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Abstract In this article, a new method for segmentation
and restoration of images on two-dimensional surfaces is
given. Active contour models for image segmentation are
extended to images on surfaces. The evolving curves on the
surfaces are mathematically described using a parametric
approach. For image restoration, a diffusion equation with
Neumann boundary conditions is solved in a postprocess-
ing step in the individual regions. Numerical schemes are
presented which allow to efficiently compute segmentations
and denoised versions of images on surfaces. Also topology
changes of the evolving curves are detected and performed
using a fast sub-routine. Finally, several experiments are pre-
sented where the developed methods are applied on different
artificial and real images defined on different surfaces.

Keywords Image segmentation · Images on surfaces ·
Evolving curves on surfaces · Active contours · Parametric
method · Mumford–Shah · Chan–Vese · Topology changes ·
Triple junctions · Image restoration · Finite element
approximation

1 Introduction

We study the problem of segmentation and restoration of
images defined on two-dimensional surfaces. TheMumford–
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Shah functional [24] can be extended and reformulated for
image data given on surfaces. Segmentation aims at dividing
an image on a surface in characteristic regions, for example
in regions of similar gray value or similar color. The objective
of image restoration is to denoise the original image while
preserving sharp edges in the image.

Active contours [16] originally developed for planar
images can also be used to segment images on surfaces. We
let one or more time-dependent curves Γ (t), t ∈ [0, T ],
evolve in time on a surfaceM ⊂ R

3 according to a flow such
that the curves are attracted by edges or region boundaries.

Existing studies and works on evolution of curves on sur-
faces and on active contours for images on surfaces differ in
the way how the surface and the curves are described mathe-
matically. A geometric scale space for images on parametric
surfaces is introduced in [17] using level sets. The image
is handled implicitly by considering its iso-gray levels. In
[29], Spira and Kimmel consider flows of curves on para-
metric surfaces and perform edge detection using a variant
of the geodesic active contour method [7] for images on sur-
faces. In [29], the authors restrict on surfaces which have a
global parameterization. Evolution equations are solved with
the level set method [26] by considering the pre-image of
the curve resulting in a planar curve in the parameterization
plane. However, this approach has intrinsic disadvantages
since the pre-image of the curve is used. In [18], drawbacks
of this approach concerning the scaling behavior are dis-
cussed. Another drawback is the fact that the method does
not allow to incorporate a balloon term [18].

In [11], a different method to represent the surface is pro-
posed, where the surface is modeled by the zero level set
of a three-dimensional function. The zero level set of a sec-
ond three-dimensional function, which is time dependent,
is used additionally. The curve is represented by the inter-
section of the two zero level sets. This approach is used in
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[18,34] for image segmentation with geodesic active con-
tours. A drawback of the method is that a one-dimensional
curve evolution problem is extended to a three-dimensional
problem. To reduce the effort, a new narrow band technique
is given in [18].

In [30], image segmentation is performed using the
Chan–Vese [10] model for images on surfaces with level
set methods in combination with a so-called closest point
method.One iteration step of theChan–Vesemodel in a small
3D neighborhood of the surface is computed followed by an
interpolation step.

Flows of the form Vn = κM + F are studied in [23],
where Vn is the velocity contribution normal to the curve,
but tangential to the surface, κM is the geodesic curvature
of the curve, and F is an external forcing term. The authors
restrict on graph surfaces and solve a system of partial dif-
ferential equations for the parameterization x, the tangent
angle, the geodesic curvature κM, and for ‖xρ‖, where ρ is
the parametrization variable.

In this work, we make use of a concept developed in [4],
where Barrett et al. consider flows of curves on surfaces
like geodesic curvature flow, geodesic surface diffusion, and
geodesic Willmore flow of curves. Here, we apply the meth-
ods of [4] to image segmentation applications resulting in
a curvature-driven flow: The normal velocity is the sum of
the geodesic curvature κM weighted with a parameter σ and
an external forcing term. The forcing term is designed for
image segmentation based on an extension of the Chan–
Vese method to images on surfaces. As in [4], a parametric
approach is used to describe the curve. The surface is given
implicitly, as zero level set of a smooth functionΦ. However,
for practical image segmentation, the function Φ needs not
to be explicitly known. Our method requires only a normal
vector to the surface at each point on the surface. The devel-
oped segmentation technique can handle multiple phases and
networks of curves including triple junctions.

The second image processing task we consider in this arti-
cle is image restoration. To denoise a given image, we solve
a diffusion equation on the surfaceM. For related works on
surface partial differential equations, we refer to [14] and the
references therein. For a practical application see [12], where
data of the Earth’s surface captured on board of satellites are
filtered by nonlinear diffusion. An implicit representation of
the surface is used in [6], where the surface is embedded as
zero level set of a higher dimensional function and the par-
tial differential equations are solved on a fixed Cartesian grid
using a special embedding function.

Methods to solve total variation problems on surfaces are
proposed in [19]. In detail, the method of [28] for denois-
ing images on surfaces and the method of [8] (a convexified
Chan–Vese model) for segmentation of images on surfaces
are generalized. A direct, called intrinsic, approach is pur-
sued: Lai and Chan [19] perform the resulting calculations

directly on the given surface using differential geometry tech-
niques and finite elements for images given on triangulated
surfaces. They also provide an overview and a comparison
of several approaches for variational problems on surfaces
(level set methods, parametric surfaces, and direct/intrinsic
methods). Total variation-based image restoration and seg-
mentation are also considered in [33], where the authors
propose an extension of the augmented Lagrangian method
(see e.g., [32]) for scalar and vectorial total variation prob-
lems to images on surfaces.

In this article, we will perform restoration of images on
surfaces by considering an extension of the Mumford–Shah
problem [24]. The image restoration is performed as a post-
processing step after the segmentation. We solve a diffusion
equation with Neumann boundary conditions in the already-
segmented regions. Thus, the image is not smoothed out
across the region boundaries.

For both segmentation and restoration,wepresent efficient
numerical schemes. Further, topology changes of the para-
metric curves are detected efficiently. In [5], we used and
extended a method of [22] for efficient detection of topology
changes, such that also topology changes involving triple
junctions can be handled during the curve evolution. We will
extend this idea to curves on surfaces to detect several topol-
ogy changes including splitting and merging of curves, and
creation of triple junctions. The main idea of the method
based on [22] is the use of an auxiliary background grid.
Together with the property that our scheme leads to a nearly
equidistribution of mesh points along the curves (cf. [4]),
topology changes of curves on surfaces are detected very
robustly.

In practical applications, surfaces are often not given as
smooth surfaces but in a discrete form, for example as tri-
angulated surfaces. We present all necessary computational
aspects when applying the segmentation and restoration
models to real data.

In summing up, we develop a novel scheme for both seg-
mentation and restoration of images defined on surfaces.
Using our parametric approach, the evolution of curves is
a one-dimensional problem; the postprocessing image dif-
fusion is a two-dimensional problem computed only once
after the segmentation has been finished. Compared to other
approaches in the literature, where the curve is embedded in
a higher dimensional space, our method is very efficient from
a computational point of view.

2 Segmentation and Restoration of Images on
Surfaces

2.1 Preliminaries

Let M ⊂ R
3 be a smooth two-dimensional manifold. We

assume that we can describe M by the zero level set of a
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Fig. 1 Illustration of the vector fields xs , νΦ , and νM = xs × νΦ

function Φ:

M =
{
z ∈ R

3 : Φ(z) = 0
}

, (1)

where Φ ∈ C2(R3,R) is a function with ‖∇Φ(z)‖ > 0 for
z ∈ M (‖ . ‖ denoting the Euclidean norm). A unit normal
vector fieldnΦ onM is given bynΦ(z) := ∇Φ(z)/‖∇Φ(z)‖
for z ∈ M.

Let Γ ⊂ M be a curve on M parameterized by x :
I → M, where I is a one-dimensional reference manifold,
for example the unit interval I = [0, 1] for open curves
or R/Z for closed curves. We define νΦ : I → R

3 such
that νΦ(ρ) := nΦ(x(ρ)) is the surface normal evaluated
at x(ρ) for ρ ∈ I . Further, we define νM : I → R

3 by
νM(ρ) := xs(ρ) × νΦ(ρ), where s denotes the arc length.
We note that νM is perpendicular to xs , i.e., normal to the
curve, but lies in the tangent space toM. Figure 1 illustrates
a possible surface M, a curve Γ , and the vector fields νΦ ,
xs , and νM.

Further, the vector xss which is perpendicular to xs can
be written as the sum of its component in νΦ -direction and
its component in νM-direction. This motivates the following
definition [4]:

Definition 1 Wedefine the geodesic curvature κM : I → R

and the normal curvature κΦ : I → R by

κM = xss . νM, κΦ = xss . νΦ. (2)

As a consequence, the vector field xss can be expressed as

xss = κMνM + κΦνΦ. (3)

2.2 Active Contours on Surfaces Based on Extensions of
the Mumford–Shah and Chan–Vese Models to
Images on Surfaces

Let u0 : M → [0, 1] be the intensity function of an image
given on a surfaceM. For segmentation and restoration, we
consider an extension of the Mumford–Shah functional [24]
from the planar case to the case of images and curves on
surfaces. For that, we consider the following minimization
problem:

Find a union of curves Γ = Γ1 ∪ . . . ∪ ΓNC ⊂ M and a
piecewise smooth approximation u : M → R of the original
image u0 such that

EMS(u, Γ ) = σ |Γ | +
∫

M\Γ
‖∇Mu‖2 dA

+ λ

∫

M
(u0 − u)2 dA (4)

is minimized. Here, σ, λ > 0 are weighting parameters, |Γ |
denotes the total length of the curves, and∇Mu is the surface
gradient of u, also called tangential gradient, cf. [14]. Further,
dA denotes the area element.

We first consider the case of one closed curve Γ on M
without any self-intersection which is homotopic to a point.
Then, the curve dividesM into two disjoint regions Ω1 and
Ω2 such that

M = Ω1 ∪ Γ ∪ Ω2.

The indices of the regions Ωk , k = 1, 2, are chosen such that
νM points from Ω2 to Ω1.

For segmentation, we consider a piecewise constant
approximation with u|Ωk = ck ∈ R, k = 1, 2. The
Mumford–Shah functional for images on surfaces (4) reduces
to

E(Γ, c1, c2) = σ |Γ | + λ

∫

Ω1

(u0 − c1)
2 dA

+ λ

∫

Ω2

(u0 − c2)
2 dA. (5)

Similar to this functional, we can consider the analog of
the planar Chan–Vese model [10] for images on surfaces:

E(Γ, c1, c2) = σ |Γ | + μ

∫

Ω1

1 dA

+ λ1

∫

Ω1

f1 dA + λ2

∫

Ω2

f2 dA, (6)

where σ, λ1, λ2 > 0, μ ≥ 0 are weighting parameters. Sim-
ilar to the planar Chan–Vese method [10], the function fk ,
k = 1, 2, is defined by

fk(z) = (u0(z) − ck)
2, z ∈ Ωk ⊂ M. (7)

The model (6) with μ = 0 and λ1 = λ2 is the piecewise
constant case (5) of the Mumford–Shah model.

Fixing now the curve Γ in (6), we obtain the following
condition for the coefficients ck , k = 1, 2:

ck =
∫
Ωk

u0 dA∫
Ωk

1 dA
. (8)
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Let x : I = R/Z → M be a smooth parameterization of
Γ .

We now derive a flow for image segmentation as gradient
flow using methods of the theory of calculus of variations.
Since we consider curves on the surface M, the variations
are restricted to lie on M. Therefore, as in [4], we consider
the variations to be elements of

VΦ =
{
η : I → R

3 : η is smooth and η . νφ = 0
}

(9)

and define for functions η,χ : I → R
3 the following inner

product:

(η,χ)2,M,nor :=
∫

Γ

PMη .PMχ ds, (10)

where PM is the projection onto the part in direction νM,
i.e., PMη = (η . νM)νM for η : I → R

3.
Fixing the coefficients c1, c2, we consider for η ∈ VΦ a

variation y : I × (−ε0, ε0) → M with y(ρ, 0) = x(ρ) and
yε(ρ, 0) = η(ρ).

Let Γ ε ⊂ M be the image of y( . , ε), and Ωε
1 ,Ω

ε
2 ⊂ M

be regions such that M = Ωε
1 ∪ Γ ε ∪ Ωε

2 .
Further, let νε

M(ρ) ∈ Ty(ρ,ε)M be a vector in the tan-
gent space toM in y(ρ, ε) defined by νε

M(ρ) = ys(ρ, ε) ×
nΦ(y(ρ, ε)). The vector field νε

M(ρ) points in the direction
Ωε

1 . The vector ν
ε
M(ρ) is normal toΓ ε , but lies in the tangent

space ofM at the point y(ρ, ε).
We define

(δE(Γ ))(η) := d

dε

∣∣∣∣
ε=0

(
σ

∫

Γ ε

1 ds + μ

∫

Ωε
1

1 dA

+λ1

∫

Ωε
1

f1 dA + λ2

∫

Ωε
2

f2 dA

)

on noting that y( . , ε) and thus Γ ε , Ωε
1 , and Ωε

2 depend on
η. We compute

(δE(Γ ))(η)

= d

dε

∣∣∣∣
ε=0

(
σ

∫

I
‖yρ‖ dρ + μ

∫

Ωε
1

1 dA

+λ1

∫

Ωε
1

f1 dA + λ2

∫

Ωε
2

f2 dA

)

=
(

σ

∫

I

yρ

‖yρ‖ . yρε dρ + μ

∫

I
(−yε . νε

M)‖yρ‖ dρ

+ λ1

∫

I
f1(y)(−yε . νε

M)‖yρ‖ dρ

+λ2

∫

I
f2(y)(yε . νε

M)‖yρ‖ dρ
)∣∣∣∣

ε=0

= σ

∫

Γ

xs . ηs ds +
∫

Γ

(−μ − λ1 f1 + λ2 f2) νM . η ds

=
∫

Γ

(−σxss + (−μ − λ1 f1 + λ2 f2) νM) . η ds

=
∫

Γ

(−σκM − μ − λ1 f1 + λ2 f2) νM . η ds. (11)

Here,we used a transport theorem for curves on surfaces [15].
We applied integration by parts for the second last identity.
The last identity follows from (3) and η . νφ = 0.

A time-dependent function x : I × [0, T ] → M with
xt ( . , t) ∈ VΦ is called a solution to the gradient flow equa-
tion if

(xt , η)2,M,nor = − (δE(Γ )) (η) (12)

holds for all η ∈ VΦ .
Let η ∈ VΦ . We conclude from (11) and (12) on noting

that νM . η = νM .PMη

PMxt = − (−σκM − μ − λ1 f1 + λ2 f2) νM. (13)

Let Vn := xt . νM denote the velocity in direction νM, also
called normal velocity. Then PMxt = VnνM and conse-
quently the equation above leads to

Vn = σκM + F, (14)

where F is given by

F(z) = μ + λ1 f1(z) − λ2 f2(z)

= μ + λ1(u0(z) − c1)
2 − λ2(u0(z) − c2)

2. (15)

We rewrite equation (14) to a scheme for x : I ×[0, T ] →
R
3 and κM, κΦ : I × [0, T ] → R. We assume that x(ρ, 0)

lies on M. To force the curve to stay on the manifold M,
the velocity in direction normal to the surface xt . νΦ must
be zero (i.e., xt ∈ VΦ ). We thus have the following scheme:

Let x(I, 0) = Γ (0) ⊂ M. For t ∈ (0, T ], find x( . , t) :
I → R

3 and κM( . , t), κΦ( . , t) : I → R such that

xt . νM = σκM + F, (16a)

xt . νΦ = 0, (16b)

xss = κMνM + κΦνΦ. (16c)

2.3 Multiphase Image Segmentation with Possible
Triple Junctions

Weextend the above-presented two-phase segmentationwith
a single closed curve to more general situations. We consider
a curve network with closed and open curves which partition
the image domain in NR regions. Also triple junctions can
occur.
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Therefore, we consider a decomposition of M in time-
dependent regions Ω1(t), . . . ,ΩNR (t), t ∈ [0, T ], separated
by curves Γ1(t), . . . , ΓNC (t). Each curve is parameterized
by a time-dependent function xi ( . , t) : Ii → R

3, where Ii
is a one-dimensional reference manifold for i = 1, . . . , NC .
Similar to the case of one curve, we set νΦ,i = nΦ ◦ xi and
νM,i = (xi )s × νΦ,i . The geodesic curvature κM,i and the
normal curvature κΦ,i are given by κM,i = (xi )ss . νM,i and
κΦ,i = (xi )ss . νΦ,i . All quantities are time dependent.

We define a piecewise constant image approximation by
u( . , t) = ∑NR

k=1 ck(t)χΩk(t), where χΩk (t) is the character-
istic function on the set Ωk(t) and the coefficients ck(t) are
computed by

ck(t) =
∫
Ωk(t)

u0 dA∫
Ωk (t)

1 dA
, (17)

i.e., they are set to the mean of u0 in Ωk(t).
Let xi ( . , 0), i = 1, . . . , NC , be parameterizations of

given curves Γi (0) ⊂ M. We have to solve the follow-
ing scheme for t ∈ (0, T ]: find xi ( . , t) : Ii → R

3,
κM,i ( . , t), κΦ,i ( . , t) : Ii → R such that

(xi )t . νM,i = σκM,i + Fi , (18a)

(xi )t . νΦ,i = 0, (18b)

(xi )ss = κM,i νM,i + κΦ,i νΦ,i (18c)

hold for i = 1, . . . , NC . The external force Fi is defined for
x ∈ M by

Fi (x) =μ + λk+(i)(u0(x) − ck+(i))
2+

− λk−(i)(u0(x) − ck−(i))
2, (19)

where k+(i), k−(i) ∈ {1, . . . , NR} are indices of two
regions, such that νM,i points from Ωk−(i) to Ωk+(i).

In the experiments, presented in Sect. 4, we always con-
sider the case μ = 0 and λk = λ for all k = 1, . . . , NR , i.e.,
all segmentations in our demonstrations can be performed
with only two weighting parameters σ and λ. The external
forcing term is

Fi (x) = λ
[
(u0(x) − ck+(i))

2 − (u0(x) − ck−(i))
2
]
. (20)

We also allow open curves, i.e., curves with ∂Γi (t) 
= ∅.
Sincewe consider interface curves, i.e., each curveΓi (t) sep-
arates two different regions Ωk+(i) and Ωk−(i), we exclude
free endpoints. This means, we exclude the case that a curve
ends inMwithoutmeeting another curve at its endpoint. Fur-
ther, we consider only smooth, compact surfacesMwithout
boundary. Thus, endpoints of open curves are therefore part
of triple junctions denoted with �k ∈ M, k = 1, . . . , NT .

For each k ∈ {1, . . . , NT }, let the integers ik,1, ik,2, ik,3
∈ {1, . . . , NC } denote the indices of curves Γik,l , l = 1, 2, 3,
ik,1 
= ik,2 
= ik,3 
= ik,1 with parameterizations xik,l : Iik,l =
[0, 1] → M, such that

xik,1(ρk,1) = xik,2(ρk,2) = xik,3(ρk,3) = �k,

where ρk,l ∈ {0, 1} corresponds to the start or endpoint of
the curve ik,l , l = 1, 2, 3.

At the triple junctions �k , k = 1, . . . , NT , an attachment
condition and Young’s law need to hold:

the triple junction �k does not pull apart, (21a)
3∑

l=1

(−1)ρk,l τ ik,l = 0, (21b)

where τ ik,l := (xik,l )s is a tangent vector field at Γik,l ⊂ M,
l = 1, 2, 3. We refer to [3] for the planar case of evolution
of curves with triple junctions.

2.4 Vector-valued images

The segmentation method can be easily extended to vector-
valued images such as color images. Only the external force
F need to be adapted compared to scalar images. The adap-
tations of F can be done similarly as for planar images [5,9].

Let u0 = (u0,1, u0,2, u0,3) : M → R
3 represent a color

image in the RGB color space. The three components of the
vector-valued image function represent the red, green, and
blue color channels. The external force Fi , i = 1, . . . , NC ,
in (20) has to be modified. We therefore set

Fi =
3∑
j=1

λ j

[
(u0, j − ck+(i), j )

2 − (u0, j − ck−(i), j )
2
]
,

where λ j weights the j-th color component, j = 1, 2, 3. The
coefficients ck = (ck,1, ck,2, ck,3), k = 1, . . . , NR , are given
by setting ck, j to the mean of u0, j in Ωk .

Another color space, we will use for segmentation of
color images, is the chromaticity–brightness space. Let v0 =
u0/‖u0‖ be the chromaticity and b0 = ‖u0‖ the brightness
of an image with image function u0. We modify Fi to

Fi = λC

[
‖v0 − vk+(i)‖2 − ‖v0 − vk−(i)‖2

]

+ λB

[
(b0 − bk+(i))

2 − (b0 − bk−(i))
2
]
,

where λC weights the chromaticity term and λB weights the
brightness term. Here, vk is a normalized mean of v0 in the
region Ωk (see [5] for details) and bk is the mean of b0 in
Ωk .
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2.5 Restoration of Images on Surfaces with Edge
Enhancement

Searching for a minimizer of the Mumford–Shah functional
for images on surfaces (4) involves both a set of curvesΓ and
an image approximation u. The segmentation technique pre-
sented above uses piecewise constant image approximations
to divide an image into characteristic regions of similar image
intensity or color. For image restoration, more details of the
original image u0 should be kept; the piecewise constant
approximation would be a too large simplification. There-
fore, we aim at approximating u0 : M → R by a piecewise
smooth function u : M → R.

We propose to first perform a segmentation of the image
with piecewise constant approximations by solving the evo-
lution equations (18) with (21) in case of triple junctions.
This is followed by a restoration using the already identified
regions. By denoising the image in this way during a post-
processing step, the edges in the image will not be smoothed
out if the curves Γ match with these edges.

We thus consider piecewise smooth approximations u|Ωk

= uk , where uk : Ωk → [0, 1] is a smooth function defined
on the region Ωk ⊂ M, k = 1, . . . , NR . For smoothing the
image in the regions Ωk , we derive surface partial differen-
tial equations from the Mumford–Shah functional. Since the
curve set Γ has already been determined, we can fix Γ in
the functional (4) and consider variations of u of the form
u + εv, for v : M → R and ε > 0. We compute

d

dε

∣∣∣∣
ε=0

EMS(u + εv, Γ )

= lim
ε→0

1

ε

(
EMS(u + εv, Γ

)− EMS(u, Γ ))

= lim
ε→0

1

ε

(∫

M\Γ

(
2ε∇Mu .∇Mv + ε2‖∇Mv‖2

)
dA

+ λ

∫

M

(
2ε(u − u0) v + ε2v2

)
dA

)

= 2
∫

M\Γ
∇Mu .∇Mv dA + 2λ

∫

M
(u − u0) v dA

= 2
NR∑
k=1

∫

Ωk

(∇Muk .∇Mv + λ(uk − u0) v) dA.

For a stationary solution,we search for a function u satisfying
0 = d

dε

∣∣
ε=0 E

MS(u + εv, Γ ). This leads to

0 =
∫

Ωk

(∇Muk .∇Mv + λ(uk − u0) v) dA

for each k = 1, . . . , NR and an arbitrary function v which is
smooth on Ωk . Using an integration by parts formula [14],
we obtain

0 =
∫

Ωk

(−ΔMuk + λ(uk − u0)) v dA

+
∫

∂Ωk

∇Muk .μk v ds, (22)

where ΔM is the Laplace–Beltrami operator and μk(p) is a
unit outer normal vector on ∂Ωk in TpM, i.e., it is tangent
to the surface for each p ∈ ∂Ωk ⊂ M but normal to ∂Ωk in
p. SinceM is a smooth, compact surface without boundary,
the boundary ∂Ωk of the region Ωk consists of one or more
curves Γi , i ∈ {1, . . . , NC }. Thus, locally, μk is ±νM,i .
Since v is arbitrarily chosen, we have to solve the following
surface partial differential equation with Neumann boundary
condition for k = 1, . . . , NR :

−1

λ
ΔMuk + uk = u0, in Ωk, (23a)

∇Muk .μk = 0, on ∂Ωk . (23b)

The smoothing effect is due to the Laplace–Beltrami opera-
tor. We can control the smoothing extent using the weighting
parameter λ > 0. The smaller the λ, the larger is the denois-
ing. The larger the λ, the closer is the approximation to the
original image. The Neumann boundary condition provides
that edges in the image are not smoothed out.

Vector-valued images can be smoothed by considering
each component individually like a scalar image.

3 Numerical Approximation

3.1 Finite Element Approximation of the Image
Segmentation Scheme

We introduce a finite element approximation for the scheme
(18) with (21) in the case of triple junctions. The evolution
equations (18a), for i = 1, . . . , NC , can be interpreted as
a weighted geodesic curvature flow with external forcing
terms. Therefore, we make use of the finite element scheme
for geodesic curvature flowdeveloped in [4] for closed curves
and generalize the approach for possible open curves with
triple junctions and for image segmentation problems.

In order to formulate a finite element scheme, we first
introduce a spatial and time discretization, and discrete func-
tion spaces and discrete inner products.

For i = 1, . . . , NC , let 0 = qi0 < qi1 < . . . < qiNi
= 1

be a decomposition of the interval Ii = I = [0, 1]. If Γi

is a closed curve, we make use of the periodicity Ni = 0,
Ni + 1 = 1, −1 = Ni − 1, etc.

We introduce the following discrete function spaces:

Wh :=
{
(η1, . . . , ηNC ) ∈ [C(I,R)]NC : ηi |[qij−1,q

i
j

] is
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linear, ∀i = 1, . . . , NC , j = 1, . . . , Ni

}
, (24a)

V h :=
{
(η1, . . . , ηNC

) ∈
[
C(I,R3)

]NC : ηik,1(ρk,1)

= ηik,2(ρk,2) = ηik,3(ρk,3), ∀k = 1, . . . , NT ,

ηi |[qij−1,q
i
j ] is linear, ∀i = 1, . . . , NC ,

j = 1, . . . , Ni

}
. (24b)

The attachment conditions for triple junctions are incorpo-
rated in the definition of the space V h .

A basis of Wh is given by functions χi, j := ((χi, j )1,

. . . , (χi, j )NC ) ∈ Wh , where (χi, j )k(qkl ) := δikδ jl for i, k =
1, . . . , NC , j = j i0, . . . , Ni , l = j k0 , . . . , Nk , where j i0 = 1
if Γi is closed and j i0 = 0 else.

Further, let 0 = t0 < t1 < . . . < tM = T be a partitioning
of the time interval [0, T ] into possibly variable time steps
τm := tm+1 − tm , m = 0, . . . , M − 1.

Let Xm = (Xm
1 , . . . ,Xm

NC
) ∈ V h be an approxima-

tion of x( . , tm) = (x1( . , tm), . . . , xNC ( . , tm)). Let Γ m =
(Γ m

1 , . . . , Γ m
NC

) denote the image of Xm .
In case of triple junctions, let jk,l ∈ {0, Nik,l } denote the

index of the corresponding curve endpoint such that q
ik,l
jk,l

=
ρk,l , k = 1, . . . , NT , l = 1, 2, 3.

For scalar or vector functions u = (u1, . . . , uNC ), v =
(v1, . . . , vNC ) ∈ [

L2(I,R(3))
]NC , the L2-inner product

〈· , ·〉m over the current polygonal curve networkΓ m is given
by

〈u, v〉m :=
∫

Γ m
u . v ds :=

NC∑
i=1

∫

Ii
ui . vi ‖(Xm

i )ρ‖ dρ. (25)

We follow the ideas of [2–4], and define a mass lumped
inner product 〈· , ·〉hm for piecewise continuous functions
u = (u1, . . . , uNC ) and v = (v1, . . . , vNC ) by

〈u, v〉hm :=1

2

NC∑
i=1

Ni∑
j=1

hm
i, j− 1

2

[
(ui . vi )

(
[qij ]−

)

+ (ui . vi )
(
[qij−1]+

)]
, (26)

where ui ([qij ]±) := limε→0,ε>0ui (qij ± ε) and hm
i, j− 1

2
:=

‖Xm
i (qij ) − Xm

i (qij−1)‖ > 0 is the distance between two
neighbor nodes.

Let hm := maxi=1,...,NC , j=1,...,Ni h
m
i, j− 1

2
denote the max-

imum distance between two neighbor nodes of the polygonal
curves.

LetXm ∈ V h be a given parameterization of the polygonal
curve network Γ m satisfying the following assumption:

(A) The distance between two neighbor nodes of Γ m is
positive, i.e., hm

i, j− 1
2

> 0 for i = 1, . . . , NC , j = 1, . . . , Ni

and Xm
i (qij+1) 
= Xm

i (qij−1) for i = 1, . . . , NC and j =
1, . . . , Ni if ∂Γ m

i = ∅ and j = 1, . . . , Ni − 1 if ∂Γ m
i 
= ∅.

We define ωm
Φ = (ωm

Φ,1, . . . ,ω
m
Φ,NC

), by

ωm
Φ,i (q

i
j ) = nΦ(Xm

i (qij )) = ∇Φ(Xm
i (qij ))

‖∇Φ(Xm
i (qij ))‖

,

for i = 1, . . . , NC and j = j i0, . . . , Ni , i.e., ωm
Φ,i approx-

imates νΦ,i at time tm . Further, the tangent vector field is
approximated by ωm

d = (ωm
d,1, . . . ,ω

m
d,NC

): We set

ωm
d,i

(
qij
) = Xm

i

(
qij+1

)− Xm
i

(
qij−1

)

‖Xm
i

(
qij+1

)− Xm
i

(
qij−1

)‖

if Γ m
i is closed, or if Γ m

i is an open curve and j 
= 0, Ni .
For closed curves, we make use of the periodicity Ni = 0,
Ni + 1 = 1 and −1 = Ni − 1. For the endpoints of an open
curve, we define

ωm
d,i (q

i
0) = Xm

i (qi1) − Xm
i (qi0)

‖Xm
i (qi1) − Xm

i (qi0)‖
,

ωm
d,i (q

i
Ni

) = Xm
i (qiNi

) − Xm
i (qiNi−1)

‖Xm
i (qiNi

) − Xm
i (qiNi−1)‖

.

Furthermore, we define ωm
M = (ωm

M,1, . . . ,ω
m
M,NC

) by

ωm
M,i

(
qij
) = ωm

d,i

(
qij
)× ωm

Φ,i

(
qij
)
.

Thus, ωm
M,i approximates νM,i at time tm .

The assumption (A) is necessary, such that ωm
d is well

defined, see also [4].
We define a discrete analog to the space VΦ by

V h
Φ =

{
η ∈ V h : ηi .ω

m
Φ,i = 0, i = 1, . . . , NC

}
. (27)

We now propose the following discrete scheme: LetX0 ∈
V h be a given parameterization of a polygonal curve network
Γ 0.We assume that the initial nodesX0

i (q
i
j ) lie on the surface

M. Further, we assume that assumption (A) holds for Xm ,
m = 0, . . . , M − 1.

For m = 0, . . . , M − 1, find δXm+1 ∈ V h
Φ and κm+1

M ∈
Wh such that

〈δXm+1

τm
, χ ωm

M
〉h
m

− σ
〈
κm+1
M , χ

〉h
m

= 〈Fm, χ〉hm, ∀χ ∈ Wh, (28a)

〈κm+1
M ωm

M, η〉hm + 〈∇sδXm+1,∇sη〉m
= −〈∇sXm,∇sη〉m, ∀η ∈ V h

Φ, (28b)

123



112 J Math Imaging Vis (2016) 55:105–124

where Fm = (Fm
1 , . . . , Fm

NC
) ∈ Wh , with Fm

i , i =
1, . . . , NC , being the piecewise linear function uniquely
given by

Fm
i

(
qij
) = λ

[(
u0
(
Xm
i

(
qij
))− cmk+(i)

)2+
− (u0

(
Xm
i

(
qij
))− cmk−(i)

)2]
, (29)

where cmk±(i) are approximations of the coefficients ck±(i) at
tm , cf. (17). We will later state how the coefficients cmk , k =
1, . . . , NR , can be computed.

Having found δXm+1 ∈ V h
Φ , we set X

m+1 := δXm+1 +
Xm ∈ V h .

Before we proceed to prove existence and uniqueness of a
solution of the scheme (28), we state some verymild assump-
tions.

(A1) Let i ∈ {1, . . . , NC }. If ∂Γ m
i = ∅, we assume

that dim span{ωm
M,i (q

i
j ),ω

m
Φ,i (q

i
j )}Ni

j=1 = 3.
(A2) For each k ∈ {1, . . . , NT }, we assume that

dim span{{ωm
M,ik,l

(q
ik,l
j ),ωm

Φ,ik,l (q
ik,l
j )}Nik,l −1

j=1 }3l=1 = 3.

The two assumptions are violated only in very rare cases.
An example where (A1) is violated is the following (see
[2], Remark 2.2): Let a surface be locally flat, and Γ m

i a
polygonal curve such that the normal vectors to the surface
ωm

Φ,i (q
i
j ), j = 1, . . . Ni , evaluated at the mesh points, span

a one-dimensional space, i.e., dim span{ωm
Φ,i (q

i
j )}Ni

j=1 = 1.
On the locally flat surface, we assume an even number of
nodes, where the nodes Xm

i (qi1),X
m
i (qi3),X

m
i (qi5), . . . lie on

one straight line, and the nodesXm
i (qi2),X

m
i (qi4),X

m
i (qi6), . . .

lie on another straight line, parallel to the first one. Using
the definitions of ωd,i and ωM,i , the vectors ωM,i (q

i
j )

span a one-dimensional space. The assumption (A1) is vio-
lated, since dim span{ωm

M,i (q
i
j ),ω

m
Φ,i (q

i
j )}Ni

j=1 = 2, The
constructed curve is a zig-zagging line with intersections.
Similarly, assumption (A2) is only violated in very rare occa-
sions.

Theorem 1 Let the assumptions (A), (A1), and (A2) hold.
Then there exists a unique solution (δXm+1, κm+1

M ) ∈ V h
Φ ×

Wh to the system (28).

Proof The system (28) is linear. Therefore, existence of a
solution follows from its uniqueness. To prove uniqueness,
consider the following system: Find {X, κM} ∈ V h

Φ × Wh

such that

〈X, χ ωm
M〉hm − στm〈κM, χ〉hm = 0, ∀χ ∈ Wh, (30a)

〈κM ωm
M, η〉hm + 〈∇sX,∇sη〉m = 0, ∀η ∈ V h

Φ. (30b)

We obtain choosing χ = κM ∈ Wh in (30a) and η = X ∈
V h

Φ in (30b)

στm〈κM, κM〉hm + 〈∇sX,∇sX〉m = 0.

From this equation, we conclude κM ≡ 0 and X ≡ Xc for
a constant Xc = (Xc

1, . . . , X
c
NC

) ∈ (R3)NC with Xc
ik,1

=
Xc
ik,2

= Xc
ik,3

for all k ∈ {1, . . . , NT }. Further, Xc
i ∈ R

3

satisfies

Xc
i .ωm

Φ,i (q
i
j ) = 0 (31)

for all i = 1, . . . , NC and j = j i0, . . . , Ni , since X ∈ V h
Φ .

Inserting κ ≡ 0 and X ≡ Xc, (30a) reduces to

〈Xc, χ ωm
M〉hm = 0, ∀χ ∈ Wh . (32)

We now choose χ = χi, j ∈ Wh , i ∈ {1, . . . , NC }, j ∈
{ j i0, . . . , Ni } in (32). This yields

Xc
i .ωm

M,i

(
qij
) = 0. (33)

We conclude Xc
i ≡ 0 using (31), (33), and the assumptions

(A1) and (A2). ��

3.2 Solution of the Discrete System

Let N = ∑NC
i=1 N

∗
i , with N∗

i = Ni for closed curves and
N∗
i = Ni + 1 for open curves. We make use of a small abuse

of notation and consider functions in Wh as elements in RN

and functions in V h as elements in

X =
{
(z1, . . . , zNC ) ∈ (R3)N : [zik,1 ] jk,1 = [zik,2 ] jk,2 =
= [zik,3 ] jk,3 , k = 1, . . . NT

}
,

where zi ∈ (R3)N
∗
i and [zi ] j ∈ R

3 is the j-th component of
the vector zi . Functions in V h

Φ are considered as elements in

XΦ =
{
(z1, . . . , zNC ) ∈ X : [zi ] j .ωm

Φ,i (q
i
j ) = 0,

i = 1, . . . , NC , j = j i0, . . . , Ni

}
,

with j i0 = 0 for open curves and j i0 = 1 for closed curves.
Let PΦ : (R3)N → XΦ denote the orthogonal projection
onto the space XΦ .
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In order to state a matrix formulation for the discrete sys-
tem (28), we introduce the following matrices:

M :=
⎛
⎜⎝

M1 · · · 0
...

. . .
...

0 . . . MNC

⎞
⎟⎠ ,

NM :=
⎛
⎜⎝
N1
M · · · 0
...

. . .
...

0 . . . NNC
M

⎞
⎟⎠ ,

A :=
⎛
⎜⎝
A1 · · · 0
...

. . .
...

0 . . . ANC

⎞
⎟⎠ ,

where Mi ∈ R
N∗
i ×N∗

i , Ni
M ∈ (R3)N

∗
i ×N∗

i , and Ai ∈
(R3×3)N

∗
i ×N∗

i , i = 1, . . . , NC , are defined by

Mi
jl := 〈χi, j , χi,l〉hm, (Ni

M) jl := 〈χi, j , χi,l ω
m
M〉hm,

Ai
jl := 〈∇sχi, j ,∇sχi,l〉m Id3,

where Id3 denotes the 3×3 identity matrix. We define bm =
(bm1 , . . . , bmNC

) ∈ R
N by

bmi =
(
bm
i, j i0

, . . . , bmi,Ni

)
, with bmi, j := 〈Fm

i , χi, j 〉hm,

i = 1, . . . , NC , j = j i0, . . . , Ni . (34)

The discrete system (28) can be rewritten into the fol-
lowing matrix–vector formulation: Find κm+1

M ∈ R
N and

δXm+1 ∈ XΦ , such that

(−στmM NT
MPΦ

PΦNM PΦAPΦ

)(
κm+1
M

δXm+1

)
=
(

τmbm

−PΦAXm

)
(35)

holds, on assuming that X0 ∈ X.
Since M is non-singular, we can apply a Schur comple-

ment approach and obtain

κm+1
M = 1

στm
M−1

(
NT
MPΦ δXm+1 − τmb

m
)

, (36a)
(
PΦAPΦ + 1

στm
PΦNMM−1NT

MPΦ

)
δXm+1

= 1

σ
PΦNMM−1bm − PΦAXm . (36b)

Since PΦ is a projection to a subspace of (R3)N , the system
matrix of the linear equation (36b) is singular as a mapping
of (R3)N → (R3)N . However, considered as a mapping of
XΦ → XΦ it is non-singular if the assumptions (A1) and
(A2) hold.

Since the system matrix is sparse, (36b) can be efficiently
solved with linear effort using an iterative solver (with pos-
sible preconditioning) or using a direct solver for sparse
matrices. In the examples presented later in Sect. 4, we use
the UMFPACK algorithm [13] (direct solver) as MATLAB
built-in routine for sparse linear systems.

In the following, we will use the abbreviation Xm
i, j :=

Xm
i (qij ).

3.3 Semidiscrete Scheme

We consider a scheme which is discrete in space and contin-
uous in time. We consider time-dependent polygonal curves
Γi (t), i = 1, . . . , NC , t ∈ [0, T ], and show an equidistri-
bution property concerning the distribution of mesh points
along the curves on surfaces.

We make use of a similar notation as in the fully dis-
crete case by just omitting the superscripts m and m + 1.
In detail, let X = (X1, . . . ,XNC ) and κ = (κ1, . . . , κNC )

with Xi : Ii × [0, T ] → R
3, and κi : Ii × [0, T ] → R,

i = 1, . . . , NC , such that X( . , t) and κ( . , t) are piecewise
linear on [qij−1, q

i
j ], j = 1, . . . , Ni , for each t ∈ [0, T ]. Fur-

ther, we set Xi, j = Xi (qij ) and hi, j− 1
2

= ‖Xi, j − Xi, j−1‖
for i = 1, . . . , NC , j = 1, . . . , Ni . We will make use of
inner products 〈 . , . 〉 and 〈 . , . 〉h which are defined as in
(25) and (26) by replacing Xm by X( . , t) and Γ m

i by the
current polygonal curve Γi (t), i = 1, . . . , NC , t ∈ [0, T ].
We make use of vector fields ωΦ , ωd , and ωM which are
defined similar as in the fully discrete case by omitting the
superscript m. The space V h

Φ is defined as in (27) using ωΦ

instead of ωm
Φ .

Theorem 2 (See also [4]) The semidiscrete scheme

〈Xt , χ ωM〉h − σ 〈κM, χ〉h = 〈F, χ〉h, ∀χ ∈ Wh,

(37a)

〈κM ωM, η〉h + 〈∇sX,∇sη〉 = 0, ∀η ∈ V h
Φ,

(37b)

for κ ∈ Wh and X ∈ V h
Φ , provides an equidistribution of

the mesh points along the curves Γi (t), i = 1, . . . , NC, t ∈
[0, T ].

Proof Testing (37b) with η = χi, j ωd,i (qij ), i = 1, . . . , NC ,
j = 1, . . . , Ni if ∂Γi (t) = ∅ and j = 1, . . . , Ni − 1 else,
leads to

0 =
(
Xi, j+1 − Xi, j

hi, j+ 1
2

− Xi, j − Xi, j−1

hi, j− 1
2

)
.

(
Xi, j+1 − Xi, j−1

)
,
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where we use that ωM and ωd are perpendicular. From this
equation, we can conclude that (see also [2], Remark 2.3)

‖Xi, j+1 − Xi, j‖ = ‖Xi, j − Xi, j−1‖ or

(Xi, j+1 − Xi, j ) is parallel to (Xi, j − Xi, j−1).

Consequently, three neighbor nodes are equally distributed
or lie on one straight line. ��

We could show that the Euclidean distance between mesh
points is equal (or three neighbor nodes lie on one straight
line). We did not show an equidistribution using the geo-
desic distance, the length of the smallest curve on the surface
connecting two neighbor nodes. However, for most practical
examples, we will also obtain a good mesh quality concern-
ing the distribution of nodes with respect to the geodesic
distance.

As in [4], we cannot prove equidistribution for the fully
discrete scheme.However in experiments,we always observe
a good mesh quality during the evolution of the curves on the
surface.

Equation (37a) has not been used to prove equidistribution
of the mesh points; only (37b) has been used. Therefore, the
equidistribution property is also valid for other flows; see [4]
where different flows of curves on surfaces are presented.

3.4 Topology Changes

Our scheme is based on a parametrization of evolving curves
on surfaces. Topology changes concerning the curves are not
automatically handled which is often considered as the main
drawback of parametric methods.

There are different topology changes that can occur: A
curve can split into two sub-curves (splitting), two curves
separating the same regions can merge to one single curve
(merging), two curves separating different regions can touch
and a new curve and two new triple junctions occur (creation
of triple junctions) and a curve can shrink and has to be
deleted.

The latter can be simply detected by considering the length
of the curve. If the length of a curve is smaller than a prede-
fined tolerance, it will be deleted. The other topology changes
will occur if two points from different curves or two points
from one curve which are not neighbors have a small dis-
tance. A simple comparison of all nodes would lead to an
effort ofO(N 2), where N is the total number of nodes of the
polygonal curvesΓ m

1 , . . . , Γ m
NC

. Sincewe can solve the linear
equation of our main algorithm (36b) efficiently with linear
effort, a sub-algorithm to detect topology changes should not
result in a too large computational effort.

For curves in the plane, we extended an efficientmethod to
detect topology changes [5] which was originally developed
byMikula and Urbán [22], see also [1]. The method to detect

topology changes is based on an artificial background grid
covering the image domain and consisting of a finite set of
arrays (squares). If two nodes from different curves or two
nodes fromdifferent parts of one curve lie in the same array of
the virtual background grid, a topology change likely occurs
close to the two points. Using this method, the effort to detect
topology changes is O(N ).

In principle, the idea of an artificial background grid can
be extended to detect topology changes involving curves on
surfaces. One can construct a Cartesian 3D background grid
around the surface M. Again, we can check whether two
points of different curves or different parts of one curve
belong to the same array of the background grid.

However, using the Euclidean distance in R
3 to detect

topology changes can lead to false detections: Surfaces exist
where two points can have a small Euclidean distance, but
their geodesic distance is large. In such situations, a topology
change does not occur. The geodesic distance would be a
better indicator for detection of topology changes compared
to the Euclidean distance. However, the computation of the
geodesic distance between two points on a surface is very
expensive from a computational point of view and cannot be
used in a sub-algorithm in practice.

Let a > 0 be the grid size of the cubes of the 3D back-
ground grid. For extending the method to detect topology
changes from the planar case [5] to the case of curves on
surfaces, we have to choose the grid size a small enough to
exclude such wrong detections as described above.

For p ∈ M, let TpM denote the tangent space and
NpM = (TpM)⊥ the normal space. Let NM ={
(p,n) : p ∈ M, n ∈ NpM

}
denote the normal bundle.

For the smooth, embedded hypersurface, we consider the
map

E : NM → R
3, (p,n) �→ p + n.

Theorem 3 (Tubular neighborhood theorem) Every embed-
ded hypersurfaceM of R3 has a tubular neighborhood, i.e.,
a neighborhood U ⊂ R

3 that is the diffeomorphic image
under E : NM → R

3 of an open subset V ⊂ NM of the
form:

V = {(p,n) ∈ NM : ‖n‖ < δ(p)} , (38)

for some positive continuous function δ : M → R.

Proof See [21], Chapter 6, Embedding and Approximation
Theorems, or [20], Chapter 4, Vector Fields and Differential
Equations. ��

For images on surfaces, we assume the surface M to
be a compact, embedded hypersurface. As a consequence,
set δ0 = min {δ(p) : p ∈ M} > 0. For each p ∈ M, the
intersection Bδ0(p) ∩ M is simply connected, which is a
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consequence of the fact that E |V : V → U is a diffeomor-
phism.

Thus, the key idea when extending the algorithm from the
planar case to curves on surfaces is to choose the grid size
a of the auxiliary 3D background grid small enough with
respect to δ0, such that points from two different parts of the
surface (with nearly opposite normal vector νΦ ) cannot lie
in one array of the grid.

It is possible to establish the auxiliary 3D grid only locally
around the surface to reduce memory requirements. A the-
oretical alternative option to a Cartesian 3D grid would be
a non-Cartesian 2D grid constructed over the surface. How-
ever, a Cartesian 3D grid is much simpler to handle. If it
is only created in a small neighborhood of the surface, the
memory requirements of such a cubic grid are comparable
with those of a 2D grid.

Topology changes are now detected as follows:

– Construct an underlying 3D grid with grid size a with
a
√
3 < δ0. Note that the intersection of a grid element

(=cube of grid length a) withM is simply connected.
– Mark the grid elements with the indices of the curves and
themesh points:We successively consider themesh points
Xm
i, j , i = 1, . . . , NC , j = j i0, . . . , Ni . If the corresponding

grid array, in which Xm
i, j lies, is empty, the grid is marked

with (i, j).
– If a grid array is already marked with (i1, j1) and if Xm

i, j
and Xm

i1, j1
are no neighbor nodes, a topology change is

detected.
– SinceXm

i, j andX
m
i1, j1

may not be the pair with the smallest
distance, we consider a few neighbor nodes around Xm

i, j
andXm

i1, j1
. LetXm

i,l andX
m
i1,l1

be the pair with the smallest
Euclidean distance in these two small groups of nodes.
They can be found by a pairwise comparison, which is
not computationally expensive since only a few nodes are
involved.

The topology changes splitting, merging, and creation of
triple junctions (see explanations above) are distinguished as
follows:

– If i = i1, a splitting of the curve Γ m
i is detected.

– If i 
= i1, we consider the regions separated by Γ m
i and

Γ m
i1
: If k+(i) = k+(i1) ∧ k−(i) = k−(i1), or alterna-

tively k+(i) = k−(i1) ∧ k−(i) = k+(i1) holds, a merging
occurs.

– Otherwise, a creation of a new contour and a creation of
two new triple junctions occur.

After having detected and identified the topology change,
the curves need to be adapted near Xm

i,l and Xm
i1,l1

. This
involves changing the neighbor relations, changing curve
indices in case of merging or splitting, and creation of a small

new contour with a few nodes in case of triple junctions.
Details are given in [5].

In case of triple junctions, a new curve is created. When
creating new nodes, one has to ensure that these nodes lie on
the surface M. In the next section, we describe how nodes
can be efficiently projected to the surface.

It has to be noted that the topology changes can be
detected robustly since the mesh points of the curves are
nearly equidistributed (cf. Sect. 3.3 and [4]). Therefore, false-
positive or false-negative errors in the detection of topology
changes cannot occur, since there are no locations along the
curve where mesh points locally bunch together or where
mesh points locally drift apart.

3.5 Additional Computational Aspects

Triangulated surfaces In practical applications, a smooth
function Φ : R

3 → R, such that M is the zero level set
of Φ, is usually not provided. Moreover, a surfaceM is typ-
ically given as a triangulated surface instead of a smooth
surface.

Therefore, we assume that M is a union of triangles of
a triangulation T h , i.e., M = ⋃

σ h∈T h σ h . Note that the
function Φ was only needed to compute nΦ . Normal vectors
to the surface can now be easily computed for each triangle
σ h . For a point p on a curveΓ m ⊂ M, we first need to assign
p to a triangle σ h ∈ T h in which the node lies, to compute
nΦ(p). Further, the color data u0 is often piecewise constant
and uniquely given by its value on the triangles. To evaluate
u0(p), we also need to assign the node to its corresponding
triangle.

For each simplex, we can project a vector in R
3 to the

simplex plane and can use barycentric coordinates to deter-
mine if the projected node lies inside the triangle. Surfaces
are often composed of 105 to 106 triangles. Therefore, for a
given point, finding the corresponding triangle in which the
point lies results in a high computational effort if no addi-
tional knowledge is used.

For m = 0 and a curve Γ m
i , i ∈ {1, . . . , NC }, with nodes

Xm
i, j , j = j i0, . . . , Ni , we perform a global search only for

Xm
i, j i0

. For j > j i0, we consider first the simplex to which

Xm
i, j−1 has been assigned. If the node Xm

i, j is not located in
the same simplex, we start a search considering successively
the neighbor simplices. Form > 0,we can assume that a node
has moved only slightly on the surface from stepm−1 tom.
Therefore, we start the search using the triangle to which the
node was assigned in time stepm−1. Consequently, a global
search has to be performed only NC times at the beginning
of the segmentation.

After the linear system (36b) has been solved, some of
the nodes may not lie exactly on the surface. For smooth
surfaces (like spheres, tori, etc.), the nodes stay very close
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to the surface if small time steps are used, see [4]. However,
for triangulated surfaces, a reprojection onto the surface is
necessary since νΦ is not continuous. A reprojection onto the
surface does not result in an additional computational effort:
In the next time step, we need to compute νΦ = nΦ ◦ x and
need to evaluate u0 again for each node. For both, we have to
determine again the closest triangle for a point. As described
above, this is done by projection of the original node to the
triangle plane and by using barycentric coordinates. That is,
we already need to determine a projection of the original
point to the corresponding triangle.

Computation of regions and coefficients For the external
forcing term, we need to determine the regions Ωm

k , approx-
imations of Ωk(tm), k = 1, . . . , NR . The regions Ωm

k are
separated and thus determined by the union of discrete curves
Γ m = Γ m

1 ∪. . .∪Γ m
NC

. Further, we need to compute the coef-
ficients cmk which are the average color values of the image
function u0 in the corresponding regions.

For m = 0, we need to assign each simplex σ h ∈ T h to
a region Ω0

k . For m > 0, we need to update the assignment
only in a neighborhood of the curves.

Let pσ h , j , j = 1, 2, 3, denote the vertices of a triangle σh .
We assign the simplex to a region Ωm

k if its center pσ h =
(pσ h ,1 + pσ h ,2 + pσ h ,3)/3 belongs to the region. In the rare
case that pσ h lies directly on a curve Γ m

i , it is assigned either
toΩm

k+(i) orΩ
m
k−(i). For image segmentation, we do not apply

any special treatment to simplices which are truncated by a
curve.

For a simplex σ h close to a curve with center pσ h , we
can search for the closest node Xm

i, j and consider the sign of

(pσ h − Xm
i, j ) .ωm

M(qij ).
For m = 0, we also need to consider simplices which are

not close to a curve. The directionωm
M(qij ) cannot be used for

remote simplices if the surfaceM is curved.Having assigned
a small band of simplices around the curves, the remaining
simplices can inherit the region index using the neighbor
relation between the simplices of the triangulation.

Motivated by these thoughts, we propose the following
algorithm for computation of the regions:

– For all nodes Xm
i, j , i = 1, . . . , NC , j = j i0, . . . , Ni ,

we consider the triangle σ h to which Xm
i, j belongs (see

determination of the closest triangle described above). If
(pσ h −Xm

i, j ) .ωm
M(qij ) is positive, the simplex is assigned

to Ωm
k+(i), otherwise to Ωm

k−(i). The indices of neighbor

simplices of σ h are stored in a list.
– We consider the simplices of the auxiliary list, which
have not been assigned to a region yet. For a simplex
σ h of the list, we search for the closest node point Xm

i, j
and determine a region index using the sign of (pσ h −
Xm
i, j ) .ωm

M(qij ). We store the neighbor simplices of σ h in
a new list.

Fig. 2 Illustration of how triangles are assigned to a region. 1st sub-
figure image and initial curve. 2nd sub-figure small band after n0 = 4
steps. 3rd sub-figure regions colored with mean brightness value after
assignment of all triangles. The surface data are from the Stanford Com-
puter Graphics Laboratory, cf. [31]

– Having assigned all simplices of the current list to a region,
the current list is deleted and the simplices of the new list
are considered. We repeat the procedure n0 times. After-
wards, a small band of simplices around each curve is
assigned to regions.

– For m = 0, the remaining simplices are considered suc-
cessively using again lists of neighbor simplices. After
the step n0, we do not determine the closest node Xm

i, j .
A new simplex inherits the region index directly from its
neighbor.

Figure 2 illustrates the assignment of regions for simplices
of a triangulated surface. It shows the Stanford Bunny1 from
the Stanford Computer Graphics Laboratory, cf. [31], and an
image with three small disks on its surface. We used n0 = 4
levels of neighbor simplices to assign the simplices of a small
band around the initial curve to one of the two regions sepa-
rated by the initial curve. The remaining simplices (marked
with dark color in the second sub-figure) are finally assigned
to a region by heritage of the region index.

The final coefficients are computed as follows: Let Cm
k =∑

σ h∈Ωm
k
u0|σ h denote the sum of the color data and nmk the

number of simplices belonging to Ωm
k . The coefficient for

the Chan–Vese model is computed by setting cmk = Cm
k /nmk .

For color spaces like the CB space, we need to make use of
normalized means for some components of the color [5].

For m > 0, we need to update the coefficients only close
to the curve, i.e., we consider only the simplices of a small
band around the curves (using again n0 levels of neighbor
simplices around the curves). If a simplex σ h changes its
region assignment from Ωm

l to Ωm
k , we set

nmk = nmk + 1, nml = nml − 1,

Cm
k = Cm

k + u0|σ h , Cm
l = Cm

l − u0|σ h . (39)

1 https://graphics.stanford.edu/data/3Dscanrep/.
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Global refinement-coarsening strategy We can perform a
global refinement and coarsening of the curves using two
thresholds lmax and lmin for the average distance between
neighboring nodes. Let Nm

i be the number of nodes belong-
ing to a curve Γ m

i . If |Γ m
i | /Nm

i > lmax, we perform a global
refinement of the curve by inserting a new node between
two neighbor nodes. On the contrary, if |Γ m

i | /Nm
i < lmin,

we perform a global coarsening, i.e., we delete every second
node of the polygonal curve which is not a boundary point.

When inserting a new node between two nodes Xm
i, j and

Xm
i, j+1 during a refinement, we first compute p = (Xm

i, j +
Xm
i, j+1)/2 anddetermine the closest triangle (again the search

for the closest triangle is done efficiently by starting with the
triangle in which, e.g., Xm

i, j lies). Having found the closest

triangle σ h , p is projected orthogonally to σ h . Consequently,
all newly generated nodes lie on the surface.

3.6 Numerical Solution of the Image Restoration
Scheme

The scheme (23) for image restoration can be solved numer-
ically with a finite element approach. Again, we consider a
polyhedral surfaceM given by a set T h of triangles.

The image restoration is performed as postprocessing step
using the final regions from the time step m = M . The
surface thus consists of polyhedral regions Ωh

k := ΩM
k ,

k = 1, . . . , NR . Let T h
k = {σ h ∈ T h : σ h ⊂ Ωh

k }
denote the set of triangles belonging to Ωh

k and let pk, j ,
j = 1, . . . , Nh

k , denote the vertices of the triangles belonging
to T h

k .
For each k = 1, . . . , NR , we define the following finite

element space:

Shk :=
{
uh ∈ C(Ωh

k ,R) : uh |σ h is linear ∀σ h ∈ T h
k

}
.

(40)

For piecewise continuous functions uh, vh : Ωh
k → R

(3)

with possible jumps at edges of simplices σ h ∈ T h
k , we

define the mass lumped inner product

〈uh, vh〉h := 1

3

∑

σ h∈T h
k

|σ h |
3∑
j=1

(uh . vh)((pσ h , j )
−), (41)

where |σ h | denotes the area of σ h , and as above pσ h , j , j =
1, 2, 3, denote the vertices of the triangle σ h ∈ T h

k and

uh((pσ h , j )
−) := lim

p→p
σh , j ,p∈σ h

uh(p).

Further, for functions uh, vh ∈ L2(Ωh
k ,R(3)), we define

〈uh, vh〉 :=
∫

Ωh
k

uh . vh dA. (42)

We consider the following discrete system for each region
k ∈ {1, . . . , NR}: Find uh ∈ Shk such that

1

λ
〈∇Muh,∇Mvh〉 + 〈uh, vh〉h = 〈u0, vh〉h, ∀vh ∈ Shk ,

(43)

where λ > 0 is a weighting parameter (cf. (4)).

Let {φh
k,i }

Nh
k

i=1 with φh
k,i (pk, j ) = δi j denote the standard

basis of Shk . Using this standard basis, we can identify each

element in Shk with its coefficient vector in RNh
k . Further, we

define the matrices Mh
k , Ah

k ∈ R
Nh
k ×Nh

k by

(Mh
k )i j := 〈φh

k,i , φ
h
k, j 〉h,

(Ah
k )i j := 〈∇Mφh

k,i ,∇Mφh
k, j 〉, i, j = 1, . . . , Nh

k .

The entries of the matrices Mh
k and Ah

k are computed by
considering each triangle σ h ∈ T h

k and computing the con-
tribution of σ h to the entries corresponding to the indices of
its vertices. For computing the contribution of σ h to Ah

k , we
need to compute surface gradients.

For that, we consider three nodes pk, j1 ,pk, j2 , and pk, j3 ,
j1, j2, j3 ∈ {1, . . . , Nh

k }, being the vertices of a triangle σ h

in T h
k . For the ease of notation, we assume j1 = 1, j2 = 2,

and j3 = 3. One tangential vector is given by

τ 1 := pk,3 − pk,2
‖pk,3 − pk,2‖ .

A second tangential vector which is orthogonal to τ 1 can be
obtained by

τ 2 := pk,1 − qk
‖pk,1 − qk‖ ,

with qk = pk,2 + ((pk,1 − pk,2) . τ 1
)
τ 1.

We note that ∂τ 1φ
h
k,1 = 0. For ∂τ 2φ

h
k,1, we consider a

curve γ : [0, ‖pk,1 − qk‖] → R
3, γ (ε) = qk + ε τ 2. The

composition φh
k,1 ◦ γ is given by

(φh
k,1 ◦ γ )(ε) = ε

‖pk,1 − qk‖ .

The derivative of φh
k,1 in direction τ 2 is

∂τ 2φ
h
k,1 = d

dε
φk,1(γ (ε))|ε=0 = 1

‖pk,1 − qk‖ .
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The surface gradient is then given by

∇Mφh
k,1|σ h = ∂τ 1φ

h
k,1 τ 1 + ∂τ 2φ

h
k,1 τ 2 = pk,1 − qk

‖pk,1 − qk‖2 .

Similarly, we compute ∇Mφh
k,2|σ h and ∇Mφh

k,3|σ h .
The discrete equation (43) can be rewritten to the follow-

ing linear system: Find uh ∈ R
Nh
k such that

1

λ
Ah
ku

h + Mh
k u

h = Mh
k U0 (44)

holds, where U0 ∈ R
Nh
k is given by

(U0) j =
∑

σ h∈T h
k, j

|σ h | (u0)|σ h

∑
σ h∈T h

k, j
|σ h | , j = 1, . . . , Nh

k , (45)

with T h
k, j =

{
σ h ∈ T h

k : pk, j ∈ σ h
}

. Using this definition

ofU0, we obtain 〈u0, φh
k, j 〉h = (Mh

k U0) j for j = 1, . . . , Nh
k .

Note that the Neumann boundary conditions are automat-
ically incorporated in the scheme (44). The finite element
approach is based on a weak formulation of (23) which
contains the Neumann boundary conditions as natural con-
ditions.

We obtain an element-wise constant image approximation
Uh by setting

Uh |σ h = 1

3

3∑
j=1

uh(pσ h , j ) (46)

for simplices σ h ∈ T h
k .

By solving the diffusion equation on each region indepen-
dently, the boundaries of the regions are not smoothed out.
Vector-valued images are denoised by applying the method
on each component.

3.7 Summary of the Image Processing Algorithm

We propose the following algorithm for image segmentation
with postprocessing image restoration: Given a set of polyg-
onal curves Γ 0 = (Γ 0

1 , . . . , Γ 0
NC

) and X0 = (X0
1, . . . ,X

0
NC

)

with X0
i (Ii ) = Γ 0

i , X0
i (q

i
j ) ∈ M, i = 1, . . . , NC ,

j = j i0, . . . , Ni , perform the following steps for m =
0, 1, . . . , M − 1:

(1) Compute the regions Ωm
k ⊂ M and the coefficients cmk ,

k = 1, . . . , NR , as described in Sect. 3.5.
(2) Compute bm as defined in (34) using the coefficients cmk

of step 1. ComputeXm+1 = Xm + δXm+1 by solving the
linear equation (36b), see Sect. 3.2.

(3) Check if topology changes occur, see Sect. 3.4. In case of
a topology change, except for a pure deletion of a curve,
repeat the steps 1 and 2 nsub-times with a step size of
τm/nsub and execute the topology change when it occurs
in a substep.

(4) If necessary, perform global coarsening or refinement as
described in Sect. 3.5.

Having found a final segmentation of the image at time
m = M , perform a restoration by computing a piecewise
smooth approximation of the image function as presented in
Sect. 3.6.

4 Results and Discussion

4.1 Artificial Test Images

Images on the Stanford bunny We test the developed algo-
rithm for image segmentation by considering artificial
images on the Standford bunny (Stanford Computer Graph-
ics Laboratory [31]). In a first experiment, we consider a
gray-scaled image showing three dark disks. This example
is similar to an experiment presented by Krüger et al. [18],
who use a level set method to solve a geodesic active contour
model with a balloon force for images on surfaces, whereas
we use a parametric method for a Chan–Vese-like model for
images on surfaces.

Figure 3 shows our image segmentation result using the
developed direct, parametric approach for image segmenta-
tion. We use the parameters σ = 2 and λ = 50 to weight the
curvature and external term. Let Δt = τm denote the time
step size. The time step size is set toΔt = 0.01. This example
demonstrates topology changes; in detail, it shows how one
initial closed curve is split up into three single curves. The
contours at four different time steps and the corresponding
piecewise constant approximation are presented in Fig. 3. Of
course, a level set technique as used in [18] can handle split-
ting automatically, whereas we need to detect the change in
topology explicitly using the method described in Sect. 3.4.
However, our method to detect topology changes is efficient,
since it has a computational effort of O(N ), where N is the
number of node points of the polygonal curves.

In a second experiment, we demonstrate the creation and
handling of triple junctions for a curve network on the Stan-
ford bunny, cf. Fig. 4. For this experiment, we set σ = 1,
λ = 40, and Δt = 0.01. The possibility of triple junctions is
not considered in [18].

Further, we apply the image denoising method described
in Sect. 2.5 and 3.6, cf. Fig. 5. Since the term�Muk in (23) is
weightedwith 1/λ, the denoised image is close to the original
image, and the larger λ is chosen, cf. Fig. 5. Setting λ = 1000
or λ = 10,000, the noise is not completely smoothed out.
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Fig. 3 Image segmentation of a gray-scaled image on the Stanford
bunny. Demonstration of topology changes (splitting). Left original
image and contours form = 1, 100, 140, 150. Right piecewise constant
approximation. The surface is from the Stanford Computer Graphics
Laboratory, cf. [31]

Setting λ = 0.1, the resulting denoised version is close to a
piecewise constant image approximation. Setting λ = 100
results in a good denoised image.

Image on a torus We consider an artificial image on a torus
to demonstrate that the method can be applied on surfaces of
arbitrary topology type (for example arbitrary genus). Figure
6 shows a torus with a color image from different viewing
angles and the curves at different iteration steps during the
evolution. The RGB color space is used for the segmentation.
As weighting parameter for the curvature σ = 1 is used,
all three components of the color are weighted equally with
λ1 = λ2 = λ3 = 20. The time step size in this experiment is
set to Δt = 0.0001.

Two different topology changes occur in this example:
Around m = 335, two triple junctions and a new curve are
created. Shortly after m = 422, one blue curve splits into
two single curves.

4.2 Real Images

Lip contour segmentation We consider an application where
lip contours should be detected on given face image data.

Fig. 4 Image segmentation of a gray-scaled image on the Stanford
bunny. Curve network with triple junctions. Left original image and
contours form = 1, 42, 100, 250.Right piecewise constant approxima-
tion. The surface is from the Stanford Computer Graphics Laboratory,
cf. [31]

Fig. 5 Image denoising with edge enhancement. Sub-figure 1–5 (row-
wise) denoising result using λ = 0.1, 1, 100, 1000, 10,000. Sub-figure
6 original image with noise. The surface is from the Stanford Computer
Graphics Laboratory, cf. [31]
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Fig. 6 Segmentation of an artificial image showing different objects
on a torus. First–sixth rows original image and contours for
m = 1, 100, 200, 335, 422, 600. First–third columns different viewing
angles

Figure 7 shows the results where the image segmentation
algorithm is applied on three sample images of the 3D
face scans from the 3D Basel Face Model (BFM) pub-
lished by the Computer Science department of the University
of Basel2, see also [27]. The images are segmented using
the chromaticity–brightness color space with σ = 0.25,
λC = 200, λB = 20, andΔt = 0.001. The initial contour is a
closed curve placed around the lips. Applying our algorithm
for image segmentation, we obtain the final lip contours.

Processing of global Earth observation data Another appli-
cation is the processing of Earth observation data. Global
Earth observation data can be interpreted as an image given
on a sphere. We apply the image segmentation and denoising
method on data from the NASA Earth Observation data set3,
cf. [25]. We segment an image showing outgoing longwave
radiation4, see Figs. 8, 9 and 10. The colors represent the

2 http://faces.cs.unibas.ch/bfm/main.php?nav=1-0&id=basel_face_
model.
3 http://neo.sci.gsfc.nasa.gov/
4 Imagery by Jesse Allen, NASAEarth Observatory, based on FLASH-
Flux data. FLASHFlux data are produced using CERES observations

Fig. 7 Lip contour detection with a two-phase segmentation. Initial
(first row) and final (second row) contours. The surfaces and images
are from the 3D basel face model (BFM) of the Computer Science
department of the University of Basel, cf. [27]

Fig. 8 Segmentation of longwave radiation data given on the Earth’s
surface. First–fifth rows original image and contours for m =
1, 20, 50, 75, 150. First–third columns different viewing angles. The
original image is from the NASA Earth Observation data set, [25]

amount of outgoing longwave radiation leaving the Earth’s
atmosphere in one month (here: January 2014). Yellow and
orange colors represent greater heat emission (around 300–
350Wm−2); purple and blue colors represent intermediate
emissions (around 200Wm−2).

convolved with MODIS measurements from both the Terra and Aqua
satellite. Data provided by the FLASHFlux team, NASA Langley
Research Center.
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Fig. 9 Segmentation of longwave radiation data given on the Earth’s
surface. First–fifth rows piecewise constant approximation for m =
1, 20, 50, 75, 150. First–third columns different viewing angles. The
original image is from the NASA Earth Observation data set, [25]

Figure 8 presents the given image data and the contours at
different time steps (rows), observed from different viewing
angles (columns). For the segmentation, we used the RGB
color space and set theweighting parameters for the curvature
and the external term to σ = 1 and λ1 = λ2 = λ3 = λ = 50.
As time step size we set Δt = 0.0005. Several topology
changes (splitting and merging) occur during the segmenta-
tion (cf. e.g., m = 75). Figure 9 shows the corresponding
piecewise constant approximations. Figure 10 presents the
result of the postprocessing image restoration using the para-
meters λ = 100, λ = 1000, and λ =10,000.

For demonstration of multiphase image segmentation, we
consider a second example image from the NASA Earth
Observation data set, cf. [25]. We now segment an image
showing the Earth’s net radiation. The net radiation is defined
as the difference between the amount of solar energy which
enters the Earth system and the amount of heat energy which
escapes into space during one month (here: March 2014).
Red color represents a net radiation around 280Wm−2, yel-
low color a net radiation around 0Wm−2, and blue-green
color a net radiation of −280Wm−2.

Figure 11 presents the original image with the contours at
different time steps (rows), observed from different viewing

Fig. 10 Denoising of the longwave radiation data using the detected
regions from time step m = M = 150. First row λ = 100. Second row
λ = 1000. Third row λ =10,000. First–third columns different viewing
angles. The original image is from the NASA Earth Observation data
set, [25]

Fig. 11 Segmentation of net radiation data given on the Earth’s
surface. First–fifth rows original image and contours for m =
1, 50, 71, 149, 180. First–third columns different viewing angles. The
original image is from the NASA Earth Observation data set, [25]

angles (columns). For the segmentation, we used σ = 1 and
λ1 = λ2 = λ3 = λ = 300 and the RGB color space. As time
step size we set Δt = 0.002. The detected regions are not
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Fig. 12 Segmentation of net radiation data given on the Earth’s sur-
face. First–fifth rows piecewise constant approximation for m =
1, 50, 71, 149, 180. First–third columns different viewing angles. The
original image is from the NASA Earth Observation data set, [25]

separated by sharp image edges. Here, the detected bound-
aries are weak edges, i.e., they lie at locations in the image
where the color smoothly changes from yellow to orange or
yellow to green, respectively. At m = 71 a merging and at
m = 149 a splitting occurs. Figure 12 shows the correspond-
ing piecewise constant approximation.

Since the original image has little noise, we add some
artificial, Gaussian noise to the image and repeat the segmen-
tation using the generated image. As postprocessing step, we
smooth the noisy image applying our restoration scheme, cf.
Sect. 3.6. Figure 13 shows the image with added noise and
the denoised image for different parameters λ under different
viewing angles. We compare the results for several choices
of λ: Using λ = 100, the denoised image is very close to the
piecewise constant image. For λ = 1000 and λ = 10,000,
we obtain images with removed noise, but which still con-
tain sufficient details of the original data set. The data are not
smoothed out too strong compared to λ = 100. Figure 14
shows a magnification of a part of the surface. It shows the
noisy image (left) and the result of the denoising using λ =
10,000 (right). We observe that the noise is well smoothed
out.

Fig. 13 Denoising of the net radiation data (image with added noise).
First row noise-added image to be smoothed. Second row smoothing
result using λ = 100. Third row λ = 1000. Forth row λ = 10,000.
First–third columns different viewing angles. The original image is from
the NASA Earth Observation data set, [25]

Fig. 14 Magnification of a part of the image.Left noisy, original image.
Right smoothed version with λ = 10,000

We have shown how the developed method can be applied
on segmentation of global Earth data. The given data need
not be a classical image generated by a camera. The data can
be any data defined on the Earth’s surface, like radiation data
as in the examples presented here.

Onemay argue that globalEarth data can also be processed
on a flat 2D domain, with a rectangular grid given by a dis-
crete set of longitudes and latitudes. In principle, one can
apply a two-dimensional image segmentation and restoration
method as developed in [5] for 2D images. However, per-
forming the image processing using the 2D image has some
disadvantages: To map the global Earth data to a rectangular
2D image, image boundaries at the poles and at longitude 0
have to be created. Points which are close to each other on the
sphere (like at the two opposite sides of longitude 0) are not
close to each other in the 2D image. Also topology changes
like boundary intersection will occur in the 2D image. The
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coordinates of the boundary nodes on the left and the right
boundary of the image may not fit, i.e., they lie on longitude
0, but can have different latitude values resulting in two dif-
ferent 3D points. Further, the length of curves and the area
of regions near the poles are differently scaled compared to
those near the equator. Polar regions always appear larger in
2D images. After a segmentation is performed, the size of the
segmented regions are often of interest. Therefore, the area
of the regions can be easily computed in a postprocessing
step using the sphere data. This is not directly possible from
the 2D image due to the different scaling of the polar and
equatorial regions. In summary, it is beneficial to consider
global Earth data directly as images on a surface.

5 Conclusion

We presented how images on a surface can be efficiently
segmented by curve evolution with a parametric approach.
Furthermore, we showed how restorationwith edge enhance-
ment can be performed as a postprocessing step. We consid-
ered extensions of the Mumford–Shah [24] and Chan–Vese
[10] models to images on surfaces. The velocity of the para-
meterized curves was restricted to the tangent space of the
surface,whichguarantees that all curvesmodeled as paramet-
ric curves in R3 stay on the surface during the evolution. We
introduced an efficient numerical scheme based on a method
for geodesic curvature flow [4]. Topology changes can be
detected fast with an effort ofO(N ), where N is the number
of node points of the discretized curves. The applicability
of the developed schemes on different images and different
surfaces has been demonstrated in several experiments.
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