinguish two cases.

Case 1: Purely diffuse case. This is the case when just the
diffuse vector field bD is considered (α = 1). We have to
verify which condition leads to AG − CE = 0.

AG − CE = 0

⇔ (D2ω
′
1 − D1ω

′′
1) (D3ω

′
2 − D1ω

′′′
2 )

− (D2ω
′
2 − D1ω

′′
2) (D3ω

′
1 − D1ω

′′′
1 ) = 0

(38)

that holds only if the light sources are coplanar (see [23] for
details on the proof).

Case 2: Purely specular case. When α = 0, just the specular
vector field bS is considered. We have to verify the condition
for BL − DF = 0.

BL − DF = 0

⇔
[
|h′′|(S2)1/ch′

1 − |h′|(S1)1/ch′′
1

]

·
[
|h′′′|(S3)1/ch′

2 − |h′|(S1)1/ch′′′
2

]

−
[
|h′′|(S2)1/ch′

2 − |h′|(S1)1/ch′′
2

]

·
[
|h′′′|(S3)1/ch′

1 − |h′|(S1)1/ch′′′
1

]
= 0

⇔ |h′| |h′′|(S1)1/c(S2)1/c
(
h′
2h

′′′
1 − h′

1h
′′′
2

)

+ |h′| |h′′′|(S1)1/c(S3)1/c
(
h′
1h

′′
2 − h′

2h
′′
1

)

+ |h′|2(S1)1/c
(
h′′
1h

′′′
2 − h′′

2h
′′′
1

) = 0

⇔ |h′| (S1)1/c
[
|h′′|(S2)1/c

(
h′
2h

′′′
1 − h′

1h
′′′
2

)

+|h′′′|(S3)1/c
(
h′
1h

′′
2 − h′

2h
′′
1

)

+ |h′|(S1)1/c
(
h′′
1h

′′′
2 − h′′

2h
′′′
1

)] = 0. (39)

Recalling the definition of Si from (10) and the definition of
the normal N(x, y) from (1), we can rewrite (39) as

|h′|ρ1/c
S (S1)1/c

√
1 + |∇u|2

[(−h′′
1ux − h′′

2uy + h′′
3

) (
h′
2h

′′′
1 − h′

1h
′′′
2

)

+ (−h′′′
1 ux − h′′′

2 uy + h′′′
3

) (
h′
1h

′′
2 − h′

2h
′′
1

)

+ (−h′
1ux − h′

2uy + h′
3

) (
h′′
1h

′′′
2 − h′′

2h
′′′
1

)] = 0. (40)

After some algebraic manipulation, we get

|h′|ρ1/c
S (S1)1/c

√
1 + |∇u|2

[
h′
1h

′′
3h

′′′
2 − h′

2h
′′
3h

′′′
1 + h′

2h
′′
1h

′′′
3

−h′
1h

′′
2h

′′′
3 + h′

3h
′′
2h

′′′
1 − h′

3h
′′
1h

′′′
2

] = 0. (41)

Assuming a non-shadowedpoint for thefirst image (i.e., S1 >

0), we have that (41) is satisfied only if the three vectors
h′,h′′,h′′′ are coplanar. This is equivalent to having coplanar
light sources, since from (41), one can write

det

⎛

⎝
h′
1 h′

2 h′
3

h′′
1 h′′

2 h′′
3

h′′′
1 h′′′

2 h′′′
3

⎞

⎠ = 0

which is verified when the light directions are coplanar. This
is in contradiction with the photometric stereo assumption
and proves (32). 
�

This theorem states that by considering a linear combina-
tion of PDEs as in (14), obtained by coupling different pairs
of images, characteristic strip expansion can be performed
according to the most convenient direction as in [21].
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Fig. 3 Test 1: Images of a paraboloid without noise before (first line)
and after the reflection separation. In the last column on the top, the
original 3D shape. In the second and third row are shown the color-

coded normal maps of the reconstructed shape using only the diffuse
and the specular component, respectively (Color figure online)

4.2 Upwind Scheme

In this section, we describe the numerical methods that we
employ in order to verify the validity of the proposed model.
We use these methods to approximate our problem (14). The
schemes considered originate from [20] where finite differ-
ence upwind schemes and semi-Lagrangian schemes are used
for the forward and backward approximation of the differen-
tial problem (7). The difference with respect to the schemes
presented in [20] consists in faster implementations which
allow to speed up the convergence of the numerical schemes
described below. The faster implementations use the Fast
Sweeping technique [29,40] which exploits the regularity of
the diffuse vector field b, similar to that presented in [20] for
the case of only two images.

Let us start with a square domainΩ like the set [a, b]2 (in
particular considering in the numerical tests [−1, 1]2) and
with a uniform discretization space step Δ = (b − a)/m
where m is the number of intervals in which the side of the
square is divided (that is xi = −1 + iΔx , y j = −1 + jΔy

with i, j = 0, . . . ,m). We will denote by Ωd all the points
of the lattice belonging to Ω , by Ωd all the internal points
and by ∂Ωd all the boundary points.

In order to simplify the notation, in what follows we shall
denote b(xi , y j ) by bi, j = [b1i, j , b2i, j ] and f (xi , y j ) by fi, j .

Let us consider the following implicit upwind scheme,
obtained by adding vanishing viscosity:

b1i, j
Ui+1, j −Ui−1, j

2Δx
+ b2i, j

Ui, j+1 −Ui, j−1

2Δy

= |b1i, j |
Δx

2

Ui+1, j − 2Ui, j +Ui−1, j

Δ2
x

+ |b2i, j |
Δy

2

Ui, j+1 − 2Ui, j +Ui, j−1

Δ2
y

+ fi, j , (42)

for i, j = 1, . . . ,m−1. The artificial diffusion introduced in
the right-hand side of (42) allows to follow the vector field b
by considering themost appropriate discretization for thefirst
derivative in order to track the characteristic lines [30,35]. In
particular, it consists of a numerical scheme of consistency
order equal to one with respect to both partial derivatives.
By writing (42) as

Ui+1, j

(b1i, j − |b1i, j |
2Δx

)
−Ui−1, j

(b1i, j + |b1i, j |
2Δx

)

+Ui, j

( |b1i, j |
Δx

+ |b2i, j |
Δy

)
+Ui, j+1

(b2i, j − |b2i, j |
2Δy

)

−Ui, j−1

(b2i, j + |b2i, j |
2Δy

)
= fi, j , (43)
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Fig. 4 Test 1: Images of a paraboloidwith 1%ofGaussian noise before
(first row) and after the reflection separation (second and third row). The
last column shows the ground truth on top, the color-coded normal map

computed by using the diffuse (second row) and the specular (third row)
data having, respectively, 2.032◦ and 147.72◦ asmaximumangular error
with respect to the real normal field

Fig. 5 Test 2: Images of a
painted ceramic cup before (first
row) and after the reflection
separation (second and third
row)
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Fig. 6 Test 3: Images of a
painted ceramic statue before
(first row) and after the
reflection separation (second
and third row)

and by assuming Δx = Δy = Δ, we get the following fixed
point iterative scheme

U (k+1)
i, j =

−U (k)
i+1, j

(
b1i, j − |b1i, j |

)
+U (k)

i−1, j

(
b1i, j + |b1i, j |

)

2
(
|b1i, j | + |b2i, j |

)

+
−U (k)

i, j+1

(
b2i, j −|b2i, j |

)
+U (k)

i, j−1

(
b2i, j +|b2i, j |

)
+2Δ fi, j

2
(
|b1i, j |+|b2i, j |

)

(44)

rewritten as follows:

U (k+1)
i, j =

|b1i, j |U (k)
i−sgn (b1i, j ), j

+ |b2i, j |U (k)
i, j−sgn (b2i, j )

+ Δ fi, j

|b1i, j | + |b2i, j |
.

(45)

5 Shape Reconstruction Using Diffuse and
Specular Components

The shape recovery approach we present here is based on
finding a solution to Eqs. (7) and (12). Such a solution can be

obtained by considering the geometrical properties of these
equations, expressed as the general linear PDE:

(b(x, y), f (x, y)) · (−∇u(x, y), 1) = 0. (46)

Notably, the three-dimensional vector field v = (b, f ) has to
be orthogonal to the normal vector parametrized as in Eq. (1),
i.e., tangent to the surface itself. In this way, the computation
of the normal field can be derived from such orthogonality.
In particular, let us assume to have three images I1, I2, and I3
taken from different and non-coplanar light sources. We can
use two out of three available vector fields v(1,2), v(1,3), and
v(2,3) to compute the normal vectors to the surface as follows:

n±(x, y) = v(1,2)(x, y) × v(1,3)(x, y), (47)

where the ambiguity is eliminated by choosing the normal
oriented along the third component with the positive sign

n(x, y) = sgn
(
n±
3 (x, y)

)
n±(x, y). (48)

In the case where the three available diffuse or specular com-
ponents are known only locally, we compute the normals
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Fig. 7 Test 4: Images of a plastic ball before (first row) and after the reflection separation (second and third row)

considering Eqs. (47) and (48) pointwise. Then, given the
normal field, the 3D surface can be approximated by an inte-
gration procedure as in [11].

Section 2 illustrated how it is theoretically possible to
reconstruct the shape of an object in two independent ways:
by using purely diffuse components (8) or by using purely
specular ones (13). In practice, since the signal-to-noise ratio
is typically very low for the specular components, it is dif-
ficult to carry out the correct shape recovery from purely
specular light. However, specular images can still be used to
reconstruct the shape of an object in the areas where specu-
larities are dominant.

Our aim is to provide a general PS method that results
in optimal shape reconstruction whether specularities are
present or not (very often, traditional PS relies on images
which have favorable lighting conditions in order to avoid
pixels under shadows or saturations). For this reason, we
define two different cases for which we provide a specific
solution at a given pixel (x, y). They include the main 2 situ-
ations that one encounters in real experiments. In both cases,
separation into diffuse and specular components is assumed.

A. At least two diffuse image pixels at (x, y) are available
as represented by Fig. 5. In such a case we can solve for
the diffuse equations and treat for the third image pixel

entry as a missing data exploiting the strategy suggested
in [23]. Specularities can be ignored.

B. Less than two diffuse image pixels at (x, y) are avail-
able. That is, specularities are overlapping or partially
overlapping throughout the different images (see Fig. 9).
In this case, we use the specular image Si equations in
order to perform the 3D reconstruction in the areas where
specularities are dominant.

6 Numerical Tests

In order to show the performance of our approach, we
consider the synthetic case for quantitative results, while
qualitative evaluation is provided for real tests. Finally, a
numerical test on synthetic images via radial expansion of
the characteristics method is shown.

6.1 Synthetic Case

This experimental section explains how diffuse and specular
components have different behaviors when subject to noise.
To do that, we start by considering the data (Test 1) in Fig. 3
without noise. These images depict the paraboloid shown on
the top right corner in Fig. 3.
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Fig. 8 Reconstructions of Tests 2, 3, and 4 corresponding to caseA.On
the first column, traditional PS approach with global reflection assumed
purely diffuse. The second column shows the reconstruction from the
diffuse component where the normals of the surface in the highlighted

sets have been recovered by inverting the Blinn–Phong shading model.
The last column presents the reconstruction obtained by using our
method showing visible improvements in the 3D reconstruction and
normal map
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Fig. 9 Test 5: In the first line a
human face before the
separation of diffuse and
specular reflections which are
shown in the second and third
row, respectively

We then compute the 3D reconstruction by using themeth-
ods described in the previous sections in which diffuse and
specular images are considered as separated sources of infor-
mation. The corresponding normal map is presented in the
last column of Fig. 3.

We repeat the same procedure but, in this case, we add
1% of Gaussian noise to all the images in Fig. 3, as shown in
Fig. 4. The reconstructed 3D shape, represented as a color-
coded normalmap for both specular and diffuse components,
is shown in the right column of Fig. 4. In the case of recon-
struction using specularities, signal-to-noise ratio is a very
critical parameter. This is due to the sparsity of the specular
images. More in details, since the information provided by
the specular component concentrates in white peaks where
the normals bisect the viewing and the light directions, spec-
ular images are mostly composed by dark regions. In fact,
reduced number of pixels belonging to those regions usually
do not provide enough information to reconstruct the shape.
From a numerical point of view, the specular reflectionmodel

requires the computation of Si (x, y)
1
c in (13) which is highly

sensitive to noise. Consequently, shape reconstruction from
the specular component is greatly deteriorated even for a very
small amount of noise. In contrast, the reconstructed shape
obtained using the diffuse component is barely affected by
such low level of noise.

6.2 Real Cases

To demonstrate the feasibility of our approach, we analyze
real cases by using three white light bright LEDs synchro-
nized by an Arduino-Nano micro controller together with a
Basler camera taking images of size 1278 pixels by 958 pix-
els. The code has been implemented in MATLAB using a
2.3 GHz Intel Core i7 processor with 4GB RAM.

After image acquisition, we separate diffuse and specular
components by using the procedure in [32], which works as
qualitatively good as [18] and easier to tune by choosing just
two parameters. It is important to note that pixel saturation
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Fig. 10 Reconstructions of Test 5 corresponding to case B. The col-
umn on the left shows the reconstruction performed by the traditional
PS approach considering global reflection to be purely diffuse. In the
center, the reconstruction using traditional PS with diffuse and specu-

lar separation. On the right column, the reconstruction considering our
method where the fast-marching procedure based on the Blinn–Phong
shading model has been adopted in the sets where highlights are present

Fig. 11 Test 6: The first row shows the three images used to reconstruct
the bunny with our method. On the left second row, plot of the color-
coded normal error for the reconstructed surface using the algorithm in

[16] and ten images. On the right second row, the normal error when
using our approach with only the three images (Color figure online)

should be avoided in order to facilitate image separation into
diffuse and specular components. This can be a difficult task,
but new detectors with an extended dynamic range are mak-
ing it easier to perform in practice. In the current experiments,
saturation effects were kept at a minimum.

In order to evaluate shape recovery for the case A
explained in Sect. 5, we consider three different objects: the
painted ceramic cup (Test 2) from Fig. 5, the painted ceramic
statue (Test 3) displayed in Fig. 6, and the plastic ball from
Fig. 7 (Test 4) whose smoothness allows us to qualitatively

123



72 J Math Imaging Vis (2016) 56:57–76

Fig. 12 Test 7: a Original surface; b computed surface

Fig. 13 Test 7: The three input purely specular images used for the 3D reconstruction

evaluate the deformed reconstruction we achieve with tradi-
tional PS. For each of these objects, specular pixels exist in
only one of the set of three images acquired, which indeed
corresponds to case A.

Figure 8 shows the results for the normals and 3D recon-
structions of Tests 2, 3, and 4 by using three different
methods. The left column corresponds to reconstructions
obtainedwith the traditional PS approach. In this case, global
reflection is considered to be purely diffuse. As expected,
artifacts can be observed around specularities. The central
column shows reconstructions using traditional PS in which
the images have been separated into diffuse and specular
components. In particular, the diffuse component has been
used to reconstruct most of the shape. The empty specu-
lar sets have been filled by computing the almost planar
surfacewhere the outgoing normal vectors have been approx-
imated by inverting the Blinn–Phong shading model at each
highlighted pixel. Artifacts are still present in all Tests, but
an improvement on the reconstructed surface is observed,
especially evident in Test 2. The right column in Fig. 8
corresponds to surfaces reconstructed using our approach.
In this case, we use only the diffuse component, or in

Table 1 Test 7: L∞ error for different sizes of the images

Iter Size L∞ error CPU time (s)

1 256 × 256 0.050433 2.20082

1 512 × 512 0.032530 2.578903

1 1024 × 1024 0.021131 7.860613

1 2048 × 2048 0.013670 34.778780

other words, we solve Eq. (7). This is possible since, for
each set of three images, one can always find two pixels
with known boundary conditions and that do not present
specularities. Notably, this strategy results in a significant
reduction in artifacts when compared to the other tested
approaches.

In order to analyze the performance of our approach for
case B (as in Sect. 5), we consider a human face (Test
5, Fig. 9). Interestingly, the tip of the nose generally col-
lects the specular component independent of the orientation
of the illumination source. In this way, specularities typi-
cally overlap for the three images acquired with different
illuminations (definition of case B). As in the previous set

123



J Math Imaging Vis (2016) 56:57–76 73

Fig. 14 Test 7: Error map varying the size of the input images starting from 256 × 256 (first row on the left) to 2048 × 2048 (second row on the
right)

of experiments, image reconstruction of the human face is
performedusing three different approaches (Fig. 10). The tra-
ditional PS approach considering the entire captured image
as purely diffuse (no reflection components separation), leads
to severe artifacts in the prominent specular areas, i.e., the
nose tip as well as the bottom lip. When using the tradi-
tional PS approach with the image separated into diffuse
and specular components (center column), the quality of the
reconstruction improves but artifacts are still clearly visible.
The third column shows the reconstructed face obtained with
our approach. In this case, we solve Eq. (14) with α = 1
(purely diffuse reflection) everywhere except in the areas
where specularities are dominant, in which we use α = 0. As
it occurred with case A, the face reconstructed by using our
method presents little artifacts, with a substantial improve-
ment over the traditional PS strategies.

Finally, we compare our method with a recent approach
aimed at shape reconstruction with specular highlights. In
particular, we select the method of Ikehata et al. [16] that
reconstructs the shape of the object by optimizing a bilinear
Lambertian model where specular highlights are considered
as sparse noise.

For comparison purposes we use the synthetic Bunny
shape (Test 6) shown in Fig. 11. In this case the image sepa-
ration needed by our method does not suffer from saturation
problems, since images have been computed synthetically.
Figure 11 shows the normal error of the reconstruction for
the Ikehata method using ten images and our method just
using three images. Notably, the lower error of our method
for a lower number of images proves the feasibility of our
approach for shape reconstruction with a minimal set of only
three images.

6.3 Synthetic Case via Radial Expansion of the
Characteristics Method

With this final experiment (Test 7), we want to show the per-
formance of the radial expansion of characteristics applied
to the surface visible in Fig. 12a.

The input images used for the reconstruction and visible in
Fig. 13 have been generated by using α = 0 and the specular
shininess power c = 15, without adding noise.

In this test, the fast-marching algorithm (45) has been
implemented with the aim to expand the characteristics field
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froma single point as explained in [21],meaning that the need
of boundary conditions has been restricted to the knowledge
of a single arbitrary point that we consider as the central one.

Table 1 shows that convergence is obtained in only one
iteration (our code compute a second iteration only for
check). By increasing the size of the three input images,
we can note that the errors computed with the L∞ norm
decrease and the CPU time reported in the last column of
the same table remains small (just 34.77 s for image size
2048 × 2048). This shows the computational efficiency and
the high performance of our method.

In Fig. 14 we can see the error map obtained by doubling
the size of the input images starting from 256×256 to 2048×
2048 pixels.

7 Conclusions and Future Works

This paper presents a new approach for three light photo-
metric stereo aimed at reconstructing surfaces with general
BRDF. We derive a new mathematical model for specular
surfaces based on the Blinn–Phong reflectance model lead-
ing to PDEs having the same linear structure of the one used
in [23]. The new model for specular surfaces enables one to
extract information of tridimensional shapes from speculari-
ties. Moreover, due to the use of the image ratio formulation,
the method can deal with materials showing variable albedo.
Even if an initial separation of diffuse and specular com-
ponents is still required, the results show improved 3D
reconstruction in synthetic and real experiments. Ourmethod
based on a PDEs optimization framework able to merge dif-
fuse and specular components is a promising approach for
real-time 3D shape recovery.

Futureworkswill attempt to develop amore accurate tech-
nique for reflection separation and to include more robust
approaches to merge diffuse and specular components into
the PDEs optimization framework. In addition, we will try
to model the ambient component in the global image irradi-
ance equation. Due to very different and non-linear physical
effects involved in this component, a substantial effort for
modeling light propagation is required. The ambient compo-
nent would provide a step forward allowing the PS to work
outside the laboratory.
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