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Abstract We study connectivity preserving multivalued
functions (Kovalevsky in A new concept for digital geom-
etry, shape in picture, 1994) between digital images. This
notion generalizes that of continuous multivalued functions
(Escribano et al. in Discrete geometry for computer imagery,
lecture notes in computer science, 2008; Escribano et al. in
J Math Imaging Vis 42:76–91, 2012) studied mostly in the
setting of the digital planeZ2.We show that connectivity pre-
serving multivalued functions, like continuous multivalued
functions, are appropriate models for digital morphological
operations. Connectivity preservation, unlike continuity, is
preserved by compositions, and generalizes easily to higher
dimensions and arbitrary adjacency relations.

Keywords Digital topology · Digital image · Continuous
multivalued function · Shy map · Morphological operators ·
Retraction · Simple point

1 Introduction

Continuous functions between digital images were intro-
duced in [12] and have been explored in many subsequent
papers. However, the notion of a continuous function f
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between digital images X and Y does not always yield results
analogous to what might be expected from parallels with
the Euclidean objects modeled by X and Y . For example,
in Euclidean space, if X is a square and Y is an arc such
that Y ⊂ X , then Y is a continuous retract of X [1]. How-
ever, [2] gives an example of a digital square X containing
a digital arc Y such that Y is not a continuous retract of
X .

In order to address such anomalies, digitally continuous
multivalued functions were introduced [6,7]. These papers
showed that in some ways, digitally continuous multival-
ued functions allow the digital world to model the Euclidean
world better than digitally continuous single-valued func-
tions. However, digitally continuous multivalued functions
have their own anomalies, e.g., composition does not always
preserve continuity among digitally continuous multivalued
functions [8].

In this paper, we study connectivity preserving multival-
ued functions between digital images and show that these
offer some advantages over continuous multivalued func-
tions. One of these advantages is that the composition of
connectivity preserving multivalued functions between dig-
ital images is connectivity preserving. Another advantage is
that the concept of connectivity preservation of a map on
a digital image can be defined without any reference to a
particular realization of X as a subset of Zn ; by contrast,
an example discussed in Sect. 2 shows that continuity of a
multivalued map on (X, κ) is heavily influenced by how X
is embedded in Z

n . These advantages help us to generalize
easily our definitions and results to images of any dimension
and adjacency relations.

There are also disadvantages in the use of connectivity
preserving multivalued functions as compared with the use
of continuous multivalued functions. In Sect. 7, we show
ways inwhich continuousmultivalued functions bettermodel
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retractions of Euclidean topology than do connectivity pre-
serving multivalued functions.

2 Preliminaries

We will assume familiarity with the topological theory of
digital images. See, e.g., [2] for the standard definitions. All
digital images X are assumed to carry their own adjacency
relations (which may differ from one image to another).
When we wish to emphasize the particular adjacency rela-
tion we write the image as (X, κ), where κ represents the
adjacency relation.

Among the commonly used adjacencies are the cu-
adjacencies. Let x, y ∈ Z

n , x �= y. Let u be an integer,
1 ≤ u ≤ n. We say x and y are cu-adjacent if

• There are at most u indices i for which |xi − yi | = 1.
• For all indices j such that |x j−y j | �= 1,we have x j = y j .

We often label a cu-adjacency by the number of points adja-
cent to a given point inZn using this adjacency. For example,

• In Z1, c1-adjacency is 2-adjacency.
• In Z

2, c1-adjacency is 4-adjacency and c2-adjacency is
8-adjacency.

• In Z
3, c1-adjacency is 6-adjacency, c2-adjacency is 18-

adjacency, and c3-adjacency is 26-adjacency.

For much of the paper, we will not need to assume that
(X, κ) is embedded as a subset of (Zn, κ) for some particular
n.

A subset Y of a digital image (X, κ) is κ-connected [12],
or connectedwhen κ is understood, if for every pair of points
a, b ∈ Y there exists a sequence {yi }mi=0 ⊂ Y such that a =
y0, b = ym , and yi and yi+1 are κ-adjacent for 0 ≤ i < m.
The following generalizes a definition of [12].

Definition 2.1 [3] Let (X, κ) and (Y, λ) be digital images.
A function f : X → Y is (κ, λ)-continuous if for every
κ-connected A ⊂ X we have that f (A) is a λ-connected
subset of Y .

When the adjacency relations are understood, wewill sim-
ply say that f is continuous. Continuity can be reformulated
in terms of adjacency of points:

Theorem 2.2 [3,12] A function f : X → Y is continuous
if and only if, for any adjacent points x, x ′ ∈ X, the points
f (x) and f (x ′) are equal or adjacent. �	
For two subsets A, B ⊂ X , we will say that A and B are

adjacent when there exist points a ∈ A and b ∈ B such
that a and b are equal or adjacent. Thus, sets with nonempty

intersection are automatically adjacent, while disjoint sets
may or may not be adjacent. It is easy to see that a union of
connected adjacent sets is connected.

A multivalued function f : X → Y assigns a subset of Y
to each point of x . We will write f : X � Y . For A ⊂ X and
a multivalued function f : X � Y , let f (A) = ⋃

x∈a f (x).

Definition 2.3 [10] A multivalued function f : X � Y is
connectivity preserving if f (A) ⊂ Y is connected whenever
A ⊂ X is connected.

As is the case with Definition 2.1, we can reformulate
connectivity preservation in terms of adjacencies.

Theorem 2.4 A multivalued function f : X � Y is con-
nectivity preserving if and only if the following are satisfied:

• For every x ∈ X, f (x) is a connected subset of Y .
• For any adjacent points x, x ′ ∈ X, the sets f (x) and

f (x ′) are adjacent.

Proof First assume that f satisfies the two conditions above,
let A be connected, and wewill show that f (A) is connected.
Take two points y, y′ ∈ f (A), and we will find a connected
subset B ⊂ f (A) containing y and y′, and thus y and y′ are
connected by a path in f (A). Since y, y′ ∈ f (A), there are
points x, x ′ ∈ A with y ∈ f (x) and y′ ∈ f (x ′). Since A
is connected there is a path x = x0, x1, . . . , xk = x ′ with
xi ∈ A and xi adjacent to xi+1 for each i .

By our hypotheses, we have f (xi ) connected and f (xi )
adjacent to f (xi+1) for each i . Thus, the union

B =
k⋃

i=0

f (xi )

is connected, since it is a union of connected adjacent sets.
So B ⊂ f (A) is connected and contains y and y′, which
concludes the proof that f (A) is connected.

Now for the converse assume that f is connectivity pre-
serving, andwewill prove the two properties in the statement
of the theorem. The first property is trivially satisfied since
f (x) = f ({x}) and {x} is connected. To prove the second
property, assume that x, x ′ ∈ X are adjacent, and we will
show that f (x) and f (x ′) are adjacent.

Since x and x ′ are adjacent, the set {x, x ′} is connected
and thus the set f ({x, x ′}) = f (x) ∪ f (x ′) is connected.
Therefore, f (x) must be adjacent to f (x ′). �	

Definition 2.3 is related to a definition of multivalued con-
tinuity for subsets of Zn given and explored by Escribano,
Giraldo, and Sastre in [6,7] based on subdivisions. (These
papers make a small error with respect to compositions,
which is corrected in [8].) Their definitions are as follows:
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X S(X, 2) Y S(Y, 2)

Fig. 1 Two images X and Y with their second subdivisions

Definition 2.5 For any positive integer r , the r th subdivision
of Zn is

Z
n
r = {(z1/r, . . . , zn/r) | zi ∈ Z}.

An adjacency relation κ on Z
n naturally induces an adja-

cency relation (which we also call κ) on Z
n
r as follows:

(z1/r, . . . , zn/r), (z′1/r, . . . , z′n/r) are adjacent in Zn
r if and

only if (z1, . . . , zn) and (z1, . . . , zn) are adjacent in Zn .
Given a digital image (X, κ) ⊂ (Zn, κ), the r th subdivi-

sion of X is

S(X, r) = {(x1, . . . , xn) ∈ Z
n
r | (�x1�, . . . , �xn�) ∈ X}.

Let Er : S(X, r) → X be the natural map sending
(x1, . . . , xn) ∈ S(X, r) to (�x1�, . . . , �xn�).

For a digital image (X, κ) ⊂ (Zn, κ), a function f :
S(X, r) → Y induces a multivalued function F : X � Y as
follows:

F(x) =
⋃

x ′∈E−1
r (x)

{ f (x ′)}.

A multivalued function F : X � Y is called continuous
when there is some r such that F is induced by some single-
valued continuous function f : S(X, r) → Y .

An example of two spaces and their subdivisions is given
in Fig. 1.

Note that the subdivision construction (and thus the notion
of continuity) depends on the particular embedding of X as
a subset of Zn . In particular, we may have X,Y ⊂ Z

n with
X isomorphic to Y but S(X, r) not isomorphic to S(Y, r).
This in fact is the case for the two images in Fig. 1, when we
use 8-adjacency for all images. The spaces X and Y in the
figure are isomorphic, each being a set of two adjacent points.
But S(X, 2) and S(Y, 2) are not isomorphic, since S(X, 2)
can be disconnected by removing a single point, while this
is impossible in S(Y, 2).

The definition of connectivity preservation makes no ref-
erence to X as being embedded inside of any particular
integer lattice Zn .

Proposition 2.6 [6,7] Let F : X � Y be a continuous
multivalued function between digital images. Then

• for all x ∈ X, F(x) is connected and
• for all connected subsets A of X, F(A) is connected. �	

Theorem 2.7 For (X, κ) ⊂ (Zn, κ), if F : X � Y is a
continuous multivalued function, then F is connectivity pre-
serving.

Proof By Proposition 2.6, for all connected subsets A of
X , F(A) is connected. The assertion follows from Defini-
tion 2.3. �	

The subdivision machinery often makes it difficult to
prove that a given multivalued function is continuous. By
contrast, many maps can easily be shown to be connectivity
preserving.

Proposition 2.8 Let X and Y be digital images. Suppose
Y is connected. Then the multivalued function f : X � Y
defined by f (x) = Y for all x ∈ X is connectivity preserving.

Proof This follows easily from Definition 2.3. �	
Proposition 2.9 Let F : (X, κ) � (Y, λ) be a multivalued
surjection between digital images (X, κ), (Y, κ) ⊂ (Zn, κ).
If X is finite and Y is infinite, then F is not continuous.

Proof Since F is a surjection, X is finite, and Y is infinite,
there exists x ′ ∈ X such that F(x ′) is an infinite set. There-
fore, no continuous single-valued function f : S(X, r) → Y
induces F , since for such a function,

⋃
x∈E−1

r (x ′){ f (x)} is
finite. �	
Corollary 2.10 Let F : X � Y be the multivalued function
between digital images defined by F(x) = Y for all x ∈
X. If X is finite and Y is infinite and connected, then F is
connectivity preserving but not continuous.

Proof This follows from Propositions 2.8 and 2.9. �	
Examples of connectivity preserving but not continuous

multivalued functions on finite spaces are harder to construct,
since onemust show that a given connectivity preservingmap
X � Y cannot be induced by any map on any subdivision.
After somemore development, we will give such an example
in Example 7.6.

Other terminology we use includes the following. Given
a digital image (X, κ) ⊂ Z

n and x ∈ X , the set of points
adjacent to x ∈ Z

n , the neighborhood of x in Z
n , and the

boundary of X in Zn are, respectively,

Nκ(x) = {y ∈ Z
n | y is κ-adjacent to x},

N∗
κ (x) = Nκ(x) ∪ {x},

and

δκ(X) = {y ∈ X | Nκ(y) \ X �= ∅}.
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3 Other Notions of Multivalued Continuity

Other notions of continuity have been given for multival-
ued functions between graphs (equivalently, between digital
images). We have the following.

Definition 3.1 [14] Let F : X � Y be a multivalued func-
tion between digital images.

• F has weak continuity if for each pair of adjacent x, y ∈
X , f (x) and f (y) are adjacent subsets of Y .

• F has strong continuity if for each pair of adjacent x, y ∈
X , every point of f (x) is adjacent or equal to some point
of f (y) and every point of f (y) is adjacent or equal to
some point of f (x). �	

Proposition 3.2 Let F : X � Y be a multivalued function
between digital images. Then F is connectivity preserving if
and only if F has weak continuity and for all x ∈ X, F(x)
is connected.

Proof This follows from Theorem 2.4. �	
Example 3.3 If F : [0, 1]Z � [0, 2]Z is defined by F(0) =
{0, 2}, F(1) = {1}, then F has both weak and strong conti-
nuity. Thus, a multivalued function between digital images
that has weak or strong continuity need not have connected
point images. By Theorem 2.4 and Proposition 2.6, it fol-
lows that neither having weak continuity nor having strong
continuity implies that a multivalued function is connectivity
preserving or continuous. �	
Example 3.4 Let F : [0, 1]Z � [0, 2]Z be defined by
F(0) = {0, 1}, F(1) = {2}. Then F is continuous and has
weak continuity but does not have strong continuity. �	
Proposition 3.5 Let F : X � Y be a multivalued func-
tion between digital images. If F has strong continuity and
for each x ∈ X, F(x) is connected, then F is connectivity
preserving.

Proof The assertion follows from Definition 3.1 and Theo-
rem 2.4. Alternately, it follows from Proposition 3.2, since
strong continuity implies weak continuity. �	

The following shows that not requiring the images of
points to be connected yields topologically unsatisfying con-
sequences for weak and strong continuity.

Example 3.6 Let X and Y be nonempty digital images. Let
themultivalued function f : X � Y bedefinedby f (x) = Y
for all x ∈ X .

• f has both weak and strong continuity.
• f is connectivity preserving if and only if Y is connected.

Proof That f has both weak and strong continuity is clear
from Definition 3.1.

Suppose f is connectivity preserving. Then for x ∈ X ,
f (x) = Y is connected. Conversely, if Y is connected, it
follows easily from Definition 2.3 that f is connectivity pre-
serving. �	

As a specific example consider X = {0} ⊂ Z and Y =
{0, 2}, all with c1 adjacency. Then the function F : X � Y
with F(0) = Y has both weak and strong continuity, even
though it maps a connected image surjectively onto a discon-
nected image.

4 Composition

Connectivity preservation of multivalued functions is pre-
served by compositions. For two multivalued functions f :
X � Y and g : Y � Z , let g ◦ f : X � Z be defined by

g ◦ f (x) = g( f (x)) =
⋃

y∈ f (x)

g(y).

Theorem 4.1 If f : X � Y and g : Y � Z are con-
nectivity preserving, then g ◦ f : X � Z is connectivity
preserving.

Proof Wemust show that g ◦ f (A) = g( f (A)) is connected
whenever A is connected. Since f is connectivity preserving
we have f (A) connected, and then since g is connectivity
preserving we have g( f (A)) connected. �	

By contrast with Theorem 4.1, Remark 4 of [8] shows that
composition does not always preserve continuity in multi-
valued functions between digital images. The example given
there has finite digital images X,Y, Z in Z2 and multivalued
functions F : X → Y , G : Y → Z such that F is (4, k)-
continuous and G is (k, k′)-continuous for {k, k′} ⊂ {4, 8},
but G ◦ F : X → Z is not (4, k′)-continuous. In fact,
the example presented in [8] shows that even if F is a
single-valued isomorphism, G ◦ F need not be a continuous
multivalued function. However, by Theorems 2.7 and 4.1,
G ◦ F is (4, k′)-connectivity preserving.

5 Shy Maps and Their Inverses

Definition 5.1 [4] Let f : X → Y be a continuous surjec-
tion of digital images. We say f is shy if

• for each y ∈ Y , f −1(y) is connected and
• for every y0, y1 ∈ Y such that y0 and y1 are adjacent,

f −1({y0, y1}) is connected.
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Shy maps induce surjections on fundamental groups [4].
Some relationships between shy maps f and their inverses
f −1 as multivalued functions were studied in [5], includ-
ing a restricted analog of Theorem 5.2 below. We have the
following.

Theorem 5.2 Let f : X → Y be a continuous surjection
between digital images. Then f is shy if and only if f −1 :
Y � X is a connectivity preserving multivalued function.

Proof This follows immediately from Theorem 2.4 and Def-
inition 5.1. �	

6 Morphological Operators

In [6,7], it was shown that several fundamental operations of
mathematicalmorphology can be performed by using contin-
uous multivalued functions on digital images. In this section,
we obtain similar results using connectivity preserving mul-
tivalued functions. In order to define the morphological
operators, we must assume in this section that all images
X under consideration are embedded in Z

n for some n with
a globally defined adjacency relation κ . Thus, in this section,
we always have (X, κ) ⊂ (Zn, κ). The work in [6,7] focuses
exclusively on n = 2, and κ being 4- or 8-adjacency. Our
results have the advantage of being applicable in any dimen-
sions and using any (globally defined) adjacency relation.

6.1 Dilation and Erosion

In the following, the use of k = 4 or k = 8 indicates
4-adjacency or 8-adjacency, respectively, in Z

2.
Dilation [13] of a binary image can be regarded as a

method of magnifying or swelling the image. A common
method of performing a dilation of a digital image (X, κ) ⊂
(Zn, κ) is to take the dilation

Dκ(X) =
⋃

x∈X
N∗

κ (x).

Theorem 6.1 ([7]; proof corrected in [8]) Given (X, k) ⊂
(Z2, k), the multivalued functions D̃k : X → Dk(X) ⊂ Z

2

defined by D̃k(x) = N∗
k (x), where k ∈ {4, 8}, are both (4, 4)-

continuous and (8, 8)-continuous. �	
Theorem 6.2 Given a digital image (X, κ) ⊂ (Zn, κ), the
multivalued function D̃κ : X → Dκ(X) ⊂ Z

n defined by
D̃κ(x) = N∗

κ (x) is connectivity preserving.

Proof For every x ∈ X , D̃κ(x) is κ-connected. Given
κ-adjacent points x, x ′ ∈ X , we have x ′ ∈ D̃κ(x), so D̃κ(x)
and D̃κ(x ′) are κ-adjacent. The assertion follows from The-
orem 2.4. �	

More general dilations are defined as follows. Let X ⊂ Z
n

be a digital image and let B ⊂ Z
n , with the origin of Zn a

member of B.We call B a structuring element. Given x ∈ Z
n ,

let tx be the translation by x : tx (y) = x + y for all y ∈ Z
n .

The dilation of Xby B is

DB(X) =
⋃

x∈X
tx (B).

We have the following.

Theorem 6.3 Let X ⊂ Z
n be a digital image with

cu-adjacency for 1 ≤ u ≤ n and let B ⊂ Z
n be a structuring

element. If B is cu-connected, then the multivalued dilation
function D̃B : X � DB(X) defined by D̃B(x) = tx (B) is
connectivity preserving.

Proof Since B is cu-connected and tx is continuous, D̃B(x) is
connected for all x ∈ X . If x0 and x1 are cu-adjacentmembers
of X and b ∈ B, then x0 + b and x1 + b are cu-adjacent, so
D̃B(x0) and D̃B(x1) are cu-adjacent. The assertion follows
from Theorem 2.4. �	

Note that Theorem 6.3 is easily generalized to any adja-
cency that is preserved by translations.

There are nonequivalent definitions of the erosion oper-
ation in the literature. We will use the definition of [7]: the
κ-erosion of X ⊂ Z

n is

Eκ(X) = Z
n \ Dκ(Zn \ X).

In [7], we find the following.

The erosion operation cannot be adequatelymodeled as
a digitally continuous multivalued function on the set
of black pixels since it can transform a connected set
into a disconnected set, or even delete it (for example,
the erosion of a curve is the empty set and, in general,
the erosion of two disks connected by a curve would be
the disconnected union of two smaller disks). However,
since the erosion of a set agrees with the dilation of its
complement, the erosion operator can be modeled by
a continuous multivalued function on the set of white
pixels.

It follows from Theorem 6.2 that the erosion operator
can be modeled by a connectivity preserving multivalued
function on the set of white pixels. That is, as an analog of
Corollary 6.4 below, we have Corollary 6.5 below. We use
the notation Eκ to suggest that the function’s image is the
compliment of the erosion.

Corollary 6.4 ([7]; proof corrected in [8]) Given X ⊂ Z
n,

the multivalued function Ek : Z
2 \ X → Z

2 given by
Ek(y) = N∗

k (y) for y ∈ Z
2 \ X is both (4, 4)- and (8, 8)-

continuous, where k ∈ {4, 8}. �	
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Corollary 6.5 Given (X, κ) ⊂ (Zn, κ), the multivalued
function Eκ : Zn \ X → Z

n given by Eκ(x) = N∗
κ (x) is

connectivity preserving.

Proof The assertion follows as in the proof of Theorem 6.2.
�	

6.2 Closing and Opening

Like dilation, closing (or computing the closure of) a digital
image can be regarded as a way to swell the image.

The closure operatorCκ is the result of a dilation followed
by an erosion. Since we have defined an erosion on X as a
dilation on Z

n \ X , we cannot say that Cκ is a composition
of a dilation and an erosion, since the corresponding compo-
sition Eκ ◦ D̃κ is not generally defined. However, from the
definitions above, the closure of X can be defined as

Cκ(X) = Z
n \ D̃κ

(
Z
n
∖ ⋃

x∈X
N∗

κ (x)
)
.

This yields the following results.

Theorem 6.6 [7] Given X ⊂ Z
2, the closure operator Ck is

(k, k)-continuous, k ∈ {4, 8}. �	
Theorem 6.7 Given a digital image (X, κ) ⊂ (Zn, κ), the
closure operator Cκ is connectivity preserving.

Proof Note we can define a multivalued function C̃κ : X �
Cκ(X) by

C̃κ(x) =
{ {x} if x ∈ X \ δκ(X);
N∗

κ (x) ∩ Cκ(x) if x ∈ δκ(X).

Since X ⊂ Cκ(X) and each point of N∗
κ (x) is κ-adjacent or

equal to x , it follows that C̃κ(x) is connected for all x ∈ X .
Further, for κ-adjacent x, x ′ ∈ X , we have x ∈ C̃κ(x) and
x ′ ∈ C̃κ(x ′), so f (x) and f (x ′) are adjacent. The assertion
follows from Theorem 2.4. �	

We find in [7] the following.

As it happens in the case of the erosion, the opening
operation (erosion composed with dilation) cannot be
adequately modeled as a digitally continuous multi-
valued function on the set of black pixels (the same
examples used for the erosion also work for the open-
ing).However, since the opening of a set agreeswith the
closing of its complement [13], the k-opening operator
can bemodeled by a k-continuousmultivalued function
on the set of white pixels.

Thus, we define an opening operator for X as the closure
operator on Z

n \ X . Corresponding to Corollary 6.8 below,
we have Corollary 6.9 below.

Corollary 6.8 [7] Given X ⊂ Z
2, the k-opening operation

on X can be modeled as a (4, 4)- or (8, 8)-continuous func-
tion Ok : Z2 \ X → Z

2. �	
Corollary 6.9 Given (X, κ) ⊂ (Zn, κ), the κ-opening oper-
ation on X can be modeled as a connectivity preserving
function Oκ : Zn \ X → Z

n.

Proof The assertion follows from Theorem 6.7. �	

7 Retractions, Connectivity Preserving
Multivalued Retractions, and Deletion of Subsets

Acontinuous single-valued ormultivalued function, or a con-
nectivity preserving multivalued function, r , from a set X
to a subset Y of X is called a retraction [1], a multivalued
retraction, or a connectivity preserving multivalued retrac-
tion, respectively, if r(y) = y (respectively, r(y) = {y}) for
all y ∈ Y . In this case we say Y is a retract of X , a multi-
valued retract of X , or a connectivity preserving multivalued
retract of X , respectively. It is known [2] that the boundary
of a digital square is not a retract of the square. By contrast,
we have the following.

Example 7.1 Let X = [−1, 1]2
Z
. Let Y = X \ {(0, 0)}.

Then (Y, 8) is a connectivity preserving multivalued retract
of (X, 8).

Proof It is easy to see that the multivalued function r : X �
Y given by

r(x) =
{
Y if x = (0, 0);
{x} if x ∈ Y,

is a connectivity preserving multivalued retraction of (X, 8)
onto (Y, 8). As we will see below, (Y, 8) is not a multivalued
retract of (X, 8), and thus r is connectivity preserving but not
continuous. �	

We can generalize the example given above in the fol-
lowing result. The existence of connectivity preserving
multivalued retractions is easily formulated in terms of con-
nected images:

Theorem 7.2 Let X be connected and let A ⊂ X, A �= ∅.
Then A is a connectivity preserving multivalued retract of X
if and only if A is connected.

Proof First assume that A is connected. Then define f :
X � A by

f (x) =
{

{x} if x ∈ A,

A if x /∈ A.
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f clearly has the retraction property that f (A) = A and
f (x) = {x} for all x ∈ A. To show connectivity preservation,
let B ⊂ X be a connected set, and we will show that f (B)

is connected. In the case that B ⊂ A, we have f (B) = B
is connected. Otherwise, B \ A �= ∅ so we have f (B) = A
which was assumed to be connected. Thus, f is connectivity
preserving, so A is a connectivity preserving multivalued
retract of X as desired.

For the converse, assume that A is a connectivity preserv-
ing multivalued retract of X . Since X is connected, A must
be connected. �	

Theorem 7.2 makes it easy to tell when one set is a
connectivity preserving multivalued retract of another. The
analogous question for continuous multivalued retracts is
addressed in [7] (corrected in [8]), where the results are quite
a bit more complicated, stated in terms of simple points, char-
acterized by the following.

Definition 7.3 [9] Let X ⊂ Z
2. Let {k, k} = {4, 8}. Let

p ∈ X . Then p is a k-boundary point of X if and only if
Nk(p) \ X �= ∅. �	
Theorem 7.4 [11] Let X ⊂ Z

2. Then p ∈ X is k-simple,
k ∈ {4, 8}, if and only if p is a k-boundary point of X and
the number of k-connected components of N8(p) ∩ X that
are k-adjacent to p is equal to 1. �	

Continuous multivalued retracts relate to simple points as
follows:

Theorem 7.5 [8, Theorem 5] Let (X, 8) ⊂ Z
2 be a con-

nected digital image, and let p ∈ X. Then X − {p} is a
continuous multivalued retract of X if and only if p is a sim-
ple point. �	

The requirement that p be a simple point is a stronger
condition than X−{p} being connected, the condition for our
Theorem 7.2. The authors of [8] also obtain a similar result
for 4-adjacency requiring additional hypotheses, and discuss
removal of pairs of simple points. Their arguments become
quite difficult and do not seem able to address removal of
arbitrary subsets as in Theorem 7.2.

Contrasting the results of Theorems 7.2 and 7.5 gives
examples of maps on finite spaces that are connectivity
preserving but not continuous. In particular, we have the fol-
lowing.

Example 7.6 Let X and Y be the images in Example 7.1.

• The point (0, 0) is not a simple point of X and thus, Y is
not a continuous multivalued retract of X , although Y is
a connectivity preserving multivalued retract of X .

• The multivalued function r of Example 7.1 is connectiv-
ity preserving but not continuous.

Proof We saw in Example 7.1 that r is connectivity preserv-
ing and thatY is a connectivity preservingmultivalued retract
of X .

• Clearly, (0, 0) is not a simple point of X . From Theo-
rem 7.5, Y is not a continuous multivalued retract of X .

• Were r continuous then r would be a multivalued retrac-
tion, contrary to Theorem 7.5. �	

8 Further Remarks

We have studied connectivity preserving multivalued func-
tions between digital images. This notion generalizes
continuous multivalued functions. We have shown that com-
position, which does not preserve continuity for continuous
multivalued functions, preserves connectivity preservation
for multivalued functions between digital images. We have
obtained a number of results for connectivity preservingmul-
tivalued functions between digital images, concerning weak
and strong continuity, shy maps, morphological operators,
and retractions; many of our results are suggested by analogs
for continuous multivalued functions in [5–8].
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