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Abstract The nonparametric blur-kernel estimation, using
either single image ormulti-observation, has been intensively
studied since Fergus et al.’s influential work (ACM Trans
Graph 25:787–794, 2006). However, in the current literature
there is always a gap between the two highly relevant prob-
lems; that is, single- and multi-shot blind deconvolutions are
modeled and solved independently, lacking a unified opti-
mization perspective. In this paper, we attempt to bridge
the gap between the two problems and propose a rigorous
and unified minimization function for single/multi-shot blur-
kernel estimation by coupling the maximum-a-posteriori
(MAP) and variational Bayesian (VB) principles. The new
function is depicted using a directed graphical model, where
the sharp image and the inverse noise variance associated
with each shot are treated as random variables, while each
blur-kernel, in difference from existing VB methods, is just
modeled as a deterministic parameter. Utilizing a univer-
sal, three-level hierarchical prior on the latent sharp image
and a Gamma hyper-prior on each inverse noise variance,
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single/multi-shot blur-kernel estimation is uniformly for-
mulated as an l0.5-norm-regularized negative log-marginal-
likelihood minimization problem. By borrowing ideas of
expectation-maximization, majorization-minimization, and
mean field approximation, as well as iteratively reweighted
least squares, all the unknowns of interest, including the sharp
image, the blur-kernels, the inverse noise variances, aswell as
other relevant parameters are estimated automatically. Com-
pared with most single/multi-shot blur-kernel estimation
methods, the proposed approach is not only more flexible in
processing multiple observations under distinct imaging sce-
narios due to its independence of the commutative property
of convolution but also more adaptive in sparse image mod-
eling while in the meanwhile with much less implementa-
tional heuristics. Finally, the proposed blur-kernel estimation
method is naturally applied to two low-level vision problems,
i.e., camera-shake deblurring and nonparametric blind super-
resolution. Experiments on benchmark real-world motion
blurred images, simulated multiple-blurred images, as well
as both synthetic and realistic low-resolution blurred images
are conducted, demonstrating the superiority of the proposed
approach to state-of-the-art single/multi-shot camera-shake
deblurring and nonparametric blind super-resolution meth-
ods.

Keywords Blur-kernel estimation · Variational Bayesian ·
Camera-shake removal · Blind deconvolution · Blind
super-resolution

1 Introduction

The nonparametric blur-kernel estimation problem, using
either single image or multi-observation, has been inten-
sively studied since the influential work of Fergus et al. [1].
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In the current literature, it is also commonly believed that
[2], multi-observation blur-kernel estimation is better posed
than its single counterpart. Due to this possible cause, single-
and multi-observation blur-kernel estimations are generally
modeled and solved in an independentmanner, to beobserved
from the brief overview in the following. Note that, this paper
only focuses on the spatially invariant blur-kernel estimation,
which forms the basic step for more challenging scenarios of
spatially variant and noisy blur-kernel estimation problems
[3–7].

1.1 Nonparametric Blur-Kernel Estimation Methods

1.1.1 Single-shot Case

Roughly speaking, single-shot blur-kernel estimation is cur-
rently addressed by two types of inference schemes, i.e., vari-
ational Bayesian (VB) and maximum-a-posteriori (MAP).
VB is demonstrated, both empirically [1] and theoretically
[8] in the scenario of single-shot blur-kernel estimation, supe-
rior to MAP as they are regularized by common natural
image statistics, e.g., total variation [9–11]. Readers can refer
to [12–14] for detailed information on the VB-based signal
and image processing approaches. Recently, VB-based blur-
kernel estimationmethods are reformulated equivalently into
their counterpartMAP versions in [15] (regularized by a cou-
pled prior on the sharp image and the blur-kernel), using the
convex type of variational representation of image priors.
Based on the transformation, the theoretical analysis on the
choice of image priors is made, showing that the Jeffreys
prior is optimal to a certain degree in terms of blur-kernel
estimation precision. However, the VB-based blur-kernel
estimation methods in [15] are found not rooted in a rig-
orous optimization perspective. On one hand, the kernel is
modeled as a random variable but practically inferred as a
deterministic parameter. On the other hand, noise variance
updating is full of heuristics. A decreasing sequence of noise
variance is pre-specified in [1,8,16,17], while as for [15],
although it achieves an adaptive update of the noise variance,
the updating formula is purely empirical. Compared to VB,
the MAP principle is practiced more commonly. The reason
lies in that (i) it is intuitive; (ii) it provides a simple prob-
lem formulation; (iii) it is flexible in choosing regularization
terms; and (iv) it typically leads to an efficient numerical
implementation. More importantly, the state-of-the-art MAP
approaches achieve comparable or even higher accuracy of
blur-kernel estimation than the VB ones, via performing
kinds of heuristic tricks for salient edge prediction, e.g., using
highly nonconvex image priors [18–20], enhancing edges by
smoothing and shock filtering [21–23], and so on. Neverthe-
less, it is generally difficult to conduct a profound analysis
on success of those empirical prior-based MAP methods. In
addition, there are many parameters that influence the results

considerably [2], having to be tuned frequently for generating
good deblurring results.

According to the literature survey, it is seen that unnatural
image priors are more popular and preferred, particularly
as practicing MAP-based single-shot blur-kernel estimation.
We also note that the priors are either the off-the-shelf ones,
e.g., Jeffreys prior [15,16], normalized sparsitymeasure [18],
or the empirically designed ones, e.g., [20–23]. Therefore, it
is natural to raise a question that whether there is a possibility
of adaptively learning a parametric prior for the latent image
along with the blur-kernel estimation, so as to achieve more
accurate blur-kernel estimation while avoiding the annoying
parameter adjustment.

1.1.2 Multi-shot Case

The ill-posed nature of blur-kernel estimation can be reme-
died to a great extent when capturing multi-observation of
the same scene [2]. The possible first multi-shot blur-kernel
estimation method, proposed by Rav-Acha and Peleg [24],
uses two-directional motion blurred images, demonstrating
a superior deblurring quality than the case of single image.
The benefits of multi-observation deblurring, both nonblind
and blind, are also empirically analyzed in [25]. Due to
the considered better posedness of multi-shot blur-kernel
estimation, the plain lα-norm-based natural image statis-
tics are frequently utilized in existing blur-kernel estimation
approaches, where α is around 1. For example, [2,26] exploit
an l1-norm of image gradients; the l1.2-norm and l0.8-norm
are, respectively, utilized in [24,27]; and [25] harnesses the
l1- norm of the tight frame coefficients of images. The reason
of MAP-based multi-shot kernel estimation methods reliev-
ing from unnatural image priors as required in the single-shot
case is that they place more emphasis on exploring the intrin-
sic properties of two blur-kernels.

A well-known one is the commutative property of convo-
lution, i.e., k2 ∗ y1 −k1 ∗ y2 = 0, originally proposed in [28],
where y1, y2 are the two blurred versions of a clear image
u, and k1, k2 are the blur-kernels corresponding to y1, y2. In
[29], Sroubek and Flusser reformulate the idea of [28] into a
multi-shot regularization term on the blur-kernels. However,
there are at least two aspects of modeling flaws as using the
commutative property. On one hand, it builds on a noise-
less observation model; on the other hand, there is a solution
ambiguity in that, for an optimal solution pair {k1, k2}, a
family of solutions {k1 ∗ h, k2 ∗ h} also satisfy the com-
mutative property of convolution. To overcome the inherent
problems of the property, several works extend the idea of
[28]. For example, in [2] the multi-shot regularization term is
improved for robustness against noise; in [27] a sparse prior
and a continuity prior are designed for the kernel to miti-
gate the ambiguity issue; in [26], the estimated blur-kernels
k1 ∗h and k2 ∗h are viewed as blurred images and deblurred

123



218 J Math Imaging Vis (2016) 54:216–239

using an lα-norm-based prior on the kernels {k1, k2}. One
more limitation of the commutative property of convolution
is that, it just applies to the blurred image pairs. As the num-
ber of observations grows, it would expand combinatorially
hence leading to higher computational burden. In addition,
the commutative property of convolution does not apply to a
blurred/noisy image pair [30,31].

Recently, another multi-observation blur-kernel estima-
tion method is proposed by Zhang et al. [29], free of the
known commutative property. It roughly extends their results
on the modeling equivalence [15] between the VB and
MAP-based single-shot blur-kernel estimation methods to
the multi-shot case, which, however, still imposes the Jef-
freys prior on the sharp image. Although the Jeffreys prior
is shown to be optimal to a certain degree in the single-
shot case, in [29], there is no theoretical analysis made on
the optimality of the Jeffreys prior for the multi-shot sce-
nario. Note that Zhang et al. [29] cannot be reduced to the
single-shot blur-kernel estimation [15], either, without care-
fullymodifying their updating equation of the noise variance.
Our another observation from[29] is that it requires the size of
the blurred images smaller than the latent sharp image, which
is obviously irrational. As for the practical implementation,
the minimizing objective function in [29] is derived from
the empirical Bayes analysis scheme, or type-II maximum
likelihood (ML), and the majorization- minimization (MM)
technique [32]. MM has been also extensively used in [29] to
derive a tractable optimization scheme. The detailed algorith-
mic derivation can be referred to Sect. 6 in [29]. Interestingly,
the final algorithm of [29] is just a degenerated version of the
proposed Algorithm 1 in Sect. 4 of the present paper, despite
their difference in modeling motivation, problem formula-
tion, and algorithmic derivation between the two approaches.
And, what is more important, the proposed method has been
demonstrated to achieve fairly better deblurring performance
than [29].

1.2 Applications

One natural application of single/multi-shot blur-kernel esti-
mation is the camera-shake deblurring [1], i.e., restoring a
clear image from the acquired single- or multiple-motion-
blurred photographs. Another application of the proposed
method to be considered in this paper is the nonparametric
blind super-resolution. For readers better understanding the
importance of blur-kernel estimation for super-resolution,
we introduce a brief background on nonparametric blind
super-resolution. Since the seminal work is proposed by
Freeman andPasztor [33] andBaker andKanade [34], single-
image SR has earned a considerable attention. A careful
inspection of the literature in this arena finds that, existing
approaches, either learning- or reconstruction-based, con-
centrate on developing advanced image priors, while mostly

ignoring the need to estimate the blur-kernel. A recent com-
prehensive survey on SR in [35] (covering work up to 2012)
testifies that SRmethods generally resort to the assumption of
a known kernel, both in the single image and the multi-frame
SR regimes. More specifically, in the context of multi-frame
SR, most methods assume a squared Gaussian kernel with
a suitable standard deviation δ, e.g., 3 × 3 with δ = 0.4
[36], 4 × 4 with δ = 1 [37], 5 × 5 with δ = 1 [38], or
a simple pixel averaging, e.g., 3 × 3 [39,40]. In [41], the
authors have considered not only a 3 × 3 Gaussian blur but
also a delta blur, i.e., no blur is involved in the modeling
of low-res imaging. In single-image nonblind SR, we list a
few commonly used options: bicubic low-pass filter (imple-
mented by the Matlab default function imresize) [42–49],
7×7Gaussian kernelwith δ = 1.6 [49], 3×3Gaussian kernel
with δ = 0.55 [50], and a pixel averaging [51]. Interestingly,
a critical study on single-image SR is recently presented
in [52]. The authors conduct an analysis on the effects of
two components in single-image SR, i.e., the choice of the
image prior and the availability of an accurate blur model.
Their conclusion, based on both empirical and theoretical
analysis, is that the influence of an accurate blur-kernel is
significantly larger than that of an advanced image prior.
Furthermore, [52] validates that “an accurate reconstruction
constraint1 combined with a simple gradient regularization
achieves SR results almost as good as those of state-of-the-art
algorithms with sophisticated image priors.” However, very
limited works have addressed the estimation of an accurate
nonparametric blur model in the context of image SR recon-
struction, either with a single image or multiple frames. As
a matter of fact, existing blind SR methods usually assume
a parametric model, and the Gaussian kernel is a common
choice, e.g., [53,54]. The work reported in [55] is an excep-
tion, as it does present a nonparametric kernel estimation
approach for blindSRandblind deblurring in a unified frame-
work. However, it is restricting its treatment to single-mode
blur-kernels. In addition, [55] is not rooted in a rigorous
optimization principle, but rather building on the prediction
of sharp edges as an important clue to blur-kernel estima-
tion. Another noteworthy and highly related work is the one
recently proposed byMichaeli and Irani [56], who exploit an
inherent recurrence property of small natural image patches
across different scales and propose aMAPk-based estimation
method for recovering the blur-kernel (nonparametrically)
[17]. The effectiveness of [56] largely builds on the searched
nearest neighbors to the query low-res patches in the input
blurred and low-res image. We should note that in both
[55,56], the kernel estimation includes an l2-norm-based ker-
nel gradient regularization for promoting smoothness. In this
paper, we harness the state-of-the-art nonblind dictionary-
based fast single-image SR methods [44–46], which assume

1 I.e., knowing the blur-kernel.
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the simplest bicubic interpolation kernel for the observation
model. With the super-resolved but blurred high-res image
generated by those methods, the proposed approach (single-
shot blur-kernel estimation) is found able to estimate a highly
reasonable blur-kernel for practicing blind super-resolution,
showing the effectiveness and robustness of the proposed
method.

1.3 Our Contributions

The core contribution in this paper is the proposal of a uni-
fied minimization approach to single/multi-observation blur-
kernel estimation. Specifically, our contributions include as
follows:

Firstly, the unified approach bases on a directed graphi-
cal model, in which the latent sharp image and the inverse
noise variance associated with each observation are viewed
as random variables, while each blur-kernel, different from
existing VBmethods, is just modeled as a deterministic para-
meter. Utilizing a universal, three-level hierarchical prior
on the latent sharp image and a Gamma hyper-prior on
each inverse noise variance, the single- and multi-shot blur-
kernel estimations are uniformly formulated into a negative
log-marginal-likelihoodminimization problem,which is reg-
ularized by an l0.5-norm of blur-kernels.

Secondly, by borrowing ideas of expectation-
maximization, majorization-minimization, and mean field
approximation, aswell as iteratively reweighted least squares,
all the unknowns of interest, i.e., the latent sharp image, each
blur-kernel, and inverse noise variance, and other related
parameters are automatically estimated.Comparedwithmost
existing single/multi-shot blur-kernel estimation methods,
the proposed approach is not onlymore flexible in processing
multiple observations under distinct imaging scenarios due
to its independence of the commutative property of convolu-
tion, but also more adaptive in image prior modeling while in
the meanwhile with much less implementational heuristics.

Thirdly, the proposed blur-kernel estimation approach is
applied to single-imagenonparametric blind super-resolution
(SR). It utilizes the state-of-the-art nonblind dictionary-based
SRmethodswhichoftenproduce a super-resolvedbut blurred
high-res image. With the blur-kernel estimated from the
blurred, super-resolved image, the final super-resolved image
can be recovered by a relatively simple nonblind SR method
that uses a natural image prior. Compared against Michaeli
and Irani’s [56] nonparametric blind SR method, the pro-
posed approach is demonstrated to achieve quite comparable
or even more accurate blur-kernel estimation, and hence,
better super-resolved high-res images. Experimental results
on Levin et al.’s [8] benchmark real-world motion blurred
images as well as simulated multiple-blurred observations
also validate the effectiveness and superiority of the proposed
approach for camera-shake deblurring.

The rest of the paper is organized as follows. Section 2 sets
up the problem of single/multi-shot blur-kernel estimation.
In Sect. 3, Bayesian models of the latent sharp image, each
blurred image and inverse noise variance are discussed and
depicted using a directed graphical model, based on which
a unified minimizing objective function is constructed for
the nonparametric single/multi-shot blur-kernel estimation.
Section 4 presents a numerical scheme of estimating the pos-
terior distributions of hidden random variables as well as the
involved deterministicmodel parameters. Experiment results
on nonparametric blind SR and camera-shake deblurring are
provided in Sect. 5, with comparison against the state-of-the-
art approaches. The paper is finally concluded in Sect. 6.

2 Problem Setup

The single/multi-shot observation process is described as a
uniform convolution blur model [2,24–29]

yi = ki ∗ u + ni , ∀ i ∈ � = {1, 2, . . . , I }, (1)

where I is the number of captured corrupted observations, yi
is the i th observation, ki represents the i th blur-kernel, and
ni is supposed to be a Gaussian noise. To be noted that, a
registration step is required to align the input observations
prior to running the proposed blur-kernel estimation algo-
rithm, just similar to the state-of-the-art multi-shot methods,
e.g., [2,29]. The core task in this paper is hence to estimate
the blur-kernels {ki }i∈� from the provided blurry images
{yi }i∈�.

Similar to many existing blur-kernel estimation methods
[1,8,15–17,20,21,29], we address the blur-kernel estimation
in the derivative domain of images for better performance.
In specific, Eq. (1) is formulated in the derivative domain
using the first-order horizontal and vertical derivative filters
∇h = [1,−1],∇v = [1;−1], given as

yi |d = ki ∗ ud + ni |d , ∀ d ∈� = {h, v}, (2)

where yi |d = ∇d ∗ yi , ud = ∇d ∗u, ni |d = ∇d ∗ni . For the
convenience of presentation, Eq. (2) can be also rewritten in
a matrix-vector form as

yi |d = Kiud + ni |d , (3)

where {yi |d , ud , ni |d}i∈�, d∈� ∈ RM×1 are the vectorized
representations of {yi |d , ud , ni |d}i∈�, d∈�, M is the pixel

number in the sharp image u, and Ki ∈ R+M×M
0 denotes

the convolutional matrix corresponding to the vectorized
blur-kernel ki . For simplicity, we still assume that ni |d is
a zero-mean Gaussian noise, i.e., ni |d ∼ N (0, ς̃i IM ), where
ς̃i is the noise variance called the precision hyper-parameter.
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Fig. 1 Directed graphical
model describing the
dependencies among the
stochastic variables and the
deterministic model parameters.
The observed stochastic
variables are represented by the
double circled nodes; the hidden
random variables by the circular
nodes, and the deterministic
parameters by the square nodes

M

d ∈ ΛΛ

a

b

M

d ∈ ΛΛ

dudγdβ

dαdρ dθ

|i dy

i∈

iς

ik

Ω

The problem now turns to estimating {ud}d∈�, {ki }i∈� and
{ς̃i }i∈� from the images {yi |d}i∈�, d∈�.

3 Single/Multi-shot Blur-Kernel Estimation: A
Unified Formulation

In this section, single/multi-shot blur-kernel estimation is
formulated into a unified framework, incorporating prior
assumptions on both the latent sharp images and the blur-
kernels via a composite VB and MAP modeling strategy.
Simply speaking, the inverse problem (3) is addressed
using a directed graphical model, where the observations
{yi |d}i∈�, d∈� are treated as the observed random vari-
ables, the sharp images {ud}d∈� and the inverse noise
variances {ςi }i∈� are treated as the hidden random vari-
ables with assigned proper probability densities, and the
blur-kernels {ki }i∈� are just modeled as deterministic para-
meters imposed by certain regularization constraints. To be
specific, yi |d obeys a conditional density p(yi |d |ud; ςi ,ki ),
where a hyper-prior density p(ςi ; a, b) is imposed on the
hyper-parameter ςi . The sharp image ud is modeled by a
general sparseness-promoting density represented in a three-
layer hierarchical integral form, i.e.,

p(ud;αd , ρd , θd) =
∫

p(ud |γ d)p(γ d |βd;αd)p(βd; ρd , θd)

dγ ddβd , (4)

where γ d and βd are the stochastic hyper-parameters
assigned, respectively, the hyper-prior densities p(γ d |βd;αd)

and p(βd; ρd , θd). As for αd , ρd , θd , the same as blur-kernels
{ki }i∈�, they are just modeled as deterministic parameters.
The directed graphical model as shown in Fig. 1 plots the
dependencies among the stochastic variables and the deter-
ministic model parameters.

3.1 Modeling of Observations and Sharp Images

In the following, Bayesian models of the multi-observations
and the latent sharp images are elaborated and formulated
in more details. As ni |d is assumed a zero-mean Gaussian

noise, the likelihood function p(yi |d |ud , ςi ;ki ) can be given
as

p
(
yi |d |ud , ςi ;ki

) = N
(
yi |d |Kiud , ς

−1
i IM

)
, (5)

where ςi = ς̃−1
i , and a Gamma hyper-prior is imposed on

ςi to simplify posterior inference because it is conjugate to
the Gaussian probability density function (PDF), i.e.,

p(ςi ; a, b) = Ga(ςi |a, b) = ba

� (a)
ςa−1
i exp (−bςi ), (6)

where a is the shape parameter, b is the rate parameter, and
�(·) denotes the gamma function. In this paper, a and b
are not automatically estimated but provided empirically and
uniformly as a = 5 × 10−5M and b = 3 × 10−3M for both
single- and multi-shot blur-kernel estimation. In this case,
p(ςi ; a, b) is simply denoted as p(ςi ) � p(ςi ; a, b). In the
experimental part, the above settings on a and b are found
work very well for all the blurred images in either camera-
shake deblurring or nonparametric blind super-resolution.
We should note that, a similar strategy for choosinga andb by
trial-and-error is also exploited in one of our previous works
on single-image blindmotion deblurring [57], which is, how-
ever, based on a simple nonstationary Gaussian image prior,
therefore different from the general sparseness-promoting
prior in (4).

According to the literature review in Introduction, image
priors are indispensable to blind image deconvolution. The
three-layer hierarchical prior (4) is of our particular interest,
in that, on one hand, a sparse image prior for blur-kernel
estimation should be as general as possible in the form so as
to adapt the proposed approach to diverse degradation sce-
narios; on the other hand, adaptive prior learning becomes
computationally tractable as the image prior (4) is repre-
sented in the hierarchical form and only determined by three
deterministic parameters. With automatic parameter estima-
tion for every blur-kernel estimation problem, it not only
relieves us from the parameter adjustment which is unavoid-
able particularly in the state-of-the-art MAP methods, but
also leads to great possibility of achieving higher accurate
blur-kernel estimation.
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In the first layer of the Bayesian hierarchical modeling,
p(ud |γ d) is defined as a product of spatially variantGaussian
PDFs, formulated as

p(ud |γ d) =
∏
l∈�

p
(
uld |γ l

d

)
=
∏
l∈�

N
(
uld |0, γ l

d

)
, (7)

where γ l
d = (γ̃ l

d)
−1. In the second layer, p(γ d |βd ;αd) is

selected to be a product of Gamma PDFs with a common
shape parameter αd for all components of γ d and an individ-
ual rate hyper-parameter βl

d , given as

p(γ d |βd;αd) =
∏
l∈�

p
(
γ l
d |βl

d;αd

)
=
∏
l∈�

Ga
(
γ l
d |αd ,β

l
d

)
.

(8)

As a matter of fact, a two-layer hierarchical model is more
frequently used in the literature with common shape and rate
parameters. To achieve more universal and adaptive sparse
imagemodeling, a three-layer one is preferred in this paper in
spite of the possible cost for estimating more parameters. In
the third layer, a hyper-prior p(βd; ρd , θd) is imposed on the
rate parameter βd and also selected as a product of Gamma
PDFs

p(βd; ρd , θd) =
∏
l∈�

p
(
βl
d; ρd , θd

)
=
∏
l∈�

Ga
(
βl
d |ρd , θd

)
,

(9)

where ρd , θd are the deterministic model parameters. With
(7), (8), (9), it is not hard to derive that p(ud;αd , ρd , θd)will
reduce to the Jeffreys prior as αd , ρd , θd are all set as 0.

We should note that the three-layer hierarchical prior
was used previously in the fields of compressed sensing
[58] and variable selection [59]. However, the three-layer
models in [58,59] are, respectively, Bayesian adaptive ver-
sions of the Laplacian distribution and the LASSO estimator.
Their optimization schemes are also different from the pro-
posed method in this paper. Specifically, in [58], the type-II
maximum likelihood (ML) method has been used to esti-
mate all the random hyper-parameters and deterministic
model parameters through extending the relevance vector
machine (RVM) in [60]; and [59] exploits the expectation-
maximization (EM) method.

3.2 Minimizing Objective Function

Now, we come to the task of single/multi-shot blur-kernel
estimation, which is to be formulated by taking advantage of
both the theoretical robustness of VB-based approaches and
the modeling flexibility of MAP-based approaches. The sole
prior knowledge about a spatially invariant blur-kernel that
we use is that, it can be very sparse when assuming a proper

size for blur-kernels. Therefore, a sparse regularization term
is incorporated in our framework to promote the sparseness
of blur-kernels. In specific, with Eqs. (9), (10), (11), (12),
and (13), the proposed blur-kernel estimation method is for-
mulated into an l0.5-norm-regularized minimizing objective
function

Q({αd , ρd , θd}d∈�, {ki }i∈�)

= 1

2

∑
i∈�

||ki ||0.50.5− log

{∏
i∈�

∏
d∈�

p(yi |d ;αd , ρd , θd ,ki )

}
.

(10)

To be noted that, the l0.5-norm used in (10) is actually an
empirical choice which is found to perform better in most
of image blurring degradation scenarios than the l1-norm or
the naive l0-norm. In fact, another property of blur-kernels is
also very important, i.e., continuity of the kernel support [27].
In spite of that, the proposed method needs not to impose
a continuity prior on the kernels; as a matter of fact, the
quality of latent sharp images determines the precision of
recovered kernels to a great degree [20], and the proposed
approach is capable of producing more accurate edge images
{ud}d∈� as core clues to kernel estimation due to the adaptive
learning of the image priors {p(ud ;αd , ρd , θd)}d∈�. As for
p(yi |d ;αd , ρd , θd ,ki ), we get it by marginalizing out all the
hidden random variables including ud , γ d ,βd , ςi , given as

p(yi |d ;αd , ρd , θd ,ki )

=
∫

p(yi |d |ud , ςi ;ki )p(ud;αd , ρd , θd)p(ςi )duddςi ,

(11)

just similar to the state-of-the-art VB blind deblurring meth-
ods [1,8,15–17]. However, comparedwith those approaches,
our method has provided a completely rigorous and feasible
optimization framework for estimating the posterior distrib-
utions of all the hidden random variables {ud , γ d ,βd}d∈�,

{ςi }i∈�, as well as the deterministic model parameters
including the blur-kernels {ki }i∈� and those involved in the
hyper-priors, i.e., {αd , ρd , θd}d∈�.

With (11), single/multi-shot blur-kernel estimation is
finally formulated as the following minimization problem:

min{αd ,ρd ,θd }d∈�,{ki }i∈�

Q({αd , ρd , θd}d∈�, {ki }i∈�)

subject to αd ≥ 0, ρd ≥ 0, θd ≥ 0, k j
i ≥ 0,∑

j∈Z
k j
i = 1. (12)

where Z = {1, 2, . . . , P}, and P is the length of the vector-
ized kernel ki . Note that, αd , ρd , θd are allowed to be 0 in
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(12) just for including the noninformative Jeffreys prior. Nev-
ertheless, it is hard to solve the minimization problem (12)
in a direct way. In the following, a computationally tractable
upper bound ofQ({αd , ρd , θd}d∈�, {ki }i∈�) is to be pursued
by borrowing ideas of EM [12] and MM [32].

Firstly, let ϒd = {ud , γ d ,βd} and �d = {αd , ρd , θd}.
Then, the objective function (12) can be rewritten as

Q({�d}d∈�, {ki }i∈�)

= 1

2

∑
i∈�

||ki ||0.50.5

+{−F(q̃, {�d}d∈�, {ki }i∈�) − KL(q̃||p̃)} , (13)

where q̃ and p̃ are defined as

q̃ =
∏
i∈�

∏
d∈�

q(ϒd , ςi ), (14)

p̃ =
∏
i∈�

∏
d∈�

p(ϒd , ςi |yi |d;�d ,ki ), (15)

with q being an any joint PDF of the hidden random vari-
ablesϒd , ςi , andKL(q̃||p̃) ≥ 0 is theKullback–Leibler (KL)
divergence between PDFs q̃ and p̃

KL(q̃||p̃) = −
∫

q̃ log

(
p̃

q̃

)
d{ϒd}d∈�d{ςi }i∈�. (16)

As for F(q̃, {�d}d∈�, {ki }i∈�), it can be formulated as

F(q̃, {�d}d∈�, {ki }i∈�)

=
∫

q̃ log

⎛
⎜⎝
∏
i∈�

∏
d∈�

p(yi |d ,ϒd , ςi ;�d ,ki )

q̃

⎞
⎟⎠

d{ϒd}d∈�d{ςi }i∈�. (17)

Due to the nonnegativity of KL(q̃||p̃) ≥ 0, an upper bound
of Q({�d}d∈�, {ki }i∈�) can be thus obtained as

Q({�d}d∈�, {ki }i∈�) ≤ Q̃(q̃, {�d}d∈�, {ki }i∈�)

= 1

2
||k||0.50.5 − F(q̃, {�d}d∈�, {ki }i∈�), (18)

where the equality holds only as KL(q̃||p̃) = 0 implying
that q(ϒd , ςi ) = p(ϒd , ςi |yi |d ;�d ,ki ). With Eqs. (18) and
(12), single/multi-shot blur-kernel estimation can now be
reformulated with the upper bound Q̃, i.e.,

min
q̃,{�d }d∈�,{ki }i∈�

Q̃(q̃, {�d}d∈�, {ki }i∈�)

subject to αd ≥ 0, ρd ≥ 0, θd ≥ 0, k j
i ≥ 0,∑

j∈Z
k j
i = 1. (19)

In other words, the blur-kernel estimation problem reduces
to alternating minimization of Q̃ with respect to the model
parameters {�d}d∈�, {ki }i∈� and the approximate posterior
distributions q̃. Note that, the proposed approach rigorously
relies on Eq. (19) andworkswithout any extra pre-processing
or post-processing operations, such as the smoothing or edge
enhancement [20,21,23].

4 Numerical Implementation

4.1 Estimating Posterior Distributions

In order to perform minimization of Q̃ with respect to
the approximating posterior distributions q̃, the mean field
approximation (MFA) method [12] is used, assuming that
the posterior distributions of the hidden random variables
{ϒd}d∈�, {ςi }i∈� are independent to each other, i.e.,

q̃ =
∏
i∈�

∏
d∈�

q(ϒd , ςi ) =
∏
i∈�

∏
d∈�

q(ςi )q(ϒd)

=
∏
i∈�

∏
d∈�

q(ςi )q(ud)q(γ d)q(γ d). (20)

First of all, we discuss the pursuit of the posterior distrib-
ution for the hyper-parameter ςi . After some straightforward
computations,−F(q̃, {�d}d∈�, {ki }i∈�) can be decomposed
with respect to q(ςi ) as follows:

−F(q̃, {�d}d∈�, {ki }i∈�)

= KL

(∏
d∈�

q(ςi )||p̃({yi |d}d∈�, ςi ; {�d}d∈�,ki )

)

+
∫ ∏

i ′∈�\i

∏
d∈�

q(ςi ′) log
∏

i ′∈�\i

∏
d∈�

q(ςi ′) dςi ′

+
∫ ∏

i∈�

∏
d∈�

q(ud) log
∏
i∈�

∏
d∈�

q(ud) d{ud}d∈�

+
∫ ∏

i∈�

∏
d∈�

q(γ d) log
∏
i∈�

∏
d∈�

q(γ d) d{γ d}d∈�

+
∫ ∏

i∈�

∏
d∈�

q(βd) log
∏
i∈�

∏
d∈�

q(βd) d{βd}d∈�, (21)

where p̃({yi |d}d∈�, ςi ; {�d}d∈�,ki ) is defined as

log p̃({yi |d}d∈�, ςi ; {�d}d∈�,ki )

=
∫ ∏

i ′∈�\i

∏
d∈�

q(ςi ′)q(ud)q(γ d)q(βd)

log

(∏
i∈�

∏
d∈�

p(yi |d ,ϒd , ςi ;�d ,ki )

)

d{ϒd}d∈�d{ςi ′ }i ′∈�\i . (22)
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It is seen that, −F(q̃, {�d}d∈�, {ki }i∈�) is minimized
as the KL divergence KL

(∏
d∈� q(ςi )||p̃({yi |d}d∈�, ςi ;

{�d}d∈�,ki )) equals zero, i.e.,
∏

d∈� q(ςi ) = p̃({yi |d}d∈�,

ςi ; {�d}d∈�,ki ), leading to

∑
d∈�

log q(ςi ) = |�| log q(ςi )

=
〈
log
∏
i∈�

∏
d∈�

p(yi |d ,ϒd , ςi ; �d ,ki )

〉

{q(ςi ′ )}i ′∈�\i {q(ϒd )}d∈�

=

⎧⎪⎨
⎪⎩

M
2
∑
d∈�

log ςi − ςi
2
∑
d∈�

〈∥∥yi |d − Kiud
∥∥2
2

〉
q(ud )

+ ∑
d∈�

log((a − 1) log ςi − bςi )

⎫⎪⎬
⎪⎭

+ const. (23)

Hence, q(ςi ) is actually a Gamma PDF Ga(ςi |aςi , bςi )

where the shape and rate parameters are defined as

aςi = M

2
+ a,

bςi = 1

2|�|
∑
d∈�

〈∥∥yi |d − Kiud
∥∥2
2

〉
q(ud )

+ b, (24)

and its mean is given by 〈ςi 〉q(ςi ) = aςi /bςi .
InAppendix 1, the posterior distributions of ςi andud , i.e.,

q(ςi ) and q(ud), have been deduced in every detail for clear-
ness, according to which, q(ud) is a multivariate Gaussian
PDF given as

q(ud) = N (ud |μd ,Cd), (25)

with its mean μd and covariance matrix Cd defined as

μd = Cd

∑
i∈�

〈ςi 〉q(ςi )KT
i yi |d , (26)

Cd =
[
|�|diag{〈γ d〉q(γ d )} +

∑
i∈�

〈ςi 〉q(ςi )KT
i Ki

]−1

. (27)

Since it is computationally demanding to calculate Eq. (26)
directly, the conjugate gradient (CG) method is used to com-
pute (26) in practice. As for the posterior distributions q(γ d)

and q(βd), it is easy to derive them in a very similar fashion
to q(ud). Specifically, both q(γ d) and q(βd) are also Gamma
PDFs, given as

q(γ d) =
∏
l∈�

Ga(γ l
d |aγ l

d
, bγ l

d
), (28)

q(βd) =
∏
l∈�

Ga(βl
d |aβl

d
, bβl

d
), (29)

with their means, respectively, given by

〈γ l
d〉q(γ l

d ) = aγ l
d
/bγ l

d
, 〈βl

d〉q(βl
d ) = aβl

d
/bβl

d
, (30)

where

aγ l
d

= 1

2
+ αd , bγ l

d
= 1

2

〈
(uld)

2
〉
q(uld )

+ 〈βl
d〉q(βl

d ), (31)

with 〈(uld)2〉q(uld ) = (μl
d)

2 + Cl,l
d , and

aβl
d

= αd + ρd , bβl
d

= 〈γ l
d〉q(γ d ) + θd . (32)

For computational efficiency of 〈(uld)2〉q(uld ), the covariance
matrix Cd in Eq. (27) is approximated here by using only its
diagonal entries.

4.2 Estimating Image Prior Parameters

With (19), (24), (26), (27), (31), (32), estimating {�d}d∈�

can be achieved by maximizing the objective function

G({�d}d∈�)

= 〈log
∏
i∈�

∏
d∈�

p(yi |d ,ϒd , ςi ;�d ,ki )〉{q(ϒd )}d∈�

=
∑
l∈�

⎧⎪⎨
⎪⎩

αd〈logβl
d〉q(βl

d ) + (αd − 1)〈log γ l
d〉q(γ l

d )

− log�(αd) + ρd log θd − log�(ρd)

+ (ρd − 1)〈logβl
d〉q(βl

d ) − θd〈βl
d〉q(βl

d )

⎫⎪⎬
⎪⎭ ,

(33)

where ψ(x) = �′(x)/�(x) is called a digamma function,
and 〈log γ l

d〉 = ψ(aγ l
d
) − log bγ l

d
, 〈logβl

d〉 = ψ(aβl
d
) −

log bβl
d
. It is impossible to derive the analytical solutions to

αd , ρd , and hence the Matlab function fminbnd is utilized
to estimate the two parameters with projection onto the set
of nonnegativity constraints.

4.3 Estimating Blur-Kernels

Similarly, blur-kernels can be estimated by solving the fol-
lowing minimization problem:

min{ki }i∈�

H({ki }i∈�) subject to k j
i ≥ 0,

∑
j∈Z

k j
i = 1, (34)

where

H({ki }i∈�) = 1

2

∑
i∈�

||ki ||0.50.5

+ 1

2

∑
i∈�

∑
d∈�

〈ςi 〉q(ςi )〈
∥∥yi |d − Kiud

∥∥2
2〉q(ud ).

(35)
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Then, using iteratively reweighted least squares (IRLS), esti-
mating ki can be approximately achieved by minimizing

Hi (ki ) =
(

−〈ςi 〉q(ςi )
∑
d∈�

bTi |d

)
ki

+1

2
kTi

(
diag

({
1

max((k j
i )

1.5, ε)

})

+
(

〈ςi 〉q(ςi )
∑
d∈�

Ad

))
ki , (36)

where ε is a very small positive constant, chosen as 1e6 for
all the experiments in this paper, and

Ad (r, s) =
∑

l∈�
(μl+r

d μl+s
d + Cl+r,l+s

d ),

bi |d (r) =
∑

l∈�
μl+r
d yli |d . (37)

where r, s are the blur-kernel indexes. Note that, Equation
(36) is a classic quadratic programming problem, which can
be solved using the Matlab function quadprog along with
projections onto the constraint set.

Based on the above discussion, single/multi-shot blur-
kernel estimation is summarized into Algorithm 1. Interest-
ingly, Algorithm 1 will be degenerated to the algorithm in
[29] as we set the model parameters {αd , ρd , θd}d∈� as 0
and omit the l0.5-norm-based kernel regularization in (10).
Therefore, the proposed approach is more adaptive in prob-
lem modeling than [29] in this sense. In order to account for
large-scale blur-kernel estimation and further reduce the risk
of getting stuck in poor local minima, a multi-scale scheme
of Algorithm 1 is used, similar to many existing VB and

MAPmethods in the literature. The number of scales is deter-
mined by the input kernel size at the finest scale. The size
ratio between consecutive scales in each dimension is

√
2

such that the kernel size at the coarsest scale is 3 × 3. In
each scale, the input blurred images are the correspondingly
downsampled versions of the finest scale, i.e., {yi }i∈�, and
initial blur-kernels are set as the upsampled blur-kernels esti-
mated from the coarser scale. Note that as for the coarsest
scale, initial blur-kernels are chosen as a Dirac pulse of size
3×3. The initializations of other parameters are set the same
for all the scales: ςi is set as 1e2, entries of γ d are all set as
1e4, those of βd are 0, and the initial αd , ρd , θd are 0, too.
The outer iteration number L and the inner iteration number
J are, respectively, chosen as 10 and 5.

5 Validation and Discussion

In this section, the proposed blur-kernel estimation method
is applied to both camera-shake deblurring and single-image
nonparametric blind super-resolution, so as to validate its
effectiveness and robustness in practical applications. All the

experiments reported in this paper are performed with MAT-
LAB v7.0 on a computer with an Intel i7-4600M CPU (2.90
GHz) and 8 GB memory.

5.1 Camera-shake Deblurring

In camera-shake deblurring, deblurred images restored from
the provided single/multiple-blurry observations are of our
final interest. Hence, with Algorithm 1 producing the esti-
mated blur-kernels, the hyper-Laplacian prior-based non-
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blind deblurring method [61] is utilized to perform nonblind
deconvolution for all the camera-shake deblurring exper-
iments in this subsection. Note that, many other more
advanced nonblind deconvolution algorithms can be tried,
too, e.g., [62–66]. The main reason for choosing [61] in this
paper is that it achieves a good compromise between the
deblurring quality and the computational complexity. For a
fair comparison, [61] is also used for other single/multi-shot
blur-kernel estimation methods to perform final nonblind
deblurring.

5.1.1 Single-shot Case

Theproposed approach for single-shot blur-kernel estimation
is tested on the benchmark blurred dataset provided by Levin
et al. in [8], downloaded from www.wisdom.weizmann.
ac.il/~levina/papers/LevinEtalCVPR2011Code.zip. In this
dataset, 4 sharp images (I1, I2, I3, I4) of size 255 × 255
are blurred by 8 blur-kernels (K1, K2, K3, K4, K5, K6,
K7, K8) of sizes ranging from 13×13 to 27×27, producing
32 real-captured blurred images. The SSD (sum of squared
difference) error ratio defined in [8] is used as the final eval-
uation measure on different methods. Figure 2 provides the
cumulative histogram of SSD error ratios for the proposed
and existing sevenmethods [1,8,15–17,21,67].2 As noted by
Levin et al. [8], the deblurred images are visually plausible
in general as the SSD error ratios are below 3, and in this
case, the blind deblurring is considered successful. It is clear
that the proposed kernel estimation method has achieved the
best performance in terms of the success percentage (97 %),
as well as uniformly better performance throughout all the
bins. The average SSD error ratios of different methods are
also provided here: 3.74 [1], 7.05 [8], 2.97 [15], 2.94 [16],
2.02 [17], 2.42 [21], 2.77 [67], and 1.44 (Ours). To show
the superiority of adaptively learning image priors, the Jef-
freys prior is tried in the proposed framework; the model
parameters {αd , ρd , θd}d∈� in Algorithm 1 are just set as
0 without altering other configurations, which leads to an
increased average SSD error ratio 1.82 and a decreased suc-
cess percentage 91 %. Recall that, methods [15,16] build on
the Jeffreys prior but perform far worse than our framework,
demonstrating the benefit of adaptively estimating the inverse
noise variance as well as additionally incorporating the l0.5-
norm-based kernel regularization. To be noted that the size
information on the ground truth blur-kernels is assumed to
be known in the above experiments.

Another approach to be compared is Xu et al. [20] with-
out any size information on the blur-kernels, which is one
of the best-performing MAP methods in the current litera-
ture. Since the sizes of blur-kernels in the benchmark blurred

2 Blur-kernels corresponding to [1,8,15–17,21,67] are estimated by
the Matlab codes provided by the authors.

Fig. 2 The cumulative histogramof the SSDdeconvolution error ratios
as assuming an accurate kernel size. The success percentages (SSDerror
ratio below 3) of different methods are 69 % [1], 19 % [8], 69 % [15],
63 % [16], 84 % [17], 75 % [21], 69 % [67], and 97 % (Ours) (Color
figure online)

Fig. 3 The cumulative histogram of the SSD error ratios as without
accurate kernel size information (a size of 31 × 31 is set uniformly).
The success percentages achieved by the two methods are, respectively,
69 % [20] and 94 % (Ours) (Color figure online)

dataset are not greater than 31 × 31 (a configuration of the
software releasedbyXuet al.), the size 31×31 is used for both
[20] and the proposed method in this group of experiments.
In general, the larger the size of the blur-kernel, the harder
the blind image deblurring. In spite of that, the proposed
kernel estimation method still achieves a higher success per-
centage (94 %) and a lower average SSD error ratio (1.60)
than those of Xu et al. [20] (69 %, 2.57). It is also observed
from the cumulative histogram of SSD error ratios in Fig.
3 that, the proposed kernel estimation method performs bet-
ter than Xu et al. [20] throughout all the bins. In Fig. 4, the
blur-kernels estimated, respectively, by Xu et al. [20] and
the proposed kernel estimation approach are provided for
visual perception. It is observed that those of the proposed
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Fig. 4 Ground truth
blur-kernels (top block) and the
kernels estimated by Xu et al.
[20] and the proposed method
for the 32 benchmark blurred
images, uniformly assuming the
kernel size as 31 × 31. The
figure shown in each kernel is
the calculated kernel SSD error
(the lower the better)
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Fig. 5 Three benchmark test
images for constructing
multiple-blurred observations.
Left Cameraman (C), Middle:
Lena (L), Right Pepper (P)

kernel estimation method have less false-motion trajectories
and isolated points. To make direct comparison between the
two blur-kernel estimation methods, the kernel SSD errors
corresponding to each of the 32 benchmark blurred images
are also provided in Fig. 4 for both methods. It is not surpris-
ing that the proposed kernel estimationmethod also performs
better than Xu et al. [20] in terms of the kernel SSD error.

5.1.2 Multi-shot Case

For a quantitative comparison, 6 groups of multiple-blurred
observations are constructed, based on 3 commonly utilized
benchmark test images shown in Fig. 5: Cameraman (C),
Lena (L), and Pepper (P). In each group, a test image is
blurred by either g1 = {K1 . . .K4} or g2 = {K5 . . .K8},

producing 4 blurred observations. The proposed kernel
estimation method is applied to each group of multi-shot
observations and compared with the state-of-the-art method
[29] which is shown to outperform [2] significantly. Figure
6 provides the blur-kernels (also the kernel SSDs) estimated
by the proposed method and [29] for each group of multi-
shot observations.3 It is clearly seen that the proposed kernel
estimation method performs better than [29] in terms of
the kernel SSD. For visual perception of the final deblurred
images using the blur-kernels estimated by [29] and the pro-
posed approach, Figs. 7 and 8 provide the 4 deblurred images
for each group of multi-shot observations constructed from

3 The authors of [29] integrate both the single- and multi-shot blur-
kernel estimations in their Matlab p-codes.
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Fig. 6 Ground truth
blur-kernels and the kernels
estimated by [29] [with the
Matlab code (see footnote 3)
released by the authors] and the
proposed kernel estimation
approach for 6 groups of
multi-shot images, constructed
from three benchmark test
images Cameraman (C), Lena
(L), and Pepper (P), and two sets
of kernels g1 = {K1 . . .K4}
and g2 = {K5 . . .K8}. The
figure shown in each blur-kernel
is the computed kernel SSD (the
lower the better)
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Fig. 7 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Cameraman (C) and g1 = {K1 . . .K4}. The figure in each image is the calculated PSNR score

Cameraman (C), along with the PSNR scores; Figs. 9 and
10 correspond to those of Lena (L); and Figs. 11 and 12
correspond to those of Pepper (P). It is not surprising that
the proposed kernel estimation approach achieves not only
higher PSNRbut also better visual quality, thus validating the
modeling superiority of the proposed method to [29], indi-
cating that on average lower kernel SSDs amount to better
final deconvolution quality.

The blur-kernel size for the above experiments is uni-
formly specified set as 31 × 31. With the same size, the
proposed blur-kernel estimation method is applied to each

of the 24 blurred images simulated in the multi-shot case (3
benchmark images are blurred by 8 kernels), just to validate
the superiority of the multi-shot blur-kernel estimation to the
single-shot scenario. The estimated blur-kernels (along with
their kernel SSDs) by the proposed approach are provided in
Fig. 13. Compared with the results obtained in the multi-shot
case as provided in Fig. 6, it is found that the proposed blur-
kernel estimation approach in the single-shot case achieves
comparable or sometimes even superior performance than
[29] but inferior performance on average than the proposed
approach in the multi-shot case. In particular, Fig. 14 pro-
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Fig. 8 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Cameraman (C) and g2 = {K5 . . .K8}

Fig. 9 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Lena (L) and g1 = {K1 . . .K4}

vides the three final deblurred images corresponding to the
estimated kernelK8, which are obviously with worse visual
perception and PSNR scores than the ones in the case of
multi-shot kernel estimation. But it should be noted that the
multi-shot blur-kernel estimation is computationally more
expensive than the single-shot case. We take the experiments
with Cameraman (C) and g2 = {K5 . . .K8}, for example.
The running time of the proposed kernel estimation approach
in the multi-shot case is 908s, while the running time in the
single-shot case is, respectively, 348s, 351s, 368s, and353s. It
is also seen that the proposed blur-kernel estimation approach
has a much high computation burden even in the single-shot

case, which is actually a common characteristic of VB-like
methods [1,8,9,11,15–17,32]. One strategy for reducing the
running time is to perform blur-kernel estimation using only
part of the blurred images. How to improve the computa-
tional efficiency of the proposed method in a fundamental
way is actually another challenge to work on in the future.

In the following, we discuss the convergence of the
proposed blur-kernel estimation approach using multiple-
blurred images in an empirical way. Considering the limited
space, we still take Cameraman (C) and g2 = {K5 . . .K8},
for example. In Fig. 15, the intermediately estimated blur-
kernels during the 10 outer iterations of Algorithm 1 (the
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Fig. 10 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Lena (L) and g2 = {K5 . . .K8}

Fig. 11 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Pepper (P) and g1 = {K1 . . .K4}

finest scale) are provided for each of the 4 blurry obser-
vations; in Fig. 16, the intermediate results of gradient
magnitude image4 are also shown for visual perception. The
intermediate estimates of both the gradient magnitude image
and the blur-kernel clearly demonstrate that the proposed
kernel estimation approach achieves a good convergence per-
formance. It is more obviously observed from the kernel SSD
listed in each blur-kernel that, the proposed method has pro-

4 The gradient magnitude image refers to the magnitude image cal-
culated based on the intermediate estimates of horizontal and vertical
gradients.

duced a reasonable blur-kernel with 6 outer iterations for
each blurry observation.

As suggested by one of the reviewers, we also discuss
the sensitivity of the proposed kernel estimation approach to
the initializations of hyper-parameters {ςi }i∈�, {γ d ,βd}d∈�

andmodel parameters {αd , ρd , θd}d∈�. Recall that, the above
experimental results are generated with the following initial-
izations: (O) ςi = 1e2, entries of γ d are all set as 1e4, those
of βd are set as 0, and αd , ρd , θd are set as 0. In the following,
eight groups of experiments are conducted via altering those
initializations, still using the 4 blurry observations simulated
from Cameraman (C) and g2 = {K5 . . .K8}. The initializa-
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Fig. 12 Deblurred images using the blur-kernels estimated by [29] (top row) and the proposed kernel estimation method (bottom row) for the
multiple-blurred observations simulated from Pepper (P) and g2 = {K5 . . .K8}

Fig. 13 Blur-kernels estimated
by the proposed kernel
estimation method applied to
each of the 24 blurred images
simulated in the multi-shot case
(3 benchmark images in Fig. 5
are blurred by 8 kernels
provided by Levin et al. [8])

Fig. 14 Final deconvolved
images with the motion
blur-kernelK8 estimated by the
proposed kernel estimation
approach in the scenario of
single-shot blur-kernel
estimation

tion settings for the eight groups of experiments are given as
follows:

(1-1) ςi = 2e1 with other initializations in (O) unchanged;
(1-2) ςi = 2e2 with other initializations in (O) unchanged;
(2-1) αd = ρd = θd = 1 with other initializations in (O)

unchanged;
(2-2) αd = ρd = θd = 1e1 with other initializations in (O)

unchanged;
(3-1) entries of βd are set as 1e-6 with other initializations

in (O) unchanged;

(3-2) entries of βd are set as 1e-5 with other initializations
in (O) unchanged;

(4-1) entries of γ d are set as 5e3 with other initializations in
(O) unchanged;

(4-2) entries of γ d are set as 5e4 with other initializations in
(O) unchanged.

Using the proposed multi-shot kernel estimation method,
Tables 1 and 2, respectively, provide the kernel SSD and
the PSNR score of the final deblurred image for each of the
4 blurry observations. The results show that our proposed
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Fig. 15 Intermediately estimated blur-kernels during the 10 outer iterations of Algorithm 1 (the finest scale) for each of the 4 blurry observations
simulated utilizing the benchmark test image Cameraman (C) and the ground truth kernels g2 = {K5 . . .K8}

Fig. 16 Intermediate results of gradient magnitude image during the 10 outer iterations of Algorithm 1 (the finest scale). The magnitude images
are shown with a linear transform for better visual perception

Table 1 SSD of the blur-kernel estimated by the proposed multi-shot
kernel estimationmethod for each of the 4 blurry observations simulated
from Cameraman (C) and g2 = {K5 . . .K8}
Initialization
setting

g2 −K5 g2 −K6 g2 −K7 g2 −K8

(O) 0.0020 0.0007 0.0003 0.0007

(1-1) 0.0025 0.0009 0.0004 0.0008

(1-2) 0.0028 0.0008 0.0004 0.0007

(2-1) 0.0018 0.0006 0.0003 0.0005

(2-2) 0.0018 0.0007 0.0003 0.0006

(3-1) 0.0014 0.0005 0.0003 0.0004

(3-2) 0.0027 0.0008 0.0004 0.0007

(4-1) 0.0026 0.0006 0.0003 0.0004

(4-2) 0.0036 0.0015 0.0005 0.0010

Table 2 PSNR score (dB) of the final deblurred image based on the
proposed multi-shot kernel estimation method for each of the 4 blurry
observations simulated from Cameraman (C) and g2 = {K5 . . .K8}
Initialization
setting

g2 −K5 g2 −K6 g2 −K7 g2 −K8

(O) 31.9723 32.0125 31.4351 30.7235

(1-1) 31.6642 31.9495 30.8894 30.2004

(1-2) 31.9264 32.0263 31.2532 30.6720

(2-1) 32.4856 32.5502 31.6454 31.0186

(2-2) 32.2637 32.3758 31.3750 30.7695

(3-1) 33.2348 33.3459 32.1010 31.4282

(3-2) 32.1017 32.2195 31.3313 30.7037

(4-1) 32.1381 32.4358 31.5551 30.9264

(4-2) 30.9525 31.6289 30.3770 29.6792
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Fig. 17 Nonparametric blind SR (SR × 2) with low-res Hollywood
using the proposed kernel estimation method (-NE [44], -JSC [45], -
ANR [46]), Michaeli and Irani [56], and nonblind SRmethods [44–46].

The first image in the top row is the bicubic interpolated version of the
low-res image using the Matlab function imresize

kernel estimation method achieves stability to a great extent
in different initialization settings. In the meanwhile, we also
see that the selected initialization setting (O) for Algorithm
1 is absolutely not the best, and hence, we believe that the
comparison betweenAlgorithm1 and other kernel estimation
methods is convincing.

5.2 Nonparametric Blind Super-Resolution

When super-resolving a clear, high-res image from its cor-
responding blurred, low-res version in this paper, the size of
the blur-kernel in the degradation model is also uniformly set
as 31× 31. Intuitively, for the estimated blur-kernel reliable
to its ground truth as much as possible, we should harness
those nonblind SRmethods assuming a blur-kernel as simple
as possible, e.g., bicubic interpolation kernel. As such, three
candidate state-of-the-art nonblind dictionary-based fast SR
algorithms [44–46] are chosen for practicing nonparamet-
ric blind SR, including neighborhood embedding (NE) [44],
joint sparse coding [45] (JSC), and anchored neighbor regres-
sion (ANR) [46] (A brief review is provided as Appendix 2).
With a pre-estimated blur-kernel, we generate the final super-
resolved image using a simple reconstruction-based nonblind
SR method [52], which is regularized by the natural hyper-
Laplacian image prior [68] (Fig. 17).

Using low-res blurred images, we make comparisons
between the proposed kernel estimation method (-NE [44],
-JSC [45], -ANR [46]) and state-of-the-art nonparametric
blind SR method proposed by Michaeli and Irani [56].5 The

5 The estimated blur-kernels corresponding to [56] were kindly pro-
vided to us by Tomer Michaeli who is the first author of [56].

Fig. 18 Nonparametric blind SR (SR× 2) with low-res Soldier using
the proposed kernel estimation method (-NE [44], -JSC [45], -ANR
[46]), Michaeli and Irani [56], and nonblind SR methods [44–46]. The
first image in the top row is the bicubic interpolated version of the
low-res image using the Matlab function imresize

synthetic low-res image in Fig. 15 (SR × 2) is of severe
motion blur. We see that the SR results (Proposed + [44],
Proposed + [45], Proposed + [46]) corresponding to our esti-
mated kernels are of better visual quality than that of [56] and
the state-of-the-art nonblind SR methods [44–46], showing
the necessity of blur-kernel estimation for achieving high
performance of SR reconstruction. Actually, [56] fails in this
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Fig. 19 Nonparametric blind SR (SR× 3) with low-res Flower using
the proposed kernel estimation method (-NE [44], -JSC [45], -ANR
[46]), Michaeli and Irani [56], and nonblind SR methods [44–46]. The
first image in the top row is the bicubic interpolated version of the
low-res image using the Matlab function imresize

Fig. 20 Nonparametric blind SR (SR×2) with low-res Chip using the
proposed kernel estimation method (-NE [44], -JSC [45], -ANR [46]).
The first image in the top row is the bicubic interpolated version of the
low-res image using the Matlab function imresize

example, producing a smooth Gaussian-like blur-kernel. The
low-res images corresponding to Figs. 18, 19, 20 and 21
are real. In Fig. 18 (SR × 2), the proposed kernel estima-
tion method (-NE [44], -JSC [45], -ANR [46]) still performs
better, producing clearer images without notable ringing arti-

Fig. 21 Nonparametric blind SR (SR × 4) with low-res University
using the proposed kernel estimation method (-NE [44], -JSC [45], -
ANR [46]). The first image in the top row is the bicubic interpolated
version of the low-res image using the Matlab function imresize

facts. However, in the super-resolved image corresponding
to [56], remarkable ringing artifacts can be observed, in that
the produced blur- kernel by [56] has a larger support than
the true one [52]. We also see that the proposed kernel esti-
mation method is robust to nonblind SR methods to some
degree, although it is empirically shown in [46] that ANR
performs comparatively or better than JSC on average while
NE is worse than JSC in the term of reconstruction quality.
In Fig. 19 (SR × 3), the proposed kernel estimation method
achieves comparable performance to [56], in spite of that
they produce visually different kernels, and their SR images
are naturally better than those of nonblind SR methods. In
Fig. 20 (SR×2) and Fig. 21 (SR×4), another two groups of
nonparametric blind SR results are provided for the proposed
kernel estimation method (-NE [44], -JSC [45], -ANR [46]),
validating its effectiveness, robustness, and reasonableness.
In the above mentioned experiments, the bicubic interpola-
tion images are also provided for comparison.

6 Conclusion

This paper provides a unified optimization perspective to
single/multi-observation blur-kernel estimation, and there-
fore bridges the gap between the two highly related problems.
In specific, blur-kernel estimation, either single-shot ormulti-
observation, is formulated into an l0.5-norm-regularized neg-
ative log-marginal-likelihood minimization problem, which
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couples theVBandMAPprinciples, and imposes a universal,
three-layer hierarchical prior on the latent sharp image and a
Gamma hyper-prior on each inverse noise variance. By bor-
rowing ideas of EM,MM,MFA, and IRLS, all the unknowns
of interest, including the sharp image, each inverse noise
variance and blur-kernel, and other relevant model parame-
ters are estimated automatically. The experimental results
on Levin et al.’s [8] benchmark real-world motion-blurred
images aswell as the simulatedmultiple-blurredobservations
validate the effectiveness and superiority of the proposed ker-
nel estimation approach for camera-shake deblurring. Our
kernel estimation approach is also applied to nonparametric
single-image blind SR, achieving comparable or even better
performance than the state-of-the-art method [56] recently
proposed by Michaeli and Irani.
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Appendix 1: Derivation of the posterior distribu-
tions q(ςi ) and q(ud)

Estimating Posterior Distribution q(ςi )

In order to derive the posterior distribution q(ςi ),
−F(q̃, {�d}d∈�, {ki }i∈�) is decomposed with respect to
q(ςi ) as follow1s:

−F(q̃, {�d}d∈�, {ki }i∈�)
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q̃ log
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It is seen that, −F(q̃, {�d}d∈�, {ki }i∈�) is minimized as the
KL divergence KL(
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ki )) equals zero, i.e.,
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Therefore, the posterior distribution q(ςi ) is actually a
Gamma PDF Ga(ςi |aςi , bςi ), where the shape and rate para-
meters are defined as
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2
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and its mean is given by 〈ςi 〉q(ςi ) = aςi
bςi

.

Estimating Posterior Distribution q(ud)

In order to derive q(ud),−F(q̃, {�d}d∈�, {ki }i∈�) is decom-
posed with respect to q(ud) as follows:
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It is seen that, −F(q̃, {�d}d∈�, {ki }i∈�) is minimized as the
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Therefore, the posterior distribution q(ud) is amultivariate
Gaussian PDFN (ud |μd , Cd), and its mean μd = 〈ud〉q(ud )

and covariance matrix Cd are, respectively, defined as
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Appendix2:RepresentativeDictionary-BasedSuper-
Resolution (SR) Methods

Three representative approaches of dictionary-based single
frame fast SR are introduced for reference in Sect. 5.2, i.e.,
neighborhood embedding (NE) of Chang et al. [44], joint
sparse coding (JSC) of Zeyde et al. [45], and anchored neigh-
bor regression (ANR) of Timofte et al. [46]. These three
nonblind SR methods all assume the simplest bicubic inter-
polation kernel in the observation model and are harnessed
to generate a super-resolved but blurred image, used as the
input of the proposed blur-kernel estimation approach for
practicing nonparametric blind SR.

Neighborhood Embedding

The NE algorithm [44] is a manifold learning approach
assuming that image patches of a low-res image and its high-
res counterpart form manifolds with similar local geometry
in two distinct feature spaces. It roughly means that, as long
as enough sampled patches are available, patches in the high-
res feature space can be re- constructed as aweighted average
of local neighbors using the same weights as in the low-res
feature space. In practice, weights are computed by solving
a constrained least squares problem.

Joint Sparse Coding

The JSC algorithm originates from Yang et al. [42], which is
improved by Zeyde et al. [45] in both SR restoration quality
and execution speed. The core idea of JSC is akin to that of
NE. What is distinct to NE is that, the low-res and high-res
manifolds in the training step are not the sampled patches but
the jointly learned compact dictionaries for the sampled low-
res and high-res patches, in order to achieve the same sparse
coding for low-res patches as their corresponding high-res
patches. Here, the entries of sparse coding play a similar role
to the weights in NE. The test high-res patch can be recon-
structed by exactly the same sparse coding of its counterpart
low-res patch and the learnt high-res dictionary.

Anchored Neighbor Regression

Combining ideas of NE and JSC, the ANR algorithm [46]
achieves comparative or higher quality and one or two
orders of magnitude efficiency improvements over the state-
of-the-art methods. The ANR is essentially an intimate
approximation of the NE based on the JSC, lying in that the
low-res and high-res manifolds in the training step are the
jointly learned compact dictionaries for the sampled low-res
and high-res image patches, just the same as the JSC, but the
weights for a test low-res patch are no longer the immedi-
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ate goals, instead a separate projection matrix to be stored is
computed for each atom in the low-res dictionary by Ridge
Regression and the neighborhood of the atom. The high-res
patch can then be reconstructed using its low-res counterpart
and the stored projection matrix corresponding to the atom
computed as the nearest neighbor to the test low-res patch.
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