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Abstract One of the approaches in diffusion tensor imag-
ing is to consider a Riemannian metric given by the inverse
diffusion tensor. Such a metric is used for geodesic tractog-
raphy and connectivity analysis in white matter. We propose
a metric tensor given by the adjugate rather than the previ-
ously proposed inverse diffusion tensor. The adjugate metric
can also be employed in the sharpening framework. Trac-
tography experiments on synthetic and real brain diffusion
data show improvement for high-curvature tracts and in the
vicinity of isotropic diffusion regions relative to most results
for inverse (sharpened) diffusion tensors, and especially on
real data. In addition, adjugate tensors are shown to be more
robust to noise.

Keywords Riemannian geometry ·
Geodesic tractography · Diffusion tensor imaging ·
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1 Introduction

Geodesic tractography is oneof themanyexisting approaches
to perform tractography from diffusion images. The current
state of the art tracking methods are based on high angular
resolution diffusion imaging (HARDI), which can for exam-
ple be described by multi-compartment [32] or higher order
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diffusion tensor models [37]. HARDI tractography algo-
rithms generally perform better than those arising from DTI,
particularly in regions of complex fibre architecture such as
crossings. Nevertheless, DTI is still widely used in a clinical
research context since HARDI scanning protocols are by no
means always available, and scanning and data processing
times are considerably larger. It is therefore clinically useful
to further improve existing methods and algorithms for DTI
processing.

In theRiemannian framework for diffusion tensor imaging
(DTI) [5], white matter is represented as a Riemannian mani-
fold and neural fibres are conjectured to coincide with certain
geodesic curves1 (locally shortest paths in a non-Euclidean
sense). In this way, the problem of tractography becomes one
of finding geodesics. This is attractive from a practical point
of view, as it obviates the need for ad hoc stopping and bend-
ing criteria necessary in traditional fibre-tracking algorithms.
Another advantage with respect to other types of tracking
algorithms is that geodesic tractography tends to be more
robust to noise. Finally, it has the conceptual advantage that
Riemannian geometry is a well understood and powerful the-
oretical machinery, facilitating mathematical modelling and
algorithmics [2–4,6,12,15–17,24–26,30,31,33,35].

However, there are problematic aspects to the existing for-
mulation of the Riemannian paradigm, in which the metric
is postulated to coincide with the inverse diffusion ten-
sor [24,31]. This idea is based on the transformation of
anisotropic diffusion in Euclidean space to isotropic Brown-
ian diffusion in a curved Riemannian space. As we show
in this work this is however not achieved with such metric
definition, despite claims in the diffusion MRI literature.

1 Classification of geodesics as fibres requires additional connectivity
measures [3,35].
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Another drawback of geodesic tractography based on the
inverse diffusion tensor is the fact that geodesic curves tend to
take shortcuts in the case of high-curvature tracts. A related
problem is that the standard metric does not favour tracts
through anisotropic diffusion regions over tracts through
isotropic ones, making masking a necessary preprocessing
step.

In this paper, we reconsider the relation between the
DTI tensor and the Riemannian metric tensor, extending our
preliminary work [17]. We stipulate a novel Riemannian
metric, given by the adjugate diffusion tensor (with and
without sharpening), that does yield Brownian motion in
the corresponding curved space. We investigate the practical
implications of the proposed metric on geodesic tractogra-
phy by performing experiments on clean and noisy synthetic
data, and on real brain diffusion data. We compare our
results with geodesic curves obtained from the inverse
(sharpened) diffusion tensor, and with constrained spherical
deconvolution tractography results. We evaluate our metric
in relation to the problematic issues mentioned above, and
show that these shortcomings are largely removed in our
approach.

In recent work, both the inverse diffusion tensor and our
metric have been extensively evaluated (using 40 subjects
from the Human Connectome Project database) in combina-
tion with probabilistic shortest path tractography [36]. It has
been shown that our metric produces paths which agree most
often with experts.

2 Related Work

The question of how to choose an appropriate metric in
the context of DTI has already been posed in [20,25]. Two
types of modifications of the standard metric, given by the
inverse diffusion tensor, have been proposed in the liter-
ature so far. In the first approach, “sharpening”, diffusion
tensors are raised to a certain power in order to increase their
anisotropy

D sharp = Dn, (1)

where D and D sharp are the diffusion and sharpened ten-
sor, and n > 1 is a constant integer. It has been shown
that geodesics related to sharpened versions of the diffu-
sion tensor follow the principal eigenvector directions more
closely [19,38]. A different sharpening strategy has been
introduced by Descoteaux et al. [11], which relies on the
transformation of diffusion tensors into so-called “fiber” ten-
sors. They showed that geodesic tractography results improve
by employing such deconvolution sharpening.

Sharpening approaches seem to result in better tractogra-
phy results. However, they decrease the robustness to noise.

Another downside of sharpening is that it makes use of para-
meters which have to be chosen in an ad hocway: the power n
in Eq. (1), and a factor controlling the fibre tensor sharpening
in the case of deconvolution sharpening.

A second type of modification has been presented by Hao
et al. [18,19]. It is based on a conformal rescaling of the
standard Riemannian metric given by the inverse diffusion
tensor:

g Hao = eαD−1 (2)

Here the function α ≡ α(x) is chosen by requiring geodesic
curves to follow more closely the diffusion tensor principal
eigenvectors. White matter segmentation based on geodesic
tractography with sharpened diffusion tensors and the mod-
ified metric (2) show similar improvement with respect to
segmentation based on the standard metric. The metric mod-
ification that we propose in this work is somewhat similar to
that by Hao et al., since both approaches rely on a conformal
tensor rescaling. We address the relation between the two
distinct metrics explicitly in Sect. 3.4.

3 Theory

3.1 Preliminaries

First of all, our conventions and notation are summarized in
Table 1.

A (nondegenerate) diffusiongeneratorL is a secondorder
elliptic differential operator which in local coordinates {xi }
on a manifold M has the form

L = ai j (x)∂i∂ j + bi (x)∂i , (3)

where ai j (x) and bi (x) are smooth functions and ai j (x) is a
symmetric positive definite tensor. This is the general form of

Table 1 Conventions and notation used through the paper. Tensor index
notation is employed, with latin indices running from 1 to 3

Di j Diffusion tensor components

Di j Inverse diffusion tensor components

d = det Di j Determinant of diffusion tensor

Di j
sharp Sharpened diffusion tensor components

gi j Metric tensor components

gi j Inverse metric tensor components

g = det gi j Determinant of metric tensor

∂i Shorthand for ∂/∂xi

ai bi
def=

3∑

i=1
ai bi Einstein’s summation convention
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a diffusiongenerator, and it capturesmanypossible diffusion-
related processes. Several partial differential equations canbe
associated withL , for example,L u = 0 or ∂t u−L u = 0,
where u is the concentration of diffusing particles (or the
distribution of heat in a given region over time). For example,
∂t u−L u = 0 amounts to the diffusion–convection equation

∂t u = ai j (x)∂i∂ j + bi (x)∂i , (4)

where ai j (x) represents a local diffusion tensor and bi (x)
is the velocity of the medium. Note that the first term on
the right-hand side corresponds to pure diffusion, while the
second term relates to a convection process.

We introduce the following Riemannian metric on M
based on Eq. (3)

gi j (x) = ai j (x), (5)

where ai j denotes the inverse matrix of ai j . Then we can
rewriteL as

L = �g + B, (6)

where B = B(ai j (x), bi (x)) is a smooth vector field and �g

is the Laplace–Beltrami operator w.r.t. the metric (5). This
operator is given by

�g = 1√
g

∂ j

(√
ggi j∂i

)
, (7)

where g = det gi j . It may be split as follows:

�g = gi j∂i∂ j + 1√
g

∂ j

(√
ggi j

)
∂i . (8)

The operator L is said to be an intrinsic Laplacian if B =
0. By definition, an intrinsic Laplacian generates Brownian
motion on (M, g). For technical details, we refer to Liao [27]
and Cohen de Lara [10].

3.2 Discrepancy

The standard anisotropic diffusion generator is given by

L1 = ∂i (D
i j∂ j ) = Di j∂i∂ j + (∂ j D

i j )∂i , (9)

where Di j is the diffusion tensor. Note that this is a special
case of Eq. (3) with ai j = Di j and bi = ∂ j Di j . Therefore,
a Riemannian metric gi j = Di j can be introduced, where
Di j is the inverse diffusion tensor. The Laplace–Beltrami
operator in this case reads

�g = Di j∂i∂ j + (∂ j D
i j )∂i − 1

2d

(
∂ j d

)
Di j∂i (10)

with d = det Di j . Eq. (9) can thus be rewritten as:

L1 = �g + 1

2d

(
∂ j d

)
Di j∂i (11)

Comparing with Eq. (6) it is clear that

B = 1

2d

(
∂ j d

)
Di j∂i (12)

The only scenario in which B = 0 is when the diffusion
tensor determinant d is constant, which generally is not the
case. We conclude that L1 is not an intrinsic Laplacian and
therefore the associated diffusion process is not a Brownian
motion on (M, g).

3.3 Riemannian Framework Revisited

We propose to modify the Riemannian framework for DTI
in such a way that the diffusion process associated with the
diffusion generator is a Brownian motion on (M, g̃) for a
certain Riemannian metric g̃, i.e.

∂t u = �g̃u (13)

The motivation behind this choice is to fully encode the
anisotropic diffusion properties of the medium into the met-
ric tensor. This is analogous to general relativity, where the
properties of spacetime are completely described by the asso-
ciated pseudo-Riemannian metric. Note that the standard
metric given by the inverse diffusion tensor leads to a con-
vection term in Eq. (11); the anisotropy information provided
by this term will not be taken into account by this choice of
metric.

Let us consider metrics which are conformally equivalent
to g = D−1, i.e.

g̃i j = f Di j , (14)

where f ≡ f (x) is a positive scalar function. The corre-
sponding Laplace–Beltrami operator, Eq. (7), is

�g̃ = 1

f
Di j∂i∂ j + 1

f
(∂ j D

i j )∂i

+ 1

2 f

(
1

f
∂ j f − 1

d
∂ j d

)

Di j∂i (15)

Here we have used the relation g̃ = det g̃i j = f 3d−1. This
expression is similar to the anisotropic generator given by
Eq. (9), except for an overall scaling factor of 1/ f and the
last term. The last term vanishes uniquely if f ∝ d, and so
without loss of generality we set f =d so that g̃i j = d Di j ,
and

L2
def= �g̃ = d−1Di j∂i∂ j + d−1(∂ j D

i j )∂i . (16)
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By construction the generator L2 is an intrinsic Laplacian.
The diffusion process associated with L2 is thus a Brown-
ian motion on (M, g̃). Therefore, we postulate the following
Riemannian metric in the context of DTI:

g̃i j = d Di j . (17)

Recall that, for a regular square matrix A,

A−1 = 1

det(A)
adj(A) (18)

with adj(A) the adjugate matrix. Thus the proposed met-
ric is the adjugate of the diffusion tensor, rather than the
inverse (with det(A) = d, Ai j = Di j in our case). Since
the diffusion tensor is symmetric its adjugate equals the
cofactor matrix.

Remark Diffusion generators in Eqs. (9), (16) are related by

L1 = d L2. (19)

The following proposition concerning diffusion generators
has been proven [27]. Given a generatorL which is an intrin-
sic Laplacian, and another generatorL ′ such thatL ′ = b L
for some function b > 0, then L ′ is an intrinsic Laplacian
if and only if b is constant (in dimensions n �= 2). We have
shown that the generatorL2 is an intrinsic Laplacian by def-
inition. From relation (19) and the above proposition it is
clear that generator L1 is an intrinsic Laplacian if and only
if d is constant, a nongeneric case.

3.4 Relation to Previous Work

Note that the metric proposed in Hao et al. [18,19] is also of
the form given by2 Eq. (14). In their case, the function f (x)
is determined by the equation

1

f
(gradg f ) = 2∇V V, (20)

where (gradg f )
i = ∂ j f Di j , V is the principal eigenvec-

tor field of the diffusion tensor and ∇V V is the covariant
derivative of V along itself:

(∇V V )i = V j∂ j V
i + V kV lΓ i

kl (21)

Here Γ i
kl are the so-called Christoffel symbols:

Γ i
kl = 1

2
gim(∂l gmk + ∂kgml − ∂mgkl) (22)

2 Namely, (g Hao)i j = f Di j = eαDi j .

In our case we have, by construction:

1

f
(gradg f ) = 1

d
(gradgd) (23)

Comparing Eqs. (20) and (23) it is clear that the confor-
mal factors in Hao’s and our metric satisfy rather different
equations and the two metrics are therefore distinct. This is
not surprising since, although both metrics are local rescal-
ings of the inverse diffusion tensor, they arise from different
considerations. In Hao et al. the local factor is chosen so
that geodesic curves more closely follow the diffusion ten-
sor principal eigenvectors. Our metric, on the other hand,
relates anisotropic diffusion in Euclidean space to isotropic
diffusion in the corresponding Riemannian space.

It is also important to note that our metric can be obtained
from diffusion data in a straightforward way, since the
(inverse) fitted diffusion tensor field needs just to be locally
rescaledwith the determinant.Hao’smetric, however, ismore
difficult to deal with because its defining equation (20) is
considerably more cumbersome. In addition, our metric has
a simple and elegant interpretation as the adjugate diffusion
tensor.

3.5 Geodesic Curves

Let us show how geodesic curves corresponding to the usual
metric definition and our proposedmetric relate to each other.
Geodesic curves x(t) satisfy the geodesic equations

ẍ i + Γ i
kl ẋ

k ẋ l = 0, (24)

where ẋ i = dxi/dt and we consider unit speed parametriza-
tion gi j ẋ i ẋ j = 1. It is straightforward to derive the relation
between the Christoffel symbols corresponding to the stan-
dard metric gi j = Di j , and the adjugate metric g̃i j = d Di j :

Γ̃ i
kl = Γ i

kl + 1

2d
(∂ld δik + ∂kd δil − ∂md gimgkl). (25)

After some calculations the modified geodesic equations
read:

ẍ i + Γ i
kl ẋ

k ẋ l = 1

2d
gim∂md − 1

d
ḋ ẋ i . (26)

The term on the right-hand side represents the contribution
of the conformal factor. Its second term merely affects the
speed parametrization of g-geodesics and it can be parame-
terized away. The first term induces an effective force field
which causes g̃-curves to bend in a different way compared
to g-geodesics. It is clear that the modified geodesic equa-
tions reduce to the ones related to the standard metric gi j if
the determinant d of the diffusion tensor is constant. This is
consistent with the fact that a constant conformal factor does
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not modify geodesics. Equation (26) shows that modifying
the metric in the way we propose does, in general, leads to
geodesic curves which are intrinsically different than those
obtained for the usual metric identification.

4 Experiments

4.1 Method

We obtain geodesic curves from the inverse, inverse sharp-
ened, and our newly proposed adjugate diffusion tensor. We
also perform experiments for the adjugate sharpened tensor
(see Appendix for the derivation). In particular, we use the
normalized sharpened diffusion tensor in [13]

(D sharp)
i j = d

1−n
3 (Dn)i j , (27)

where n > 1 is a constant. By using this normalization, the
determinant of the sharpened tensor is still given by the deter-
minant of the original diffusion tensor, i.e. tensor volume
is preserved. We consider n = 2, 4, representative values
employed in the literature [23,41]. In order to find the short-
est geodesic connecting a given target point to the seeding
region, we use the optimization strategy proposed in [28],
based on the fast sweeping algorithm introduced by Kao et
al. [22]. Our source code3 implements the multi-threaded
fast sweeping suggested by Zhao [43] and it is programmed
in C++/ITK. Fast sweeping is based on dynamic program-
ming, and it guarantees the convergence of iterative local
computations to the globally shortest geodesic.

Each iteration of the algorithm comprises an outer loop
that considers all possible “sweeping directions”, and an
inner loop that traverses all voxels according to the given
sweeping direction. The algorithm assigns to each visited
voxel the minimum cost of reaching it from a set of neigh-
bours following predefined spatial orientations, assuming
that seeding points have zero cost. As local cost, we use
the infinitesimal curve length function

L(x, ẋ) = (gi j (x)ẋ
i ẋ j )1/2, (28)

where again ẋ i = dxi/dt , and gi j is the inverse, the inverse
sharpened or the adjugate of the diffusion tensor. The mini-
mum cost and the spatial direction chosen are stored at each
voxel. The set of preferred orientations contains a vector field
which is “back-traced” (integrated) from the targets to the
seeding points, using an order two Runge-Kutta method, to
retrieve the desired geodesics.

The number of iterations fast sweeping takes to converge
depends on several factors, such as the number of neighbours

3 Our code is available at http://www.nitrc.org/projects/riemantract

Table 2 Mean and axial diffusivity values in CSF and white matter
(WM) in the corticospinal tract, expressed in units of 10−3 mm2/s.
Literature references are indicated in the table. WM–CST diffusivity
value in [29] corresponds to the posterior limb of the internal capsule
(PLIC), which contains a.o. corticospinal fibres

Regions MD λ‖

CSF 3.2 [1,7] –

WM–CST – 1.0 [29]

1.1 [8]

1.2 [21]

considered in the inner loop, the total number of voxels to
process and the curvature of the resulting geodesics, typically
ranging from several tens to few hundred iterations. Recall
that only a subset of geodesic curves corresponds to actual
fibres; therefore we refer to geodesics either as “candidate
fibres”, or simply as tracts.

4.2 Results on Synthetic Data

Wefirst demonstrate themethod on a noiseless synthetic DTI
data set. The fibres consist of rotated tensors with eigenval-
ues (λ1, λ2, λ3) = (1.5, 0.5, 0.5) × 10−3, where rotation
matrices are used to orient the tensor such that the principal
eigenvector is parallel to the closest part of the centerline.
Each voxel from which the distance to the centerline is
smaller than 1.5 voxels is considered to be part of the fibre.
The centerline is constructed by joining a half circle of radius
5 voxels, a horizontal straight line of length 5, a quarter cir-
cle of radius 8 and finally a straight vertical line of length
5. The surrounding tissue is comprised of isotropic tensors
with eigenvalues (λ, λ, λ), where λ is taken to be 3λ1.

We regard realistic values for λ and λ1, based on a collec-
tion of experimental DTImeasures in the literature. This case
is representative of the interface between white matter in the
corticospinal tract (CST) and the cerebrospinal fluid (CSF) in
the ventricles.We consider axial diffusivity4 values λ‖ within
the CST as principal eigenvalue λ1 of the anisotropic fibre
glyphs. On the other hand, we take the mean diffusivity in
CSF as λ, since MD = (Tr D)/3 and in an isotropic region
D = diag(λ, λ, λ). From Table 2 it can be seen that the rela-
tion λ = 3λ1 is a good estimate in this scenario. Noiseless
experiments are shown in Fig. 1.

Next we perform experiments on noisy synthetic data,
obtained by adding Rician noise. We consider two different
noise levels,σ = 0.15 andσ = 0.3,withσ the standard devi-
ation of the underlying Gaussian distribution. We compare
geodesic curves from the inverse and adjugate diffusion ten-
sor, in three different cases: no sharpening, sharpening factor

4 By definition λ‖ = λ1.
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Fig. 1 Results on synthetic noiseless data, for metrics given by the
inverse diffusion tensor (black) and the adjugate diffusion tensor
(magenta) in the cases a unsharpened diffusion tensor, b sharpening
factor n = 2 and c sharpening factor n = 4. Background and fibres are
RGB colour coded based on the direction of the diffusion tensor main
eigenvector. Inverse tensor geodesics fail to describe fibres except for
n = 4. Adjugate tensor geodesics follow the fibres well, and (higher)
sharpening improves results further (Color figure online)

n = 2 and sharpening factor n = 4 (denoted by (a), (b) and
(c), respectively in Figs. 1, 2, 3). We consider separately the
U-fibre and the longer, less curved upward tract. In the first
case, we seed from the lower middle voxel to the upper mid-
dle one; in the second case we use the latter as seed point.
We visualize the obtained tracts using vIST/e [42]. Hereby,
we depict geodesics from inverse diffusion tensors in black,
while we use magenta for those from adjugate diffusion ten-
sors. Noisy data experiments are shown in Figs. 2 and 3.

For both theU- and the longer fibres, we see that geodesics
from the inverse (unsharpened) diffusion tensor take a short-
cut through the isotropic background, completely failing to
describe the fibres in all situations (Figs. 1a, 3a). When a
sharpening factor n = 2 is used this is still the case for
the inverse sharpened tensor, except for the longer fibre and
σ = 0.15 (Fig. 2b). The latter geodesic, however, degrades
for σ = 0.3, taking again a shortcut through the isotropic
background (Fig. 3b). When the higher sharpening factor
n = 4 is used geodesics from the inverse sharpened tensor
nicely follow the synthetic tracts, although a slight degra-
dation is observed for σ = 0.3 (Fig. 3c). This effect for
sharpened metrics had been shown in [38], for a sharpening
power n = 2 (and a slightly different normalization factor
in Eq. (27)), and in [19] for n = 3. In the latter, however,
the isotropic background has been masked out. Note that we
obtain good sharpening results in the case n = 4 but not for
n = 2, in contrast to [38].

On the other hand, geodesics from adjugate tensors, with
or without sharpening, follow the synthetic fibres rather well
in all scenarios and without taking shortcuts through the
isotropic background. As in the n = 4 inverse tensor case,
a slight degradation is observed for the n = 4 adjugate
sharpened tensor σ = 0.3 (Fig. 3c). Comparing geodesics
from the adjugate unsharpened tensor (Figs. 1a, 3a) and the
n = 4 inverse or adjugate sharpened tensor (Figs. 1c, 3c), we
observe that the sharpenedones follow thefibresmore closely
in the noiseless case. However, in the σ = 0.3 case these
degrade by taking a shortcut of about one voxel, while the
adjugate unsharpened ones remain almost unchanged. Sharp-
ening thus appears to decrease the robustness to noise. This
shortcoming of sharpened tensors had already been pointed
out in [19].

4.3 Results on Real Data

We consider a diffusion MRI data set with 64 gradient direc-
tions and a b-value of 3000 s/mm2; the dimensions are
128 × 128 × 60 and the voxel size is 1.75 × 1.75 × 2 mm3,
corresponding to a patient with a tumour located next to the
ventricles. We have segmented the cerebrospinal fluid inside
the ventricles, together with the tumour. We seed from the
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Fig. 2 Results on synthetic data with Rician noise of σ = 0.15 (stan-
dard deviation of the underlying Gaussian distribution), for metrics
given by the inverse diffusion tensor (black) and the adjugate diffu-
sion tensor (magenta) in the cases a unsharpened diffusion tensor,
b sharpening factor n = 2 and c sharpening factor n = 4. Colour
coding as in Fig. 1. Again, inverse tensor geodesics fail to describe
fibres except for n = 4, although the longer fibre n = 2 tracking does
improve w.r.t. the noiseless case. Adjugate tensor geodesics follow the
fibres well, and (higher) sharpening improves results further. The U-
fibre adjugate n = 4 tracking degrades slightly w.r.t. the noiseless case
(Color figure online)

Fig. 3 Results on synthetic datawithRician noise ofσ = 0.3 (standard
deviation of the underlying Gaussian distribution), for metrics given by
the inverse diffusion tensor (black) and the adjugate diffusion tensor
(magenta) in the cases a unsharpened diffusion tensor, b sharpening
factor n = 2, and c sharpening factor n = 4.Colour coding as in Fig. 1.
Inverse tensor geodesics fail to describe fibres except for n = 4. Adju-
gate tensor geodesics follow the fibres well, and sharpening improves
only U-fibre n = 2 results. The U-fibre n = 4 tracking degrades w.r.t.
the case σ = 0.15, especially for the inverse sharpened tensor; unsharp-
ened and n = 2 adjugate results do not change. For n = 2, the longer
fibre outcome degrades w.r.t. the case σ = 0.15, especially for the
inverse sharpened tensor; for n = 4 it does so slightly for both the
adjugate and the inverse sharpened tensor (Color figure online)
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Table 3 Parameter values used for deterministic andprobabilisticCSD-
based fibre tracking as implemented in the MRtrix package

Parameters Deterministic CSD Probabilistic CSD

Step size 0.5 mm 0.2 mm

Minimum radius
of curvature

0.5 mm 2 mm

FOD amplitude
cutoff

0.1 0.15

FOD amplitude
cutoff for initiation

0 0

cerebral peduncles to a number of target points in the motor
cortex, and in the cingulum region.We visualize the obtained
tracts using 3D Slicer [34].

We also present higher order model tractography experi-
ments on this data set. In particular, we use the MRtrix pack-
age [40] to perform constrained spherical deconvolution-
based [39] deterministic and probabilistic fibre tracking. The
algorithm either follows the peaks of the FOD, the fibre
orientation distribution (deterministic) or uses orientations
sampled from the FOD at each step (probabilistic). Optimal
parameter values are selected by visual inspection and are
given in Table 3. The cerebral peduncles are again used as
a seed region and only fibres reaching the motor cortex are
selected. Obtained results are visualized with vIST/e [42].

In Figs. 4, 5 and 6, we show candidate fibres reaching the
trunk and foot motor area of the cortex (upward bundle) and
the lip area (bundle bending to the left), which ought to cor-
respond to the corticospinal and corticobulbar tracts. Results
above the ventricles are clearly consistent with the left and
right cingulum. In Fig. 4, we show tractography results for
metrics given by the inverse and adjugate diffusion tensor,
and the outcome for inverse sharpened diffusion tensors is
given in Fig. 5. Results obtained with our approach, Fig. 4b,
seem to better resemble the anatomy of the stipulated white
matter bundles. Additionally, the curvature of the candidate
fibres is smoother and the bundles are more coherent. A par-
ticularly interesting result is the fact that our candidate fibres
circumvent the ventricles, known to be void of fibres, while
most of the ones obtained with other approaches go through
them. Note that for inverse sharpened tensors, Fig. 5, less
bundles cross the CSF than in the original diffusion tensor
case, Fig. 4a. Still, the problem is not completely overcome,
as is the case in our approach, Fig. 4b. These results are
consistent with our synthetic data experiments in the case
of sharpening power 2, Fig. 5a, but worst than expected for
sharpening power 4, Fig. 5b. This is likely to be explained by
the presence of noise in real data, since sharpening decreases
the robustness to noise aswe have seen in the synthetic exper-
iments.

In Fig. 4, we also see that our tracts do not go through
the tumour. This is consistent with our findings concerning

Fig. 4 Candidate fibres possibly corresponding to corticobulbar and
corticospinal tracts (brown and blue, respectively), and cingulum (red),
in an anterior view. No candidate fibres shown in-between since we do
not consider target points in that part of the cortex. A tumour is located
next to the ventricles on the left-hand side. Results for metric given
by a inverse diffusion tensor and b adjugate diffusion tensor. Candidate
fibres going through the ventricles or the tumour are indicated by yellow
and white arrows, respectively. Bundles obtained with our approach, in
b, avoid both the CSF in the ventricles and the tumour (Color figure
online)

the CSF since diffusion in tumours is usually also isotropic.
Our results may reflect real fibres being pushed aside by a
tumour, or white matter integrity inside the tumour having
been destroyed. In contrast to the ventricles case, however,
fibres might be found within a tumour and therefore we can-
not draw any decisive conclusions about the validity of our
results in this sense.
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Fig. 5 As in Fig. 4, but now showing results for metric given by
a inverse sharpened diffusion tensor d1/3D−2 and b inverse sharp-
ened diffusion tensor dD−4. Note that results from sharpened tensors
improve compared to those without sharpening in Fig. 4a (i.e. less tracts
cross isotropic diffusion regions), but the problem is not completely
overcome as in our approach (Color figure online)

In Fig. 6,we show results for ametric given by the adjugate
sharpened tensor. Note that the outcome improves drastically
compared to that from inverse sharpening in Fig. 5, to the
extent that none of the tracts cross isotropic diffusion regions
in this case. Results appear to be very similar to those from
the adjugate diffusion tensor in Fig. 4b.

In Fig. 7, we show CSD-based deterministic and prob-
abilistic tractography results for the corticospinal tract,
together with those obtained from geodesic tractography
based on the adjugate diffusion tensor. In all cases, fibres
circumvent the ventricles. However, a noticeable difference
is that CSD fibres do not reach the anterior part of the (right)

Fig. 6 As in Fig. 5, but now showing results for metric given by a
adjugate sharpened diffusion tensor d4/3D−2 and b adjugate sharpened
diffusion tensor d2D−4. Note that results from adjugate sharpened ten-
sors improve drastically compared to those from inverse sharpening in
Fig. 5 (i.e. none of the tracts cross isotropic diffusion regions). The out-
come is very similar to that from the adjugate diffusion tensor, Fig. 4b
(Color figure online)

motor cortex. This could be achieved by tuning the parame-
ters (step size 0.5 mm, minimum radius of curvature≥5 mm,
FOD amplitude cutoff ≤0.01 mm), but results in unrealisti-
cally straight fibres crossing the ventricles and jumping from
one hemisphere to the other.

4.4 Intuition Behind Results

The rather different behaviour of the metrics given by the
inverse and adjugate diffusion tensor can be intuitively
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Fig. 7 CSD-based tractography results for the corticospinal tract (yel-
low), together with those obtained by geodesic tractography from the
adjugate diffusion tensor (blue). aDeterministic CSD and b Probabilis-
tic CSD. In all cases, fibres circumvent the ventricles. CSD fibres do not
reach the anterior part of the (right) motor cortex (Color figure online)

explainedby the following argument,where for simplicitywe
regard the case with no sharpening. Consider two neighbour-
ing voxels with a typical diffusion tensor D = diag(λ, λ, λ)

in an isotropic region and D = diag(λ1, λ2, λ3), with λ1 >

λ2 = λ3, in a vertically oriented fibre bundle (see Fig. 8).
To fix ideas, we take as example the case λ = λ1. Using the
classical metric, the Riemannian cost (Eq. 28) of (travelling
along) an infinitesimal vertical line element scales with 1/λ1.
In this case, the classical metric clearly assigns the same cost
to the isotropic and anisotropic line elements, since direc-
tional diffusivities (lengths of the vertical lines) are equal
in both cases. Using the newly proposed metric, however,

Fig. 8 Graphical sketch of the quadratic forms corresponding to a typ-
ical diffusion tensor D in an isotropic region (left) and in a vertically
oriented fibre bundle (right); the vertical axis corresponds to λ = λ1
(Color figure online)

the Riemannian cost of the same line elements scales with
λ2λ3, the area of the orthogonal cross section indicated by
the shaded equatorial planes. This is clearly smaller in the
anisotropic case, leading to a smaller cost. Therefore, the
adjugate tensor metric favours the anisotropic tract over the
isotropic one.

This argument clearly holds as well when isotropic diffu-
sivities are larger than the anisotropic ones (λ > λ1) as in
the presented synthetic experiments and (often) in real diffu-
sion data, since the isotropic cost becomes even larger. In this
case, the isotropic region is preferred by the classical metric
since its Riemannian cost, related to 1/λ, is smaller than the
anisotropic one, 1/λ1. In fact, the classical metric is only able
to avoid isotropic regions when λ < λ1. Our metric favours
anisotropic regions up to the limit λ ≤ λ2, λ3. In this sce-
nario, the area of the orthogonal cross section in the isotropic
case becomes equal to or smaller than the anisotropic one,
and so does the Riemannian cost. However, such scenarios
seemingly take place in real data only in the case of com-
plex architecture, where DTI fails to describe the underlying
diffusion profiles in any case.

5 Conclusion

We have proposed a newRiemannian metric in the context of
diffusion tensor imaging, namely, the adjugate of the diffu-
sion tensor. In the sharpening framework, this translates into
a metric given by the adjugate of the (normalized) sharp-
ened tensor. This is derived in a rigorous way from the
relation between anisotropic diffusion in Euclidean space
and isotropic diffusion in the corresponding curved space.
Our metric represents solely diffusion, the process which is
encoded in the diffusion MRI signal, in contrast to the stan-
dard DTI metric which leads to additional convection in the
curved space.
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We show results of geodesic tracking on synthetic and
real brain diffusion data, based on our new metric and other
established ways to extract the metric from the diffusion ten-
sor, and also compare our results to constrained spherical
deconvolution (CSD). Note that isotropic diffusion regions
are not masked out in a preprocessing step. Moreover, we
regard a realistic synthetic scenario based on experimental
DTI measures in the literature.

Results on synthetic data show that geodesics from the
inverse diffusion tensor fail to describe the fibres for both
clean and noisy data when either a low sharpening factor
(n = 2) or no sharpening is used. They do succeed for a
higher sharpening factor (n = 4), although a slight degra-
dation is observed in the presence of noise. Geodesics from
adjugate tensors, with and without sharpening, follow the
synthetic fibres rather well in all scenarios andwithout taking
shortcuts through the isotropic background. Again, a slight
degradation with noise is observed for a high sharpening
factor (n = 4). Comparing geodesics from the adjugate
unsharpened tensor and the n = 4 (inverse or adjugate)
sharpened tensor, we observe that the sharpened ones fol-
low the synthetic fibres more closely in the noiseless case.
However, we see that sharpening decreases the robustness to
noise, as has been pointed out in the literature. We observe
that adjugate tensors are less sensitive to noise than inverse
tensors, in particular for no sharpening or low sharpening
factor.

In real brain data, tracts obtained with our adjugate
metric, with and without sharpening, avoid isotropic dif-
fusion regions such as ventricles. Experiments show that
this is definitely not the case for the standard DTI met-
ric, and only sometimes for metrics given by the inverse
sharpened diffusion tensor. These results are consistent with
the synthetic experiments outcome. The presence of noise
in real data seemingly negatively affects inverse sharp-
ened tensors, while this does not appear to be the case
for adjugate tensors. We therefore conclude that the adju-
gate framework leads to better results, also in the case
of sharpening. The positive performance of our adjugate
approach on real diffusion data agrees with the recent lit-
erature [36].

Finally, we obtain comparable results for the corticospinal
tract from the adjugate tensor method and (determinis-
tic and probabilistic) CSD tractography. The only notice-
able difference being that CSD tracts do not reach the
anterior part of the motor cortex but one cannot draw
strong conclusions from this since ground truth is not
available.

In terms of practicalities, in our approach, there are no free
parameters such as the sharpening power or those related to
the fibre orientation distribution in CSD. These parameters
have to be chosen in an ad hocway and a globally satisfactory
setting might not exist, which can be a disadvantage. On the

other hand, such free parameters do offer some flexibility to
model the diffusion data.

In future work, we will evaluate our adjugate method for
geodesic tractography of subcortical U-fibres. Based on the
performed experiments, we would expect to recover such
fibres relatively well, which is not the case for classical dif-
fusion tensor tractography methods [9]. In addition, it has
been shown that DTI geodesic tractography results improve
by using a multivalued geodesic algorithm [38]. This aspect
could also be evaluated in our case by employing such an
algorithm instead of fast sweeping. It would also be interest-
ing to compare our method to the deconvolution sharpening
in Descoteaux et al. [11], and to the different Riemannian
approach in Hao et al. [19].

The method we propose is based on DTI, which is well
known to suffer shortcomings in regions of complex fibre
architecture. However, higher order diffusion models may
benefit from our approach as well, provided one can define
a proper metrical distance. For example, the framework
proposed in [14] stipulates a Finsler metric for geodesic trac-
tography in HARDI, which can in principle be adapted in a
similar way to our modification of the Riemannian metric in
DTI.
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Appendix

We recall the definition of the sharpened diffusion tensor
proposed in [13]

(D sharp)
i j = d

1−n
3 (Dn)i j (29)

where n > 1 is the sharpening power and d = det Di j . Due
to the normalization factor we have that

det (D sharp)
i j = d

(
1−n
3

)3

dn = d (30)

We consider a metric given by the adjugate of the sharpened
diffusion tensor:

ĝi j = d(D sharp)i j = d
n+2
3 (Dn)i j (31)
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Here (D sharp)i j denotes the inverse sharpened tensor. Note
that ĝ = det ĝi j = d2. The corresponding Laplace–Beltrami
operator, Eq. (7), is given by

�ĝ = 1
√
ĝ

∂ j

(√
ĝgi j∂i

)
= 1

d
∂ j

(
d

1−n
3 (Dn)i j∂i

)
(32)

which may be split as

�ĝ = 1

d
d

1−n
3 (Dn)i j∂i∂ j + 1

d
∂ j

(
d

1−n
3 (Dn)i j

)
∂i (33)

The diffusion generator

L3
def= �ĝ (34)

is, by construction, an intrinsic Laplacian. The diffusion
process associated with L3 is thus a Brownian motion on
(M, ĝ).

Remark The adjugate sharpened diffusion tensor relates
properly to Brownian motion if and only if the sharpened
tensor is normalized such that its determinant coincides with
that of the original diffusion tensor, as in Eq. (29). Adju-
gate versions of sharpened tensors such as those proposed in
[23,38,41] will not lead to Brownian motion.
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