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Abstract In this paper we introduce an affine invariant dis-
tance definition froma2D point to the boundary of a bounded
shape using morphological multiscale analysis. We study the
mathematical behavior of this distance by examining sepa-
rately the cases of convex and non-convex shapes. We prove
that the proposed distance is bounded in the convex hull of
the shape and infinite otherwise.A numerical scheme is given
as well as experiments illustrating the behavior of the affine
invariant distance.

Keywords Multiscale analysis · Scale space · Affine
invariance · Distance map

1 Introduction

In this paper we address the problem of defining an affine
invariant distance to a shape, in the realm of morphological
multiscale analysis. The search for affine invariants in image
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analysis is motivated by the necessity of obtaining local
image descriptors invariant to perspective changes, which
causes local affine distortion of objects. The most celebrated
such affine invariant descriptor is MSER, proposed in [16]. It
extracts the well-contrasted connected components of level
sets of the image and applies to them a global normalization.
Nevertheless this method is not combined with a multiscale
analysis in the sense that no previous smoothing is involved.
It is a semi-global method, as it is based on whole connected
components. Scale space theory has led to several similar-
ity invariant shape and image local descriptors. The SIFT
method [15] has been acclaimed for its efficiency. It has some
practical partial affine invariance, but is theoretically only
similarity invariant [21]. The ASIFT method [26] is theoret-
ically proved to be fully affine invariant [20], but it is a brute
force method simulating not less than three affine parameters
to reach affine invariance. Since affine invariance requires
invariance to six parameters, the royal way to achieve local
descriptorwould be affinenormalization, but the only attempt
to do is the Hessian affine descriptor [17] which has never
been justified mathematically. Thus the question of extract-
ing directly local and reliable affine invariant information
from an image or from a shape is still a valid challenge.
Here our goal is to involve the existence of affine invariant
PDEs to define an affine invariant topography for a shape
(understood as a bounded 2D set). We shall not focus on
the potential applications, which are left to future work. We
focus here on the theory and justification for the existence of
affine local distances to shapes, obtained by a PDE. In [4],
the authors showed that under some minimal architectural
assumptions, all the contrast and similarity invariant image
multiscale analyses are generated by the partial differential
equation
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∂u

∂t
= β(t · curv(u)) ‖∇u‖ , (1)

where β(.) is a nondecreasing function and curv(u)(x, y) is
the curvature of the level line passing by the point (x, y),

namely curv(u) := div
( ∇u

‖∇u‖
)

. Conversely, given a contin-

uous nondecreasing function β, and provided the viscosity
solution theory for this particular functionβ holds, the Eq. (1)
defines a uniquemultiscale analysis endowedwith the above-
mentioned invariance properties and is applicable to any
uniformly continuous function on the plane. The existence
of viscosity solutions has been proved for the classic case
of power functions β(s) = sα . We refer to [18] for detailed
references on the subject and for a numerical analysis of the
equation understood as a curve evolution. The particular case
α = 1/3 was studied in detail in [5] and its numerical analy-
sis is detailed in [8]. In the case α = 1 a proof was given
in [7] that the curve evolution of the level lines of an image
by curvature shortening is strictly equivalent to moving the
image by curvature motion (1). This proof is extendable to
other powers provided a classic solution exists for the cur-
vature shortening equation, which is granted for α > 1/3.
Numerical schemes for arbitrary powers of curvature are also
considered in [14,25], including the case α = 1

3 .
Let f be an initial data function. Under the above-

mentioned condition of existence of a viscosity solution
theory for the equation, the nonlinear partial differential
equation (1) generates a multiscale analysis T β

t ( f ) given by

u(t, x, y) = T β
t ( f )(x, y).

According to the morphological principle and provided the
existence and uniqueness of solutions are granted for the
choice of β, each level value l ∈ R, T β

t ( f ) generates an
intrinsic curve evolution given by the collection of level set
curves:

C(t) = ∂S(t),

where

S(t) = {(x, y) : T β
t ( f )(x, y) ≤ l}.

In what follows we will fix that the curves we are interested
in correspond to l = 0. Due to the morphological invariance
(also called level set principle [22]), the evolution of C(t)
only depends on the geometry of C0 ≡ C(0) = ∂{(x, y) :
f (x, y) ≤ 0} and it is independent of the particular surface
f (x, y) where C0 is embedded.
It is well known (see for instance [13]) that if we choose

β(s) ≡ 1 in (1) then the Euclidean distance dE ((x, y),C0)

of a point (x, y) ∈ S0 to C0 can be computed as

dE ((x, y),C0) = sup
{
t ≥ 0 : T β

t ( f )(x, y) ≤ 0
}

. (2)

In the same way if (x, y) /∈ S0 and β(s) ≡ −1 then

dE ((x, y),C0) = sup
{
t ≥ 0 : T β

t ( f )(x, y) ≥ 0
}

. (3)

The main goal of this paper is to study the generalization
of the above expressions to define an affine invariant dis-
tance using the affine invariant multiscale analysis. In [4] the
authors showed that all affine invariant morphological mul-
tiscale analyses are given by the following choice for β(s)

β(s) =
{

β1s
1
3 if s ≥ 0

−β−1(−s)
1
3 if s < 0,

(4)

where β1, β−1 ≥ 0. These particular cases are well studied
and grant the existence and uniqueness of a viscosity solution
for the PDE (see [4,9]). Affine invariant multiscale analyses
in terms of curve evolution have been introduced in [23] and
[24]. The existence theory of a classic affine curve evolu-
tion was completed in [5]. The level set formulation in the
sense of Osher and Sethian [22] for the affine invariant mul-
tiscale analysis was developed in [2–4]. In [19], the author
introduced an affine invariant area distance yielding approx-
imation scheme of affine invariant curve evolution using a
polygonal approximation.

Affine invariance means that for any affine transformation
H(x, y) = A · (x, y)T + (cx , cy)T where A is a 2×2 matrix
with |A| �= 0, the multiscale analysis satisfies:

T β

t ′(H,t)( f )(H(x, y)) = T β
t (H( f ))(x, y). (5)

In addition, it is proved in [4] that if β(s) is given by (4) then

t ′(H, t) = t
√|A|. (6)

In this paper we are going to use two particular affine mul-
tiscale analyses which correspond to adequate combinations
of the parameters β1 and β−1. The first one, that we will use
to define the affine distance inside the shape, is given by

β+(s) = (s+)
1
3 , (7)

where s+ = max{s, 0}. The second affinemultiscale analysis
that wewill use to define the affine distance outside the shape
is given by

β−(s) = −(−s−)
1
3 , (8)

where s− = min{s, 0}. Using these affine multiscale analy-
ses, we define the affine distance from a point (x, y) to the
boundary C0 of a shape S0 by
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dA((x, y),C0) =⎧⎨
⎩
sup

{
t ≥ 0 : T β+

t ( fS0)(x, y) ≤ 0
}

if (x, y) ∈ S0

sup
{
t ≥ 0 : T β−

t ( fS0)(x, y) ≥ 0
}

if (x, y) /∈ S0.

(9)

Here fS0(x, y) is any function such that S0={(x, y): fS0(x, y)
≤ 0}. First we shall prove that, formally, dA((x, y),C0) is
an affine invariant (modulus a constant factor).

Theorem 1 Let H(x, y) = A · (x, y)T + (cx , cy)T be an
affine transformation, C0 the boundary of a shape S0 and
dA((x, y),C0) defined by (9) then if H(S′

0) = S0 and C ′
0 =

∂S′
0 we have, that for any point (x, y),

dA(H(x, y),C0) = √|A|dA((x, y),C ′
0).

Proof First we consider the case H(x, y) ∈ S0. Using (9)
and (5), (6), we obtain

T β+
t
√|A|( fS0)(H(x, y)) = T β+

t
(
fS′

0

)
(x, y)

and therefore

dA((x, y),C ′
0) = sup

{
t ≥ 0 : T β+

t ( fC ′
0
)((x, y)) ≤ 0

}

= sup
{
t ≥ 0 : T β+

t
√|A|( fC0)(H(x, y)) ≤ 0

}

= 1√|A| supt>0

{
t ≥ 0 : T β+

t ( fC0)(H(x, y)) ≤ 0
}

= dA(H(x, y),C0)√|A| .

In the case H(x, y) /∈ S0 we get the same conclusion using
the definition of dA(H(x, y),C0) when H(x, y) is outside
S0. ��

In order to study themathematical properties of dA((x, y),
C0)we are first going to study the case of convex shapes. We
will then extend the study to the general case of non-convex
shapes.

The organization of the paper is as follows: In Sect. 2,
we study the mathematical properties of the proposed affine
invariant distance in the case of convex shapes. In Sect. 3,
we study the case of general non-convex shapes. In Sect. 4,
we present the discretization of the affine multiscale analy-
sis we use to compute numerically the affine distance and
some experiments to illustrate the behavior of the proposed
distance function and finally in Sect. 5 we present some con-
clusions.

2 Affine Invariant Distance for Convex Shapes

There are several ways to define an affine distance from a
point to the boundary of a shape. A simple way is to perform

shape normalization as explained in [11] and [6] where the
authors prove the validity of a classic affine invariant shape
normalization based on shape regular moments invented by
Hu in 1962 [12].Once the shape is normalized, one can define
an affine invariant distance by taking the usual Euclidean
distance in the normalized space. The main limitation of this
definition is that it depends globally on the geometry of the
shape. In [10], in the case of convex shapes, the authors used
an affine invariant distance definition based on the affine arc-
length parametrization of the shape contour boundary.

First of all we need to justify the surprising fact that the
distance of a point to a single convex set must be infinite.

Lemma 1 Let d be an affine invariant distance of a point to
set satisfying the (obvious) prerequisites:

A ⊂ B ⇒ d((x, y), A) ≥ d((x, y), B); (10)

For every λ > 0, d(λ(x, y), λA) = λd((x, y), A) (11)

d((1, 0), {(x, y) | x < 0}) > 0. (12)

Then for any point (x, y) and any convex set C such that
(x, y) /∈ C, we have d((x, y),C) = +∞.

Proof Since we can always replace the convex set C by a
half plane containing it and excluding the point, it is enough
to develop our argument in that particular case. Consider for
example the point (1, 0) in the Euclidean plane and the half
plane C := {(x, y) | x < 0}. Applying to the whole figure

an affine map A =
(
a 0
0 a−1

)
, with determinant 1, we notice

that the half plane is invariant by A, while the point (1, 0)
is changed into (a, 0). It follows that we can let a → +∞,
while by the affine invariance the distance of the point to the
plane should not change. By the scale covariance assumption
we deduce that the distance of all points (x, y) with x > 0 to
the half plane x < 0 must be a (positive) constant invariant
by the multiplication by any λ > 0. Thus it is equal to +∞.

��

Properties of the Interior Distance to a Convex Set Let S0 be
a bounded convex set. We embed S0 in a surface fS0(x, y)
such that fS0(x, y) < 0 is inside S0 and fS0(x, y) > 0 is
outside. Thenwe consider the curve evolution S(t) generated
by the affine multiscale analysis associated to (7). In [24]
it was proved that if C(t) = ∂S(t) is the curve evolution
associated to this affine invariant multiscale analysis then
C(t) satisfies the following properties:

1. C(t) remains convex for all t > 0,
2. The curvature k satisfies that k ≥ 0 for any point of C0

and for any t > 0, k > 0 for any point of C(t).
3. C(t) vanishes in a finite time. That is C(t) is the empty

set if t is big enough.
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Fig. 1 Illustration of a corner contourCα
0 and its evolutionCα(t) under

the action of the affine multiscale analysis

4. For any t ′ > t, S(t ′) ⊆ S(t).

Since C(t) vanishes in finite time, for any point (x, y) ∈ S0
we have dA((x, y),C0) < ∞. Next, to obtain estimations of
the curve motion velocity (specially in points where k = 0).
We are going to use a particular collection of solutions of
the affine invariant multiscale analysis: we consider Cα

0 the
curve associated to a corner contour with angle α given by

Cα
0 =

{
(x, y) ∈ R2 : y = 1

tan
(

α
2

) |x |
}
,

in [1], authors showed that the evolution of Cα
0 under the

action of the affine multiscale analysis associated to (7) is
given by the hyperbola branch:

Cα(t) =
{

(x, y) ∈ R2 : y =
√

t2

tan
(

α
2

) + x2

tan2
(

α
2

)
}

.

(13)

Figure1 illustrates the curves Cα
0 and Cα(t). We denote by

Sα
0 the inside region of the corner.
Let S0 be a convex-bounded shape, C0 = ∂S0, and by an

Euclidean transformation E : R2 → R2 we say that E(Cα
0 )

is a tangent corner to C0 if C0 ⊆ E(Sα
0 ) and C0 intersects

both corner bounding lines.

Lemma 2 Let S0 be a convex-bounded set, C0 = ∂S0, C(t)
the curve evolution generated by the affine multiscale analy-
sis associated with β+(s) defined in (7), E(Cα

0 ) a tangent
corner to C0, (x0, y0) ∈ E(Cα

0 ) ∩ C0, and (x0(t), y0(t)) the
nearest intersection point of C(t) with the normal line to C0

passing by (x0, y0). Then, if t > 0 is small enough

‖(x0(t), y0(t)) − (x0, y0)‖

≥
⎧⎨
⎩

∣∣∣∣ dλ−
√

d2λ2+t2λ(1−λ2)

(1−λ2)

∣∣∣∣ if λ �= 1

t2
2d if λ = 1,

Fig. 2 Illustration of the notation and result of Lemma 2

where λ = 1
tan( α

2 )
and d is the distance from (x0, y0) to the

corner vertex (Fig. 2 illustrates the Lemma’s notation and
result).

Proof We shall use the shape comparison principle (which
follows from the maximum principle) for all curvature
motions. It simply states that curvaturemotion is shape inclu-
sion preserving, namely C0 ⊆ E(Sα

0 ) ⇒ C(t) ⊆ E(Sα(t)).
Using (13) we can compute the intersection (xα

0 (t), yα
0 (t))

of the normal line to C0 passing by (x0, y0) with Cα(t) and
a straightforward computation yields

‖(x0(t), y0(t)) − (x0, y0)‖ ≥ ∥∥(xα
0 (t), yα

0 (t)) − (x0, y0)
∥∥

=
⎧⎨
⎩

∣∣∣∣ dλ−
√

d2λ2+t2λ(1−λ2)

(1−λ2)

∣∣∣∣ if λ �= 1

t2
2d if λ = 1.

Notice that if t > 0 is small enough the normal line intersects
Cα
0 . ��

Next, we are going to show that the distance of a point to
the curve is equal to zero if the point belongs to the curve.

Lemma 3 Let S0 be a convex-bounded shape, C0 = ∂S0 and
C(t) the curve evolution generated by the affine multiscale
analysis associated with β+(s) defined in (7), then for any
point (x, y) ∈ S0 :

dA((x, y),C0) = 0 ⇔ (x, y) ∈ C0.

Proof Since C0 is a convex Jordan curve, for any point
(x, y) ∈ C0 there exists a tangent corner E(Cα

0 ) such that
(x, y) ∈ E(Cα

0 ) ∩ C0. Then, using the previous Lemma we
obtain that for any t > 0 S(t) ∩ C0 = φ which concludes
the proof. ��
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3 Affine Invariant Distance for Non-Convex Shapes

To define the affine invariant distance of a point to the bound-
ary of a bounded non-convex shape S0 we will consider
separately the case of points inside or outside S0.

3.1 Affine Invariant Distance for Points Inside the
Non-Convex Shape

Defining the affine distance, dA((x, y),C0), for a point (x, y)
inside a non-convex shape S0 involves the affine multiscale
analysis associated with β+(s) defined in (7). Note that in the
concave part of the shape where the curvature k is negative,
β+(k) = 0 and therefore the curve could not initially move
in these concave parts. The expected behavior in this case is
that initially only the convex parts of the curve move and the
concave parts of the initial shape become convex under the
action of the motion of the convex parts. Next we show some
mathematical properties of dA((x, y),C0)whenwedealwith
points inside a non-convex shape.

Lemma 4 If C0 is the boundary contour of a bounded shape
S0, and (x, y) ∈ S0 then dA((x, y),C0) < ∞.

Proof Since S0 is bounded, there exists an ellipse Ce
0 such

that S0 ⊆ Se0. Thenwe obtain by the shape inclusion principle
that S(t) ⊆ Se(t). The statement of the Lemma follows,
because Se(t) is a collection of ellipses that vanishes in finite
time [5]. ��

One can also observe that β+(s) ≥ 0 for all s, and there-
fore for any t ′ > t ≥ 0 S(t ′) ⊆ S(t). However the condition

dA((x, y),C0) = 0 ⇔ (x, y) ∈ C0

is in general not true due to the fact that initially, in points
where the curvature is negative, the curve does not move.

3.2 Affine Invariant Distance for Points Outside the
Non-Convex Shape

The affine distance outside a non-convex shape uses the affine
multiscale analysis associated with β−(s) defined in (8). We
shall explore the properties of dA((x, y),C0) in that case.

Lemma 5 Let S0 be a bounded shape, the collection of sets
S(t) generated by the affine multiscale analysis associated
with β−(s) defined in (8) satisfies

S(t) ⊆ S(t ′) ⊆ Hull(S0)

for any t ′ > t ≥ 0, where Hull(S0) is the convex hull of S0.

Proof Since β−(s) ≤ 0 then for any t ′ > t ≥ 0 we get
S(t) ⊆ S(t ′). On the other hand the boundary of Hull(S0),

is a convex curve with non-negative curvature k ≥ 0, and
therefore, since β−(k) = 0, for k ≥ 0 such curve does not
move under the action of the multiscale analysis and by the
shape inclusion principle we get S(t) ⊆ Hull(C0) for any
t ≥ 0. ��
Lemma 6 Let S0 be a bounded connected shape, and S(t)
the evolution of the shape under the action of the affine mul-
tiscale analysis associated with β−(s) is defined in (8). Then
S(t) converges towardsHull(S0). Furthermore, if (x, y) is an
interior point of Hull(S0) − S0, then dA((x, y),C0) < ∞.

Proof The collection of sets {S(t)}t>0 satisfies S(t) ⊆
Hull(S0) for any t ≥ 0 and for any t ′ > t ≥ 0 S(t) ⊆ S(t ′).
Thus S(t) increases and converges to a limit set S∞. On the
other handwe have S∞ ⊆ Hull(S0) and S∞ should be convex
because otherwise there would be some point on the bound-
ary of S∞ where the curvature could be negative, and the
multiscale analysis would move such a point, in contradic-
tion with the fact that S∞ is the limit of S(t). Therefore S∞ is
convex and since S0 is a connected set, then S∞ = Hull(S0)
and therefore for any interior point (x, y) of Hull(S0) − S0
there exists t > 0 such that (x, y) ∈ S(t) and therefore
dA((x, y),C0) ≤ t. ��

According to the previous Lemma, if a point (x, y) is
outside Hull(S0), then dA((x, y),C0) = ∞ (as it was shown
in Lemma 1). On the other hand the condition

dA((x, y),C0) = 0 ⇔ (x, y) ∈ C0

is in general not true. For instance, dA((x, y),C0) = ∞. for
any point (x, y) ∈ C0 ∩ Hull(S0)

4 Numerical Affine Distance Computation and
Experimental Results

To compute numerically the proposed affine distance given
by (9) first consider the case of points inside the shape S0.
Observe that using β+(s) given by (7), the partial differential
equation (1) becomes

ut =
(
t ·

((
uy

)2
uxx − 2uxuyuxy+(ux )

2 uyy

)
+

) 1
3

. (14)

In order to remove the t factor in the differential operator we
can apply the following change of variables

t̃ = 3

4
t
4
3

and the Eq. (14) becomes

ut̃ =
(((

uy
)2

uxx − 2uxuyuxy + (ux )
2 uyy

)
+

) 1
3

. (15)
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To compute the affine distance (9) the above partial differ-
ential equation can be discretized by the following standard
explicit finite difference schemes

un+1 − un

δt̃
=

(((
uny

)2
unxx − 2unxu

n
yu

n
xy+

(
unx

)2
unyy

)

+

) 1
3

,

here standard 3 × 3 masks are being used to approximate
the spatial derivatives of the function. We shall denote by
uni, j the solution of the above iterative scheme in the position
(i, j), where we consider that the spatial discretization step
h is equal to 1. We point out that in the case h �= 0 we
can normalize h using the spatial transformation (x, y) →
(x/h, y/h) and then the above numerical scheme becomes

un+1 − un

δt̃

=

⎛
⎜⎜⎜⎝

((
uny

)2
unxx − 2unxu

n
yu

n
xy + (

unx
)2

unyy

)

+
h4

⎞
⎟⎟⎟⎠

1
3

.

Observe that the above expression introduces a natural cou-
pling between time and space discretization steps given by

δt̃ = C · h 4
3 , (16)

where C > 0 is a constant.
To improve the numerical stability of the scheme, at each

iteration the solution uni, j is forced to satisfy a local com-
parison principle in the following way : denoted by Ni, j the
usual 8-point neighborhood of the pixel (i, j), at each itera-
tion, un+1

i, j is updated in the following way:

i f un+1
i, j > max

(k,l)∈Ni, j
unk,l then un+1

i, j = max
(k,l)∈Ni, j

unk,l

i f un+1
i, j < min

(k,l)∈Ni, j
unk,l then un+1

i, j = min
(k,l)∈Ni, j

unk,l .
(17)

Figure3 shows the solution of the above iterative scheme
for an initial shape given by the characteristic function of
an ellipse. This illustrates the influence of the updating step
given by (17): without this updating step the solution using
(15) shows a number of artifacts (visible as bright spots). On
the other hand, using the above explicit scheme, the computa-
tion of the affine distance inside the shape is straightforward:
after initializing dA(i, j) ≡ 0 for any pixel position (i, j),
u0i, j is defined by

u0i, j =
{−1 if (i, j) ∈ S0

1 if (i, j) /∈ S0.

Fig. 3 From left to right i an initial shape given by an ellipse, ii illus-
tration of the discrete solution of (15) without updating un+1

i, j using (17),

and iii illustration of the discrete solution of (15) updating un+1
i, j using

(17)

Then uni, j is computed iteratively and at each iteration
dA(i, j) is updated by

i f
(
uni, j < T

)
then dA(i, j) = dA(i, j) + δt̃,

where iterations stop when {(i, j) : uni, j < T } = ∅. Observe
that, theoretically, due to the morphological principle, the
solution should be independent of the value of the threshold
T (for T ∈ (−1, 1)). However, as illustrated in Fig. 3, the
numerical discretization introduces an artificial smoothing
effect around the shape boundary and therefore, in practice,
aswill appear below, the choice of the threshold T canmodify
the estimation of the affine distance dA(i, j).

In order to check the accuracy of the proposed discretiza-
tion scheme and the influence of the threshold T choice and
the updating step (17) we are going to use the explicit closed
form of solution of Eq. (14) in case the initial shape is an
ellipse. It is known that if S0 is an ellipse of major and minor
semi-axes given by a0, b0 > 0, then the evolution of the
ellipse under the action of the affinemultiscale analysis given
by (7) is an ellipse with the same eccentricity and semi-axes
given by

a(t) =
√
a0
b0

((√
a0b0

) 4
3 − t

4
3

) 3
4

;

b(t) =
√
b0
a0

((√
a0b0

) 4
3 − t

4
3

) 3
4

.

A straightforward computation yields the following expres-
sion of the affine distance through the direction of the ellipse
major semi-axis:
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Fig. 4 Evolution of the average error across the ellipse semi-axis when
the threshold T is modified using the discretization scheme including
the updating step (17)

dA((x, y),C0) =
⎛
⎜⎝

(√
a0b0

) 4
3 −

(
s(x, y)

√
b0
a0

) 4
3

⎞
⎟⎠

3
4

,

where s(x, y) is the Euclidean distance from the ellipse cen-
ter to (x, y). In the same way if (x, y) belongs to the line
passing by the ellipse center and oriented in the direction of
minor semi-axis then

dA((x, y),C0) =
((√

a0b0
) 4

3 −
(
s(x, y)

√
a0
b0

) 4
3
) 3

4

.

To show quantitative comparison results between the actual
and the approximate solutions when the initial shape is an
ellipse, one can use as error measure the average squared
distance between the actual and the approximated solution
through the ellipse semi-axis. In the experiments presented in
this paper we used an ellipse of semi-axis given by a0 = 56
and b0 = 28. First wemeasured the influence of the threshold
T choice. Figure4 shows the evolution of the average error
across ellipse semi-axis when we modify T using the dis-
cretization scheme including the updating step (17). Observe
that the optimum threshold value is around T = 0.07.

To measure the influence of the discretization step δt̃ and
the iteration updating step (17), Table 1 shows the average
error for several values of the time discretization steps δt̃ .
When δt̃ is small there is a significant improvement in the
error measure with the updating procedure (17). On the other
hand, the error tends to stabilize around δt̃ = 0.01. Figure5
shows the expected theoretical value ofdA(x, y) and the solu-
tions obtained by the discretization scheme with and without
using the updating step (17). There is no significant visual
difference between the actual solution and the discrete solu-

Table 1 The square average error through the ellipse main axis for
several time discretization steps δt̃ using threshold T = 0.07

δt̃ average error average error
without updating with updating
step (17). step (17).

0.5 16.29 12.56

0.1 3.437 3.71

0.05 0.768 0.239

0.01 0.596 0.135

0.005 0.596 0.1348

0.001 0.596 0.1346

tion using the updating step (17). In the case where such
updating step is not used, some spurious oscillations appear
near the ellipse center.

Next, we study the influence of the scheme’s spatial step
h, using the expression (16) to define a coupling between the
time and space steps. Table2 gives the results using different
values of the spatial discretization h. Observe that for high
values of h the ellipse boundary is approximated less accu-
rately, and therefore the error measure increases. For h < 1
the error increases with respect to h = 1. There are a number
of issues that can explain this behavior: first we use a smaller
time step. Thus, even if at each step we can expect a better
approximation of the solution, more iterations of the scheme
are needed to get the solution. Thus, due to the strong non-
linear behavior of the equation it is not clear if the global
solution approximation improves when h → 0+. Second, as
the ellipse is discretized, there are a number of interpolation
problems that could appear when h → 0+. Third, we use
a discrete characteristic function as level set approximation
of the initial ellipse. Even if theoretically the solution of the
equation should remain a characteristic function, it is well
known that a finite difference scheme introduces an artificial
diffusion. This diffusion effect is higher when the number of
iterations, which is the case when h → 0+.

An interesting advantage of this simple discretization
scheme is that it can be easily implemented using GPU pro-
gramming techniques which provide an efficient algorithm :
in a 512 × 768 image an iteration of this explicit numerical
scheme takes just 5.7995 ms.
To compute the affine distance outside S0 we used the multi-
scale analysis generated by the partial differential equation:

ut̃ = −
(

−
((
uy

)2
uxx − 2uxuyuxy + (ux )

2 uyy

)
−

) 1
3

,

(18)

The equation was discretized exactly in the same way as in
the previous case. Again the initialization was dA(i, j) ≡ 0.
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Fig. 5 Illustrating the values of the affine distance dA(x, y) through
the major and minor semi-axis of an ellipse. We present the expected
theoretical value (in red), the solution obtained by the discretization
scheme with the updating step (17) (in green) and without the updating
step (in blue). The oscillationswhich appear in themiddle correspond to
some artifacts introduced by the discrete scheme without the updating
step (17) (Color figure online)

At each iteration dA(i, j) was updated by

i f (uni, j > 0) then dA(i, j) = dA(i, j) + δt̃ .

Notice that if (i, j) is outside the convex hull of S0 then
uni, j > 0 for all n. To stop iterations in that case, we point
out that using Lemma6, we obtain that S(t) is an increasing
collection of shapeswhich converges towards the convex hull
of S0 and therefore we can stop iterations looking at the size
variation of the set Sn = {(i, j) : uni, j ≤ 0}.

To illustrate the behavior of the affine distance dA(x, y)
for non-convex shapes we use the shapes presented in Fig. 6.
In this case, one shape was obtained from the other one
by applying an affine transformation satisfying |A| = 1.
In Figs. 7 and 8 we show the affine distance estimation for
both shapes for points inside the shapes as well as some level
contours of the affine distance function. In Figs. 9 and 10 we

Table 2 The square average error through the ellipse main axis for
several discretization space h and time steps δt̃ using the coupling (16)
and the threshold T = 0

h δt̃ average error
with updating
step (17).

3.0 4.3×10−2 1.051

2.5 3.4×10−2 0.608

2.0 2.5×10−2 0.332

1.5 1.7×10−2 0.1978

1.0 1.0×10−2 0.1988

0.5 4.0×10−3 0.4182

0.1 4.6×10−4 0.4248

Fig. 6 Shapes used to illustrate the behavior of dA(x, y) for non-
convex shapes. One shape is obtained from the other one by applying
an affine transformation satisfying |A| = 1

Fig. 7 Illustration of the affine distance, dA(x, y), inside the shapes
shown in Fig. 6

show the affine distance and level contours for points out-
side the shapes. For comparison purposes, Figs. 11 and 12
display the Euclidean distance inside and outside the shapes.
The Euclidean distance is of course not affine invariant. In
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Fig. 8 Illustration of some level contours for the affine distance,
dA(x, y), inside the shapes shown in Fig. 6

Fig. 9 Illustration of the affine distance, dA(x, y), outside the shapes
shown in Fig. 6

Fig. 10 Illustration of some level contours of the affine distance,
dA(x, y), outside the shapes shown in Fig. 10

particular, inside the swan head one can observe a significant
difference between both shapes.

We intend to study in detail the potential applications of
the proposed affine invariant distance in futureworks.Among
other possibilities, the affine distance could be used to detect
features such as corners,which correspond to locationswhere
the distance function varies linearly (with respect to the cor-
ner angle) and could be detected using watershed techniques.
Another potential application is to define affine invariant
shape signatures for shape comparison. For example, given

Fig. 11 Illustration of the Euclidean distance, dE (x, y), inside the
shapes shown in Fig. 6

Fig. 12 Illustration of the Euclidean distance, dE (x, y), outside the
shapes shown in Fig. 6

a shape contour C0, the function

Area(d) = ∣∣{(x, y) : dA((x, y),C0) > d}∣∣

is a signature of the shape that could be used for affine invari-
ant shape comparison.

5 Conclusion

In this paper we used the affine invariant multiscale analy-
sis to define the affine invariant distance from a point to the
boundary of a shape. This affine invariant distance definition
is based on a generalization of the Euclidean distance defini-
tion estimated using the level set formulation of the solution
of the eikonal equation. The basic mathematical properties
of this affine invariant distance definition were explored and
a simple finite difference numerical scheme was proposed,
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based on a GPU implementation, to estimate this distance.
We forced the associated discrete solution to satisfy a dis-
crete local comparison principle. The experiments presented
show the accuracy and robustness of the numerical scheme
using the actual solution of an ellipse and we also illustrated
the behavior of the proposed affine distance for general non-
convex shapes.
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